
Hierarchical Performance Measurement
and Modeling of the Linux File System

Hai Nguyen
University of Arkansas

Fayetteville, Arkansas, USA
1-501-342-2932

hqn01@uark.edu

Amy Apon
University of Arkansas

Fayetteville, Arkansas, USA
1-479-575-6794

aapon@uark.edu

ABSTRACT
File systems are very important components in a computer system.
File system simulation can help to predict the performance of new
system designs. It offers the advantages of the flexibility of
modeling and the cost and time savings when utilizing simulation
instead of full implementation. Being able to predict end-to-end file
system performance against a pre-defined workload can help system
designers to make decisions that could affect their entire product
line, affecting several million dollars of investment. This paper
presents a detailed simulation-based performance model of the
Linux ext3 file system. The model is developed using Colored Petri
Nets. A performance study using the model shows that the obtained
results are close to the expected behavior of the real file system. The
model shows that file system parameters have significant impact on
the performance of the I/O when compared to the parameters of the
disk subsystem.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems –
Modeling techniques.

D.2.2 [Software Engineering]: Design Tools and Techniques –
Petri nets.

D.4.3 [Operating Systems]: File System Managements.

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Colored Petri Net, file system modeling, file system simulation,
Petri Net, Linux file system, L2 cache model.

1. INTRODUCTION AND MOTIVATION
Today’s scientific data intensive research applications place very
high demands on storage systems in both performance and capacity
[3]. In order to meet the storage capacity and performance demands

of these applications, storage research has pushed aggressively on
multiple fronts. High performance magnetic disks have become so
inexpensive that users are finding new, previously unaffordable,
uses for storage. A consequence is that personnel costs for storage
management for, say, tuning performance, now dominate capital
costs over the equipment’s useful lifetime. With the introduction of
cloud computing and the concept of resource on demand, the
management of storage performance and capacity faces an even
bigger challenge. This paper describes a proactive solution to
performance research and capacity planning for data intensive
computing environments.

Among several storage architectures, three most common ones,
Direct-Attached Storage (DAS), Network-Attached Storage (NAS),
and Storage Area Networks (SANs), prove to be able to provide a
shared, adaptable, and high-performance storage system for data
intensive applications. The performance of each these classes of
storage architectures has a strong impact on the overall performance
of the system. An accurate, well-developed simulation modeling
environment could allow researchers to fine tune both the
performance and the workload of a network storage architecture.

The ext3 file system is chosen to be the candidate for this study.
Ext3 is a standard file system on every Linux distribution. It was
released and officially supported by Red Hat since 2001 [7]. Ext4,
the successor of ext3, was introduced into Red Hat Enterprise Linux
very recently as a technology review. It takes time for industry to
adopt and migrate to a new file system. For the time being and in
the near future, ext3 will continue to be deployed and utilized in
industrial settings.

In this research a simulation model based on the well known Petri
Nets formalism is used to simulate and evaluate complex data
services in a repeatable and controlled environment. This formalism
offers a flexible framework that is well adapted for the analysis of
I/O flow performance. CPNTools [15] is utilized for simulation and
analysis. Section 2 discusses related work in the storage simulation
research area. Section 3 examines the structure and code flow of the
Linux file system in general and the ext3 file system in particular,
and is central to the implementation of the performance model.
Section 4 presents an I/O performance study of the ext3 file system.
Multiple design decisions and assumptions are described by the
performance study. Section 5 discusses the implementation of the
simulation model using Colored Petri Nets. Section 6 presents the
model performance validation against the performance of real file
systems. Section 7 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

73

2. RELATED WORK
J.S. Bucy and G.R. Ganger describe in [1] a disk simulation system
called DiskSim that has been made publicly available to the
research community. Disksim was developed to support research on
several aspects of the storage subsystem architecture. By providing
modules that simulate disks, intermediate controllers, buses, device
drivers, request schedulers, disk block caches, and disk array data
organization, Disksim is an efficient, accurate, and highly
configurable disk system simulator that can simulate modern disk
drives in great detail and has been validated against production disks
with high accuracy.

Previous research in performance modeling of storage and file
systems includes work using timing-accurate storage emulation [5],
which is a technique in which the simulator appears to the system to
be a real storage component with service times similar to the
component it is simulating. In [5], the authors describe a prototype
called the Memulator. This prototype produces service times within
2% of those computed by its component simulator for over 99% of
requests. Memulator was used for performance measurements on a
modern Linux system equipped with a MEMS-based storage device
and a modern Linux system equipped with a disk whose firmware
had been modified.

J.L. Griffin uses timing-accurate storage emulation to experiment
with nonexistent storage components to explore the interactions
between modified computer systems and expanded storage device
functionality, and to study storage-based intrusion detection systems
[4]. He demonstrates the incorporation of intrusion detection
capabilities into processing-enhanced disk drives.

Maghraoui et al. in [2] presents a method of modeling a Flash
device and build a Flash simulator. The authors capitalize on the
throughput behavior of the Flash disk with none rotary components
and develop a linear model for the Flash device. Benchmarks results
show the throughput of the simulation model is within 7% error
range compared to a real Flash disk. The authors also argue that one
can simulate Flash based SSDs without having to simulate every
minor detail and internal organization of a Flash device.

Wang and Kaeli in [16] present ParIOSim, a validated execution-
driven simulator for network storage systems. Their simulator
provides a flexible simulation environment for performing storage
optimizations and can also be used to accurately predict the
performance of parallel I/O applications as a function of the
underlying storage architecture. They compared the performance of
ParIOsim with the performance of an actual parallel system to
demonstrate the accuracy of the tool and provided results from
running a parallel I/O benchmark application over different storage
architectures.

3. EXAMINATION OF THE LINUX FILE
SYSTEM
In the area of file systems, Linux offers a very flexible environment
that supports a large number of file systems, including journaling,
clustering, and cryptographic file systems. As an open source
operating system, Linux provides a system analyst the ability to read
the code and to determine exactly what is happening for a particular
system request, helping the process of designing a simulation model
significantly.

3.1 Overview of the Linux file system
The architecture for file systems in Linux, shown in Figure 1, is
designed as an abstract layer that supports a large variety of file
systems over a large variety of storage devices. When using the
abstract layer function calls, the application is completely unaware
of the true file system types or the storage medium. In this clean and
well designed layer system, an upper component hides the details of
the lower components and presents a more unified interface and
simpler information to the layer above it. This design helps both
Linux and the simulation model be more flexible and provides for
the support of multiple types of storage devices. This feature is used
to develop a realistic simulation without having to model lower
level details of the hardware layer or particular storage devices. In
other words, from the perspective of the file system, a direct
attached disk drive is treated the same as a SAN storage array. This
architecture also leads to very interesting performance
characteristics of Linux file systems.

Figure 1: Architectural view of Linux file system [8]

3.2 The flow of ext3 I/O operations

There are many ways to read and write data from and to secondary
storage. Typically, application developers use the C library
functions fread and fwrite to perform I/O operations. These two
functions utilize the read system call and write system call to
implement buffered I/O operations. The fread function is illustrated
in Figure 2. These functions allow an application to perform I/O
operations in blocks of data with configurable block size, which
improves I/O performance tremendously.

The two system calls read and write are implemented so that file
system developers can use their own code if they want to. However,

size_t fread(void *, size_t , size_t , FILE *)

ssize_t read(int fd, void *buf, size_t count)

ssize_t generic_file_read(struct file *, char *, size_t, loff_t *)

Read request Return data

Read request Return data

Figure 2: fread I/O flow

74

ext2, ext3 and even ext4 file system [13] use the Linux default
read/write functions. These are defined as generic_file_read and
generic_file_write. It is clear that in order to model ext3 I/O
performance, it is vital to be able to simulate generic_file_read and
generic_file write functions.

The detailed implementation of generic_file_read and
generic_file_write can be found in the filemap.c file located under
the mm subdirectory of the Linux kernel source code.

4. PERFORMANCE MEASUREMENT
STUDY
The objective of the performance measurement study is to analyze
the behavior of the proposed ext3 file system. By studying the ext3
file system performance, we can better understand the level of detail
needed for the simulation model.

4.1 Experimental setup
Performance measurement experiments were executed on
production computers (Dell PowerEdge 1750) at Acxiom
Corporation with the hardware configurations shown in Table 1.
The test computers are setup to have a single drive with no RAID,
RAID 0 with 2 single drives, or connections to a SAN, depending
on the experiment. The test computers are located in an isolated
environment with dedicated resources to minimize extra factors
affected performance study. The primary I/O testing suite used in
the following experiments is iozone.

4.2 I/O Performance study with different file
size and block size
In a real world environment, a day to day workload could consist of
many different file sizes and the I/O operations could use many
different block sizes. The purpose of this measurement study is to
determine the suitable workload configuration for the model. First,
sequential I/O read performance is examined using a set of small to
large size files (from 4Kbytes to 1Gbytes).

The results for the sequential I/O read measurement experiments are
presented in Figure 3. For space reasons, only a section of the
experiment results are displayed.

Figure 3: Sequential I/O read performance

Two observations can be made from the measurements in Figure 3.
First, because reading is sequential and kernel cache effects are
minimized, the I/O read performance is not affected by file size.
There is an exception to this and it will be presented at the end of
this section. Secondly, the I/O read performance starts to drop after
operation block size reaches around 64Kbytes. More details of this
performance drop are described in section 4.3.

Similar performance behavior can also be observed for I/O write
operations. The write performance using a similar set of files and
the block sizes varies the same way as with read performance. The
results of I/O write measurements are not shown for space reasons
but are very similar to the read results.

Read and write measurement results show that file size does not
affect I/O performance. For the sequential workloads used for these
measurement experiments, it is the block size of the I/O operation
that affects the I/O performance. This statement hold true until the
file size reaches the physical memory capacity of the machine. If the
file size reaches the memory capacity, memory reclaiming is
triggered and swapping also occurs. The memory reclaiming and
swapping process causes disk thrashing, leading to a very large I/O
performance degradation [12].

Figure 4 shows sequential I/O read performance as the file size is
allowed to increase to the physical memory capacity of the machine.
In these experiments, the test machine has 4Gbytes of physical
memory.

Sequential write shares the same characteristic. However, under
Linux, a threshold (dirty ratio) is usually in place to synchronously
flushing data to disk. This threshold is configurable via Linux kernel
parameters. If this threshold is set equal to total physical memory
capacity of the machine, sequential write will behave the same as
sequential read presented above. In Figure 5 the dirty threshold is
set to the default value put forth by Red Hat (~512MB for the test
machine). This shows the dirty ratio threshold affects file write
performance.

Table 1. Test hardware configuration

Processors Dual Intel Xeon processors at 2.8GHz

Front side bus 533MHz

Cache 512KB L2 cache

Chipset ServerWorks GC LE

Memory 4GB DDR-2 400 SDRAM

Drive controller
Embedded dual channel Ultra320
SCSI

RAID controller PERC 4/Di

Hard drives
Fujitsu MAT3147NC 147GB 10,000
rpm

Seagate ST3146707LC 146GB 10,000
rpm

External array EMC Clarrion CX700

HBA card Qlogic 2340

75

Figure 4: Sequential read file size and performance

For random I/O, because of the nature of the I/O pattern, a set of
random I/O requests are used to study performance instead of trying
to read in a whole file using random requests. Therefore, in the case
of random I/O, file size is not a concern.

Figure 5: Sequential write file size and performance

Generally an application is designed to avoid processing files that
are bigger than its physical memory capacity all at once without
breaking them into smaller chunks since doing so will degrade the
performance of the system. From that assumption, 512Mbytes is
selected to be the standard file size for all models in the
performance study. This file size is large enough to study the
performance of the model, yet small enough for the simulation to
run within a reasonable time.

4.3 I/O performance behavior of ext3 file
system
This section describes the measured performance behavior of an
ext3 file system. Figure 6 shows the I/O read performance of the
ext3 file system that is measured with different hardware sub-
systems. The measurements in Figure 6 illustrate that the ext3 file
system hides the performance characteristics of the hardware
storage sub-systems very well. The performance curve shapes are
very similar in spite of hardware sub-system differences.

Figure 6 also shows that when the block size reaches 64Kbytes, the
performance of the file system start to drop. Figure 7 shows the I/O
write performance exhibits a similar behavior but not as dramatic.

Figure 6: I/O read performance, different hardware

To find the root cause behind this drop, kernel tracing was
performed and operation response times were carefully profiled
along the I/O path. The two kernel functions copy_to_user and
copy_from_user have interesting response times. Figure 8 shows the
average response times of copy_to_user functions as I/O block size
increases. The response times of copy_from_user functions are
nearly identical to that of copy_to_user functions and are not shown
for space reason. This is also the reason why the performance drop
in the I/O write performance is not as dramatic as in the I/O read
case. The response time of the copy_to_user function when
compares to the overall I/O read time is much more significant than
the same response time of copy_from_user function when compares
to the overall I/O write time.

Figure 7: I/O write performance, different hardware

Examination of the kernel code for functions copy_to_user and
copy_from_user shows no evidence to support this performance
behavior from the functions’ codes [14]. On the other hand, the
shape of the performance curve suggests that this performance
behavior may be caused by constraints in system resources. To
investigate system resource utilization, low level profiling of the test
system was performed using oProfile [10] while running the I/O
experiments. The results of L2 cache behavior of the copy_to_user
function and copy_from_user function obtained during I/O
benchmark are shown in Figure 9.

76

Figure 8: Average performance curve of copy_to_user and
copy_from_user

The measurements in Figure 9 show that the L2 cache misses
increase after the block size reaches 64Kbytes and become very
noticeable after the block size of 128Kbytes. The L2 cache misses
continue to increase even after the block size goes beyond
1024Kbytes.

Figure 9: L2 cache behavior of copy_to_user and
copy_from_user

When the block size is increased beyond 1024Kbytes, the
usefulness of the L2 cache in copying data from kernel space to user
space is completely negated and the response time levels off, as
shown in Figure 8.

Table 2: L2 cache size vs. I/O block size where performance
starts to drop

CPU L2 cache size
(KB)

I/O Block size

where performance starts to drop
(KB)

512 64

1024 128

2048 256

4096 512

The I/O block sizes where L2 cache misses become significant are
important for the model. Additional measurements using different
CPUs of the same model (Intel Xeon 2.8 GHz) with different L2
cache size configurations were performed. The measurements in
Table 2 show that when the I/O block size reaches the size of about
1/8 of the total L2 cache size then copy_to_user and
copy_from_user performance starts to drop.

5. IMPLEMENTATION OF THE
SIMULATION MODEL
The simulation model for the local file system is the most basic
foundation for file system modeling. It mimics the behavior of a
local file system over a block device. It interfaces with higher level
software such as applications or parallel file system servers and
provides the response time associated with each I/O request. The
implementation of the simulation model is presented in a top down
fashion, from application level down to the hard disk level, and each
level is described using Colored Petri Nets.

5.1 Assumptions and model limitations
A complex scientific or business application may have both I/O
reads and I/O writes at the same time. However, a typical I/O
pattern often seen is a large I/O read followed by computing
followed by a large I/O write. Many times, the execution phase
where the application is reading is separated from the phase where
the application is writing. With that in mind, the simulation model is
divided into an I/O read model and an I/O write model. These are
simulated separately to simplify the multiple conditions when
simulating the file system.

The ext3 journaling mechanism has three modes of operation: write
back, ordered and journal modes. Write back mode and ordered
mode are quite similar except that ordered mode guarantees that
data is flushed to disk before the metadata is written to disk. Journal
mode, however, is very different as it writes both data and metadata
into the journal. The default mode for ext3 under Linux is ordered
mode as it has good protection and performance. The model is
designed to work with all three modes. In this paper we will focus
on the default mode – ordered mode.

Although no data flushing is needed at the end of the benchmark
before the data file is closed, for stability and validity of the
performance result, we enforce an fsync() to flush all dirty data to
disk at the end of the benchmark and simulation. The performance
study of the ext3 file system, which is discussed in detail in section
4.3, shows that the Linux file system does a very good job at hiding
the performance characteristics of the lower level hardware sub-
system. As a result of this, we use a simple queuing model for our
I/O scheduler and disk sub-system model.

5.2 Modeling using Colored Petri Nets
K. Jensen proposed an extended version of classical Petri Net called
Colored Petri Net [6]. In addition to places, transitions and tokens,
the concepts of colors, guards and expressions are introduced so that
computed data values can be carried by the tokens. These concepts
prove to be incredibly powerful since tokens can now carry
information that is simple or complex. This feature is used
extensively in this paper to carry time stamps with tokens flowing
within the simulation model.

77

A Colored Petri Net is a graphical oriented language for design,
specification, simulation and verification of systems. This language
is particular well-suited to illustrate and simulate systems in which
communication, synchronization between components and resource
sharing are primary concerns [9]. This makes it a very good tool for
modeling file systems.

5.3 File read model implementation
From the application standpoint, reading a file basically divides the
file into smaller manageable blocks and uses the fread function to
read blocks into memory. The model for this operation is simple. A
loop breaks the needed file into multiple blocks of read requests and
passes the list to the fread simulation module. The result of this
operation is an array of data passed back from fread after reading it
from disk.

The implementation of the fread function in the standard C library
could be described as dividing the block of read requests into a list
of single read requests and passing this list to the kernel system call
read to carry out the actual read from disk. The result of fread is an
array of data gathered from the read system call and this array is
returned back to the application.

In kernel space, the read system call is mapped to the function
generic_file_read. The Petri net implementation of the
generic_file_read function is presented in Figure 10. The application
and fread Petri Net are very simple and are not shown.

The Petri net shown in Figure 10 is designed to have separate
components that can be easily changed or improved in future work,
including the cache component and the disk component. The
functionality of this net follows the flow of the generic_file_read
function closely. It accepts I/O read requests as input then compares
against the page cache to see if the page was previously retrieved. If
the page exists in cache it is returned to the application immediately.
The time to do this page copy, including the L2 cache effect shown
in the top right section of Figure 10, is implemented using a
mathematical formula presented in Section 5.5.

If a page does not exist in cache it is read into page cache using a
prefetch mechanism. The kernel attempts to prefetch a pre-defined
value number of pages into cache. This pre-defined value is a kernel
parameter and can be changed using the /proc file system. If the
read pattern is random, prefetch mechanism will reduce the number
of read-a-head pages to a minimum number. This number is also a
kernel parameter and can be changed using the /proc file system.

The Petri Net model of the Linux buffer cache component is
presented in Figure 11. It contains two queues of memory pages: an
active queue and an inactive queue. Each entry of these queues also
has two status flags. When a page is introduced into the buffer
cache, it is added into the inactive queue with both flags set to 0.
When the page is accessed the first time, one flag is set to 1 but the
page still does not change queue. If the page is accessed a second
time, the second flag is set to 1 and the page is moved to the active
queue. If enough time has passed from the last time the page was
accessed, it is moved back to the inactive queue. When the system
runs out of memory, the memory reclaiming process reclaims pages
in the inactive queue first. The model has two outputs “cache hit”
and “cache miss”. The I/O scheduler and disk component are
implemented using a simple queuing model and are not shown
because of space reason.

5.4 File write model implementation
From the application perspective, the file write model and the file
read model are very similar. They both partition a file into multiple
smaller blocks and pass them to the fread function or fwrite
function. The difference between file read and file write is what is
being transferred. For a file read operation, the application passes a
list of requests to the lower levels and expects an array of data in
return. For a write operation, the application passes an array of data
to the lower levels and waits for a set of return codes to ensure that
the operation completes successfully. After receiving return codes,
the application can continue its operations. The data, however, may
or may not be written to disk right away. If the application specified
the write operation is synchronous, the data is written to disk before
fwrite returns to the application. If the application uses the

1`1

(i, j, k)
i

l

if (j = k) then 1`1 else empty

qs
qs^^[i]

i

i if (j = k) then 1`i else empty

(i, j, k)

i

(i, j, k)

j

(i, j, k)

if (j < k) then 1`(i, j+1, k) else empty

(i, j, k)

(i, i, i+ppdegree)

i

q i::q

Copy
buffer

@+List.nth(cpCost, bsize)

Return
result

@+endloopdelay
Transfer

Update
cache

Disk

DiskApply
Prefetch

@+prefetchdelay

Cache

Cache

Request

[l=1]

Next

1

INT

Result
buffer

REQUEST

Temp

INTERNAL

Disk
output

INTERNAL

Do
Prefetch

INTERNAL

Cache
update

REQUEST

Cache
hit

REQUEST

Cache
miss

REQUEST

Wait

REQUEST

Read

In
REQUESTS

Result

Out
REQUESTS

Out

In

Cache

Disk

1 1`1

1

1`[]@0

Figure 10: generic_file_read Petri Net model

78

asynchronous write operation, the actual data is kept in memory and
will be written to disk at a later time. This delayed write operation is
implemented and used in most modern UNIX systems. The OS
relies on a sync mechanism to flush the data in memory to disk at
certain conditions such as low available memory, periodic timer
trigger, dirty pages ratio kernel configuration, and force flushing
using fsync() function.

The implementation of the fwrite function is similar to the fread
function with the exception of having a buffer of data passed to the
write function call.

The Petri net implementation of the write system call is presented in

Figure 12. The “Write begin” process prepares the system for the
data from the user space such as allocate memory and journal
tracking. Then, the array of data is copied to kernel space from user
space memory and combined into full pages. The kernel call for this
copy has an interesting performance behavior that is similar to the
call to copy data from kernel space to user space and is
implemented using the formula presented in Section 5.5. The
“Commit write” process, implemented in Petri Net by several
smaller processes such as “update journal”, “dirty buffer”, posts
changes to the journal, marks the data dirty in the buffer cache and
submits journal changes. “Commit write”, however, does not write
the data to disk.

bc

i

i

bc

bc

ii

i

bc
bc

bc

j

i

i

ubc

ubc

(c1, c2, c3)

(c1, c2, c3)::bc

(c1, c2, c3)

mbc

ubc

ubc bc

i

bc

bc

bc

ubc

i

bc

if cachemem bc i then 1`i else empty

bc

i

input (ubc);
output (c1, c2, c3);
action migrate ubc;

[c2 > 0]
input (ubc);
output (mbc);
action detach ubc;

input (i,bc);
output (ubc);
action updatecache bc i;

input(i,bc);
output (ubc);
action updatecache bc i;

@+cachedelay

Check

@+cachedelay

REQUESTREQUEST

Cache
Update

In REQUEST

Cache
Hit

Out REQUEST

BUFFERCACHELRU BUFFERCACHE

BUFFERCACHEBUFFERCACHE

Cache
Miss

Out REQUEST

Inactive
Hit

REQUEST

Inactive

1`[]

BUFFERCACHE

Active

1`[]

BUFFERCACHE

Wait
In REQUEST

Active
Miss

REQUEST

Active
Hit

REQUEST

In Out

Out

In

if cachemem bc i then empty else 1`i

if cachemem bc i then 1`i else empty

if cachemem bc i then empty else 1`i

if mem bc (j,0,0) then bc else (j,0,0)::bc

1 1`[]@01 1`[]@0

Figure 11: Buffer cache Petri Net model

bsize
bsize

pg

pg

pg

pg

cont

pg

pg

pg

pg

pg

continue

pg

1`1

pg

wrwr^^[pg]

pgpg

pg

pg

n

buf

pg

wr pg::wr

update
journal

done
buffer

done
journal

dirty
buffer

@+reentry

Return
code

Write
begin

@+preparewritedelay

Copy
buffer

@+List.nth(cpCost, bsize)

Begin
loop

bsize
out

Out INT

bsize
in

In INT

wait
journal

PAGE

from
buffer

In INT

wait
buffer

PAGE

buffer3

PAGE

from
journal

In INT

to
journal

Out PAGE

to
buffer

Out PAGE

Return
Out REQUESTS

PAGE

Journal
write

PAGE

buffer2

PAGE

Next

1

INT

buffer1

PAGE

Write
In REQUESTS

Application
buffer

I/O BUFFERI/O

In

Out
Out

Out
In In

In Out

1 1`[]@0

1 1`1

1

Figure 12: generic_file_write Petri Net model

79

1`1

[]

j::c

j c

j

i

[] c

c

c
j::c

Journal
commit

[length c >= journalthreshold]

No
commit

@+cachedelay[length c < journalthreshold]

Check

Continue
Out INT

Jcommit
Out BH

fsync

INT

Dirty
page

BH

Journal
Data

1`[]

BH

To
Journal

In PAGEIn

Out

Out

1

Figure 13: Journal Petri Net model

The Petri Net implementation of the journal is presented in Figure
13. Data is flushed to disk using a different mechanism. The data
flush mechanism is triggered by several different conditions. A
periodic timer triggers the data flush at a pre-determined moment.
The data flush is also triggered when the amount of dirty data in the
buffer cache reaches a certain threshold. Low memory availability
also triggers the data flush. Finally, the data flush can be manually
triggered by fsync() function. The Petri net implementation of the
data flush is presented in Figure 14. The write system call
implementation uses a disk component very similar to the disk
component in the read system call.

pg

1`1

pgpg::wr wr

n

pg

End
loop

Disk

Disk
PAGE

done
Out PAGE

Dirty
pages

In BH

1

INT

Commit
write

PAGE

In Out

Disk

1 1`1

Figure 14: Data flushing Petri Net model

5.5 L2 cache effect model
The measurements in Section 4.3 determine the I/O block size
where the performance starts to drop. The performance drops when
the average response times of the copy_to_user and copy_from_user
functions start to increase significantly. For modeling purposes, this
is called Sthreshold. This value is the amount of L2 cache available for
copying data from kernel space to user space. When the I/O block
size becomes bigger than this value, data is copied at a much slower
speed. The response time of the copy function when using L2 cache
is TL2. The response time of the copy function when not using L2
cache is labeled Tmemory. The kernel page size is labeled Spage. The
default value for page size is 4096 bytes. Data movement in the
kernel is done using pages. The total amount of data needed to be
transferred is labeled Stotal.

There are two cases. If the I/O block size is less than Sthreshold, the
average response time is

2LTt 

If the I/O block size is greater than Sthreshold, the average response
time is







 










xS

S

TxTS
S

xt

page

threshold

memoryL
page

threshold
2

)(

With
















page

threshold

page

total
S

S
S

Sx

x is the number of pages needed to be transferred and does not fit
within available L2 cache. When x becomes very large, t
approaches Tmemory.

memory

page

threshold

memoryL
page

threshold

xx

T

xS
S

TxTS
S

xt









 












2

lim)(lim

So the response time of the copy functions can be modeled using a
step function with t(x) as defined above:









0)(

0
)(2

xifxt

xifT
xt L

Figure 15 shows a comparison of this model for the L2 cache effect
as compared to the measured data from Figure 8. Figure 15 shows
that the response time for the copy_to_user function is very close to
the model calculation in most cases, and that the trend of the effect
L2 cache on copy_to_user performance is captured well by the
model.

6. MODEL PERFORMANCE VALIDATION
In order to validate the entire Petri Net file system model against
real world data, the model hardware parameters such as memory
delay, execution speed, function overhead and disk speed are
measured directly from the machines where the real experiments
take place using kernel traces. This machine is configured with a
single SCSI drive Seagate ST3146707LC. The tracing mechanizing
used is Ftrace. Ftrace is a powerful kernel tracing method and has
been a part of the mainline kernel since version 2.6.27. Ftrace
supports the ability to perform function graph tracing, which tracks
both function entry, function exit and provides function duration.

80

Figure 15: L2 cache model versus measured data (Figure 8)

To reduce the simulation time for the L2 cache effect model, the
values of the response function are calculated using the developed
model for a very wide range of block sizes and recorded into a table.
The values of function’s constants (Sthreshold, Spage, TL2, Tmemory) are
measured from the test system. The Petri Net model (Figure 10, top
right corner, and Figure 12, center) uses this table in the transition
called Buffer Copy to produce the response time for the data copy
from kernel space to user space.

6.1 Synthetic sequential workload
Simulations were run several times and the average results are used
to compare iozone benchmark results running on the test system.
The simulation experiments are run using a set of synthetic I/O
requests simulating sequential I/O. The I/O requests are grouped
into similar block size configurations of the izone benchmark.

The result of I/O read performance model is presented in Figure 16.
The errors bars are set at 10%.

Figure 16: Sequential I/O read performance validation

Most data points fall within 10% error range or very close to that
range, which is a highly accurate result of an end-to-end model of a
system as complex as the Linux ext3 file system. Figure 16 shows
that the Petri Net model result captures the trend of file system

performance very well, and behaves very similarly to the real file
system. The error for block size 256Kbytes is somewhat larger than
that of other block sizes. This result is interesting, since the L2
cache model is actually closest for an I/O block size of 256Kbytes.
This result emphasizes that the performance of the file system is
affected by many factors, not just the size of the L2 cache, and is an
area of further investigation.

I/O write performance experiments were performed in the exact
same manner. Measured data from the actual kernel I/O path were
inserted into the Petri Net model. The write simulations were run
multiple times and the average results are compared with the real
file system data. The result of the I/O write Petri Net model is
presented in Figure 17. The error bars are also set at 10%.

Figure 17: Sequential I/O write performance validation

The write result is even better than the I/O read performance result.
Figure 17 shows that all data points falling within or very close to a
10% error range. In the case of the write performance, the Petri Net
models the simulation consistently and underestimates the
performance of the actual file system throughput, again by less than
10%. Thus, the model is a very effective tool for predicting the
expected performance of the real file system with sequential
workload. It is useful to designers of new data intensive computing
systems and for capacity planning of existing systems [11].

6.2 Synthetic random workload
Simulations were also run several times and the average results are
used to compare with the real world results. The simulation
experiments are run using synthetic I/O requests simulating random
I/O with very small block size to minimize the sequential
characteristic of the workload. The same set of synthetic I/O
requests was also used to feed the iozone benchmark to produce
performance results on the test system. The I/O access pattern of the
workload is presented in Figure 18. The Y axis represents the
location of the I/O request. The X axis represents the order the I/O
requests occur. Figure 18 presents the randomness of the workload
very clearly.

81

Figure 18: synthetic random I/O pattern

The random I/O read performance results are presented in Table 3.

Table 3: Random I/O read performance

Random I/O Read performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 757,791.04

Measure throughput (KB/s) 631,162.80

Error 20%

The same set of synthetic random I/O random requests is also used
in I/O write experiment. The performance results of random I/O
write are presented in Table 4. The result of random I/O write
simulation is not as good as random I/O read simulation and will be
addressed in future work.

Table 4: Random I/O write performance

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 199,004.98

Measure throughput (KB/s) 147,995.60

Error 34%

6.3 Captured I/O traces from production
systems
Synthetic workloads are very useful for system performance study.
However, they do not always reflect the real workload in a system
under real world condition. A captured I/O request trace can provide
a closer presentation of real world workloads. I/O traces are
captured from live production systems to use in this experiment.
Figure 19 presents the I/O read requests pattern of the first captured
trace.

Figure 19: First captured trace I/O read pattern

The I/O pattern shows less randomness in I/O read activities. The
large block size of the I/O reads give the workload a mixed
characteristic of both sequential I/O and random I/O.

Figure 20 shows the I/O write request pattern of the first captured
trace.

Figure 20: First captured trace I/O write pattern

In this trace, the I/O write requests are random at the beginning of
the trace but eventually become sequential in the later part of the
trace. The block sizes of the I/O write, however, change quite
randomly.

Figure 21 presents the I/O read requests from the second captured
trace. The I/O read pattern in this trace has less randomness than the
previous trace. This I/O pattern also shows several mixtures of
random accesses and sequential accesses.

82

Figure 21: Second captured trace I/O read pattern

 Figure 22 shows the I/O write request from the second captured
trace. The I/O write pattern in this trace is also a combination of
sequential write and random write. The block sizes of I/O write are
also varied a lot in the duration of the trace.

Figure 22: Second captured trace I/O write pattern

These two I/O read traces are fed into the model and iozone
benchmark to produce the I/O performance comparison. Similar to
the previous performance studies, simulations were run several
times and produced the average result. The I/O performances are
higher than previous experiments due to caching effect. Table 5
presents the performance results of the I/O read performance result.

Table 5: I/O read performance using traces

I/O Read performance result Trace 1 Trace 2

Simulation Throughput (KB/s) 873,238.11 876,237.20

Measure throughput (KB/s) 991,969.14 1,008,167.15

Error 12% 13%

The two I/O write traces are also fed into the model and iozone
benchmark to produce the I/O performance. Table 6 shows the
performance results of the I/O write performance result.

Table 6: I/O write performance using traces

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 146,644.10 146,813.74

Measure throughput (KB/s) 207,203 180,783.2

Errors percent 29% 19%

6.4 The impact of the dirty ratio kernel
parameter
The kernel parameter – dirty threshold – discussed in section 4.2
influences I/O write performance behavior that the model should
exhibit correctly. In order to validate this behavior, an experiment is
performed using a test file with a larger size than the default value
of dirty threshold setting on the system (~512MB). Figure 23 shows
the comparison between the measure from the actual system and the
simulation result of the model. The error bars are set to 10% similar
to previous experiments.

Figure 23: Dirty ratio kernel parameter effect

The simulation results are close to the measurements from the actual
system. The errors fall between 10% and 20% for all data points.
Similar to the sequential write experiment, the model consistently
underestimate the performance of the actual system for both file
sizes.

7. CONCLUSION
This paper presents a set of detailed and hierarchical performance
models of the Linux ext3 file system using Colored Petri Nets.
Studies of the file system read and write operations including
buffering and caching effect is performed. A model for the L2 cache
behavior captures the behavior of the L2 cache and is used directly
in the full model.

In previous work presented in Section 2, storage hardware
performance models were examine and developed. However, end-
to-end file system performances were generally overlooked. In this
paper, both file read and file write including buffering effect and
caching effect are modeled and the results are very close to the
performance of the real file system. For sequential file read and file
write the simulation performances are within 10% of the real file
system in most cases. For random file read the simulation
performances are within 20% of the real file system. For random file
write the simulation performances are less than 35% of the real file

83

system. For I/O traces captured from live systems, the simulation
performances are less than 20% in most cases. Additional
performance factor such as dirty ratio is also modeled and validated.

A future paper will present performance study and model validation
for the write back mode and journal mode of the ext3 journaling
system. Also, in future work, this performance model will be
extended to model the successor of the ext3 file system, ext4. A new
detailed I/O scheduler model will be implemented. The ext3 model
will be utilized as a basic foundation to model distributed file
systems and parallel file systems. The model will be extended to
include models of the network communications.

8. ACKNOWLEDGMENTS
This research is based upon work supported by the National Science
Foundation under Grant No. 0421099.

The authors would like to thank Larry Dowdy for his feedback and
sharing his invaluable knowledge and insights into file system
behavior and performance modeling.

9. REFERENCES
[1] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger.

The disksim simulation environment version 4.0 reference
manual. Technical Report CMU-PDL-08-101, Carnegie
Mellon University - Parallel Data Laboratory, May 2008.

[2] K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik.
Modeling and simulating flash based solid-state disks for
operating systems. In WOSP/SIPEW ’10: Proceedings of the
first joint WOSP/SIPEW international conference on
Performance engineering, pages 15–26, New York, NY, USA,
2010. ACM.

[3] I. Gorton, P. Greenfield, A. Szalay, and R. Williams. Data-
intensive computing in the 21st century. Computer, 41:30–32,
2008.

[4] J. L. Griffin. Timing-Accurate Storage Emulation: Evaluating
Hypothetical Storage Components In Real Computer Systems.
Phd dissertation, Carnegie Mellon University, Department of
Electrical and Computer Engineering, 2004.

[5] J. L. Griffin, J. Schindler, S. W. Schlosser, J. C. Bucy, and G.
R. Ganger. Timing-accurate storage emulation. In FAST ’02:
Proceedings of the 1st USENIX Conference on File and
Storage Technologies, page 6, Berkeley, CA, USA, 2002.
USENIX Association.

[6] K. Jensen. Coloured Petri nets (2nd ed.): basic concepts,
analysis methods and practical use: volume 1. Springer-
Verlag, London, UK, 1996.

[7] M. K. Johnson. Red hat’s new journaling file system: ext3.
Red Hat Support White Paper, 2001.
http://www.redhat.com/support/wpapers/redhat/ext3/.

[8] T. M. Jones. Anatomy of the linux file system. IBM
developerWorks Linux Technical Library, 2007.
http://www.ibm.com/developerworks/linux/library/llinux-
filesystem/.

[9] L. M. Kristensen, Søren Christensen, and K. Jensen. The
practitioner’s guide to coloured petri nets. International
Journal on Software Tools for Technology Transfer, 2:98–132,
1998.

[10] J. Levon. Oprofile - a system profiler for linux. Sourceforge,
2010. http://oprofile.sourceforge.net/.

[11] B. Lu, A. Apon, D. Hoffman, L. Dowdy, D. Brewer, and F.
Robinson. A case study on grid performance modeling. In The
18th IASTED International Conference on Parallel And
Distributed Computing And Systems (PDCS 2006), Dallas,
Texas, USA, 2006.

[12] N. Murray and N. Horman. Understanding virtual memory.
Red Hat Magazine, 2004.
http://www.redhat.com/magazine/001nov04/features/vm/.

[13] L. K. Organization. Linux kernel source code. The Linux
Kernel Archive, 2010. http://www.kernel.org/.

[14] J. Pommnitz. Kernel level exception handing in linux 2.1.8.
Linux Kernel Documentation, 2010.
http://www.mjmwired.net/kernel/Documentation/exception.txt.

[15] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F.
Qvortrup, M. S. Stissing, M. Westergaard, S. Christensen, and
K. Jensen. Cpn tools for editing, simulating, and analysing
coloured petri nets. In ICATPN’03: Proceedings of the 24th
international conference on Applications and theory of Petri
nets, pages 450–462, Berlin, Heidelberg, 2003. Springer-
Verlag.

[16] Y. Wang and D. Kaeli. Execution-driven simulation of
network storage systems. In Proceedings of the 12th IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems
(MASCOTS’04), pages 604–611, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

84

