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ABSTRACT 
File systems are very important components in a computer system. 
File system simulation can help to predict the performance of new 
system designs. It offers the advantages of the flexibility of 
modeling and the cost and time savings when utilizing simulation 
instead of full implementation. Being able to predict end-to-end file 
system performance against a pre-defined workload can help system 
designers to make decisions that could affect their entire product 
line, affecting several million dollars of investment. This paper 
presents a detailed simulation-based performance model of the 
Linux ext3 file system. The model is developed using Colored Petri 
Nets. A performance study using the model shows that the obtained 
results are close to the expected behavior of the real file system. The 
model shows that file system parameters have significant impact on 
the performance of the I/O when compared to the parameters of the 
disk subsystem.   

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance of Systems – 
Modeling techniques. 

D.2.2 [Software Engineering]: Design Tools and Techniques – 
Petri nets.  

D.4.3 [Operating Systems]: File System Managements. 

General Terms 
Design, Experimentation, Measurement, Performance. 

Keywords 
Colored Petri Net, file system modeling, file system simulation, 
Petri Net, Linux file system, L2 cache model. 

1. INTRODUCTION AND MOTIVATION 
Today’s scientific data intensive research applications place very 
high demands on storage systems in both performance and capacity 
[3]. In order to meet the storage capacity and performance demands 

of these applications, storage research has pushed aggressively on 
multiple fronts. High performance magnetic disks have become so 
inexpensive that users are finding new, previously unaffordable, 
uses for storage. A consequence is that personnel costs for storage 
management for, say, tuning performance, now dominate capital 
costs over the equipment’s useful lifetime. With the introduction of 
cloud computing and the concept of resource on demand, the 
management of storage performance and capacity faces an even 
bigger challenge. This paper describes a proactive solution to 
performance research and capacity planning for data intensive 
computing environments. 

Among several storage architectures, three most common ones, 
Direct-Attached Storage (DAS), Network-Attached Storage (NAS), 
and Storage Area Networks (SANs), prove to be able to provide a 
shared, adaptable, and high-performance storage system for data 
intensive applications. The performance of each these classes of 
storage architectures has a strong impact on the overall performance 
of the system. An accurate, well-developed simulation modeling 
environment could allow researchers to fine tune both the 
performance and the workload of a network storage architecture. 

The ext3 file system is chosen to be the candidate for this study. 
Ext3 is a standard file system on every Linux distribution. It was 
released and officially supported by Red Hat since 2001 [7]. Ext4, 
the successor of ext3, was introduced into Red Hat Enterprise Linux 
very recently as a technology review. It takes time for industry to 
adopt and migrate to a new file system. For the time being and in 
the near future, ext3 will continue to be deployed and utilized in 
industrial settings. 

In this research a simulation model based on the well known Petri 
Nets formalism is used to simulate and evaluate complex data 
services in a repeatable and controlled environment. This formalism 
offers a flexible framework that is well adapted for the analysis of 
I/O flow performance. CPNTools [15] is utilized for simulation and 
analysis. Section 2 discusses related work in the storage simulation 
research area. Section 3 examines the structure and code flow of the 
Linux file system in general and the ext3 file system in particular, 
and is central to the implementation of the performance model. 
Section 4 presents an I/O performance study of the ext3 file system. 
Multiple design decisions and assumptions are described by the 
performance study. Section 5 discusses the implementation of the 
simulation model using Colored Petri Nets. Section 6 presents the 
model performance validation against the performance of real file 
systems. Section 7 concludes the paper. 
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2. RELATED WORK 
J.S. Bucy and G.R. Ganger describe in [1] a disk simulation system 
called DiskSim that has been made publicly available to the 
research community. Disksim was developed to support research on 
several aspects of the storage subsystem architecture. By providing 
modules that simulate disks, intermediate controllers, buses, device 
drivers, request schedulers, disk block caches, and disk array data 
organization, Disksim is an efficient, accurate, and highly 
configurable disk system simulator that can simulate modern disk 
drives in great detail and has been validated against production disks 
with high accuracy. 

Previous research in performance modeling of storage and file 
systems includes work using timing-accurate storage emulation [5], 
which is a technique in which the simulator appears to the system to 
be a real storage component with service times similar to the 
component it is simulating. In [5], the authors describe a prototype 
called the Memulator. This prototype produces service times within 
2% of those computed by its component simulator for over 99% of 
requests. Memulator was used for performance measurements on a 
modern Linux system equipped with a MEMS-based storage device 
and a modern Linux system equipped with a disk whose firmware 
had been modified. 

J.L. Griffin uses timing-accurate storage emulation to experiment 
with nonexistent storage components to explore the interactions 
between modified computer systems and expanded storage device 
functionality, and to study storage-based intrusion detection systems 
[4]. He demonstrates the incorporation of intrusion detection 
capabilities into processing-enhanced disk drives. 

Maghraoui et al. in [2] presents a method of modeling a Flash 
device and build a Flash simulator. The authors capitalize on the 
throughput behavior of the Flash disk with none rotary components 
and develop a linear model for the Flash device. Benchmarks results 
show the throughput of the simulation model is within 7% error 
range compared to a real Flash disk. The authors also argue that one 
can simulate Flash based SSDs without having to simulate every 
minor detail and internal organization of a Flash device. 

Wang and Kaeli in [16] present ParIOSim, a validated execution-
driven simulator for network storage systems. Their simulator 
provides a flexible simulation environment for performing storage 
optimizations and can also be used to accurately predict the 
performance of parallel I/O applications as a function of the 
underlying storage architecture. They compared the performance of 
ParIOsim with the performance of an actual parallel system to 
demonstrate the accuracy of the tool and provided results from 
running a parallel I/O benchmark application over different storage 
architectures. 

3. EXAMINATION OF THE LINUX FILE 
SYSTEM 
In the area of file systems, Linux offers a very flexible environment 
that supports a large number of file systems, including journaling, 
clustering, and cryptographic file systems. As an open source 
operating system, Linux provides a system analyst the ability to read 
the code and to determine exactly what is happening for a particular 
system request, helping the process of designing a simulation model 
significantly. 

3.1 Overview of the Linux file system 
The architecture for file systems in Linux, shown in Figure 1, is 
designed as an abstract layer that supports a large variety of file 
systems over a large variety of storage devices. When using the 
abstract layer function calls, the application is completely unaware 
of the true file system types or the storage medium. In this clean and 
well designed layer system, an upper component hides the details of 
the lower components and presents a more unified interface and 
simpler information to the layer above it. This design helps both 
Linux and the simulation model be more flexible and provides for 
the support of multiple types of storage devices. This feature is used 
to develop a realistic simulation without having to model lower 
level details of the hardware layer or particular storage devices. In 
other words, from the perspective of the file system, a direct 
attached disk drive is treated the same as a SAN storage array. This 
architecture also leads to very interesting performance 
characteristics of Linux file systems. 

 

Figure 1: Architectural view of Linux file system [8] 

3.2 The flow of ext3 I/O operations 
 

 

 

There are many ways to read and write data from and to secondary 
storage. Typically, application developers use the C library 
functions fread and fwrite to perform I/O operations. These two 
functions utilize the read system call and write system call to 
implement buffered I/O operations. The fread function is illustrated 
in Figure 2. These functions allow an application to perform I/O 
operations in blocks of data with configurable block size, which 
improves I/O performance tremendously. 

The two system calls read and write are implemented so that file 
system developers can use their own code if they want to. However, 

size_t fread(void *, size_t , size_t , FILE *) 

ssize_t read(int fd, void *buf, size_t count) 

ssize_t generic_file_read(struct file *, char *, size_t, loff_t *) 

Read request Return data 

Read request Return data 

Figure 2: fread I/O flow 
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ext2, ext3 and even ext4 file system [13] use the Linux default 
read/write functions. These are defined as generic_file_read and 
generic_file_write. It is clear that in order to model ext3 I/O 
performance, it is vital to be able to simulate generic_file_read and 
generic_file write functions. 

The detailed implementation of generic_file_read and 
generic_file_write can be found in the filemap.c file located under 
the mm subdirectory of the Linux kernel source code. 

4. PERFORMANCE MEASUREMENT 
STUDY 
The objective of the performance measurement study is to analyze 
the behavior of the proposed ext3 file system. By studying the ext3 
file system performance, we can better understand the level of detail 
needed for the simulation model. 

4.1 Experimental setup 
Performance measurement experiments were executed on 
production computers (Dell PowerEdge 1750) at Acxiom 
Corporation with the hardware configurations shown in Table 1. 
The test computers are setup to have a single drive with no RAID, 
RAID 0 with 2 single drives, or connections to a SAN, depending 
on the experiment. The test computers are located in an isolated 
environment with dedicated resources to minimize extra factors 
affected performance study. The primary I/O testing suite used in 
the following experiments is iozone. 

4.2 I/O Performance study with different file 
size and block size 
In a real world environment, a day to day workload could consist of 
many different file sizes and the I/O operations could use many 
different block sizes. The purpose of this measurement study is to 
determine the suitable workload configuration for the model. First, 
sequential I/O read performance is examined using a set of small to 
large size files (from 4Kbytes to 1Gbytes). 

The results for the sequential I/O read measurement experiments are 
presented in Figure 3. For space reasons, only a section of the 
experiment results are displayed. 

 

Figure 3: Sequential I/O read performance 

Two observations can be made from the measurements in Figure 3. 
First, because reading is sequential and kernel cache effects are 
minimized, the I/O read performance is not affected by file size. 
There is an exception to this and it will be presented at the end of 
this section. Secondly, the I/O read performance starts to drop after 
operation block size reaches around 64Kbytes. More details of this 
performance drop are described in section 4.3. 

Similar performance behavior can also be observed for I/O write 
operations. The write performance using a similar set of files and 
the block sizes varies the same way as with read performance. The 
results of I/O write measurements are not shown for space reasons 
but are very similar to the read results. 

Read and write measurement results show that file size does not 
affect I/O performance. For the sequential workloads used for these 
measurement experiments, it is the block size of the I/O operation 
that affects the I/O performance. This statement hold true until the 
file size reaches the physical memory capacity of the machine. If the 
file size reaches the memory capacity, memory reclaiming is 
triggered and swapping also occurs. The memory reclaiming and 
swapping process causes disk thrashing, leading to a very large I/O 
performance degradation [12]. 

Figure 4 shows sequential I/O read performance as the file size is 
allowed to increase to the physical memory capacity of the machine. 
In these experiments, the test machine has 4Gbytes of physical 
memory. 

Sequential write shares the same characteristic. However, under 
Linux, a threshold (dirty ratio) is usually in place to synchronously 
flushing data to disk. This threshold is configurable via Linux kernel 
parameters. If this threshold is set equal to total physical memory 
capacity of the machine, sequential write will behave the same as 
sequential read presented above. In Figure 5 the dirty threshold is 
set to the default value put forth by Red Hat (~512MB for the test 
machine). This shows the dirty ratio threshold affects file write 
performance. 

Table 1. Test hardware configuration 

Processors Dual Intel Xeon processors at 2.8GHz 

Front side bus 533MHz 

Cache 512KB L2 cache 

Chipset ServerWorks GC LE 

Memory 4GB DDR-2 400 SDRAM 

Drive controller 
Embedded dual channel Ultra320 
SCSI 

RAID controller PERC 4/Di 

Hard drives 
Fujitsu MAT3147NC 147GB 10,000 
rpm 

 
Seagate ST3146707LC 146GB 10,000 
rpm 

External array EMC Clarrion CX700 

HBA card Qlogic 2340 
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Figure 4: Sequential read file size and performance 

For random I/O, because of the nature of the I/O pattern, a set of 
random I/O requests are used to study performance instead of trying 
to read in a whole file using random requests. Therefore, in the case 
of random I/O, file size is not a concern. 

 

Figure 5: Sequential write file size and performance 

Generally an application is designed to avoid processing files that 
are bigger than its physical memory capacity all at once without 
breaking them into smaller chunks since doing so will degrade the 
performance of the system. From that assumption, 512Mbytes is 
selected to be the standard file size for all models in the 
performance study. This file size is large enough to study the 
performance of the model, yet small enough for the simulation to 
run within a reasonable time. 

4.3 I/O performance behavior of ext3 file 
system 
This section describes the measured performance behavior of an 
ext3 file system. Figure 6 shows the I/O read performance of the 
ext3 file system that is measured with different hardware sub-
systems. The measurements in Figure 6 illustrate that the ext3 file 
system hides the performance characteristics of the hardware 
storage sub-systems very well. The performance curve shapes are 
very similar in spite of hardware sub-system differences. 

Figure 6 also shows that when the block size reaches 64Kbytes, the 
performance of the file system start to drop. Figure 7 shows the I/O 
write performance exhibits a similar behavior but not as dramatic. 

 

Figure 6: I/O read performance, different hardware 

To find the root cause behind this drop, kernel tracing was 
performed and operation response times were carefully profiled 
along the I/O path. The two kernel functions copy_to_user and 
copy_from_user have interesting response times. Figure 8 shows the 
average response times of copy_to_user functions as I/O block size 
increases. The response times of copy_from_user functions are 
nearly identical to that of copy_to_user functions and are not shown 
for space reason. This is also the reason why the performance drop 
in the I/O write performance is not as dramatic as in the I/O read 
case. The response time of the copy_to_user function when 
compares to the overall I/O read time is much more significant than 
the same response time of copy_from_user function when compares 
to the overall I/O write time.  

 

Figure 7: I/O write performance, different hardware 

Examination of the kernel code for functions copy_to_user and 
copy_from_user shows no evidence to support this performance 
behavior from the functions’ codes [14]. On the other hand, the 
shape of the performance curve suggests that this performance 
behavior may be caused by constraints in system resources. To 
investigate system resource utilization, low level profiling of the test 
system was performed using oProfile [10] while running the I/O 
experiments. The results of L2 cache behavior of the copy_to_user 
function and copy_from_user function obtained during I/O 
benchmark are shown in Figure 9.   
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Figure 8: Average performance curve of copy_to_user and 
copy_from_user 

The measurements in Figure 9 show that the L2 cache misses 
increase after the block size reaches 64Kbytes and become very 
noticeable after the block size of 128Kbytes. The L2 cache misses 
continue to increase even after the block size goes beyond 
1024Kbytes.  

 

Figure 9: L2 cache behavior of copy_to_user and 
copy_from_user 

When the block size is increased beyond 1024Kbytes, the 
usefulness of the L2 cache in copying data from kernel space to user 
space is completely negated and the response time levels off, as 
shown in Figure 8. 

Table 2: L2 cache size vs. I/O block size where performance 
starts to drop 

CPU L2 cache size 
(KB) 

I/O Block size 

where performance starts to drop 
(KB) 

512 64 

1024 128 

2048 256 

4096 512 

 

The I/O block sizes where L2 cache misses become significant are 
important for the model. Additional measurements using different 
CPUs of the same model (Intel Xeon 2.8 GHz) with different L2 
cache size configurations were performed. The measurements in 
Table 2 show that when the I/O block size reaches the size of about 
1/8 of the total L2 cache size then copy_to_user and 
copy_from_user performance starts to drop. 

5. IMPLEMENTATION OF THE 
SIMULATION MODEL 
The simulation model for the local file system is the most basic 
foundation for file system modeling. It mimics the behavior of a 
local file system over a block device. It interfaces with higher level 
software such as applications or parallel file system servers and 
provides the response time associated with each I/O request. The 
implementation of the simulation model is presented in a top down 
fashion, from application level down to the hard disk level, and each 
level is described using Colored Petri Nets. 

5.1 Assumptions and model limitations 
A complex scientific or business application may have both I/O 
reads and I/O writes at the same time. However, a typical I/O 
pattern often seen is a large I/O read followed by computing 
followed by a large I/O write. Many times, the execution phase 
where the application is reading is separated from the phase where 
the application is writing. With that in mind, the simulation model is 
divided into an I/O read model and an I/O write model. These are 
simulated separately to simplify the multiple conditions when 
simulating the file system. 

The ext3 journaling mechanism has three modes of operation: write 
back, ordered and journal modes. Write back mode and ordered 
mode are quite similar except that ordered mode guarantees that 
data is flushed to disk before the metadata is written to disk. Journal 
mode, however, is very different as it writes both data and metadata 
into the journal. The default mode for ext3 under Linux is ordered 
mode as it has good protection and performance. The model is 
designed to work with all three modes. In this paper we will focus 
on the default mode – ordered mode. 

Although no data flushing is needed at the end of the benchmark 
before the data file is closed, for stability and validity of the 
performance result, we enforce an fsync() to flush all dirty data to 
disk at the end of the benchmark and simulation. The performance 
study of the ext3 file system, which is discussed in detail in section 
4.3, shows that the Linux file system does a very good job at hiding 
the performance characteristics of the lower level hardware sub-
system. As a result of this, we use a simple queuing model for our 
I/O scheduler and disk sub-system model. 

5.2 Modeling using Colored Petri Nets 
K. Jensen proposed an extended version of classical Petri Net called 
Colored Petri Net [6]. In addition to places, transitions and tokens, 
the concepts of colors, guards and expressions are introduced so that 
computed data values can be carried by the tokens. These concepts 
prove to be incredibly powerful since tokens can now carry 
information that is simple or complex. This feature is used 
extensively in this paper to carry time stamps with tokens flowing 
within the simulation model.  
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A Colored Petri Net is a graphical oriented language for design, 
specification, simulation and verification of systems. This language 
is particular well-suited to illustrate and simulate systems in which 
communication, synchronization between components and resource 
sharing are primary concerns [9]. This makes it a very good tool for 
modeling file systems. 

5.3 File read model implementation 
From the application standpoint, reading a file basically divides the 
file into smaller manageable blocks and uses the fread function to 
read blocks into memory. The model for this operation is simple. A 
loop breaks the needed file into multiple blocks of read requests and 
passes the list to the fread simulation module. The result of this 
operation is an array of data passed back from fread after reading it 
from disk.  

The implementation of the fread function in the standard C library 
could be described as dividing the block of read requests into a list 
of single read requests and passing this list to the kernel system call 
read to carry out the actual read from disk. The result of fread is an 
array of data gathered from the read system call and this array is 
returned back to the application.  

In kernel space, the read system call is mapped to the function 
generic_file_read. The Petri net implementation of the 
generic_file_read function is presented in Figure 10. The application 
and fread Petri Net are very simple and are not shown. 

The Petri net shown in Figure 10 is designed to have separate 
components that can be easily changed or improved in future work, 
including the cache component and the disk component. The 
functionality of this net follows the flow of the generic_file_read 
function closely. It accepts I/O read requests as input then compares 
against the page cache to see if the page was previously retrieved. If 
the page exists in cache it is returned to the application immediately. 
The time to do this page copy, including the L2 cache effect shown 
in the top right section of Figure 10, is implemented using a 
mathematical formula presented in Section 5.5. 

If a page does not exist in cache it is read into page cache using a 
prefetch mechanism. The kernel attempts to prefetch a pre-defined 
value number of pages into cache. This pre-defined value is a kernel 
parameter and can be changed using the /proc file system. If the 
read pattern is random, prefetch mechanism will reduce the number 
of read-a-head pages to a minimum number. This number is also a 
kernel parameter and can be changed using the /proc file system.  

The Petri Net model of the Linux buffer cache component is 
presented in Figure 11. It contains two queues of memory pages: an 
active queue and an inactive queue. Each entry of these queues also 
has two status flags. When a page is introduced into the buffer 
cache, it is added into the inactive queue with both flags set to 0. 
When the page is accessed the first time, one flag is set to 1 but the 
page still does not change queue. If the page is accessed a second 
time, the second flag is set to 1 and the page is moved to the active 
queue. If enough time has passed from the last time the page was 
accessed, it is moved back to the inactive queue. When the system 
runs out of memory, the memory reclaiming process reclaims pages 
in the inactive queue first. The model has two outputs “cache hit” 
and “cache miss”. The I/O scheduler and disk component are 
implemented using a simple queuing model and are not shown 
because of space reason. 

5.4 File write model implementation 
From the application perspective, the file write model and the file 
read model are very similar. They both partition a file into multiple 
smaller blocks and pass them to the fread function or fwrite 
function. The difference between file read and file write is what is 
being transferred. For a file read operation, the application passes a 
list of requests to the lower levels and expects an array of data in 
return. For a write operation, the application passes an array of data 
to the lower levels and waits for a set of return codes to ensure that 
the operation completes successfully. After receiving return codes, 
the application can continue its operations. The data, however, may 
or may not be written to disk right away. If the application specified 
the write operation is synchronous, the data is written to disk before 
fwrite returns to the application. If the application uses the 
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Figure 10: generic_file_read Petri Net model 
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asynchronous write operation, the actual data is kept in memory and 
will be written to disk at a later time. This delayed write operation is 
implemented and used in most modern UNIX systems. The OS 
relies on a sync mechanism to flush the data in memory to disk at 
certain conditions such as low available memory, periodic timer 
trigger, dirty pages ratio kernel configuration, and force flushing 
using fsync() function. 

The implementation of the fwrite function is similar to the fread 
function with the exception of having a buffer of data passed to the 
write function call. 

The Petri net implementation of the write system call is presented in 

Figure 12. The “Write begin” process prepares the system for the 
data from the user space such as allocate memory and journal 
tracking. Then, the array of data is copied to kernel space from user 
space memory and combined into full pages. The kernel call for this 
copy has an interesting performance behavior that is similar to the 
call to copy data from kernel space to user space and is 
implemented using the formula presented in Section 5.5. The 
“Commit write” process, implemented in Petri Net by several 
smaller processes such as “update journal”, “dirty buffer”, posts 
changes to the journal, marks the data dirty in the buffer cache and 
submits journal changes. “Commit write”, however, does not write 
the data to disk. 
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Figure 11: Buffer cache Petri Net model 
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Figure 12: generic_file_write Petri Net model 

79



1`1

[]

j::c

j c

j

i

[] c

c

c
j::c

Journal 
commit

[length c >= journalthreshold]

No
commit

@+cachedelay[length c < journalthreshold]

Check

Continue
Out INT

Jcommit
Out BH

fsync

INT

Dirty
page

BH

Journal
Data

1`[]

BH

To
Journal

In PAGEIn

Out

Out

1

 

Figure 13: Journal Petri Net model 

The Petri Net implementation of the journal is presented in Figure 
13. Data is flushed to disk using a different mechanism. The data 
flush mechanism is triggered by several different conditions. A 
periodic timer triggers the data flush at a pre-determined moment. 
The data flush is also triggered when the amount of dirty data in the 
buffer cache reaches a certain threshold. Low memory availability 
also triggers the data flush. Finally, the data flush can be manually 
triggered by fsync() function. The Petri net implementation of the 
data flush is presented in Figure 14. The write system call 
implementation uses a disk component very similar to the disk 
component in the read system call. 
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Figure 14: Data flushing Petri Net model 

5.5 L2 cache effect model 
The measurements in Section 4.3 determine the I/O block size 
where the performance starts to drop. The performance drops when 
the average response times of the copy_to_user and copy_from_user 
functions start to increase significantly. For modeling purposes, this 
is called Sthreshold. This value is the amount of L2 cache available for 
copying data from kernel space to user space. When the I/O block 
size becomes bigger than this value, data is copied at a much slower 
speed. The response time of the copy function when using L2 cache 
is TL2. The response time of the copy function when not using L2 
cache is labeled Tmemory. The kernel page size is labeled Spage. The 
default value for page size is 4096 bytes. Data movement in the 
kernel is done using pages. The total amount of data needed to be 
transferred is labeled Stotal. 

There are two cases. If the I/O block size is less than Sthreshold, the 
average response time is 
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If the I/O block size is greater than Sthreshold, the average response 
time is 







 










xS

S

TxTS
S

xt

page

threshold

memoryL
page

threshold
2

)(
 

With 
















page

threshold

page

total
S

S
S

Sx  

x is the number of pages needed to be transferred and does not fit 
within available L2 cache. When x becomes very large, t 
approaches Tmemory. 
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So the response time of the copy functions can be modeled using a 
step function with t(x) as defined above: 
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Figure 15 shows a comparison of this model for the L2 cache effect 
as compared to the measured data from Figure 8. Figure 15 shows 
that the response time for the copy_to_user function is very close to 
the model calculation in most cases, and that the trend of the effect 
L2 cache on copy_to_user performance is captured well by the 
model. 

6. MODEL PERFORMANCE VALIDATION 
In order to validate the entire Petri Net file system model against 
real world data, the model hardware parameters such as memory 
delay, execution speed, function overhead and disk speed are 
measured directly from the machines where the real experiments 
take place using kernel traces. This machine is configured with a 
single SCSI drive Seagate ST3146707LC. The tracing mechanizing 
used is Ftrace. Ftrace is a powerful kernel tracing method and has 
been a part of the mainline kernel since version 2.6.27. Ftrace 
supports the ability to perform function graph tracing, which tracks 
both function entry, function exit and provides function duration. 
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Figure 15: L2 cache model versus measured data (Figure 8) 

 

To reduce the simulation time for the L2 cache effect model, the 
values of the response function are calculated using the developed 
model for a very wide range of block sizes and recorded into a table. 
The values of function’s constants (Sthreshold, Spage, TL2, Tmemory) are 
measured from the test system. The Petri Net model (Figure 10, top 
right corner, and Figure 12, center) uses this table in the transition 
called Buffer Copy to produce the response time for the data copy 
from kernel space to user space. 

6.1 Synthetic sequential workload 
Simulations were run several times and the average results are used 
to compare iozone benchmark results running on the test system. 
The simulation experiments are run using a set of synthetic I/O 
requests simulating sequential I/O. The I/O requests are grouped 
into similar block size configurations of the izone benchmark. 

The result of I/O read performance model is presented in Figure 16. 
The errors bars are set at 10%. 

 

 

Figure 16: Sequential I/O read performance validation 

 

Most data points fall within 10% error range or very close to that 
range, which is a highly accurate result of an end-to-end model of a 
system as complex as the Linux ext3 file system. Figure 16 shows 
that the Petri Net model result captures the trend of file system 

performance very well, and behaves very similarly to the real file 
system. The error for block size 256Kbytes is somewhat larger than 
that of other block sizes. This result is interesting, since the L2 
cache model is actually closest for an I/O block size of 256Kbytes. 
This result emphasizes that the performance of the file system is 
affected by many factors, not just the size of the L2 cache, and is an 
area of further investigation.  

I/O write performance experiments were performed in the exact 
same manner. Measured data from the actual kernel I/O path were 
inserted into the Petri Net model. The write simulations were run 
multiple times and the average results are compared with the real 
file system data. The result of the I/O write Petri Net model is 
presented in Figure 17. The error bars are also set at 10%. 

 

 

Figure 17: Sequential I/O write performance validation 

 

The write result is even better than the I/O read performance result. 
Figure 17 shows that all data points falling within or very close to a 
10% error range. In the case of the write performance, the Petri Net 
models the simulation consistently and underestimates the 
performance of the actual file system throughput, again by less than 
10%. Thus, the model is a very effective tool for predicting the 
expected performance of the real file system with sequential 
workload. It is useful to designers of new data intensive computing 
systems and for capacity planning of existing systems [11]. 

6.2 Synthetic random workload 
Simulations were also run several times and the average results are 
used to compare with the real world results. The simulation 
experiments are run using synthetic I/O requests simulating random 
I/O with very small block size to minimize the sequential 
characteristic of the workload. The same set of synthetic I/O 
requests was also used to feed the iozone benchmark to produce 
performance results on the test system. The I/O access pattern of the 
workload is presented in Figure 18. The Y axis represents the 
location of the I/O request. The X axis represents the order the I/O 
requests occur. Figure 18 presents the randomness of the workload 
very clearly. 
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Figure 18: synthetic random I/O pattern 

 

The random I/O read performance results are presented in Table 3. 

 

Table 3: Random I/O read performance 

Random I/O Read performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 757,791.04 

Measure throughput (KB/s) 631,162.80 

Error 20% 

 

The same set of synthetic random I/O random requests is also used 
in I/O write experiment. The performance results of random I/O 
write are presented in Table 4. The result of random I/O write 
simulation is not as good as random I/O read simulation and will be 
addressed in future work. 

 

Table 4: Random I/O write performance 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 199,004.98 

Measure throughput (KB/s) 147,995.60 

Error 34% 

 

6.3 Captured I/O traces from production 
systems 
Synthetic workloads are very useful for system performance study. 
However, they do not always reflect the real workload in a system 
under real world condition. A captured I/O request trace can provide 
a closer presentation of real world workloads. I/O traces are 
captured from live production systems to use in this experiment. 
Figure 19 presents the I/O read requests pattern of the first captured 
trace. 

 

 

Figure 19: First captured trace I/O read pattern 

The I/O pattern shows less randomness in I/O read activities. The 
large block size of the I/O reads give the workload a mixed 
characteristic of both sequential I/O and random I/O. 

Figure 20 shows the I/O write request pattern of the first captured 
trace. 

 

 

Figure 20: First captured trace I/O write pattern 

In this trace, the I/O write requests are random at the beginning of 
the trace but eventually become sequential in the later part of the 
trace. The block sizes of the I/O write, however, change quite 
randomly.  

Figure 21 presents the I/O read requests from the second captured 
trace. The I/O read pattern in this trace has less randomness than the 
previous trace. This I/O pattern also shows several mixtures of 
random accesses and sequential accesses. 
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Figure 21: Second captured trace I/O read pattern 

 Figure 22 shows the I/O write request from the second captured 
trace. The I/O write pattern in this trace is also a combination of 
sequential write and random write. The block sizes of I/O write are 
also varied a lot in the duration of the trace. 

 

 

Figure 22: Second captured trace I/O write pattern 

These two I/O read traces are fed into the model and iozone 
benchmark to produce the I/O performance comparison. Similar to 
the previous performance studies, simulations were run several 
times and produced the average result. The I/O performances are 
higher than previous experiments due to caching effect. Table 5 
presents the performance results of the I/O read performance result. 

 

Table 5: I/O read performance using traces 

I/O Read performance result Trace 1 Trace 2 

Simulation Throughput (KB/s) 873,238.11 876,237.20 

Measure throughput (KB/s) 991,969.14 1,008,167.15 

Error 12% 13% 

 

The two I/O write traces are also fed into the model and iozone 
benchmark to produce the I/O performance. Table 6 shows the 
performance results of the I/O write performance result. 

Table 6: I/O write performance using traces 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 146,644.10 146,813.74 

Measure throughput (KB/s) 207,203 180,783.2 

Errors percent 29% 19% 

 

6.4 The impact of the dirty ratio kernel 
parameter 
The kernel parameter – dirty threshold – discussed in section 4.2 
influences I/O write performance behavior that the model should 
exhibit correctly. In order to validate this behavior, an experiment is 
performed using a test file with a larger size than the default value 
of dirty threshold setting on the system (~512MB).  Figure 23 shows 
the comparison between the measure from the actual system and the 
simulation result of the model. The error bars are set to 10% similar 
to previous experiments. 

 

Figure 23: Dirty ratio kernel parameter effect 

The simulation results are close to the measurements from the actual 
system. The errors fall between 10% and 20% for all data points. 
Similar to the sequential write experiment, the model consistently 
underestimate the performance of the actual system for both file 
sizes. 

7. CONCLUSION 
This paper presents a set of detailed and hierarchical performance 
models of the Linux ext3 file system using Colored Petri Nets. 
Studies of the file system read and write operations including 
buffering and caching effect is performed. A model for the L2 cache 
behavior captures the behavior of the L2 cache and is used directly 
in the full model.  

In previous work presented in Section 2, storage hardware 
performance models were examine and developed. However, end-
to-end file system performances were generally overlooked. In this 
paper, both file read and file write including buffering effect and 
caching effect are modeled and the results are very close to the 
performance of the real file system. For sequential file read and file 
write the simulation performances are within 10% of the real file 
system in most cases. For random file read the simulation 
performances are within 20% of the real file system. For random file 
write the simulation performances are less than 35% of the real file 
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system. For I/O traces captured from live systems, the simulation 
performances are less than 20% in most cases. Additional 
performance factor such as dirty ratio is also modeled and validated.  

A future paper will present performance study and model validation 
for the write back mode and journal mode of the ext3 journaling 
system. Also, in future work, this performance model will be 
extended to model the successor of the ext3 file system, ext4. A new 
detailed I/O scheduler model will be implemented. The ext3 model 
will be utilized as a basic foundation to model distributed file 
systems and parallel file systems. The model will be extended to 
include models of the network communications. 
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