
A PMIF with Petri Net Building Blocks

Catalina M. Lladó
Computing and Maths Department

Universitat de les Illes Balears
07071 Palma de Mallorca, Spain

cllado@uib.cat

Peter G. Harrison
Department of Computing
Imperial College London
London SW7 2AZ, UK

pgh@doc.ic.ac.uk

ABSTRACT
Performance model interchange formats (PMIFs) support
the portability of models and sharing of solutions amongst
different tools. XML-based interchange formats have been
defined for the interchange of queueing network and Petri
net models, amongst others, but there is still scope to ex-
tend their application to multiple formalisms, in particular
beyond queueing networks. We extend an existing PMIF
to hybrid models by including a new type of node, called
a “building block”, defined as a certain class of Petri nets.
The synchronisation primitives of these building blocks can
be used to specify fork-join systems whilst, under certain
conditions, retaining product-form solutions when embed-
ded in queueing (or other) networks possessing this property
already. When a product-form does not exist, the whole net-
work is translated into a Petri net and solved either by sim-
ulation or direct solution of the underlying Markov chain by
an existing analyser. Finally, we apply the extended PMIF
to model a computer system with RAID storage.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids;
C.4 [Performance of Systems]: Modeling Techniques.

General Terms
Performance engineering methodology, Markov processes,
portable tools, performance interoperability

Keywords
Performance modelling interchange formats, Petri nets, RAID
models, Product-form solutions.

1. INTRODUCTION
In general, model interchange aims to allow existing tools

to cooperate seamlessly in carrying out different tasks. XML-
based interchange formats for models provide a mechanism
whereby the models’ information may be transferred amongst
various modeling and analysis tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

Performance MIFs (PMIFs) [13], in particular, are XML
interchange formats that provide a mechanism for sharing
performance models across appropriate software tools. Use
of a PMIF does not require a tool to know about the ca-
pabilities of other tools, internal data formats or even their
existence. It requires only that the importing and export-
ing tools either support the PMIF or provide an interface
that reads/writes model specifications from/to a file. Inter-
change formats have been defined for queueing network mod-
els (QNM), software performance models (S-PMIF), layered
queueing networks (LQN), UML, Petri nets (PNs) and other
types of models. Each one of these is specific to one for-
malism. In this paper, however, we propose to extend the
application of the performance interoperability concept to
multiple formalisms or hybrid models.

We describe an extension of the Generalised PMIF (GP-
MIF) [10] to hybrid models by including new types of nodes,
called “building blocks” (BBs), defined as a certain class of
Stochastic Petri nets (SPNs). In fact the simplest build-
ing block, BB-1, consists of a single Petri net place with a
single input and single output transition, with no capacity
constraint. It is therefore equivalent to an M/M/1 queue.
Higher order building blocks BB-n have n places with pairs
of input and output transitions that connect to the same
subset of k places (1 ≤ k ≤ n). The BBs are defined in the
enlarged GPMIF schema and models that use them can be
implemented in general by simulation or direct solution of
the underlying Markov chain, or via a product-form solution
when one exists.

This last possibility is shown to be quite viable in closed
networks by application of the Reversed Compound Agent
Theorem (RCAT), the conditions of which are satisfied in
the extended GPMIF under conditions very similar to those
required of queueing networks [7]. As a result, complex
systems can be solved efficiently and mechanically at equi-
librium; with a wide range of parameterisations in closed
systems and under certain conditions on the rates in open
systems. In particular, the BB can describe fork-join oper-
ations and we solve such a model by two solution methods
for the same specification: via the Petri net analyser PIPE
and a product-form solution [1, 2]. This results in a realistic
application to RAID-like storage systems.

The paper is organised as follows. In the next section
we provide background material on the relevant concepts:
PMIFs, queues and Petri nets, including the definition of the
new BBs. We also define the further extended GPMIF by
showing how an XML specification for BBs can be integrated
into the current GPMIF schema (already an extension of the
original PMIF schema, as noted above). Section 3 describes

103

two solution methods: product-form solution and simula-
tion. An abstract case study is presented in section 4 which
is solved both as a product-form for the equilibrium state
probabilities and by simulation via translation into PIPE.
Both open and closed, product-form and non-product-form
cases are considered. The paper concludes in section 5.

2. BB COMPONENTS IN GPMIF
This section describes the specification of the Petri net

building blocks in GPMIF (Generalised PMIF). This is based
on PMIF 2.0, which is a common representation for system
performance model data that can be used to move models
among modeling tools that use a QNM paradigm [12]. GP-
MIF allows, in addition, the specification of non-standard
queueing networks, such as G-networks, and certain fixpoint
solutions [9, 6]1.

A natural, orthogonal direction to extend GPMIF is to
find non-queueing building blocks that can be defined as
primitive service centres with associated workloads that in-
teract with the existing components. We look to Petri nets
for such building blocks because of their ease of expressing
features found in real networks and their widespread use. To
this end, consider a building block that consists of a set of
places P1, . . . PN , a set TI of input transitions whose input
vectors are null (i.e. 0 = (0, . . . , 0)), and a set TO of output
transitions whose output vectors are null2. All the arcs have
multiplicity 1.

Definition 1 (Building block (BB) [2]). Given an
ordinary (connected) SPN S with set of transitions T and
set of N places P, then S is a building block if it satisfies
the following conditions:

1. For all T ∈ T then either O(T) = 0 or I(T) = 0.
In the former case we say that T ∈ TO is an output
transition while in the latter we say that T ∈ TI is an
input transition. Note that T = TI ∪TO and TI ∩TO =
∅, where TI is the set of input transitions and TO is the
set of output transitions.

2. For each T ∈ TI , there exists T ′ ∈ TO such that O(T) =
I(T ′) and vice versa.

3. Given two places Pi, Pj ∈ P, 1 ≤ i, j ≤ N , there exists
a transition T ∈ T such that the components i and j
of I(T) or of O(T) are non-zero.

Condition 1 requires that all the transitions are either in-
put or output transitions, while Condition 2 states that if
there exists an input transition Ty feeding a subset of places
y, then there must be a corresponding output transition T ′

y

that consumes the tokens from the same subset; i.e. for each
input transition Ty there must exist an output transition T ′

y

whose input vector is equal to the output vector of Ty. Fi-
nally, Condition 3 simply requires the SPN to be connected.

Figure 1 illustrates an example of a BB consisting of 3
places P = {P1, P2, P3}, 3 input transitions TI = {T3, T23, T12}
and 3 output transitions TO = {T ′

3, T
′
23, T

′
12}.

1Later, GPMIF was further generalised to accommodate the
extended RCAT, whilst maintaining compatibility with its
previous versions [8].
2The components of an input/output vector specify the
number of tokens taken from / added to the correspond-
ing places. Thus a null vector implies tokens arrive/depart
externally.

P1 P2 P3

T12 T23

T ′
12 T ′

23

T3

T ′
3

Figure 1: A 3-place building block.

Note that if two or more input (output) transitions have
the same output (input) vector, we can fuse them in one
transition whose rate is the sum of the rates of the original
transitions. Therefore, without loss of generality, we assume
that all the input (output) transitions have different output
(input) vectors.

To simplify the notation, we use Ty (T ′
y) to denote an

input (output) transition, where y is the set of place-indices
of the non-zero components in the output (input) vector
of Ty (T ′

y). For instance, transition T23 (T ′
23) in the net

of Figure 1 is the transition that produces (consumes) the
tokens in P2 and P3.

Keeping the model interchange format compatible with
PMIF 2.0 [13] and GPMIF [10], we added the following new
elements to represent BBs and their services:

• PNBuildingBlock with the attributeName and and the
sub-elements:

– TransitionPairsList represents the list of transi-
tion pairs of the BB, as described in the previous
section. Syntactically, it is defined as a list of
TransitionPairs. Each of these is specified by a
TransitionID and an OutputServiceTime, corre-
sponding to the output transition of the BB. The
rate of the input transition is undefined at this
stage; it will be determined by the parameters of
rest of the model.

– PlacesList is the list of places of the BB. Each
element Place has an attribute PlaceID and it
also comprises a list of TransitionPairRelated el-
ements, specifying to which transition pairs this
place is output/input.

• BBInputProbability, a new type of ServiceRequest (since
it might depend on the workload), specifies the rout-
ing probabilities to the different transitions comprising
the BB and has the attributes:

– BBID, to identify the BB.

– WorkloadName, specifying the workload that it
refers to.

– TransitionID, to identify the specific transition of
the BB.

– InputProbability, giving the routing probability
value.

2.1 Specification of a central server system with
RAID

The following excerpt shows the BBs specification based
on the above schema for the RAID case study of section 4.1.

104

Specification of Nodes andWorkloads is as specified in PMIF,
see [13].

<PNBuildingBloc Name= ‘ ‘RAID ’ ’>
<Tran s i t i onPa i r sL i s t >
<Tran s i t i onPa i r Trans i t ion ID= ‘ ‘T1 ’ ’

OutputServiceTime= ‘ ‘0.2 ’ ’/>
<Tran s i t i onPa i r Trans i t ion ID= ‘ ‘T12 ’ ’

OutputServiceTime= ‘ ‘0.083333 ’ ’/>
<Tran s i t i onPa i r Trans i t ion ID= ‘ ‘T2 ’ ’

OutputServiceTime= ‘ ‘0.2 ’ ’/>
</Trans i t i onPa i r sL i s t>
<Plac e sL i s t>
<Place PlaceID= ‘ ‘P0 ’ ’>
<Tran s i t i onPa i rRe la ted Trans i t ionID= ‘ ‘T1 ’ ’/>
<Tran s i t i onPa i rRe la ted Trans i t ionID= ‘ ‘T12 ’ ’/>

</Place>
. . .

</PNBuildingBloc>
. . .
<Serv iceRequest>

. . .
<BBInputProbabi l i ty BBID= ‘ ‘RAID ’ ’

WorkloadName= ‘ ‘C1 ’ ’
Trans i t ionID= ‘ ‘T1 ’ ’
I npu tProbab i l i t y= ‘ ‘0.25 ’ ’/>

<BBInputProbabi l i ty BBID= ‘ ‘RAID ’ ’
WorkloadName= ‘ ‘C1 ’ ’
Trans i t ionID= ‘ ‘T12 ’ ’
I npu tProbab i l i t y= ‘ ‘0.5 ’ ’/>

</Serv iceRequest>

The full example and the schema is at dmi.uib.es/~cllado/
mifs/.

3. EQUILIBRIUM SOLUTIONS OF GPMIF
SPECIFICATIONS

The steady state probabilities of GPMIF models (when
equilibrium exists) may be obtained by direct solution of the
underlying Markov process by a standard numerical method,
finding a product-form solution if such exists, and by simu-
lation. We have implemented the second and third of these;
the first could easily be done using the same specification
as that provided to the simulator and software such as Dna-
maca [11].

3.1 Product-forms by RCAT
The most general form of the RCAT theorem applies to

pairwise synchronisations amongst any finite number of Markov
processes [8]. Consider an isolated building block, which is
open by definition. Unless there are population constraints
at any of the BB’s places – e.g. finite capacity – all the
inputs to every place are outgoing from every state; this is
because in building blocks they come from input transitions
which are always enabled. Similarly, there is no restriction
on the state from which a BB generates an output; hence
every output causes a transition into every state of a build-
ing block. Thus RCAT can be applied, and a product-form
therefore constructed in a network of BBs, provided the re-
versed rates of each output transition is the same at every
one of its instances. This is not always the case, but the
property does hold when the BB is a reversible Markov pro-
cess. This is determined by the following result.

Proposition 1. Consider a BB-n, S with n places, and
let N ⊆ 2{1,...,n}

� ∅. Let ρy = λy/μy for Ty, T
′
y ∈ T , y ∈

N , |y| ≥ 1. If the following system of equations has a unique
solution ρi, (1 ≤ i ≤ N):{

ρy =
∏

i∈y ρi ∀y : Ty, T
′
y ∈ T ∧ |y| > 1

ρi =
λi
μi

∀i : Ti, T
′
i ∈ T , 1 ≤ i ≤ n

(1)

then the BB’s balance equations – and hence equilibrium
probabilities when they exist – have product-form solution:

π(m1, . . . ,mn) ∝
n∏

i=1

ρmi
i . (2)

Proof. We show that the BB-n is reversible when at
equilibrium. By the symmetry between the input and out-
put transitions in the definition of a BB, there is certainly
either no transition between any given pair of states or a
transition in each direction. Let the equilibrium probabili-
ties be π(m) ≡ π(m1, . . . ,mn). Then the detailed balance
equations for transitions between states π(m) and π(m′),
where m′

k = mk + 1 for k ∈ y and m′
k = mk for k /∈ y are:

π(m)λy = π(m′)μy or π(m)ρy = π(m′)

This equation is satisfied for all y ∈ N , Ty ∈ T and hence
for all transition-pairs. The BB is therefore reversible with
the equilibrium probabilities stated in the proposition.

It is well known that M/M/1 queues satisfy the condi-
tions of RCAT when departures are interpreted as active
synchronising actions and arrivals as passive actions. Since
the M/M/1 queue is reversible, the reversed rate of a de-
parture is simply the arrival rate of its reversed transition,
a constant. For the BB, as noted already, the first two con-
ditions of RCAT are satisfied because of the nature of in-
put and output transitions. Similarly the reversed rates are
constant (assuming the arrival rates are state-independent)
provided that the conditions of Proposition 1 are satisfied,
in this case, ρ12 = ρ1ρ2 or λ1λ2μ12 = μ1μ2λ12.

3.2 Translation into a SPN
Performance Model interoperability between Queueing Net-

works and Petri nets is desirable since it can be very useful
to compare performance results coming from tools that use
different formalisms and the distinct benefits of the tools
can be shared and combined. In our case, we can take ad-
vantage of the efficiency of product-form solutions on the
one hand and be able to solve general models, without the
constraints that hamper product-forms, on the other. In [5]
a tool that allows for the transformation of a QN specified
using PMIF into a Stochastic Petri Net (SPN) is presented.
The resulting SPN can be read and solved by PIPE2 (Plat-
form Independent Petri net Editor 2) [4] and TimeNet [14].
The QN → PN tool uses the ATL transformation language
to translate from the PMIF schema to a SPN schema (eD-
SPN.xsd) used by TimeNet and that can also be inported/-
exported to/from PIPE2 . This way, we can use both tools
dependent on which one is more convenient. We enhance
this transformation tool so that it can also transform PMIF
models with BBs (we call it eQN->PN, for “enhanced QN-
>PN tool”). Since the BBs are actually SPNs anyway, the
transformation enhancement is mainly syntactic. We can
then use the eQN->PN tool to tranform any PMIF model
with BBs (product-form or not, open or closed) into a SPN
model that can be solved by PIPE. If the PN is bounded,
we can use a GSPN solver, such as PIPE’s, to obtain equi-
librium probabilities when they exist [4].

4. MODELLING RAID SYSTEMS
Redundant Arrays of Inexpensive Disks (RAIDs) have

been used for cost-efficient storage, increased performance
through parallelism and fault tolerance for many years [3].

105

A RAID subsystem is problematic to represent in a queue-
ing model since it involves a fork-join operation, whereby
an arriving task, representing an access request, forks into
a number of subtasks that each go to a different disk. This
is because data is “striped”, i.e. divided up into a number
of segments that are allocated to different disks in the ar-
ray, and/or mirrored, i.e. copied to another disk. The sub-
tasks are run asynchronously, perhaps queueing with sub-
tasks from other accesses, and then recombined after all have
been served, i.e. are joined. Stripes can be of any size (num-
ber of segments, or disks used) up to the number of disks
in the array, n say. Large accesses will use a number of full
stripes of n segments and a partial stripe of size less than
n. Smaller requests will just comprise a partial stripe. We
assume the partial stripes use a sequence of adjacent disks,
with wraparound, starting at any disk with equal probabil-
ity. Thus, in a BB-n, we need to specify one workload for
each possible combination of disks used for each stripe size.
There is only one for a full stripe – the compete set of n
disks. For partial stripes of size k < n, there are n combi-
nations of disks that can be selected, corresponding to the
choice of disk for the first segment in the stripe. Hence there
are 1 + n(n − 1) workloads in the PMIF, corresponding to
each of these combinations.

A RAID system of n disks is modelled here by a BB-n.
This can represent the forking of arrivals into up to n sub-
tasks, which pass to places at which they are served with
processor-sharing discipline as in standard Petri nets. More-
over, the building block can also represent the corresponding
combining operations. However, it does not faithfully model
joins because the subtasks output in parallel are selected
randomly from each input place and do not in general corre-
spond to the same task that forked previously. Nevertheless,
it is a good approximation at low utilisations – in fact exact
in the limit that the occupancy of the places never exceeds
1. Moreover, at equilibrium, on average the number of forks
over a long period will be equal to the number of correspond-
ing joins. Obviously a further limitation is that individual
disk service times are assumed to be exponential random
variables, but this is common to the other servers in a larger
system-model; and indeed to many analytical models preva-
lent in performance engineering. We anticipate reasonable
accuracy in the prediction of system measures such as mean
place occupancy levels, device utilisations and throughput,
but probably poor on user-oriented measures like response
time variance and probability distribution.

4.1 Case study
We construct a model of a RAID incorporated into a

typical interactive, multi-access, data storage system. As
discussed above, the RAID is modelled by a BB-n node and
the other devices and service centres are modelled by con-
ventional queues. The model is depicted in Figure 2 and
implemented first, for simplicity of explanation, with a BB-2
node. The method is easy to mechanise and it is straight-
forward to introduce the additional workloads required for
n > 2.

We have assumed that there are two other dedicated disks,
A and B, a CPU and a “think” node, with infinite server
discipline, that represents user interaction in a multi-access
system (historically this would be a “terminal system”). We
solve this model, when equilibrium exists, first by product-
form solution and then by translation into a standard Petri
net by PIPE; see Figure 3. Notice that the Petri net is un-

CPU

DiskA DiskB

Think

..

..

..

..

..

T1 T12 T2

T2'T12'T1'

2x12x1x

1p 12p 2p

Tx

Tp

Cx

Bx

Bp

xA

pA

2
μ

12
μ

1
μ

Tμ

Cμ

BμμA
RAID

1pRp 12p 2p= + +

Figure 2: RAID network model.

bounded, with infinite state space. In the general case, with
a BB-n representation of the RAID, when the total token-
population is N , suppose both the input to T12 and the
output from T ′

12 are suspended. The remaining operational
transitions are now equivalent to an irreducible queueing
network and so any configuration of the tokens amongst the
six places is possible, subject to the total population of N .
Moreover, if the input to T12 operates once, the population
will go up to N + 1 and repeating the preceding argument
shows that any configuration is possible with total popula-
tion N + 1. Conversely, if T ′

12 fires once, the population
reduces by one. Hence we see inductively that any state
(n1, . . . , n6), ni ≥ 0, 1 ≤ i ≤ 6 is reachable. This is a
complication for simulation or direct solution, which must
truncates the state space appropriately, but a great simpli-
fication for any product-form solution which does not need
to find a normalising constant (or, rather, can determine
it easily as the product of the normalising constants of the
individual nodes).

4.2 Product-form solution
In this model, every active action represents a service com-

pletion at a queue or the firing of an output transition in the
BB node. In each case, the reversed rate is the arrival rate of
the individual queue or the rate of the corresponding input
transition. We can therefore write down the rate equations
of RCAT as follows, for the case of a BB-2 RAID-node. First
note that the total arrival rate to the CPU queue, xC in Fig-
ure 2, is the sum of the passive arrival rates from the RAID
BB and the passive arrival rates from DiskA, DiskB and the
Think queues.

xT = pTxC

x1 = p1xC

x12 = p12xC

x2 = p2xC

xA = pAxC

xB = pBxC

xC = xT + x1 + x12 + x2 + xA + xB

106

where the terms p• are the routing probabilities indicated in
Figure 2. This is a homogeneous set of linear equations with
a unique solution up to a constant multiplicative factor x =
(pT , p1, p12, p2, pA, pB, 1)xC . There is therefore one degree
of freedom, since the normalising constant is the product
of the individual node-normalising constants. The degree
of freedom is used up by the single constraint of the BB-2
node:

x1x2μ12 = μ1μ2x12

which implies that

xC =
μ1μ2p12
μ12p1p2

The unconditional product-form (when there is equilibrium)
is therefore:

π(n1, . . . , n6)) = e−z1

6∏
i=2

(1− zi)
1

n1!

6∏
i=1

zni
i (3)

where we rename the variables as z1 = pTxC/μT , z2 =
p1xC/μ1, z3 = p2xC/μ2, z4 = pAxC/μA, z5 = pBxC/μB ,
z6 = xC/μC . Finally, the condition for equilibrium to exist
is zi < 1 for 2 ≤ i ≤ 6, i.e.

xC < min(μ1/p1, μ2/p2, μA/pA, μB/pB , μC)

4.2.1 Numerical parameterisation
The parameter values chosen for the model depicted in

Figure 2 are as shown in the specification in section 2.1 for
the BB-2 node. The complete parameterisation is, for the
service rates: μT = 1/60, μ1 = 5, μ12 = 12, μ2 = 5, μA =
50, μB = 20, μC = 100; and for the routing probabilities
pT = 1/16, p1 = 1/16, p12 = 1/8, p2 = 1/16, pA = 7/16, pB =
1/4. From these we calculate the mean queue lengths at all
the nodes, mi, i = 1, . . . , 6, the throughput τ and mean re-
sponse time R for a user. These follow directly from the
equilibrium probabilities 3 and Little’s result as:

m1 = z1;mi = zi/(1− zi), i = 2, . . . , 6

and

τ = z1μT = xCpT ;R = (m1 + . . .+m6)/τ

Numerical results for the performance predicted by this model
are reported in section 4.4, where we also look at the changes
we get by increasing the rate μ12 of the output transition T ′

12

(representing the access time for stripes of size two) from 12
to 16.

4.2.2 Constraints for product-forms with BB-n
Similar RAID systems modelled with BB-n nodes are no

more difficult to analyse but there are more RAID inputs
– actually 1 + n(n − 1) of them – to define, as discussed
above. Let us assume that the output rates are fixed and
try to choose the input probabilities such that the conditions
for product-form are satisfied. Since there are 1 + n(n− 1)
inputs, there are n(n−1) independent probabilities and 1 de-
gree of freedom because the network is closed with homoge-
neous equations for the rates x•. The number of constraints
in Proposition 1 is the number of inputs less the number of
places, i.e. 1 + n(n− 1)− n = (n− 1)2 in the RAID model,
the number of inputs that fork. Subtracting the one degree
of freedom, we have n(n − 2) further constraints to satisfy,
which is n less than the number of independent input proba-
bilities to assign, n(n−1). Therefore, a product-form can be

guaranteed by picking the input probabilities appropriately.
This observation allows file allocations to be organised so
as to achieve product-forms, facilitating simple quantitative
analysis.

In particular, since the number of free input probabilities
is n(n − 1) − n(n − 2) = n, which is the number of inputs
that do not fork, one strategy is to choose the non-forking
input probabilities in any way desired, for example propor-
tional to the rates of the corresponding disk drives. The
probabilities for the forking tasks are then defined uniquely
if the network is to have a product-form. Thus, for n = 2
above, there are no further constraints to satisfy and, as we
found, the product-form is unconditional; we can choose the
two non-forking input probabilities, whereupon the remain-
ing (forking) one is determined. For n = 3, the BB-3 has 7
inputs, 4 constraints, 1 degree of freedom and 6 independent
input probabilities. Hence a product-form can be found with
three of the input probabilities assigned arbitrarily; i.e. we
can again choose the non-forking probabilities, after which
the other four are determined.

4.3 Direct solution of a Petri net model
The GPMIF xml specification corresponding to the model

of Figure 2 (partially written in section 2) is transformed by
our eQN->PN tool in another xml file specifying a corre-
sponding Petri net that can be read by PIPE. This net is
shown in Figure 3. It is a standard SPN where all timed
transitions have single server semantics but the THINK-
Time transition needs an infinite server semantics in order to
model the Think Device that corresponds to independently
“thinking” users.

Figure 3: Petri net model produced by PIPE.

4.4 Numerical results
For the model defined in section 4.2.1, we obtained the

mean queue lengths, or numbers of tokens at places, shown

107

in Table 1, as well as an average of 5 tokens in RAID-1
and RAID-2. The non-think node utilisations were 0.833
(RAID-1), 0.833 (RAID-2), 0.583 (DiskA), 0.833 (DiskB),
0.667 (CPU); the throughput was 4.167; the mean network
population was 268.4; and the mean response time was 4.416
seconds. As can be seen from the table, these results were
confirmed very closely by a discrete event simulation of the
PIPE-generated Petri net.

When the service rate of the full stripes (transition T ′
12) is

increased from 12 to 16, the corresponding performance val-
ues reduce, as shown in Table 1 – again confirmed closely by
the simulation. The mean node occupancies at the RAID-
1 and RAID-2 places became 1.667 and the non-think node
utilisations were 0.625 (RAID-1), 0.625 (RAID-2), 0.438 (DiskA),
0.625 (DiskB) and 0.5 (CPU). The throughput became 3.125,
the mean network population was 194.3 and the mean re-
sponse time was 2.169 seconds.

Server Method T ′
12=12 T ′

12=16
Thinking Product-form 250.0 187.5

Simulation 249.5 187.3
DiskA Product-form 1.4 0.778

Simulation 1.41 0.773
DiskB Product-form 5.0 1.667

Simulation 5.01 1.660
CPU Product-form 2.0 1.0

Simulation 2.0 0.995

Table 1: Numerical results comparison

5. CONCLUSION
By facilitating sharing of software model specifications,

portability and ease of use, PMIFs are enhancing the per-
formance engineering process and making it accessible to
the non-specialist. We have made a significant extension
to the GPMIF schema so as to allow fork-join sub-models
and a subset of Petri nets to be specified and checked au-
tomatically for efficient, product-form solutions. The com-
positional approach, using queues and Petri net “building
blocks” is naturally hierarchical and conducive to applica-
tion of RCAT, which is what provides product-forms when
they exist. Otherwise, solutions for general GPMIF model
specifications can be obtained by direct solution of the Petri
net form of the model, using either numerical solution of its
Markov chain or simulation. We have focused on the lat-
ter, using the simulation component of Dnamaca, which can
also solve for the equilibrium probabilities (when they ex-
ist) of the Markov chain when the state space is truncated
suitably. The Petri net derived for the RAID system model
is unbounded and so requires truncation, so direct analytic
solution has been left for future work. Nevertheless, our
product-form solutions show that, under the given approx-
imating assumptions, RAID-type fork and join operations
can be incorporated efficiently into standard queueing net-
work models.

In the immediate future, we plan to incorporate general
BB-n building blocks for any integer n, including the me-
chanical checking of the conditions for product-form by Propo-
sition 1. This will make our RAID system models more re-
alistic and suitable for testing against data monitored on
real systems. Longer term, we intend to apply our approach
to more realistic case studies, to find more general building
blocks for fork-join that do not require exponential service

times for the sub-tasks (e.g. relax these to Erlang or Coxian)
and provide a beta-version implementation.

6. REFERENCES
[1] Platform Independent Petri net Editor 2.

http://pipe2.sourceforge.net/.

[2] Balsamo, S., Harrison, P., and Marin, A.

Systematic construction of product-form stochastic
petri-nets. Tech. rep., Universita Cäı£¡ Foscari
Venezia, August 2009.

[3] board, T. R. A. The RAIDBOOK : A source Book
for RAID Technology. Lino Lakes MN Publisher, June
1993.

[4] Bonet, P., Llado, C., Puijaner, R., and

Knottenbelt., W. PIPE v2.5: A Petri net tool for
performance modelling. In Proc. 23rd Latin American
Conference on Informatics (San Jose, Costa Rica,
9-12 October 2007).

[5] Bonet, P., Llado, C., Smith, C. U., and

Puijaner, R. Qn->pn. In Submitted for publication
(2011).

[6] Gelenbe, E. Random neural networks with positive
and negative signals and product form solution.
Neural Computation 1, 4 (1989), 502–510.

[7] Harrison, P. Turning back time in Markovian
process algebra. Theoretical Computer Science 290, 3
(2003), 1947–1986.

[8] Harrison, P., and Lee, T. Separable equilibrium
state probabilities via time reversal in Markovian
process algebra. Theoretical Computer Science (2005).

[9] Harrison, P., Lladó, C., and Puigjaner, R. A
general performance model interchange format. In
Proc. of the First International Conference on
Performance Evaluation Methodologies and Tools
(Valuetools) (2006).

[10] Harrison, P., Lladó, C., and Puigjaner, R. A
unified approach to modelling the performance of
concurrent systems. Special Issue on ”Advances in
System Performance Modelling, Analysis and
Enhancement”, Simulation Modelling Practice and
Theory 17, 9 (October 2009), 1445–1456.

[11] Knottenbelt, W., Harrison, P., and Kritzinger,

P. A probabilistic dynamic technique for the
distributed generation of very large state spaces.
Performance Evaluation 39 (2000), 127–148.

[12] Smith, C., and Lladó, C. Performance model
interchangeformat (PMIF 2.0): XML definition and
implementation. In Proc. of the First International
Conference on the Quantitative Evaluation of Systems
(September 2004), pp. 38–47.

[13] Smith, C. U., Lladó, C. M., and Puigjaner, R.

Performance Model Interchange Format (PMIF 2): A
comprehensive approach to queueing network model
interoperability. Performance Evaluation 67, 7 (2010),
548 – 568.

[14] Zimmermann, A., and Knoke, M. TimeNET 4.0. a
Software Tool for the Performability Evaluation with
Stochastic and Coloured Petri Nets. User Manual.
Tech. rep., Technische Universität Berlin. Real-Time
Systems and Robotics Group, August 2007.

108

