
Fluid Analysis of Energy Consumption using Rewards
in Massively Parallel Markov Models

Anton Stefanek Richard A. Hayden
Department of Computing
Imperial College London

London SW7 2BZ
anton.stefanek@ic.ac.uk

Jeremy T. Bradley

ABSTRACT
Capturing energy consumption directly from a stochastic be-
havioural model is a computationally expensive process. Us-
ing a so-called fluid analysis technique we are able to access
accumulated reward measures in much larger scale stochas-
tic systems than has been previously possible. These ac-
cumulated rewards are ideal for deriving energy and power
consumption from stochastic process models. In previous
work, it has been shown how to derive a set of ordinary dif-
ferential equations (ODEs) whose solutions approximate the
moments of component counts in a continuous-time Markov
chain (CTMC) described in a stochastic process algebra. In
this paper, we show how to extend the method to provide
rapid access to moments of accumulated rewards in CTMCs.
In addition to measuring the amount of energy used by a
system, we are also interested in the time taken to reach
a particular level of energy consumption. In reward terms,
this is a so-called completion time. In this paper, we are
able to use higher moments of rewards to give us access to
completion time distributions.
We demonstrate the technique on a model of energy con-
sumption in a client–server system with server failure and
hibernation. Moreover, we are able to use these new and
rapid techniques to capture the trade-off between energy
consumption and service level agreement (SLA) compliance.
We use a standard optimisation approach to find the pre-
cise configuration of the system which minimises the energy
consumption while satisfying an operational response-time
quantile.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Reliability, availability, and serviceability ; G.3
[Probability and Statistics]: Markov processes

General Terms
Performance
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1. INTRODUCTION
Energy consumption is a critical factor in the practical op-
eration of massive computer systems on the internet today.
Whether in wireless networks, virtualised services that run
on Amazon’s Elastic Compute Cloud or Google’s search clus-
ters, energy consumption, heat management and cost are
required metrics. Capturing these features in a performance
model has traditionally been achieved using Markov Reward
Models (MRMs) where behavioural models have been aug-
mented with random variables that accumulate a reward
(such as energy or cost) for being in a particular state, or
transitioning to a new state [1, 2, 3].
However, given the scale of a Google search cluster or a typ-
ical cloud environment, it would be impractical to perform
traditional reward analysis on these massively parallel sys-
tems. A new technique is needed. Recently, so-called fluid
analysis of performance models [4, 5] makes it possible to
analyse systems which exhibit a high degree of parallelism.
We also have the ability to generate higher moments in the
course of such analysis and have a good understanding of
when the first-order analysis produces a good transient ap-
proximation to the underlying Markov model [5, 6].
The contribution of this paper is to show, for the first time,
how it is possible to derive reward measures from massive
stochastic models using fluid analysis techniques. We show
that many measures can be constructed precisely as func-
tions of existing component counts. Reward measures can
be represented using ordinary differential equations (ODEs)
that augment the set that already exists to analyse the be-
havioural system directly. We show that higher moments
of reward measures can similarly be generated. We demon-
strate how reward passage times or so-called completion times
can be constructed and solved in terms of rewards, giving for
instance the passage time until the temperature in a server
room reaches a certain level given a particular server load
profile. Finally, we illustrate the technique on a model of
energy consumption in a client–server system with server
failure and hibernation and use the fast reward analysis to
assess the trade-off between energy consumption and service
level agreement (SLA) compliance.

1.1 Motivating example
We first look at a typical reward example and we list the
main quantities of interest that the techniques can provide.
Consider the ubiquitous situation of m identical processors
running in parallel, each in need of one of n identical re-
sources. Each processor has two possible states and loops
between them repeatedly. In the first state the processor
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Figure 1: Selected plots of important quantities: (a)
Mean component count, (b) Variance of component
count, (c) Mean accumulated reward and (d) Vari-
ance of accumulated reward

is acquiring a resource, in the second state it returns with-
out synchronisation to the first state. Each resource simi-
larly has two possible states that it loops between. In the
first state, the resource awaits acquisition from a processor,
in the second it resets without synchronisation to the first
state. The actions the system takes (e.g. a processor ac-
quiring a resource or a resource resetting) are stochastic in
nature. This gives us a model with four component states,
which is defined formally in Section 3.
Ideally, in order to fully understand the behaviour of the
system over time, we would like to obtain the distribution
of the individual component counts at each point of time as
well as at the point when the system runs for sufficiently long
for the time not to have any influence (the steady state of
the system). However, this can be too costly and sometimes
simpler measures are sufficient for the modelling purposes.
For example, to get a basic understanding of how the system
evolves, we can look at the means of the four individual
component counts at each point of time or as the time goes to
infinity. To get insight into the variability in the underlying
stochastic model, we can also derive the variance and higher
moments of these counts [5].
We will be interested in rewards, quantities which are ac-
cumulated over time in some way, such as energy consump-
tion or the total cost of running the system. At each point
in time, these will depend on the complete history of the
individual component counts. As in the case of the above
measures, the mean values, variances and higher moments of
these accumulated counts can serve our modelling purposes.
The accumulated rewards may grow indefinitely with time
and to provide any information about their values in the
steady state, the rewards have to be normalised in some way.
It is sometimes interesting to look at the rate of increase in

the reward in the steady state: that is, to look at the limit
of the reward divided by t as t goes to infinity.
The following list summarises the quantities we are inter-
ested in of which (E)–(P) can already be calculated by means
of differential equation approximations, whereas ODE ap-
proximations of (E)–(P) are the subject of investigation in
this paper:

(E) the mean number of components in each of the four
states at any time t ≥ 0

(M) variance and other higher and joint moments of the
counts

(S) the mean component counts and moments in the steady
state of the system (as t→∞)

(P) the passage-time distribution of individual components
or groups of components reaching a particular state

(E) the mean of the accumulation of the component counts
until each time t ≥ 0

(M) variance and other higher and joint moments of the
accumulated quantities

(S) normalised accumulated quantities (divided by t) and
their moments in the steady state of the system (as
t→∞)

(P) the passage-time or completion-time distribution for a
system to reach a particular reward level

Figure 1 shows these quantities for processors and resources
in their respective initial states. Note that the plots in (a)
and (b) remain constant after a longer period of time. These
constant values correspond to the quantities (S). Similarly
the plot in (c) is linear after some time and the (constant)
value of its gradient corresponds to the quantity (S). Plot
(d) displays the variance of the reward which will be useful
for gauging the stochastic reward precision.
All of the quantities (E)–(P) can be obtained via stochastic
simulation of the system. However, with increasing initial
counts of processors and resources the traditional simula-
tion techniques become expensive as they have to cope with
frequent events of short duration. Moreover, with increas-
ing order of the moments of interest, the number of simula-
tion replications needed greatly increases. For the quantities
(E)–(S), this problem is addressed in [5] (based on the ear-
lier work in [4]), where a system of ODEs is derived that ap-
proximates the temporal evolution of the means and higher
and joint moments of the individual counts. Numerically
solving these ODEs is computationally less expensive than
the simulations and can thus provide fast access to the mo-
ments with a reasonable degree of accuracy. The nature of
this approximation revolves around so-called switch points
and is further investigated in [6]. In [7] it is shown how to
use the moments to derive approximations to distributions
of the time it takes for individual components or groups of
components to reach a particular set of states, the quantities
(P).
The main contribution of this work is an extension of the
method from [5] that gives ODEs for the quantities (E)–
(S). We give an exact form of these ODEs and show how
to apply similar approximations to those from [5] to get a
system that can be numerically solved alongside the ODEs
for moments of component counts. We show how to use
the moment approximations to derive approximations to the
distributions of completion times, the quantities (P).
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2. RELATED WORK
Stochastic Reward Models (SRMs) comprise a stochastic
process {Z(t) : t ≥ 0} and a reward measure, B(t). As
the stochastic process changes state, reward is accumulated
in the measure B(t). In deterministic reward models (as
considered in this paper), reward is gathered in a particular
state proportional to the time spent in that state. Addition-
ally reward can also be gained instantaneously as the system
changes state through so-called impulse rewards. Reward
models that are applied to Markov models give so-called
Markov Reward Models (MRMs) and there is much prior
work that analyses the underlying reward process [1, 2, 3, 8].

2.1 Reward Strategies
Different strategies for reward accumulation are shown in
Figure 2. In Figure 2(a), reward is gained in state i at
rate ri, and on moving to state k, this is added to by a
further reward accumulated at rate rk. On changing state,
reward is gained in a continuous fashion. There is no loss
of reward although there is no reason why a state should
not accumulate a negative reward with associated negative
rate. This is called a Preemptive Resume (PRS) strategy
for reward accumulation.
In Figure 2(b), the reward is lost on changing state with re-
ward only accumulated linearly by the current state that the
system is in. This is a Preemptive Restart (PRT) strategy,
sometimes called Preemptive Repeat.
Although not considered here, another important reward
strategy is the impulse reward. In this case an instantaneous
reward addition is made on changing state [3]. Strategies in-
volving partial loss of rewards at state change instants are
also possible [9] but are not considered further here. A good
summary of reward strategies can be found in Horváth et
al. [10].
Preemptive Restart is fairly straightforward to implement
and can be done traditionally using a reward measure vector
on a transient or steady-state vector for a system. Preemp-
tive Resume requires an integration over the stochastic pro-
cess to capture the accumulation over many states. In this
paper, we consider the Preemptive Resume reward strategy
for massive Markov models comprising many parallel com-
ponents. We show that, in particular, the Preemptive Re-
sume rewards and higher moments can be formulated using
additional differential equations to capture the reward over
and above the ODEs used to analyse the massively parallel
system.
Since we are working with component counts rather than
individual components, in our setting, rewards have to be
functions of those component counts. This certainly covers
the traditional linear accumulation scenario, but also allows
for the possibility of more complex rewards, such as ones
involving a nonlinear combination of the component counts.

2.2 Completion times
One of the most useful aspects of rewards is the ability to
express completion times in terms of the accumulated re-
ward (see for instance [11]). For instance, we might wish to
calculate the time to accumulate a reward of 20 MWh of en-
ergy in a power station model. In stochastic reward models,
this is achieved in terms of a completion time distribution,
C(x):

C(x) = inf{t ≥ 0 : B(t) > x} (2.1)

(a) PRS, no loss – preemptive resume

(b) PRT, total loss – preemptive restart

(c) Underlying stochastic process
Time, t
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Figure 2: Change of accumulated reward, B(t), for
distinct reward strategies in (a) and (b) as the un-
derlying process, Z(t), evolves in (c)

being the first time that the system reward exceeds the value
x. It is possible to derive bounds on this distribution using
moments of the appropriate reward measures [10].
We will show how, through the use of reward moments de-
rived from fluid analysis, we can also bound the distribution
of the reward completion time for very large models.

2.3 Solution techniques
There has been a significant amount of research into efficient
solution techniques for the distributions or moments of re-
wards and the completion times. Most of the techniques, in-
cluding the approaches from [2, 3, 8, 11, 12, 13, 14], are based
on numerical techniques which require explicit considera-
tion of the entire state space of the associated discrete-state
Markov model. A detailed overview can be found in [10].
To our best knowledge, all of the existing methods have com-
plexity at least linearly dependent on the number of states.
This suffers from the state space explosion problem, which
is especially prominent in the massively parallel models we
are interested in. In this paper we present a technique with
complexity not dependent on the counts of the individual
replicated components. A similar technique has been men-
tioned in the context of physical chemistry in [15]. However,
it is limited only to components of a single type and therefore
not applicable to our models of interest where components
can be in multiple states.
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3. GROUPED PEPA
Grouped PEPA or GPEPA [5] is a simple syntactic extension
of the stochastic process algebra PEPA defined to provide
a more elegant treatment of the ODE moment approxima-
tion. Formally, the extension introduces a further level in
the syntax of PEPA, the Grouped PEPA models, defined as:

G ::= G��
L
G | Y{P ‖ · · · ‖ P}

This defines a GPEPA model to be either a PEPA coopera-
tion between two GPEPA models (over the set of actions
L) or alternatively a labelled grouping of PEPA compo-
nents, P , in parallel with each other. Y is the group label.
The Grouped PEPA model is nothing more than a standard
PEPA model with, additionally, a label to define the com-
ponents involved in parallel grouping. These labels are used
to define the level at which the ODE approximation to the
system is made.
The example from Section 1.1 can be represented by the
following GPEPA definition:

P0
def
= (acquire, r1).P1 R0

def
= (acquire, r2).R1

P1
def
= (task , q).P0 R1

def
= (reset , s).R0

System
def
= Ps{P0[m]} ��

{acquire}
Rs{R0[n]}

3.1 Moment approximation via ODEs
Traditionally, the system states in PEPA models keep track
of the state of each individual sequential component. This
can lead to state space explosion, which makes the model
not amenable to the standard analysis methods other than
the computationally expensive stochastic simulation. The
state space explosion is especially severe (with respect to
the syntactical size of the model) in the case of models with
groups consisting of many components acting in parallel. An
established way to tackle this in the case of groups consist-
ing of many identical components is by aggregating the state
space by keeping track of counts of the individual compo-
nents [4]. In the context of Grouped PEPA models, it is
sufficient to represent each state of the underlying CTMC
by a numerical vector N(t) consisting of counts NG,P (t) for
each possible pair of group label G and component P (as
in [5]). It has been shown in [5] how to derive approxima-
tions to the differential equations governing the expectations
of these counts E[NG,P (t)]. For example, if we let Pi(t) to
stand for NP,Pi(t) and Ri(t) for NR,Ri(t) for i = 0, 1, the

method from [5] gives the approximations Ẽ[·] to the exact
means E[·]:

d

dt
Ẽ[P0(t)] = qẼ[P1(t)]−min(r1Ẽ[P0(t)], r2Ẽ[R0(t)])

d

dt
Ẽ[P1(t)] = −qẼ[P1(t)] + min(r1Ẽ[P0(t)], r2Ẽ[R0(t)])

d

dt
Ẽ[R0(t)] = sẼ[R1(t)]−min(r1Ẽ[P0(t)], r2Ẽ[R0(t)])

d

dt
Ẽ[R1(t)] = −sẼ[R1(t)] + min(r1Ẽ[P0(t)], r2Ẽ[R0(t)])

The authors of [5] further extended this method to derive
ODE approximations to higher and joint moments of the
counts, such as variances, covariances and others. For ex-

ample, we would have the approximation

d

dt
Ẽ[P0(t)P1(t)]

=−min(r1Ẽ[P0(t)], r2Ẽ[R0(t)])

−min(r1Ẽ[P0(t)P1(t)], r2Ẽ[R0(t)P1(t)])

+ min(r1Ẽ[P0(t)2], r2Ẽ[R0(t)P0(t)])

+ q(Ẽ[P1(t)2]− Ẽ[P1(t)]− Ẽ[P0(t)P1(t)]) (3.1)

All of the above differential equations are approximations
since the following approximation had to be applied to tackle
the case of an expectation of a min expression:

E[min(X,Y )] ≈ min(E[X],E[Y ]) (3.2)

In general, GPEPA models cause the right hand sides of
the ODEs to additionally contain rational functions of the
expectations. If they do, the model is called splitting, oth-
erwise split-free. Further approximation is then caused by
a sequence of nested applications of the above and of the
approximation

E[f(X1, . . . , Xk)] ≈ f(E[X1], . . . ,E[Xk]) (3.3)

for a rational function f .
The effects of the approximation Equation (3.2) on the er-
ror of the numerical solution to the system of ODEs were
investigated in [6] with the help of a tool Grouped PEPA
Analyser (GPA). In the following section we show how to
derive ODEs for the quantities involving accumulated re-
wards. We also extend the GPA tool accordingly to apply
the new technique to a larger model in Section 5.

4. APPROXIMATING MOMENTS OF RE-
WARDS VIA ODES

In this section, we extend the above ODE approximation
of GPEPA moments to include ODEs for the moments of
the quantities (E)–(S) from Section 1.1. We begin with the
simplest case of the moments of accumulated rewards in the
steady state and continue with the transient case.
We will calculate the quantities (E)–(S) for the two follow-
ing simple rewards. For the processors/resources model, we
could be interested in the energy consumption of the pro-
cessors, where say the state Pi consumes ci units at each
time instant, for i = 0, 1 respectively. As there are Pi(t)
components of Pi at each time t, for the total energy con-
sumption we need to evaluate (means, moments, etc., of)
the accumulated quantity

AP (t) =

∫ t

0

c0P0(u) + c1P1(u)du (4.1)

This is the same kind of reward that would be expressible
if we model each processor individually; in that case, we
would evaluate a sum of m integrals with the corresponding
indicator functions for each processor.
To illustrate a reward that could not be expressed in such a
concise way, we could consider a quantity that uses a non-
linear function of the component counts:

APR(t) =

∫ t

0

cP0(u)R0(u)du (4.2)

This could represent a measure of total income if each pro-
cessor costs c units for being able to use an available resource
in each instant of time.
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4.1 Steady state normalised rewards
It turns out that to access moments of accumulated rewards
in the steady state of the system, the quantities (S), we can
use the ODE moment method without any extensions. In
order for the quantities to be finite in the steady state, we
divide the reward by time, i.e. look at the rate of increase:

1

t

∫ t

0

X(u)du

as t goes to infinity. For the illustrative rewards AP and
APR we therefore need to evaluate the values of

AP (t)/t and APR(t)/t as t→∞
We can express expectations of such quantities in general
just by using the steady state limits of the means of the in-
dividual component counts E[Pi] and the moment E[P0R0].
This is a corollary, previously mentioned in [16], of a stan-
dard property of CTMCs:

Theorem 4.1 ([17], Theorem 3.8.1).
Let {X(t) ∈ Nk}t≥0 be an irreducible, positive recurrent
Markov process and f : Nk → R a bounded function. Then:

P
(

1

t

∫ t

0

f(X(s))ds→ f̄

)
= 1 as t→∞ (4.3)

where f̄ =
∑

n∈Nk λnf(n) and λn is the unique invariant
distribution.

Using this, we can directly get

E [AP (t)/t] = c0E[P0(t)] + c1E[P1(t)]

E [APR(t)/t] = cE[P0(t)R0(t)] as t→∞

The method from [5] provides ODEs with solutions Ẽ[·] ap-
proximating the expectations on the right hand side. Find-
ing the fixed point solution of these ODEs then gives an
approximation of the desired steady state mean rates of in-
crease of the rewards.
We also note that the Theorem 4.1 implies that the nor-
malised accumulated rewards are deterministic in the steady
state limit and therefore all the higher moments are just
products of the respective expectations. Specifically, the
variance of these measures is zero.

4.2 Transient rewards
We show how to derive approximations for means of the
accumulated rewards at each time t, the quantities (E). For
our sample rewards, these are

E[AP (t)] and E[APR(t)] for t ≥ 0

Such expectations are differentiable in general, so we can
set a new differential equation for the mean of each accumu-
lated component count. To obtain the right hand side, we
note that since the rewards are always bounded and differ-
entiable, we can swap the differentiation and expectation to
get

d

dt
E
[∫ t

0

X(u)du

]
= E[X(t)] (4.4)

This can be generalised to the case when X(u) is replaced by
a general product

∏n
i=1X

ri
i (u). The right hand side is then

always one of the moments, for which there is an approx-
imation by the solution to one of the ODEs. Numerically

solving these simultaneously gives an approximation to the
means of accumulated rewards at each time point t. For
our sample rewards we would take ODEs approximating all
the moments up to order two (so that they include the joint
moment E[P0(t)R0(t)]) and add the following ODEs to the
system:

d

dt
Ẽ
[∫ t

0

Pi(u)du

]
= Ẽ[Pi(t)], i = 0, 1 (4.5)

d

dt
Ẽ
[∫ t

0

P0(u)R0(u)du

]
= Ẽ[P0(t)R0(t)] (4.6)

Numerically solving these gives approximations to the ex-
pectations of the rewards

E[AP (t)] ≈ c0Ẽ
[∫ t

0

P0(u)du

]
+ c1Ẽ

[∫ t

0

P1(u)du

]

E [APR(t)] ≈ cẼ
[∫ t

0

P0(u)R0(u)du

]

4.3 Higher moments of rewards
We now look at the general case of higher moments of the ac-
cumulated component counts at each time t, the quantities
(M). Using these, we can then get for example approxima-
tions to the variances of accumulated rewards, such as:

Var[AP (t)] and Var[APR(t)] for t ≥ 0

First, define the shorthand for the accumulated count of X
up to time t as:

X(t) =

∫ t

0

X(u)du (4.7)

For simplicity, we first look at the second order moments of
accumulated counts and later show how to extend the tech-
nique to higher orders. As for the case of mean component
counts, we can note that the moments are differentiable and
bounded and so we can swap the differentiation and expec-
tation and get ODEs of the form:

d

dt
E
[
X(t)Y (t)

]
= E[X(t)Y (t)] + E[Y (t)X(t)] (4.8)

The right hand side now contains expectations of the form
E[X(t)Y (t)]. We can try to define ODEs governing these.
This time, the function X(t)Y (t) is not differentiable, so we
cannot simply swap the expectation and differentiation. We
can look at the derivative of the expectation E[X(t)Y (t)]
from the first principles to arrive at the following theorem
(with full proof in Appendix A):

Theorem 4.2.

d

dt
E[X(t)Y (t)] = E[fX(t)Y (t)] + E[X(t)Y (t)] (4.9)

where fX(t) involves only component counts (and no expec-
tations) such that

d

dt
E [X(t)] = E[fX(t)] (4.10)

To be able to solve this ODE together with the rest of the
system numerically, we need to be able to evaluate (or ap-
proximate) both the summands in the right hand side. The

second term E[X(t)Y (t)] has an approximation Ẽ[X(t)Y (t)]
given by one of the moment ODEs. If the model is split-free,
the first term contains, after moving the expectation through
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summations and multiplications by constants, terms of the
form:

E[Z(t)Y (t)] and E[min(g(t)Y (t), h(t)Y (t))]

where g, h are piecewise linear functions (i.e. involve only
linear combinations and applications of the min function) of
the component counts. The Theorem 4.2 can be repeatedly
used to obtain ODEs of the former terms. For the latter
ones, we can apply the approximation of Equation (3.2) re-
peatedly to get piecewise linear functions involving the terms
E[Z(t)Y (t)].
If the model is splitting, we additionally get terms:

E[f(X1(t), . . . , Xm(t), Xm+1(t)Y (t), . . . , Xk(t)Y (t))]

where f is a rational function of the component counts. We
can then apply the approximation of Equation (3.3) to get
rational functions involving the terms E[Z(t)Y (t)].
We demonstrate this to find the variance of AP (t). We have:

Var[c0P0(t) + c1P1(t)] = c20Var[P0(t)] + c21Var[P1(t)]

+ 2c1c2Cov[P0(t),P1(t)]

and also:

Var[Pi(t)] = E[(Pi(t))
2]− E[Pi(t)]

2

Cov[P0(t),P1(t)] = E[P0(t)P1(t)]− E[P0(t)]E[P1(t)]

Therefore, in addition to the ODEs from Equation (4.5), we
need:

d

dt
Ẽ[(Pi(t))

2] = 2Ẽ[Pi(t)Pi(t)]

d

dt
Ẽ[P0(t)P1(t)] = Ẽ[P0(t)P1(t)] + Ẽ[P1(t)P0(t)]

To get the ODEs for Ẽ[P0(t)Pi(t)] for i = 0, 1, we can use
Theorem 4.2 where:

fP0(t) = qP1(t)−min(r1P0(t), r2R0(t))

Therefore

d

dt
Ẽ
[
P0(t)Pi(t)

]
= qẼ[P1(t)Pi(t)] + Ẽ[P0(t)Pi(t)]

−min
(
r1Ẽ

[
P0(t)Pi(t)

]
, r2Ẽ

[
R0(t)Pi(t)

])

Similarly we can obtain ODEs for the other terms Ẽ[Pi(t)Pj(t)]

and Ẽ[Ri(t)Pj(t)]. To complete the system of ODEs so that
all the moment terms on the right hand sides have a corre-
sponding differential equation, we add ODEs for the second

moments such as Ẽ[P0(t)P1(t)].
Numerically solving the resulting system of ODEs then gives
us the approximation to the variance of AP (t).
Theorem 4.2 can be generalised to cover the case when X
and Y are products of component counts. We can extend the
notation for accumulated counts to accumulated products of
counts: if M(t) =

∏
iX

ki
i (t), we let:

M(t) =

∫ t

0

∏

i

Xki
i (u)du (4.11)

For example, to get the variance of APR we get:

Var[cP0R0(t)] = c2E[(P0R0(t))2]− c2E[P0R0(t)]2

This requires the ODEs:

d

dt
Ẽ[P0R0(t)

2
] = 2Ẽ[P0(t)R0(t)P0R0(t)]

d

dt
Ẽ[P0(t)R0(t)P0R0(t)] = Ẽ[fP0R0(t)P0R0(t)]

+ Ẽ[P0(t)2R0(t)2]

We can expand the term Ẽ[fP0R0(t)P0R0(t)] using Equa-
tion (3.1) (more precisely its form before applying the ap-
proximations) to get terms such as E[P1(t)P0R0(t)]. Taking
ODEs for these and also for the moments up to the order
4, we can solve the resulting system numerically and get an
approximation to the variance of APR(t).
Furthermore, we can easily extend the Theorem 4.2 to cover
arbitrary moments of accumulated products:

E
[
M0(t)k0M1(t)

k1 · · ·Ml(t)
kl
]

(4.12)

For the general statement see Theorem A.1 in Appendix A.

4.4 Convergence
As presented in more detail in [6], using a result of Kurtz [18]
it can be shown that the first moments of component counts
converge to their ODE approximation when scaled by the
total component population size, as the component popu-
lations are scaled up. Let Xn(t) be the stochastic process
corresponding to the count of X components in a GPEPA
model where the total component population has been scaled

up by n ∈ Z+, then the result is that 1
n
|E[Xn(t)]−Ẽ[Xn(t)]| →

0 as n → ∞. Applying Fubini’s theorem and dominated
convergence, it is straightforward to show that the first mo-
ments of linear accumulated rewards converge similarly, that

is, 1
n
|E[Xn(t)]− Ẽ[Xn(t)]| → 0 as n→∞.

An argument was also presented in [6] suggesting that we
would expect similar convergence of covariances of com-
ponent counts to their ODE approximations, for example,
1
n
|Ṽar[Xn(t)] − Var[Xn(t)]| → 0 as n → ∞. Although

we do not have space to give the argument here, we be-
lieve that an analogous result can be shown for covariances
of linear accumulated rewards. That is, we would expect

for example that 1
n
|Ṽar[Xn(t)] − Var[Xn(t)]| → 0 and that

1
n
|C̃ov[Xn(t), Xn(t)]− Cov[Xn(t), Xn(t)]| → 0, as n→∞.

4.5 Complexity
The total complexity of the presented technique to obtain
moments of accumulated rewards is given by the number of
ODEs and the time over which they need to be numerically
integrated.
Similar to the original method for moments of component
counts, it is necessary to include ODEs of all moments up
to a certain order. More specifically, if there are C different
components, the method gives O(Cn) ODEs corresponding
to all moments up to order n.
For example, in the processors/resources model C = 4 and
to get the mean of AP (t), the method requires 6 ODEs. For
the variance (the order is 2), there are 27 ODEs. In case of
the mean of APR, 5 ODEs are needed and for the variance
(the order is 4 for the joint moment), 85 ODEs have to be
solved.
It is worth noting that the usual algorithms for numerically
solving systems of ODEs have both run time and memory
requirements linearly dependent on the size of the system.
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Therefore the technique is able to cope with fairly large sys-
tems. For example models requiring more than 104 ODEs
can be solved in under a minute on a standard Core 2 Duo
3.0 GHz desktop computer.

5. EXAMPLE
We demonstrate the presented techniques on an example of a
massively parallel system as mentioned in the introduction.
The model consists of a large number of clients and servers
cooperating together. The clients use the servers in two
stages – first request some data and then obtain the data,
and then perform a task individually. The servers, in ad-
dition to serving clients, can hibernate to save energy and
can also break. Broken servers need to be repaired. The full
Grouped PEPA description of this model is:

Client
def
= (request , rreq).Clientrequested

+ (wait , rwait).Clientwaiting

Clientrequested
def
= (data, rdata).Clientdata

Clientdata
def
= (task , rtask ).Client

Clientwaiting
def
= (resume, rres).Client

Server
def
= (request , rres).Server requested

+ (sleep, rsleep).Server sleep

+ (break , rbreak ).Serverbroken

Server requested
def
= (data, rdata).Serverdata

Serverdata
def
= (reset , rreset).Server

Server sleep
def
= (wakeup, rwakeup).Server

Serverbroken
def
= (repair , rrepair ).Server sleep

Servers{Server [s]} ��
{request,data}

Clients{Client [c]}
To get an initial idea of how the system behaves over time,
we look at the counts of the individual states of the client
and server components. Figure 3 shows these for the system
with initial number of clients, c = 200, and servers, s = 20
and rates with values given in Appendix B.

5.1 Accumulated rewards
We can define simple rewards on this model. To model power
consumption of the servers, we assume that servers consume
energy at a rate specific to each state during the time of be-
ing in that state. The total reward for power consumption
is then the accumulation of the corresponding linear combi-
nation of the individual state counts:

Apower(t) = crunningSr (t) + cpowerS(t)

+ cbrokenSb(t) + cdataSd(t) (5.1)

Similarly, income from serving the clients can be modelled
by accumulating at a certain rate in the state of the server
fulfilling a request:

Aincome(t) = cfeeSr (t) (5.2)

Finally, we can look at the hypothetical total income that
could result from the difference between the income from
serving the clients and the energy cost:

Atotal(t) = Aincome(t)−Apower(t) (5.3)
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Figure 3: Means of component counts in the client–
server model.

Figure 4 shows the evolution of the mean of the reward
Atotal(t) over time, with the accumulation rates given in Ap-
pendix B. It contains the ODE approximation of the tran-
sient mean and also indicates the variability of the reward
by showing its standard deviation. The accuracy of the ap-
proximation is shown by plotting the difference from the
exact quantities obtained via simulation. We can see that
the error is in the order of 0.1% of the value of the reward.

5.2 Completion times
We illustrate how to use the moments of accumulated com-
ponent counts to obtain approximation to the completion
time measures of the model, quantity (P). Consider the ran-
dom variable representing the first time the general reward
A(t) hits a target value a:

C = inf{t ≥ 0 : A(t) > a} (5.4)

In order to guarantee various service level agreements of the
form “the probability of reaching a reward a in time t is less
than p”, we are interested in the distribution of C, i.e. in
the probabilities P(C ≤ t). In [7], the authors addressed the
same problem for the case of completion times of component
counts. They used the well known one sided improvement
of Chebyshev’s inequality: for a random variable X:

P(X − E[X] ≥ y) ≤ Var[X]

Var[X] + y2

P(E[X]−X ≥ y) ≤ Var[X]

Var[X] + y2
(5.5)
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Figure 4: Approximation of the total reward.

To get the required probabilities, we note that if r(t) is non-
decreasing:

P(C ≤ t) = P(A(t) ≥ a)

This allows us to use the following bounds:

P(C ≤ t) ≤ Var[r(t)]

Var[A(t)] + (E[A(t)]− a)2
if E[A(t)] ≤ a

P(C ≤ t) ≥ 1− Var[A(t)]

Var[A(t)] + (E[A(t)]− a)2
if E[A(t)] > a

(5.6)

If A(t) can decrease, we have instead:

P(C ≤ t) ≥ P(A(t) ≥ a)

and only the lower bound in Equation (5.6) can be used.
The right hand sides of both these bounds can be quickly
approximated by solution to the systems of ODEs described
earlier in this paper, thus giving a lower and upper approx-
imations to the CDF of completion times.
Figure 5 shows the lower and upper approximations to the
CDF of the completion time of the reward Apower reaching
target a = 2.0 and compares them to the CDF estimated
from simulation. As the rate of this reward is non-negative
at each time, both the upper and lower approximations can
be used. The corresponding error, also shown in the figure,
is in the order of 0.1% of the probability.
In case of the total reward Atotal, only the lower approxi-
mation can be used, since the rate of accumulation can be
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Figure 5: Approximations of the CDF of the time
of the energy cost reward reaching a = 2.0.

negative. Figure 6 shows the approximated lower approx-
imation for the total reward and the corresponding error,
which is of the order 0.1% of the probability.
Comparing with the CDF, we can see that the bounds are
quite loose. However, the lower bounds can still give a useful
conservative estimate of the completion times. Moreover,
the ODE approximations of moments can be readily used to
produce more precise bounds based on moments of higher
orders than the variance. Figures 5(a) and 6(a) show CDF
approximations obtained from the first 7 moments using the
method in [19]. The error in these is of the same order, 10−3,
as the error of the approximations based on the Chebyshev’s
inequality.

5.3 Approximations
While the original ODEs for the moments of component
counts and the presented extension to the moments of re-
wards often give accurate results, larger errors can occur.
In [6] the authors investigate the dynamics of the error of the
approximation in the component counts. It has been shown
that the largest error occurs around so-called switch points.
These only occur for certain parameter regimes which lead to
the approximation Equation (3.2) being at its worst – when
the two arguments to the min function are close – and rep-
resent the situation when the model switches between two
different modes of behaviour. It was proposed that plot-
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Figure 6: Approximations of the CDF of the time
of the total reward reaching R = 1.0.

ting the distance from a switch point can serve as a rough
indicator of the accuracy of the model.
The same reasoning applies to the case of moments of ac-
cumulated rewards. The difference is that the error can get
amplified by accumulation over time and also by constant
multiplication in the linear combinations specifying rewards,
such as cpower. For example, Figure 7 shows an instance
when certain rate parameters cause the error to be particu-
larly visible.
Figure 7(a) shows both quantitative and qualitative differ-
ences in the approximation of the mean of Atotal(t). Fig-
ure 7(b) explains this by showing the distance the model
maintains from being near a switch point. It shows that
around the time t ≈ 2.0, the model approaches a switch
point. This coincides with the time when the ODE approx-
imation to the mean of the reward starts to differ from the
exact value. It is worth noting that the error in the mean
component counts is still only about 1%. Also, supporting
the arguments from Section 4.4, the relative error disappears
as the system size scales up.

5.4 Trade-off between energy consumption and
performance

A key application of the efficient reward computation tech-
niques presented in this paper is the design of systems with
both performance and energy consumption requirements. In

0 2 4 6 8 10 12 14
0

2

4

Time, t

M
ea
n
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Figure 7: Example of an ODE approximation of
mean reward with high error.

the client–server model, we might be interested in the opti-
mal number of servers that have to be employed in order to
guarantee given performance requirements while minimising
the associated running costs. The performance requirements
are often given in terms of a service level agreement (SLA)
for each client. In the context of this model, a suitable
SLA might require that a client finishes its first think action
within a given time period with a given high probability,
for example within time t = 4.0 with probability at least
0.9. Considering only the configurations that satisfy such
an SLA, the feasible configurations, we can look for those
that minimise certain cost function, such as the mean of
Apower(t) from Section 5.1.
Figure 8 shows an example where we vary the number of
servers and the rate with which they are put to sleep. For
each configuration we calculate the energy used and plot
a point on the surface only if that configuration satisfies
the SLA requirement mentioned above. We are able to find
a configuration (84 servers and a hibernation rate of 0.37)
which minimises the energy consumption in the system.
Intuitively, increasing the number of servers and decreasing
the hibernation rate increases the probability of a client fin-
ishing early, but also raises the energy cost of running the
system. The passage time probabilities can be accessed us-
ing the component count ODEs as shown in [7] and the mean
running cost Apower(t) can be accessed from the accumulated
reward ODEs as shown in this paper. Numerically solving
the resulting system of ODEs is computationally cheap and
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Figure 8: Global optimisation of the energy con-
sumption of the server components. Only configu-
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finishes its first think action within 4.0 seconds with
probability at least 0.9 are shown.

can be therefore repeated for a large number of parameter
combinations. The plot in Figure 8 was produced by solving
the system of ODEs for 1600 different parameter combina-
tions taking a few seconds on a standard desktop computer.
Moreover, although not guaranteed to find the global min-
imum in general, well-known local optimisation techniques,
such as the interior point algorithm can be directly ap-
plied. In this case, we were able to find a local minimum
of cost Apower = 457.71 at rsleep = 0.34, s = 83.22 using
the MATLAB fmincon implementation of the interior point
algorithm. This required ODE solutions for only around 50
distinct parameter combinations. The reason for the differ-
ence in the two minima (between MATLAB local optimisa-
tion and parameter sweeping) is that the local optimisation
algorithm does not exclude non-integer valued server counts.
Therefore in order to obtain a meaningful configuration we
can round the number of servers up to s = 84. This can
easily be verified as still feasible and it achieves a cost of
461.98, which is still very close to the minimum found by
exploring the large parameter space above.

6. CONCLUSION AND FUTURE WORK
In this paper, we have shown how energy consumption and
other accumulated measures can be extracted from mas-
sively parallel stochastic systems. To achieve this, we have
embedded the appropriate Markov reward structures in sets
of differential equations which can be integrated numerically.
This gives access to solution to reward problems based on
substantially larger Markov models than has previously been
possible in for example [8], which analysed Markov Reward
Models of order 106 states. This contrasts with the reward
model which, by the nature of differential equation analysis,
we are able to analyse in this paper which has approximately
10134 explicit states or 1012 states in its aggregate form.
Since the solution of these systems of ODEs is so rapid, we
have been able to make use of these reward techniques to
solve a sensitivity analysis problem. We have been able to
combine an SLA requirement, in the form of passage-time
quantile, with the computation of a reward structure. Fig-
ure 8 showed which feasible model parameters satisfied the
SLA and how much energy would be expended doing so. We

were able to use optimisation techniques to find a minimum
energy expenditure for the model. Similar techniques can be
used to obtain model parameters, such as the rates in Ap-
pendix B for the client–server model, when fitting models to
measurement data from real systems. There is potential for
more efficient optimisation algorithms to take advantage of
the ODE form of the cost function. In future, we plan to
adapt such techniques, for example those in [20, 21] guar-
anteeing global optima, to the case of the systems of ODEs
arising from large scale Markov models.
While massive state space Markov reward analysis is now
feasible, one of the recognised features of differential equa-
tion analysis is that it is an approximation of the explicit
state space model [5]. In most cases, the agreement be-
tween differential equation-based reward analysis and sim-
ulation is very good, as for instance in Figure 4. However,
where model parameters give rise to so-called switch point
behaviour, error can accumulate for these very particular pa-
rameter regimes [6]. Fortunately, these less accurate cases
can be predicted, avoided (by parameter modification) or
potentially simulated instead.
As with previous work [11], higher moments can be gener-
ated for reward measures but, again, the size of the model
that can be analysed is the novel feature. Second moments,
in particular, give a very straight-forward indication of pre-
cision of the first order solution, and we have shown this in
Figure 4.
The completion time until a reward level is reached is an
extremely useful reward metric and, using higher reward
moments, upper and lower bounds on the completion-time
distribution can be derived. The distribution lower bound,
in particular, is useful for generating conservative quantile
measurements which satisfy industrial service level agree-
ments. The CDF approximations based on Chebyshev’s in-
equality in Figures 5 and 6 are coarse in this paper, due
to using only the first two moments. However, as the same
figures show, it is possible to get stronger constraints still
using the first 7 moments. We plan to investigate, again
using the techniques from Tari et al. [19], the production of
bounds for up to the first 20 moments. We aim to improve
the efficiency of the presented method to produce these mo-
ments of high order as well as investigate the possibility of
bounds based on joint moments.
Additionally, we will look at incorporating extra types of
reward measures into the ODE analysis method, for instance
impulse rewards [3] and partial reward models [9].
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[10] G. Horváth, S. Rácz, A. Tari, and M. Telek, “Eval-
uation of reward analysis methods with MRMSolve
2.0,” QEST’04, International Conference on Quantita-
tive Evaluation of Systems, pp. 165–174, 2004.
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APPENDIX
A. PROOFS

Proof of Theorem 4.2. We have

d

dt
E[X(t)Y (t)]

= lim
h→0

1

h
(E[X(t+ h)Y (t+ h)]− E[X(t)Y (t)])

= lim
h→0

1

h
(E[(X(t+ h)−X(t))Y (t)]

+ E[X(t+ h)(Y (t+ h)− Y (t))])

=
d

dt
E[X(t)Y (s)]|s=t + E[X(t)Y (t)]

where the second term is obtained by applying the bounded
convergence theorem. For the first term

d

dt
E[X(t)Y (s)]

=
d

dt

∫

i

∑

k

ikP(X(t) = k, Y (s) = i)di

=

∫

i

∑

k

ik
d

dt
P(X(t) = k | Y (s) = i)P(Y (s) = i)di

=

∫

i

iE[fX(t) | Y (s) = i]P(Y (s) = i)

= E[fX(t)Y (s)]

and the result follows.

Theorem A.1 (The general form of Theorem 4.2).
For finite products Mi, i = 0, . . . , N of the form

Mi(t) =
∏

h

Xh(t)kih kih ≥ 0

and mj > 0 for j = 1, . . . , N we have

d

dt
E

[
M0(t)

N∏

j=1

Mj(t)
mj

]
= E

[
fM0(t)

N∏

j=1

Mj(t)
mj

]

+

N∑

n=1

mnE

[
M ′n(t)

N∏

j=1

Mj(t)
mj−[n=j]

]

where

M ′n(t) =
∏

h

Xh(t)k0h+knh

and fM0 is a function involving products of component counts
and no expectations such that

d

dt
E[M0(t)] = E[fM0(t)]

and [n = j] = 1 if n = j and 0 otherwise.

B. RATES
Rates used in the client–server model:

rreq = 3 rwait = 1.5 rdata = 2 rtask = 1 rres = 0.5
rreset = 5 rsleep = 0.8 rwakeup = 0.4 rbreak = 0.5 rrepair = 1

Accumulation rates used in Apower and Aincome:

cpower = 0.05 crunning = 0.1 cbroken = 0.2
cdata = 0.05 cfee = 0.2
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