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ABSTRACT
The increasing demand for customer centric evaluation of
systems, mostly related with the assessment of the quality
of service that they can deliver, requires the development
of techniques properly designed to model and to study the
movement of specific entities generically referred to as “cus-
tomers”. Stochastic Well-Formed Net (SWN) are naturally
suited for the representation of systems in which“customers”
of different categories compete for the use of common re-
sources. Color classes of SWN are easily associated with
these different categories, leaving to the peculiar features of
the formalism the possibility of exploiting all the symmetries
existing into the representation for the efficient and effective
computation of the measures of interest. Within this appli-
cation context, the computation of first passage time distri-
bution measures in SWN is becoming of primary interest.
Customers however are not primitive entities in the formal-
ism and an approach similar to that previously developed
for Generalized Stochastic Petri Nets (GSPN) is suggested
to overcome this problem in which P-semiflows are used to
identify the customers. In this paper we propose an orig-
inal algorithm for computing some P-semiflows of colored
PNs in parametric form by exploiting the peculiarities of
the objective of this investigation, and extend the customer
centric first passage time computation approach previously
developed for GSPNs, to make it suitable for SWN models.
Moreover, the paper proposes an enhancement of the SWN
notation in order to provide a way to ease the modeler in
the specification of customer scheduling policies that may
affect the computation of first passage time distributions.
This extension, inspired by Queueing Petri Nets, adds to
SWN some “syntactic sugar” that allows to include in the
model queueing places which are automatically replaced by
appropriate submodels, before solving the model.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and mod-
eling—Model Validation and Analysis; G.3 [Mathematics
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of Computing]: Probability and statistics—Queueing the-
ory; Markov processes; Stochastic processes

General Terms
Performance, Theory

Keywords
High Level Petri Nets, Colored place invariants, First pas-
sage time, Symbolic Reachability Graph

1. INTRODUCTION
The SWN [9] high level Petri net formalism is an exten-

sion of GSPNs [1] with colors. Similarly to Colored Petri
Nets [14], SWNs provide a compact and parametric model
representation that, thanks to a well-structured color syn-
tax, allows an efficient solution technique called Symbolic
Reachability Graph (SRG). The SRG method automatically
exploits the model symmetries leading to a reduced state
space and a corresponding lumped Continuous Time Markov
Chain (CTMC).

One type of performance index which is not straightforward
to define on SWN models, is the distribution of the time re-
quired for a (specific) token to traverse a subnet. The diffi-
culty is more related to the precise definition of the problem
and of the choice of the appropriate abstraction level, rather
than to the computation of this index, since first passage
time analysis tools presented in the literature [7, 12] can be
applied to the underlying CTMC.

This problem has been tackled in the context of GSPNs
in [13] first, and then in [4]. The main differences between
these two approaches are: (a) the specification of the tagged
token and of its paths within the net, (b) the way to achieve
the appropriate state description level and (c) the definition
of the performance index (purely state based in the former
work, event based in the latter).

In the SWN context the approaches devised for GSPNs
in [4, 13] are not directly applicable, hence in this paper
we propose a refinement of the technique developed for the
specification of the tagged token in GSPNs in order to adapt
it to the SWN, exploiting its efficient analysis techniques.

The method proposed in this paper is based on the as-
sumption that “customers” are associated with sets of colors
of the model and uniquely identified by their colors. Such
unique identifier might be useful for several modeling fea-
tures: e.g. to differentiate the conducts of different classes
of customers in certain phases of their behaviors, to cor-
rectly model fork-join situations, to differentiate the delays
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based on the color of the involved tokens. The presence
of a unique color identifier for each customer makes it pos-
sible to directly follow the behavior of a specific customer
token for first passage time computation purposes without
the need to “tag” it, however it might also quickly lead to a
dramatic growth of the state space size. The SRG approach
overcomes this last problem, automatically exploiting sym-
metries in the behavior of SWN models, and mitigates the
state space explosion problem while still providing the abil-
ity to track one specific token (equivalent to the tagged token
in GSPNs).

This new approach still consists of three steps, as that
in [4], but it has been redefined to work with the SWN
formalism. The three steps can be summarized as follows:
(1) identification of a set of colored tokens (i.e. customers)
circulating in the net, satisfying certain conservation proper-
ties and behavior similarities; (2) identification of a subnet,
where the customers may pass through, so that the measure
of interest can be defined as the distribution of time spent
by a token of a certain color (a customer) at each passage
through the subnet; (3) translation of this high level specifi-
cation into a CTMC that exploits the aggregation properties
deriving from the construction of the SRG, to which clas-
sical MC first passage time computation techniques can be
applied.

Furthermore, in our approach SWNs are extended with
some “syntactic sugar” in order to provide a way to ease
the modeler in the specification of customer queueing poli-
cies which, as pointed out in literature [3], may affect the
computation of the first passage time distribution in a sub-
stantial manner. This aspect is illustrated through some
experiments.

The paper is organized as follows: Sec. 2 introduces the
SWN formalisms intuitively through a model of an Emer-
gency Department. Sec. 3 defines how the customers can be
identified on an SWN model with the help of structural prop-
erty considerations. Sec. 4 introduces the method proposed
to specify the measures of interest at the net level; Sec. 5
shows how to efficiently compute these measures using the
SRG to derive the underlying CTMC. Sec. 6 introduces our
extension of the SWN formalism to ease the modeler in the
specification of customer queueing policies. Sec. 7 presents
some numerical results. Sec. 8 draws some conclusions and
presents directions for future work.

2. STOCHASTIC WELL-FORMED NETS
In this section the SWN formalism is described in an intu-

itive manner using the net in Fig. 1 and assuming that the
reader has some basic knowledge of Petri Nets (PN) [1] and
Colored Petri Nets (CPN) [14].

Running example: a hospital model.
We illustrate our approach through the analysis of patient

waiting times in the model of a hospital Emergency Depart-
ment (ED) shown in Fig 1, that has been developed using the
description provided by [16]. In this model we classify the
ED patients according to the following three categories: pa-
tients requiring resuscitation (high priority), patients with
major illnesses or injuries (medium priority) and patients
with minor illnesses or injuries (low priority).

Place Healthy contains all the healthy patients; while place
Ill all the ill patients heading towards the hospital. An
healthy patient that falls ill is represented by the firing

of (an instance of) transition FallIll. When an ill patient
reaches the hospital (place Assessment) its status is im-
mediately evaluated (transitions HighPrio, MediumPrio and
LowPrio). If its priority is high then s/he is moved to the
resuscitation room (place ResuscRoom) and waits for be-
ing stabilized: the stabilization process can start (transition
BtoStabilize) iff there is at least one trauma team available
(place TraumaTeam marked). A stabilized patient is moved
to the monitored room (place MonitoredRoom) by the fir-
ing of transition EtoStabilize. In the same room all patients
with medium priority are also admitted (transition Medi-
umPrio). A patient is constantly monitored until the results
of his/her blood and X-ray exams become available (tran-
sitions EBloodExam and EX-Ray); then s/he is treated or
operated by a doctor according to the outcomes of his/her
tests (transitions ToDoctorM and ToSurgery). Obviously
the medical examination can start if there is at least one
doctor available (place Doctors marked), while the surgical
operation can start if there is at least one doctor and one op-
erating room (place OperatingRoom marked) available. In-
stead, patients with minor illnesses or injuries have to wait
in the waiting room (place WaitingRoom) until a doctor is
available and no more patients with higher priority need to
be treated or operated (inhibitor arc from place ReadyT to
transition ToDoctorL).

Finally, transitions DischargeL, DischargeM and Discharg-
eRec model the discharge of a patient from the hospital.

For the moment the reader can ignore the new graphical
notation for place WaitingRoom (a circle with a vertical bar)
and consider it as a normal place. In Sec. 6 the meaning of
this different representation will be discussed in details.

SWN informal definition.
A formal definition of the SWN formalism can be found

in [9]; what follows is an informal presentation. In an SWN,
as in any colored net formalism, a color domain (cd()) is
associated with places and transitions. The color domain of
a place defines the possible colors of the tokens that it con-
tains, whereas the color domain of a transition defines its
possible firing instances. The enabling conditions and the
state change associated with each transition firing instance
are specified through functions associated with arcs: given
the color identifying an instance of the transition connected
to the arc, the function provides the (multi)set of colored
tokens that will be added to or removed from the place con-
nected to the arc. The initial marking assigns a multi-set of
colored tokens to each place.

Color domains in SWNs are expressed as Cartesian prod-
ucts of color classes (and C = {C1, . . . , Cn} is the set of
all classes), which may be seen as primitive domains and
may be partitioned into static subclasses1 . The colors of a
class represent entities of the same nature (e.g. patients in
an hospital) whereas the colors inside a static subclass have
also the same potential behavior (e.g. patients with major
illness); the actual behavior depends also on the distribution
of tokens of the same subclass in the initial marking.

In the net of Fig. 1 there is a single color class P , mod-
eling patients, partitioned into three static subclasses P =
PH ∪ PM ∪ PL: each static subclass identifies a different
level of urgency of treatment (and hence of priority) of the

1In the special case where it is not necessary to partition a
color class into static subclasses we use the same name for
the color class and its unique static subclass.
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Figure 1: SWN model of patients flow in a hospital Emergency Department.

corresponding patients. The color domains of the places in
this net are either P or ε the neutral domain consisting of
a single color (i.e. the black tokens of ordinary nets). For
instance, the color domain of place TraumaTeam is ε, while
that of place Healthy is P .

If we are also interested in distinguishing between high
specialized physicians and not specialized ones, then we have
to introduce a new color class D partitioned into two static
subclasses DS (i.e. specialized doctors) and DG (i.e. generic
doctors) and to update consistently the color domain of the
net places. In particular, the color domain of place Doctors
becomes D, while that of TreatedByDocL, TreatedByDocH,
WSurgery and USurgery becomes P × D.

The transition color domains, are defined through a list
of typed variables, whose types are selected within the color
classes (for brevity, a transition color domain may be de-
noted with the Cartesian product of the variable types, in
some conventional order). The variables of a transition ap-
pear in the functions annotating its arcs and can be inter-
preted as function parameters; a transition instance binds
each parameter to a specific color of proper type (sometimes
denoted with the tuple of the colors assigned to the variables
in some conventional order, for brevity). Restrictions can be
defined on the allowed instances of a transition by means of
a guard which is a Boolean expression defined on the tran-
sition color domain expressed through a standard predicate.
The terms of a standard predicate are basic predicates, which
allow to compare colors assigned to variables of the same
type (denoted x = y), or to test whether a color element be-
longs to a given static subclass (denoted d(x) = Ci,j), or to
compare the static subclasses of the colors assigned to two
variables of the same type (denoted d(x) = d(y)). For in-
stance, the color domain of transitions HospitalArrival and
HighPrio is defined as x : P ; the guard d(x) = PH means
that the transition instances to be considered are only those
binding variable x to a color in PH . If physician types were
also included in the model then we could specify a guard
(d(y) = DS) for transition ToSurgery assuring that only
specialized physician can operate a patient.

Arc functions are expressed by properly combining a set
of predefined basic functions, whose domains and codomains

are color classes. The allowed basic functions are the projec-
tion, the diffusion/synchronization, and the successor func-
tion2 (only for ordered color classes); a linear combination
of basic functions is also a basic function. The most recur-
rent type of basic function is the projection, which selects
one item out of a tuple corresponding to a transition in-
stance and is denoted with a variable name (e.g., x). In
the net of Fig. 1, only two functions are used: the projec-
tion (x) and the synchronization (SC , which is a constant
function evaluating to the whole set of colors in class C).
For instance, projection function 〈x〉 appearing on the arc
connecting place Ill and transition HospitalArrival selects,
from a given instance of the transition, the color element
(of class P ) bound to variable x meaning that a given in-
stance of HospitalArrival characterized by the binding x = c
(denoted for brevity 〈HospitalArrival : c〉) is enabled iff a
token of color c is presented in place Ill (the token will be
consumed when firing that transition instance). A key prop-
erty of the SWN syntax is that the color dependence of the
possible behaviors represented in a model is limited by the
types of arc functions and transition guards. This means
that it is only possible to specify different behaviors for col-
ors belonging to different static subclasses, or based on the
equality or diversity of color elements involved in a given
transition instance (e.g. synchronization of tokens with the
same color - independently of the specific color). This is es-
sentially the “symmetry” property that can be exploited in
the analysis, and that will be used in the next sections.

The specification of the stochastic behavior is given by
associating (integer) priorities and (real) weights with the
transitions. Transitions with priority zero, called timed tran-
sitions, fire after a random delay, with a negative exponen-
tial distribution; transitions with priority π greater than zero
are called immediate transitions and fire in zero time. The
weight of a timed transition is interpreted as the rate of
the corresponding distribution, while that of an immediate
transition allows to compute a probability distribution, to
be used when the transition firing involves some conflict res-

2The GreatSPN tool provides also the predecessor function
which is not in the original SWN definition.
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olution. Transition weights can depend on the color instance
of a transition only in a limited (symmetric) manner.

Modeling complex systems with SWNs is more convenient
than modeling them with GSPNs because of their compact-
ness and readability as well as for their significantly higher
degree of parametrization that can be exploited at the anal-
ysis level. Indeed, the constraints on the syntax of SWNs al-
low the automatic exploitation of the behavioral symmetries
of the model and provide the possibility of performing the
state-space based analysis on the more compact SRG. The
SRG construction relies on the symbolic marking concept,
namely a compact representation for a set of equivalent ordi-
nary markings. A symbolic marking is a symbolic represen-
tation, where the actual color of tokens is abstracted away,
but the ability to distinguish tokens with different colors and
to establish their static subclass is retained. Tokens appear-
ing in the same set of places with the same multiplicity and
belonging to the same static subclass are grouped into so-
called dynamic subclasses. An example of symbolic marking
for the SWN Hospital model in Fig. 1 with |PH | = |PM | = 2
and |PL| = 5 is m̂ =Ill(1〈Z2

L〉)Healthy(1〈Z1
H 〉1〈Z1

M 〉1〈Z1
L〉)

TraumaTeam(1)ResB(2)ResX (2)Doctors(2), |Z1
H | = 2, |Z1

M | =
2, |Z1

L| = 4, |Z2
L| = 1 where all the patients of type PH

are grouped into the dynamic subclass Z1
H , all the patients

of type PM into Z1
M and all the patients of type PL into

dynamic subclasses Z1
L and Z2

L with cardinalities 1 and 4,
respectively. This symbolic marking represents 5 ordinary
markings where only one patient of type PL is ill, while all
the other patients are healthy and one trauma team, two
blood exam teams, two X-ray exam teams and two doctors
are available.

Starting from an initial symbolic marking, the SRG can
be constructed automatically using a symbolic firing rule.
Observe that in this work we consider only initial symbolic
markings where all the colors belonging to the same static
subclasses are in the same places with the same multiplicity:
hence it is possible to specify the initial symbolic marking as
the Cartesian product of static subclasses. For instance, the
symbolic marking m̂0 =Healthy (1〈Z1

H〉1〈Z1
M 〉1〈Z1

L〉)Trauma-
Team (1)ResB(2)ResX (2)Doctors(2) , |Z1

H | = 2, |Z1
M | = 2

|Z1
L| = 5 satisfies this condition.
Most qualitative properties of the model can be analyzed

on the SRG, moreover a lumped MC can be automatically
obtained from the SRG, to compute the same class of perfor-
mance indices that might be computed on the Reachability
Graph.

Some analysis algorithms supporting the verification of
qualitative as well as quantitative properties, may require
to translate the SWN model into an equivalent GSPN. This
is always possible by means of an unfolding procedure, which
consists in replicating places and transitions as many times
as the cardinalities of the corresponding color domains; the
replicas (called instances) are denoted 〈p : c〉 and 〈t : ..., xi =
ci, ...〉 (considering only transition instances that satisfy the
transition guard); moreover, if an arc connecting t and p
exists and is annotated with function f , then ∀c′ ∈ f(c) an
arc connecting 〈p : c′〉 and 〈t : c〉 appears in the unfolding
with weight f(c)(c′) (multiplicity of c′ in multiset f(c)).

An example of structural analysis results which might be
of interest in this context is the set of minimal p-semiflows,
which are useful to establish marking invariance properties
of a PN model, from which it is possible to deduce, e.g.,
the model boundedness or mutual exclusion between place

markings or transition enabling. A p-semiflow is a function
associating a non negative integer weight with each place of
the model. The weighted sum of tokens in places is invariant
in any marking reachable from the initial one, for this reason
often the term place invariant (or p-invariant) is used to
refer both to the p-semiflow, and to the marking invariant
properties it implies. In the context of this paper we are
interested in p-semiflows computed on the unfolding of a
SWN model; the following formal sum notation is used to
express such p-semiflows:

X

i,d∈cd(pi)

λi,d.〈pi : d〉 (1)

where λi,d are the non negative integer weights.
Algorithms exist to compute a generating family of mini-

mal p-semiflows from the structure of a PN. The computa-
tion of similar properties for colored PNs (in particular for
SWN) in parametric and symbolic form instead is not feasi-
ble in general, except for certain subclasses of models [11].

In this paper we introduce a new method to compute a
particular kind of place invariants. Such invariants may be
deduced from the p-semiflows of the unfolded net expressed
by formula (1), however the proposed method computes
them directly without explicitly deriving the p-semiflows of
the unfolded model.

<t:a,1,1>

<t:a,1,2>

<t:a,1,3>

<t:a,2,3>

<t:a,2,2>

<t:a,2,1>

<t:a,3,3>

<t:a,3,2>

<t:a,3,1>

<P1:a,1> <P1:a,2> <P1:a,3>

<P2:a,1> <P2:a,2> <P2:a,3>

t:x C,y D,z D
<x,y>

<x,z>

C D

C D

P1

P2

Figure 2: An example of unfolding.

Let us introduce an example of p-semiflow and place in-
variant on the simple net of Fig. 2. The SWN in Fig. 2.(a)
has a single transition t with color domain x : C, y : D, z : D.
Let us assume C = {a, b} and D = {1, 2, 3}. The unfolding
of this SWN model yields two disconnected subnets: one of
them is depicted in Fig. 2.(b), and refers to place and tran-
sition instances characterized by C element a. The second is
equal up to substitution of all occurrences of a with b. Two
minimal (and similar) p-semiflows cover the unfolded net:
the first one is 〈P1 : a, 1〉+ 〈P1 : a, 2〉+ 〈P1 : a, 3〉++〈P2 :
a, 1〉 + 〈P2 : a, 2〉 + 〈P2 : a, 3〉 and covers all the place in-
stances characterized by color a in the element correspond-
ing to color class C; the second is equal up to a substitution
of all occurrences of a with b.

The place (marking) invariant for the SWN that can be
deduced from the first p-semiflow related with color a in
C may be informally expressed as follows: the number of
tokens (in P1 and P2) that have color component a is in-
variant in each marking reachable from the initial marking.
The invariant implied by the second semiflow is similar, but
refers to tokens that have color component b.

It would be convenient to define a compact and parametric
expression for such “colored” invariants, which could be ob-
tained by performing a “projection” of place color domains
(and hence of the place markings) on their C component
(assuming that there is only one occurrence of C in their
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color domains). For instance, the invariance property on to-
kens with color component a and b stated above could be
expressed as follows:

∀c ∈ C,∀m ∈ RS : ΨC(m(P1))(c) + ΨC(m(P2))(c) = K

where RS is the set of markings reachable from m0, and
ΨC : Bag(cd(p)) → Bag(C) denotes the projection of the
marking of place p on color class C, appearing once in cd(p).

3. MODELING CUSTOMERS IN SWN
The definition of passage time measures is often associated

with the abstract notion of customers using resources or re-
quiring service in shared service centers. While customers
are a natural notion in Queueing Networks (QNs) they are
not such in PN formalisms. One possibility is to interpret
some set of tokens in a PN model as the set of customers
circulating in the modeled system, however this makes sense
only if some constraints are satisfied by the model. Firing
a PN transition corresponds to consuming tokens from its
input places and producing tokens in its output places: in
general the consumed and produced tokens are not related;
in other words a transition does not move tokens from input
to output places. However, as already pointed out in [4],
a relation between consumed and produced tokens may be
derived by a proper interpretation of the model elements:
this interpretation allows to model customers as tokens.

In the context of SWNs, in order to establish a relationship
among tokens consumed and produced by transitions, we
make the following two assumptions:

1. Customers are mapped on the different colors of a given
static color subclass. If Γ = {γ1, γ2, . . . , γn} is the set
of customers that we want to represent, a color class
Ci is specified in the SWN model so that a bijective
assignment exists among the element of the set Γ and
the colors in a static subclass Ci,j of this Ci. Hereafter
in the discussion this static subclass will be named
CLIENTS, when we want to distinguish it from the
other classes. if CLIENTS = {c1, c2, c3} then in the
model there will be three customers respectively iden-
tified by colors c1, c2 and c3. Some constraints are
imposed on it: the model must behave homogeneously
w.r.t. all elements of CLIENTS, which is guaranteed
by the SWN syntax if it is defined as a static color
class; moreover class Ci including CLIENTS, cannot
occur more than once in the color domain of the places
and transitions.

2. Tokens of the same color consumed and produced by a
transition are related: if a transition firing consumes
from place pi a token with color component c1 and
produces in place pj a token with color component c1

then we assume that the firing of such a transition
corresponds to moving customer c1 from place pi to
place pj . Moreover, we assume that a transition can-
not generate tokens with color component ci if it has
not consumed tokens with this component: the inter-
pretation being that the transitions may change the
state of a customer, but it may not make a customer
disappear, or create one customer out of the blue.

At this point of the discussion two remarks are due:
• the first concerns the fact that during the evolution of
a SWN from its initial marking, colors are often combined

yielding colored tokens with complex color schemes where
several color classes appear in the domain: for example a
model can represent with a token colored 〈ci, rj〉, with ci ∈
CLIENTS and rj ∈ RES, a customer ci that acquired a
resource rj . In this case we talk about the color component
ci of a colored token. Sometimes, for the sake of clarity
and to simplify the discussion, referring to tokens related
to customers we may omit this fact, focusing just on the
component related to the CLIENTS class and say that “a
token has color c”meaning that “the token has a component
of color c”;
• the second concerns the number of tokens of the same color
that can be present in a marking of a SWN. For instance, let
us consider a model where the customers {γ1, γ2, . . . , γn} are
processes that at some point in time fork into several threads
which successively join. A SWN will describe such fork and
join structure specifying the process identities with colors
in CLIENTS = {c1, c2, . . . , cn} and modeling, during the
system evolution, the several threads of generic process γi

with several tokens having color component ci. Thus in some
system state after the fork takes place there will be several
tokens carrying the identity of customer ci in several places,
according to the progression of the threads. After the join
operation all the tokens having color ci will synchronize and
only one such token will remain. This simple example shows
that in general there can be several places containing tokens
with color component ci: their marking represents the state
of γi.

As it happens in the fork and join example, it is possible in
general to observe that at any instant (at any system state) a
place invariant is satisfied by the colored tokens representing
a customer γi. Such invariant states a conservation of the
tokens representing the customers3.

The property of conservation of the tokens related to the
customers can be studied at structural level computing the
p-semiflows of a particular net which can be derived from the
original one. Moreover, the information on p-semiflows of
the derived net also provides a mean to identify the portion
of SWN visited by a customer during its evolution.

For the purpose of this paper we restrict our analysis to
SWNs in which the place invariants derived for the cus-
tomers satisfy the following law: if in the initial marking
exactly one token in the places of the invariant has color
component ci (for any i), then in any reached marking there
exists exactly one token with color component ci in the same
places. This law is satisfied if the weights of the p-semiflows
of the derived net are either 0 or 1. Such requirement sim-
plifies the specification of the passage time measure because
the local state of the generic customer γi is uniquely identi-
fied by the position (the place) of the related colored token
ci in the places of the invariant.

Hereafter, we use the notation 〈s : d〉, where s ∈ P or
s ∈ T , to indicate color instance d of a transition or place s
with d ∈ cd(s).

3.1 P-semiflows involving the customers
As mentioned earlier, the computation of a generative

family of p-semiflows of SWN models in parametric form is
not feasible in general; on the other hand, the complexity of

3The conservation property is not strictly necessary in gen-
eral for the computation of the first passage time, but the ap-
proach proposed in this paper only considers models where
customers are conserved.
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computing it on the unfolded model could be too high, and
provide an unmanageable result. However, for our purposes
we need not to compute a generative family of minimal p-
semiflows, instead we are interested only in those semiflows
involving place instances having a specific color and satisfy-
ing some additional restrictions: these places, together with
the connected transitions, identify the path that a given cus-
tomer may follow. Any p-semiflow covering place instances
not including that specific color is not interesting in this
context.

The computation of p-semiflows useful for our kind of
analysis can be effectively performed by deriving a GSPN
from the SWN, by means of an operation of projection and
partial unfolding. Intuitively, the projection selects a por-
tion of the SWN unfolding by focusing on an arbitrary cus-
tomer, say c, belonging to CLIENTS. The resulting net,
which is no longer colored, comprises the paths (i.e. the
submodel) that a customer c may potentially follow in the
SWN. Let us introduce such projection operation formally;
the notation used hereafter is summarized in Table 1.

Let N be a SWN. Let Ci,j be a static subclass satisfying
the constraints made on CLIENTS and c ∈ Ci,j . Then
N′ = Π(N, c), the projection of N on color c, is a GSPN
obtained as described next.

Let call Π the projection operator. The projection is de-
fined in order to contain representatives of all the instances
of those transitions and of those places of the SWN that are
related with tokens having color component c. If a transi-
tion instance of N consumes or produces4 a token with color
component c, then it is represented in N′ by a corresponding
transition; moreover, the projection operation exploits the
structural symmetries encoded in the definition of the func-
tions that label the arcs of a SWN in order to reduce the
size of the resulting net, in fact more transition instances
can be represented by a single transition in the projection.
The formal definition of the sets of places and transitions P ′

and T ′ and of the arc functions W ′∗ of N′ is the following:
Definition of set P ′: P ′ =

˘〈p : c〉 : p ∈ P, ei(p) �= 0
¯
.

In words, the set P ′ contains one place, labelled 〈p : c〉, for
each colored place p of the SWN that has Ci in the color
domain.

Definition of set T ′ and arc function W ′: Let t ∈ T . In
order to simplify the notation let us rearrange the Cartesian
product expression for the color domain of t such that the
class Ci appears in the first position, that is cd(t) = Ci ×D
(for simplicity we consider only one class D besides Ci in
the Cartesian product, but it could be safely replaced with
a Cartesian product of color classes, all different from Ci).
Let c′ be an arbitrarily fixed color in Ci\{c}. Let us con-
sider colors 〈c, d〉 and 〈c′, d′〉 where d ∈ D, d′ ∈ D. Let a =
|W ∗(t, p)(〈c, d〉)|c and b = |W ∗(t, p)(〈c′, d′〉)|c ∀d, d′ ∈ D
(see Tab. 1 for the definition of |A|c); due to the SWN defi-
nition and since we restrict to arc functions without guards,
a and b respectively depend from c and c′ only and not from
d and d′.

If t is such that it is connected to a place p with Ci in the
color domain, then T ′ and W ′∗ are defined as follows.
∀p ∈ P : ei(p) �= 0, ∀t ∈ T : W ∗(t, p) �= ∅:

1. if ei(t) �= 0

• if a �= 0 and ∃d ∈ D : G(t)(〈c, d〉) = true then
4Inhibitor conditions are not considered because they do not
affect the p-semiflow computation.

〈t : c〉 ∈ T ′ and W ′∗`〈t : c〉, 〈p : c〉´ = a
if b �= 0 and ∃d ∈ D : G(t)(〈c′, d〉) = true then
〈t : c′〉 ∈ T ′ and W ′∗`〈t : c′〉, 〈p : c〉´ = b

2. if ei(t) = 0

• 〈t : •〉 ∈ T ′

W ′∗`〈t : •〉, 〈p : c〉´ = |W (t, p)(d)|c where d ∈
cd(t) and • represents a neutral color.

The net resulting from the projection is a GSPN, which
represents the portion of the SWN unfolding where the to-
kens representing c may circulate. Any p-semiflow involving
places of this net induces a place invariant for c in the SWN.
Moreover, since c is an arbitrary customer in CLIENTS, a
parametric colored p-semiflow could be derived directly.
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Figure 3: A portion of the hospital model projected
on color c ∈ PH .

Examples
The remainder of this section illustrates the application of
the projection operator on four examples.

The first example shows the operator applied to a portion
of the hospital model introduced in Sec. 2. Consider the
subnet illustrated in Fig. 3.(a). The projection is done onto
an arbitrary fixed color c belonging to static subclass PH ,
which hence is the CLIENTS class used in the discussion
before. The result is depicted in Fig. 3.(b). Let us illustrate
the derivation in detail. In the subnet that we are consid-
ering, all places have color domain P . Thus the result of
the projection will be a model (Fig. 3.(b)) in which all the
places contain an instance of color c. All the arc functions
have the same form 〈x〉: when applied to an arbitrary color
d ∈ P , they return the multiset 〈d〉 which is one token with
a single color component equal to d. Considering the transi-
tion HospitalArrival only the instance 〈HospitalArrival : c〉
is represented in the projection (rule 1 of the Π operator and
case a �= 0). Of the many colored transitions that HighPrio
represents in the SWN, only the instance 〈HighPrio : c〉 is
considered in the projection; in fact, applying rule 1, case
b = 0 of Π, we observe that for each c′ ∈ P\{c}, instance
〈HighPrio : c′〉 consumes from place Assessment the multi-
set 〈c′〉 which is obviously irrelevant for our purposes since it
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cd(s) is a function which assigns to each s ∈ T ∪ P a color domain such that cd(s) =

C
e1(s)
1 × C

e2(s)
2 × .... × C

en(s)
n , where the superscript ei(s) is defined below.

ei(s) returns a value ∈ IN which denotes the number of occurrences of Ci in cd(s).
G(t) it is the guard function of transition t. The guard function applied to a color instance

of t: G(t)(d) ∈ {true, false}, ∀d ∈ cd(t).
〈·, c, ·〉 indicates any colored token containing the color c among its components.
|A|c, c ∈ Ci where A ∈
Bag(Ce1

1 , . . . , Ci, . . . , C
en
n ),

is defined as the number of tuples in multiset A having color component c ∈ Ci; and
Bag(C) denotes the set of all multisets that may be built on set C (a multiset is a
generalization of a set, that can contain several occurrences of the same element).

W +/− assigns to each pair (t, p) ∈ T×P a function W +/−(t, p) : cd(t) → Bag[cd(p)] so that

W+/−(t, p) maps each color of transition t into a multiset of tokens on place p and

W+/−(t, p)(c) denotes the application of the function to color c of t. Notation W ∗ is
used to indicate both W + and W−

Table 1: A summary of the notation used in definition of projection operator.

does not involve the manipulation of tokens with color com-
ponent c. For c ∈ PH , (restriction due to the guard associ-
ated with transition HighPrio), the instance 〈HighPrio : c〉
consumes from place Assessment the multiset 〈c〉 that is
composed exactly of one token with color component c. No
instance of transition MediumPrio is represented in the pro-
jection because guard [d(x) = PM ](〈c〉) is false when evalu-
ated with respect to color c ∈ PH ; moreover, for all c′ satisfy-
ing the guard, and for all connected places b = |〈x〉(c′)|c = 0
(rule 1, of the projection definition). Similar arguments hold
for LowPrio.

As a second example we show the application of the op-
erator Π focusing on a single transition t. Consider the nets
depicted in Fig. 4.(a) and 4.(b). In the SWN of Fig. 4.(a), t
has color domain D×C; place P1 has color domain D while
places P2 and P3 have color domain D×C. The projection
is performed on color c ∈ C (in this example C is a class in-
cluding a unique static subclass). Place P1 does not belong
to the GSPN because it can not contain color c on which we
are projecting the SWN. For the sake of clarity we depicted
the deleted subnet with a dotted line in the projected net
(GSPN of Fig. 4.(a)). The transition instance 〈t : ·, c〉 (the
dot means “any” color) in the SWN consumes from place
P2 2 tokens whose second color component is c. This value
is computed by analyzing the functions composing the arc
function (when x = c). With regard to P3, 〈t : ·, c〉 does not
produce any token whose second color component is c (when
x = c, function S − x evaluates to the set of all colors in C
except c). When we consider any arbitrary instance 〈t : ·, c′〉
such that c′ �= c, the arc function 〈y, S + x〉 evaluated in
c′ is a multiset that contains a single token whose second
component has color c, hence arc P2 → 〈t : c〉 has multi-
plicity 1. Finally, 〈2y + S, S − x〉 when evaluated for 〈·, c′〉
has several tokens whose second component is c: S−x maps
to C\{c′} thus it contains one c; 2y + S maps to 2〈·〉 + D,
hence |2y + S| = |D| + 2.
Fig. 4.(b) shows the case where a colored transition t does
not contain C in its color domain, but the function on the
arcs connecting places p2 and p3, includes a basic function
which is a constant on class C (S in the example). In this
case only a single instance denoted 〈t : •〉 is included in the
projection on c, and since |S|c = 1 the weights of the arcs
from 〈p2, c〉 and to 〈p3, c〉 are both 1.

In the third example we consider a simple SWN, depicted
in Fig. 5.(a), that shows an interesting case where a tran-
sition embeds several instances that route the tokens with
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Figure 4: The projection on c: two examples.

color c in different manners. The color domain is C for all
nodes. Let us verify if there exist some p-semiflows for col-
ors in C and if they are valid for our analysis of first passage
time. Fig. 5.(b) shows the projection on color c. We observe
that similar nets can be obtained for any of the other colors:
all these nets are structurally identical. Thus what we say
for customer c is actually valid for all customers (so that we
obtain a result which is parametric). The computation of
the p-semiflows of the SWN in Fig. 5.(a) that involve client
c can be done using standard algorithms for GSPN onto
the projected net of Fig. 5.(b). The net of Fig. 5.(b) has one
minimal p-semiflow covering all places. Finally we show the
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c C

Figure 5: (a) An SWN; (b) its projection on c.

application of the method to the complete model of the hos-
pital, analyzing customers modeled by static subclass PH .
First, we project the SWN onto an arbitrary color in PH ,
obtaining the GSPN depicted in Fig. 6.(a). This GSPN has
three minimal p-semiflows which have very similar support
since they share a large set of places and are distinct only
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Figure 6: Hospital model: (a) Projection onto a color in static subclass PH; (b) p-semiflows for a PH customer.

with respect to places corresponding to the fork-and-join
located at the top-right part of this model. Fig. 6.(b) high-
lights the three subnets induced by the three p-semiflows
with the only purpose of providing a way of noticing these
similarities and differences at a first glance.

4. SPECIFICATION OF FIRST PASSAGE
TIME MEASURES

First passage time measures can be specified at the net-
level (i.e., directly on the model) in a manner similar to that
proposed for GSPNs in [4]; however since each transition in
an SWN model usually embeds several instances, the speci-
fication must refer to such instances, taking into account the
peculiar role of the colors used to identify customers.

The first passage time at the SWN level corresponds to the
time required for a token with color component c (arbitrar-
ily chosen in CLIENTS) representing a given customer, to
traverse a portion of the net. Such subnet is identified spec-
ifying entry and exit points corresponding to specific tran-
sition instances which represent events involving customer
c (e.g., admission and discharge of a patient). It is often
useful to specify additional conditions on the system state
at the instant of the firing of an entry transition instance
(e.g., admission of a patient when all doctors are busy).

The p-semiflow analysis proposed in the previous section,
allows to identify one or more subnets, denoted N′

P (where
N′ = Π(N, c)) in which the customers can flow while keeping
their distinct identity; hence the candidate entry and exit
points can be more easily identified on these subnets rather
than on the complete SWN model.
The formal definition of N′

P is as follows: let P ⊆ P ′ be the
set of places of N′ covered by a p-semiflow; let T = {t ∈ T ′ :
∃p ∈ P such that (t ∈ p• ∨ t ∈ •p)}; then N′

P is the subnet
of N′ whose nodes are the places in P and the transitions in
T. For instance, the SWN of the hospital has three possible
different subnets N′

P suited for first passage time analysis of
patients belonging to PH , as depicted in Fig. 6.(b).

Since the N′
P subnet derives from a partially unfolded and

projected net, in general it may include two representatives
of the instances of the same transition in the original model:
this helps the modeler to see more clearly the actual dis-
tinct paths in the net involving customer c thus making the
task of selecting the appropriate entry and exit points easier.
The SWN example in Fig. 5.(a) highlights such a situation:
looking at the projection on c in Fig. 5.(b) one can clearly
see that instance 〈T1: c〉 routes customer c on the right part
of the net while instance 〈T1 : c′〉 routes customer c on the

left part of the net. In the SWN model these choices at T1
are encoded in the arc functions and are less directly visible.

On such net the modeler could specify as entry and exit
points respectively 〈T1 : c〉 and 〈T5 : c〉: the measure ob-
tained is the time a customer c takes to traverse the subnet
T1 → P3 → T3 → P5 → T5, starting with the event corre-
sponding to the firing of transition instance 〈T1 : c〉.

Summarizing, entry, exit and forbidden points may be
conveniently selected by using the subnet N′

P as a sort of
filter for an easier interpretation of the original net. Once
the transitions of interest have been identified, the set of in-
stances to be selected may be automatically derived, assum-
ing that any instance involving c must be selected, or explic-
itly specified using the guard’s syntax: for instance one may
be interested in measuring the time required for a patient
to undergo a given treatment, assuming that upon entering
the subnet representing the treatment (through entry tran-
sition t) the patient is assigned to a specialized physician,
in this case a constraint on the static subclass of the vari-
able (say y) of t representing the person who is in charge of
the patient may be expressed as a guard (e.g. d(y) = DS).
Finally, the specification of conditions on the state before
and/or after the firing of a given entry transition instance
should be given in a form that does not break the symmetry
properties of the model, and such that it can be verified on a
symbolic marking. Examples of conditions that satisfy this
constraint are those depending on the number of tokens in
places independently of their color, or the number of tokens
whose color components belong to certain static subclasses.

The specification of entry, exit, and forbidden points that
must be provided by the modeler can be formalized as fol-
lows: let Tin, Tout and Tforbid be three disjoint subsets of T;
for each transition t′ in these sets the modeler must provide

• a guard Gm (possibly defined as the constant true) con-
sistent with the color domain of transition t ∈ T of the
original SWN model N from which t′ was generated;
this guard must not contain any term referring to the
variable of type Ci in cd(t);

• two conditions ξtpre and ξtpost that can be checked
on symbolic markings.

The following section describes in details how this specifica-
tion is used to define the start, end, and forbidden states,
required for passage time computation. The intuitive idea
is that whenever a transition instance 〈t : d〉, which is rep-
resented by some t′ ∈ Tin and satisfies Gm(t)(d), is fired
within a sequence of one timed and zero or more immedi-
ate transition instances connecting two tangible (symbolic)
markings m̂ and m̂′, satisfying ξtpre and ξtpost respectively,
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then m̂′ is considered as a start state. Similarly, end states
may be characterized by the fact that they are reachable
through the firing of a sequence containing a transition in-
stance 〈t : d〉, represented by some t′ ∈ Tout, which satisfies
Gm(t)(d), and satisfies both the pre and post conditions as
well. When choosing the transitions in the set Tin and Tout,
some structural conditions should be respected, guarantee-
ing the presence of a path in the net connecting each transi-
tion in Tin to some transitions in Tout: this can be checked
on the projected and partially unfolded net N′ thus allow-
ing to identify the subnet traversed by customer c subject
to measure.

In the literature, different approaches are proposed to
specify the passage time measure of interest. A purely state
space based approach for “customer centric” measures in
GSPN models is discussed in [13], our proposal instead is
event oriented, but it also allows to define conditions on the
state: the two methods were compared extensively in [4].

A different approach has been presented in [10] for stochas-
tic process algebra models; it is based on probes and it has
been implemented in the ipc (Imperial PEPA compiler) tool
[8] and the ipclib library. The proposed technique exploits
in a quite elegant way the compositional nature of process
algebras. The basic idea consists in introducing special pro-
cesses called probes, that monitor the system (or one specific
component in the system) to witness specific events (actions)
that trigger the start/stop of a time measure. The start and
stop criteria specification for probes is expressed by means of
regular expressions that are then translated into automata:
this allows to specify quite complex start/stop conditions,
based on the history of observed actions as well as the sys-
tem state.

The firing of entry and exit transitions in our proposal
correspond to the probes start/stop events and the state de-
pendency allowed in the probes specification corresponds to
our conditions on the state upon occurrence of an entry-exit
transition firing, however probes are more powerful since
they may base the start (and stop) of the observation on
complex action sequences rather than single events. Of course
this may produce an increase in the state space size, which
is acceptable as far as the additional complexity is the min-
imal required to obtain the measure of interest. Another
important difference is due to the fact that compositionality
is not part of the PN formalism (although several propos-
als exist in the literature to introduce compositionality a-
posteriori), nor the concept of “process” that can stem as an
interpretation of the model, but is not a native concept in
PNs. Actually the idea of identifying customers, of requiring
their conservation, and the identification of subnets where
the customers may flow and in which are conserved, can be
interpreted as a mechanism to retrieve processes from the
flat structure of the net. Finally, in [10] there is no partic-
ular emphasis on the notion of “customer” as proposed in
this work as well as in [13]; nevertheless the possibility of
specifying local probes seems to be a suitable mechanism to
define “customer centric” measures (provided that the be-
havior of individual customers is represented by processes
in the system model).

5. COMPUTING THE FIRST PASSAGE
TIMES DISTRIBUTION

The computation of the first passage time distribution

requires to isolate one of the customers and to follow its
movements within the net. Once the static subclass C corre-
sponding to the set of customers under observation has been
chosen, (any) one among the colors in C must be isolated:
this is performed by splitting C into two subclasses, the for-
mer containing the identity of the“tagged”customer, the lat-
ter containing the identities of all the other customers. The
splitting may require some adjustments in the net structure.
Let us denote with Ct and Cu the two new static subclasses
obtained by splitting C (with |Ct| = 1) and |Cu| = |C| − 1,
the following substitutions are required in the model guards
and arc functions:
substitution of terms involving C in guards
• (d(x) = C) → (d(x) = Ct) ∨ (d(x) = Cu)
• (d(x) = d(y)) →

(
`
d(x) = d(y)

´ ∨ `
d(x) = Ct

´ ∧ `
d(y) = Cu

´ ∨ `
d(x) =

Ct ∧ d(y) = Cu
´
)

substitution of SC in arc functions
• SC → SCt + SCu

After this transformation the SRG can be computed: thanks
to the splitting of the static subclass of interest, the tagged
customer can be easily followed because it is the only color
contained into static subclass Ct. The identity of the ele-
ments in Cu is automatically handled in the most efficient
way by the SRG algorithm. A lumped CTMC is then gen-
erated from the SRG.

The computation of the index of interest also requires to
identify the start and end states on the CTMC underlying
the SWN model (and isomorphic to its SRG). When several
start states exist an initial distribution on them must also
be specified: in case the CTMC has a steady state solution,
then the steady state probabilities of the start states can be
used as initial distribution. Start states are selected by in-
specting the SRG looking for any tangible state m′ with the
following properties: in marking m′, the token with color in
Ct is in a place belonging to the monitored subnet; m′ is
reachable from a tangible state m, where the token with
color Ct was outside the monitored subnet; moreover m
must reach m′ through the firing of a transition sequence
containing one timed and possibly some immediate transi-
tion firing instances, embedding an entry point transition
instance. Similarly for the end states (markings with Ct

outside the subnet, reached from a marking where Ct was
inside the subnet, through a path including an exit point).

The SRG properties can be used to optimize the steady
state solution phase: in fact, under certain conditions, it
is possible to compute the probability distribution of the
states of the SWN before refining it: since it has been proved
that the ordinary states in a given symbolic marking are
equiprobable, and since (using combinatorial arguments) it
is possible to compute the number of ordinary states con-
tained in each symbolic marking, then it is possible to obtain
the steady state distribution of the refined SRG from that
of the SRG computed using the more abstract model. The
correspondence between the abstract and refined states is
straightforward. A further optimization, concerning the ac-
tual first passage time computation phase, could be obtained
by avoiding to build the whole refined SRG, but rather de-
riving the refined version of the states on the paths from
the start to the end states from the most abstract states
containing them: the technique used to build the Extended
SRG [6] could be applied to this purpose.

With respect to the method proposed in [4], the approach
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(a) PS, single server for each color (b)PS, n-server

(c) FCFS, single server

(d) LCFS with preemption, single server

Figure 7: Some examples of SWN templates for a
“queue place”

presented in this paper does not require any unfolding of
the model: the right level of detail of the state is automati-
cally generated by the SRG algorithm. With respect to the
method proposed in [13], the colors here are used in a dif-
ferent manner: in our proposal each customer has a unique
identity (color), while in [13] only two colors are used, one
for the tagged customer and the other for the remaining
customers; despite this increased detail level, thanks to the
SRG technique, there is no loss of efficiency.

6. SOME SUBTLE MODELING ISSUES
The interpretation of some tokens of an SWN as customers

leads naturally to identifying the timed transitions that in-
volve customers as service centers: if the resources available
to perform the service are limited then the model should
specify both the queueing policy used to define the service
order of the customers requiring service, the number of avail-
able servers and their service rate (in this context the service
time distribution is negative exponential).

In [4] the authors show that in GSPN models the cus-
tomers queueing policy may influence the passage time dis-
tribution, while it is irrelevant for the computation of av-
erage performance indices (due to the memoryless property
of the exponential distribution and to the fact that tokens
in GSPNs cannot be distinguished). In the context of the
SWN formalism, since tokens can be distinguished through
colors, the queueing policy may influence also the average
performance indices5 [3]. Although the SWN is powerful
enough to directly model any queueing policy, the addition
of some “syntactic sugar” may help the modeler in correctly
specifying the order of extraction of customers from places
as well as various service specifications.

Here, we propose an extension of the SWN formalism in-
troducing a special place, called “queue place” (drawn as a
circle with a bar inside) which embeds into a single place the
queue, the service and an output buffer (called depository)
as already proposed in the QPN formalism [5]. Moreover,

5In completely symmetric models where the color does not
influence choices or the possibility to perform a synchroniza-
tion, insensitivity of the average performance indices to the
order in which tokens are extracted can be proven.

the “queue places”, as in [15] where an extension of QPN
is proposed, can also model specific orders of extraction of
tokens from a place without any service.

During the solution process these special places are au-
tomatically replaced by a corresponding subnet that is de-
rived instantiating an appropriate version of the several tem-
plates that have been developed for representing the differ-
ent queueing policies: Processor Sharing (PS), First Come
First Served (FCFS), Last Come First Served (LCFS), etc.
The obtained model corresponds to a standard SWN model
on which the SRG approach can be applied.

Fig. 7 shows some examples of SWN templates for a generic
queue place: they are described in details hereafter.

In Fig. 7.(a) transition T2 with single server semantics may
be interpreted as a service center and place P3 as the queue
in front of it. Since the color domain of T2 is x : C, there are
actually |C| instances of T2, corresponding to the possible
values that can be assigned to variable x. If the tokens in P3

have all different colors (which is true if the tokens represent
customers) then there will be as many enabled concurrent
instances of T2 as the number of different color tokens in P3:
this correctly models a single server for each color (i.e. a
delay), while it is not suitable to represent a service center
with n servers shared by all the customers (colored tokens
queueing for service in the input place). If instead we want
to model a PS queueing discipline and n servers 6, the model
of Fig. 7.(b) must be used, where transition T2′ has a unique
instance and has a n servers semantics. Note that in GSPN
models it is sufficient to assign a single server semantics to
a timed transition to obtain the desired behavior, while in
the context of SWNs a model transformation is needed.

In Fig. 7.(c) it is shown how a single server FCFS queue
could be explicitly modeled in an SWN. In the explicit rep-
resentation an ordered color domain, P, is introduced mod-
eling the available positions in the queue: the ordering is
circular, so that the SWN model may be seen as a circular
array implementation of the queue: places FirstQueuePos

and FreePos correspond to two pointers to the head and to
first free position in the queue respectively, when the queue
is empty these places are marked with tokens of the same
color. Upon a new arrival the FreePos is updated to the suc-
cessor (〈!i〉), while FirstQueuePos remains unchanged. The
transition T2 representing the service is enabled only for the
instance involving the customer in the first position of the
queue; when it fires, FirstQueuePos is updated to point to
the next position in the queue.

Observe that the same submodel could be used also to
model a specific order of extraction of token for a queue
place without service, by simply changing timed transition
T2 with an immediate one. An example of this type of queue
place for the hospital Emergency Department in Fig. 1 is the
queue place WaitingRoom.

Finally, Fig. 7.(d) shows an SWN template for a single
server LCFS-PR queue. This model is derived by the pre-
vious SWN model removing the place FirstQueuePos and
adding two arcs, with labels 〈!i〉 and 〈i〉, connecting place
FreePos to transition T2, and vice-versa. In this case the
transition T2 is enabled only for the instance involving the
customer for which the next queue position is free; when

6Exploiting the property of the exponential distribution it
is modeled as an exponentially distributed service time fol-
lowed by a random choice among the customers present in
the queue at the end of service.
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it fires, FreePos is updated to point to the queue position
previously occupied by the customer.

7. EXPERIMENTAL RESULTS
In this section some experimental results are presented,

which have been computed with a prototype framework based
on GreatSPN [2] for the generation of the CTMC, and on
Hydra [12] for the computation of the first passage time dis-
tribution. GreatSPN is also used to construct the sets of
start, end, and forbidden states, while the computation of
the (steady state) initial distribution of the start states can
be performed either by using GreatSPN or Hydra.

Two measures have been computed for the running exam-
ple of Fig 1: the former measures the time from the entrance
of a PH patient through entry point HospitalArrival up to
exit points DischargeM and DischargeRec 7; the latter mea-
sures the time from the entrance of a PL patient through
entry point HospitalArrival up to exit point DischargeL.
Two scheduling policies are considered for the “queue place”
WaitingRoom: FIFO and RO.

Tagging a “customer”causes an increase in the state space
size: in Tab. 2 the number of symbolic states of the plain
ED model is compared with that where a PH or PL pa-
tient is tagged. These experiments are performed for differ-
ent number of patients (|PH |, |PM |, |PL|) fixing the number
of trauma teams T=1, doctors D=2, blood analysis teams
B=2, X-ray analysis teams X=2 and operating rooms O=1.
The first column shows the values of the parameters used
for the experiments. The second and third columns report
the RG size8 and the untagged model SRG size. The last
two columns show the SRG size of the tagged models. From
the second column it is clear that the RG approach becomes
quickly intractable due to the state space explosion. The
SRG approach mitigates this effect exhibiting a high level of
aggregation (e.g. in case 2,3,6 the SRG size is ≈ 590 times
smaller than that of the RG). The SRG size of the tagged
model increases by a factor that depends on both the cardi-
nality of the CLIENTS static subclass and the complexity
of the subnet where these tokens can circulate. An upper
bound on the SRG size reduction w.r.t. the RG size is given
by

Q
Cs

|Cs|! on all static subclasses Cs used in the model.
When separating the tagged customer, the CLIENTS sub-
class is partitioned into two subclasses, of cardinality 1 and
|CLIENTS|−1, hence the reduction upper bound decreases
of a factor |CLIENTS| (in other words the SRG of the
tagged model may increase of a factor |CLIENTS|). In
practice, the degree of reduction depends on how much the
colored tokens are dispersed over the places of the model
(more reduction is achieved when the tokens tend to be dis-
tributed in different places); this effect can be observed on
Tab. 2: when the tagged customer is in |PH | the SRG size
of the tagged model increases of 1.91, 2.76 and 3.55 when
PH is 2, 3 and 4 respectively, while when tagging PL the
size increases of 2.10, 2.42, 2.65 and 2.83 when |PL| is 3, 4, 5
and 6, respectively (indeed, there are several places where
the patients in PH may be located, while there are only few
places where the patients in PL may stay).

Modeling the FIFO policy (for customers in subclass PL)

7Transition DischargeL is not an exit point since in the sub-
net derived by projection on PH , the tagged token entering
the subnet through HospitalArrival can never reach it.
8The RG size is computed from the SRG.

instead of RO for place WaitingRoom causes the state space
size to increase; for instance, in case 2,2,6 |SRG| increases
by a factor of ≈ 1.24, and |RG| by a factor of ≈ 5.53.

In Fig. 8.(a) the probability density function (pdf) for
the first measure is shown where the transition weights are
defined as in Tab. 3 and |PH | = 2, |PM | = 2, |PL| = 6. The
pdf allows to state properties as e.g. “90% of PH patients
leave the hospital within 450 time units from admission”.

Finally, Fig. 8.(b) plots the pdf of the time taken for a
PL patient to move from admission (transition HospitalAr-
rival) to discharge (transition DischargeL) assuming differ-
ent scheduling policies on the queue place WaitingRoom. As
expected, the two probability density functions are different
(and the difference increases as the number of patients in-
creases), while they have the same first moment (170.6785
time units), that coincides with the average time required
for a PL patient to traverse the same subnet, computed from
the steady state distribution of the states in the untagged
model (applying Little’s formula).

8. CONCLUSION
In this paper we have proposed a way for specifying on

SWN models a class of performance measures that involve
the identification of one specific colored token representing
one among a set of customers uniquely identified and con-
stantly present in the model. The measure to be computed
is the time required for the “tagged” token to traverse a
given subnet: in particular we are interested in computing
the pdf of such time, which can be obtained by applying
first passage time computation techniques on the underly-
ing (lumped) CTMC.

This work improves the methods developed in the context
of GSPNs [4, 13] to SWNs, thus exploiting the efficient anal-
ysis techniques based on SRG, which mitigate the problem
that affects all the approaches based on state space gener-
ation and thus characterized by an exponential growth of
their complexity. The new approach is described in details
and thanks to a prototype implementation in the GreatSPN
framework interfaced with Hydra, some experimental results
have been computed.

A proposal of adding some “syntactic sugar” to SWNs to
ease the modeler task when representing “customer centric”
SWN models is also discussed: the extension is inspired by
the QPN formalism [5, 15].

The proposed technique could be exploited also in the
computation of similar measures for GSPNs by replacing
the unfolding procedure of [4] with a “coloring procedure” to
be used in conjunction with the SRG: the correct handling of
the transitions service semantics and of queue-places would
benefit from the SWN extensions discussed in Sec.6.
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