
An Automatic Trace Based Performance Evaluation Model
Building for Parallel Distributed Systems

Ahmad Mizan
System and Computer Department

Carleton University
Ottawa, Ontario

amizan@sce.carleton.ca

Greg Franks
System and Computer Department

Carleton University
Ottawa, Ontario

greg@sce.carleton.ca

ABSTRACT
Performance models can be built at early stages of software
development cycle to aid software designers to assess design
alternatives and identify fundamental design pitfalls before the
implementation phase starts. These models are flexible for
varying operational conditions and design alternatives; however,
their creation is not trivial and requires considerable efforts. This
paper addresses this problem by introducing automation in
process of Layered Queuing Network (LQN) performance model
creation for traces of events generated from instrumented software
programs in the nodes of a distributed parallel software
application.

The event-traces are created based on a new timestamp format,
which is independent of physical time and uses extremely low
count elements. A set of post-mortem methodologies have been
introduced to identify the interactions between the service nodes
of the parallel distributed software application and determine their
workload activities, while supporting concurrent executions in the
nodes. It can capture Forward, Asynchronous, Synchronous and
loops of Asynchronous or Forward interactions. The final result is
a framework of methodologies, specifications and tools which is
appropriate for model-based performance evaluation parallel
distributed software applications.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: PERFORMANCE OF
SYSTEMS, Modeling techniques

General Terms
Performance

Keywords
Performance, distributed parallel systems, performance models,
Layered Queuing Systems (LQN), execution graphs, event traces

1. INTRODUCTION
Performance, defined as the response time and throughput of a
system, is a pervasive quality of distributed computing systems
because everything from the low level hardware all the way to the
application software affects it. It is a function of the amount of
communication and interaction between the components of the
system and is primarily concerned with the architecture of the
software system. The lack of performance is often found to be a
serious problem in significant fractions of projects because it
causes delays, cost overruns, failure on deployment and
abandonment of a project [1].

Evaluation of the performance of a system is often performed by
measuring the requests arrival rates, distribution of requests,
processing times, queue size, latency and the rate at which queues
are serviced. This method of performance evaluation yields
accurate knowledge of the system which is built under a particular
set of assumptions and design parameters. If the results are not
satisfactory the system should be rebuilt under another set of
assumptions which is laborious and expensive and inflexible to
provide enough room for intuition to find favorite design
assumptions.

An alternative to this approach would be to evaluate the
performance of a model of the software system rather than
working with the software itself. The model is an abstraction of
the system, which is distilled from the mass of details essential to
its performance. Once the model is defined, it can be
parameterized to reflect any of the design alternatives under study.
Evaluation of the model also can help to determine the system’s
behavior under various design alternatives. The models are build
by stochastic queuing models such as queuing network (QN) [12]
and layered queuing networks (LQN) [14, 15, 17], or state-based
systems such as a Petri Net [13], and solved by either analytic or
simulation techniques. The models can provide performance
predictions under various operation conditions or design
architectures, which give valuable hints to detect root cause of
performance issues. It means that by help of the models it is
possible to design a software system and analyze its performance
before even it is implemented. The down side to this approach is
that a right amount of architectural features from the software
documents or its source code must be abstracted in order to
parameterize these models. This process is very difficult and time
consuming, so the general trend is to postpone the performance
evaluation until the software is developed, when it might be too
late to fix fundamental architectural problems [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.
.

61

This paper describes an approach to simplify this process by
automating the model making process and parameterization from
recorded information of an instrumented live parallel distributed
software system. A prerequisite for this approach is the
availability of an executable early in the life cycle of the product
which is quite feasible as modern software engineering promotes
a release early in the development cycle [8]. The final
performance model of this work is an LQN model. The LQN
model is an extended queuing network [12] that includes the visits
between processes so that their layered requests for service, and
hence their contention effects, are represented.

 A distributed system is composed of multiple autonomous
computers or hardware nodes, which interact with each other in
order to achieve a common goal, such as solving a large
computational problem. The interactions between the nodes are
solely performed by message passing. A problem is divided into
many tasks, each of which is taken up by one particular computer.
Tasks are software components whose execution are scheduled
and may be performed in parallel on different nodes. From
another perspective, a task is a resource that could potentially be
shared by other entities therefore the set of active tasks are
dynamic and constantly changing.

To have a trace of executed events in the computing system,
instrumentation is added to the corresponding application
software. This instrumentation consists of splicing probes, or
analysis code, at specific locations in the source code. This
enables the system to automatically create a time-stamped trace of
events as it runs which is termed here as event-traces. By
identification of the order in which the events are executed in an
event-trace one can create an execution graph. An execution graph
characterizes the partial order or independence relationship among
the events that are executed in a scenario application of a parallel
computing system. It consists of linear (consecutive events) sub-
graphs which are termed as threads. A more comprehensive
characterization of an execution graph is given in section 3.

The model making process involves capture of traces of events,
creation of execution graph, identification of tasks and their
interactions, estimating the workload imposed on tasks, recording
of some environmental information associated with the distributed
system, and transformation of the collected information into an
LQN model.

The advantage of constructing models form an event-trace over
using the software documentation and source code is that the
former takes care of the dynamic features of a software system
that are hard to impossible to extract for the latter. This feature of
trace-based approach allows for identification of interactions in
complicated software contexts such as dynamic bounding,
inheritance, polymorphism and data dependent branching.

It is highly desirable to have a notion of global time in a
distributed system. It can be used as the timestamps attached to
events to enable one to identify the causality and independence
relationship among the events. Taking local time of one particular
node as the reference for the global time, as have been assumed
by some works [5, 9], is not a practical solution. Some factors
such as poor clock granularity and synchronization, clock drift
and communication delays will not allow this reference to be
perceived uniquely by all the nodes of a distributed system. It is
not difficult to imagine a different mechanism, termed as virtual
time, can reflect the same feature as time does to enable one to

capture the causal and independence relationship among the
events. Devising a format for virtual time is an essential part of
constructing a distributed system performance model-making
system, which has great impact on its performance, accuracy and
complexity.

 Fidge [4] and Mattern[21] introduced “vector time” and Fidge
used it along with some rules to extract the execution graph of an
application. Each component of the vector time corresponds to
the current logical time of one live thread of execution. Each
process, during its life span, maintains a variable holding its
corresponding current vector time. In each thread only one
element of the vector, which corresponds to the same thread, is
immediately updated. The other elements are updated when the
threads can exchange information which happens when they join.
The rules dictate how the vector time is initialized, its components
are inherited, incremented, and finally terminated. The causality
of events and construction of the execution graph are performed
by comparing the vector times of the different events.

An alternative way to represent the virtual time in a distributed
application is “proper time” which was introduced in [3,6]. In this
method, the events in executing software are characterized based
on their situation in two different event graphs, namely their task
and thread of operation event graphs. In the event operation
graph, the event is executed in a thread of execution in which the
event has a specific event number. In a task event graph, the same
event has a name and a different event number which corresponds
to the order in which that event is executed in that particular task.
Although these two graphs are independently created, they are
overlaid and give new characterization to the event.

The number of elements in “proper time” method is fixed, while
in “vector time” it increases with the number of execution threads.
This tends to make the “vector time” method incur an excessive
communication overhead due to increased vector elements count
as the distributed computing system gets larger, with potentially
more threads of operation simultaneously being executed.
Conversely, the proper time method suffers from some technical
challenges in which the most significant one concerns with correct
recording of the task event indices when the task performs
concurrent operations. Separately indexing the events in
concurrent threads of one task is not a trivial job. The same
author has enhanced the method to solve the problem by recording
one more parameter, the service period index, to be able to
distinguish the events of different threads when concurrently are
executed by the same task [19]. The task service period
corresponds to the period in which a task fulfills a request,
including all the nested interactions made with the servers in the
lower layers. To do so the service period index must be traced
through all the lower layer servers until it is recovered in the
request acknowledgment. This operation significantly increases
the model making process complexity because it must deal with a
large amount of redundant information.

This works introduces a new format to represent a virtual time for
a distributed system. Despite the “vector time”, the number of
elements in this format is constant and does not change as the
number of threads in the distributed system increases. These
elements are only associated with the operation context of a
scenario application which makes the format significantly
different and simpler than that of “proper time”. This simplicity
has significantly reduced the number of ways, or patterns, by

62

which the interactions between tasks in a distributed application
can be represented.

A performance evaluation model builder based on this new logical
time format is constructed which is able to identify all the various
types of interactions supported by an LQN model even when the
tasks are executing concurrent threads including Synchronous,
Asynchronous, Forward and loops of Forward and Synchronous
interactions. This system is also able to identify interactions
among different entries of the same tasks, determine workload
activities of the entries, and provide the final LQN model through
a limited number of processing steps and transformations.

The paper is structured to illustrate the performance evaluation
model building process based on the new approach. Section 2
gives a brief introduction to LQN model. Execution graph and its
parameters are explained in Section 3. The methodologies used
and steps needed to identify the interactions of the tasks are
brought in Section 4. A general explanation of the actions
involved in adding instrumentation to a system for each type of
events is given in Section 5. In Section 6, the application of the
method in a Building Security System is studied and Section 7
concludes the paper.

2. LQN MODEL OF A DISTRIBUTED
SYSTEM
In this work a distributed system is modeled by a layered queuing
network (LQN) performance evaluation model [14, 15, 17]. In
the LQN model, software resources are represented by tasks.
Each task is characterized by a queue, a level of concurrency and
one or more classes of services, which are called entries. Entries
have directed arcs to other entries to represent requests for
services. An entry may either block, until it receives a reply, or
continue operation. The former case is referred to as Synchronous
interaction or remote procedure call (RPC) and the latter as
Asynchronous interaction. The receiving entry may forward the
request to an entry in another task rather than issuing a reply.
Forwarding can continue until the reply is sent to the task made
the original request. This model of task interactions is called
Forward. An entry may continue to be busy after it sends a reply
to an initiating interaction. This is referred to as a “second phase”
of operation and is a common way of performance optimization,
for example, for transaction cleanup logging and delayed writes.
An entry is characterized by its number of phases, the type of
interactions it makes with the entries of other tasks and its host
and service demands. Each phase has its individual demands.
Service demand specifies the mean number of service requests the
entry makes to the entries of the tasks in a lower layer. The host
demand specifies the mean total required CPU time for the entry
in units of time [17]. Figure 1 shows an LQN model where task A
makes Synchronous interactions with the task B which, in turn,
makes a different Synchronous interaction with the task C. In this
figure the parallelograms represent tasks and rectangles are
entries, and arcs between entries represent messages or requests to
a responding task. The task B is multi-threaded and this is
indicated in the Figure 1 by the stack of parallelograms. The
maximum number of the concurrent threads in task B is shown
inside braces. Task A is a pure customer task, which is a
surrogate for the workload generator of the system. The ovals
represent the hosts where the tasks are executed. The numbers in
brackets are the host demands and numbers in the parenthesis are
request rates between entries.

In distributed software systems, the delays and congestions are
heavily influenced by Synchronous interaction types. An LQN
model captures these delays by incorporating the lower layer
queuing and service time into upper layer servers. Therefore the
holding time for one class of service, or entry service time, is not
a constant parameter but determined by its lower servers.

To construct the LQN model of a distributed system in this work,
the elements of the model, including tasks and entries, and the
interactions among the elements are identified from the parallel
distributed system’s execution graph. The execution graph is
created from event-traces. An event-trace is constructed by
recording of events while the distributed system is running. The
events are simply points of interest in the course of program
execution. The most common event types are:

 Call and return of functions or subroutines

 Send and receive in a point-to-point message passing
operations.

There are some other specifications that are to be provided for
entries and tasks, which are referred to as “resource information”
here. The resource information is a database which contains:

 The scheduling policy of the resources,

 The concurrency level of the tasks,

 Resource assignment (e.g. task to CPU assignment)

 The workload intensity or the rate at which requests are
made by the reference task.

 Host demands can either be provided through the resource
database or automatically evaluated from the event-traces by
addition of adequate extra instrumentation provided that the
system clock’s resolution is high enough. To do so the events
should be annotated by high resolution CPU time usage while
being recorded.

Part of the validation process of the model is performed by
iterative assessment of the performance results and adjustment of
parameters in the resource database until optimum performance
indices are achieved; however, achievement of satisfactory
performance results sometimes requires assessing different
architectural design alternatives.

Figure 1: An LQN model

63

The steps involved to construct the LQN model from an
executable are summarized below.

1. Adding instrumentation probes into the software

2. Executing the program to create its execution graph

3. Identifications of tasks and entries involved

4. Identification of interactions between the entries from
the execution graph

5. Estimation of host and resource demands

6. Using the resource database to complete the LQN model

3. EXECUTION GRAPH
An execution graph is characterized by a network of nodes which
are connected together by a set of directed arcs. A node
represents an event which is a uniquely identifiable runtime
instance of an atomic action performed in an non-interleave
manner by a single task. The relationship between two events is
represented by a directed arc which is the indication that they are
sequentially executed. An execution thread, or thread, is
characterized by a sequence of events connected by directed arcs.
If two threads are shared in one or two point, the points are either
join or fork events. A fork event is where a new thread is spawned
and a join event is where two threads merge to a single thread.

A node in the execution graph is a 3-port entity to represent
various types of events including activity, fork and join events.
One of the ports is of input type which receives a transition from
another event. The two other ports are of output type; one to send
a transitions to an event in the same thread and the other to a
different thread, when it represents a fork event. Figure 2 shows
the execution graph of a simple Synchronous interaction (RPC),
which has been performed in one thread of execution.

An execution graph is constructed from an event-trac

3.1 Event-Trace Creation
The computing system is loaded when a request for service is
made by a reference task. This initiates an operation that can be
performed through one or more threads of operations. Each
thread consists of several activities performed sequentially in one
or several tasks. The requests for services and replies are in the
form of messages passed between the entries. An event index is
attached to each recorded event. This index is incremented and
passed to the following event as the program runs. The passed
event index includes other information in order to specify in
which thread and application scenario or operation the event is
executed, i.e. the passed information includes the thread index and
operation identifier to which the event belongs. A fork event is
responsible for generating a new thread index. This thread index
is used in turn to identify the event indices of the new thread. It is
feasible for each fork event to know the indices belonging to the
threads that are spawned from it. Similarly, the events in the
spawned thread are able to know the thread index of the thread
preceding the fork event. This helps to identify the connections
between the execution threads, by which the identification of the

reply corresponding to a request would be feasible (when the
request-reply pair is performed in different threads).

By attaching some predefined strings to each event, named “event
types”, as shown in Figure 3, the process of finding the start, the
end and the places where forks occur would be possible. This
also helps to find the initiating request in a Forward and loops of
RPC or Forward interactions. In summary the following
information are included in the timestamps attached to an event by
the instrumentation system:

1. Thread index:

a. Current

b. Next

2. Thread event index

3. Event types (External, Begin, Activity, Fork , Send,
Receive, SendAck, ReceiveAck and End)

4. Task name

5. Entry name

The thread index consists of two elements, the current and next
thread index. This information is used to determine the
connectivity of the threads. The execution graph is obtained by
ordering of the threads as well as the events in each thread, based
on their recorded timestamps. Event ordering is performed by
finding out the causal and independence relationship between the
events by using the timestamps attached to the recorded events in
the event-trace.

Figure 4 shows how timestamps are used to create the execution
graph of an Asynchronous interaction. The circles in the figure
represent the events and the numerator and denominator of the
fractional value inside the circles represent the “thread event
index” and the “thread index” respectively.

Event 2 in Thread 1 is a fork event which uses all its three ports.
The external output port of this event goes to the Event 1 of
Thread 2 and the internal output port goes to the Event 3 of the
same thread.

3.2 Event Types
In every interaction the type of event that an initiating task
produces is either “fork” (“Fo”), or “send” (“Se”). When a task
receives a request for service the corresponding event type is

Figure 3: Event types in a Forward interaction

Figure 2: An execution graph

Figure 4: An Asynchronous interaction

64

“receive” (“Re”). When the task produces a response to a service
request, the event type is “send acknowledge” (“Sa”). When a task
receives a response to its service request the event type is “receive
acknowledge” (“Ra”). Figure 5 and Figure 3 show the event types
in RPC and Forward interaction.

It is notable that a distinction is made between “send” and “send
acknowledge” as well as “receive” and “receive acknowledge”
event type. This is for convenient identification of interactions of
types Forward and loops of either RPC or Forward. For example
in the Forward interaction of Figure 3, using the “Sa” and “Ra”
types make the service acknowledgement distinguishable which
otherwise would have been confusing among the other two “send”
and “receive” requests. The same situation applies to the loops of
RPC interactions in which there are several requests for service
and acknowledgements between two tasks as shown in Figure 6.

If the “send acknowledge” and receive acknowledge” were not
used the responding tasks would incorrectly perceived as the
initiating task.

3.3 Event-Trace to Execution Graph
Transformation
An event in the execution graph is characterized by the following
parameters:

 The event’s task name

 The event’s entry name

 The event type

 The succeeding event in the current thread

 The succeeding event in the forked thread

These parameters can be directly extracted from the timestamps of
events in the event-trace. This form of event representation is
easier to handle throughout the rest of processing steps.

Transformation from event-trace to execution graph is easy and
involves ordering of events with the same thread indices to form
the individual threads; ordering of threads and finally finding the
fork and join events by looking at the ending events of ordered
threads.

4. INTERACTION IDENTIFICATION
This section illustrates how the interactions between the entries of
tasks can be identified from their corresponding execution graph.
Interactions are higher abstractions level of events, to which
events are mapped by “patterns”. There might be varieties of
patterns that correspond to a particular interaction type. This
section starts by describing the possible patterns corresponding to

each interaction type and continues to explain the mechanism
used to identify them.

4.1 Interaction Patterns
Interactions between tasks are modeled by patterns of events and
their interrelationships. A pattern can be constructed by one or
several threads. For modeling purpose, it is assumed that a pattern
starts with one thread but for any of the following situations it
spawns a new thread:

1. A task doesn’t block when it request a service from
another task

2. A responding task performs a second phase after it
replies to the requesting task

Figure 2 and Figure 3 depict the first situation. Figure 7
demonstrates the second situation where the server generates a
new thread to respond to the client when it needs a second phase
operation.

The various interaction patterns identified in a distributed
application, represented by their corresponding operation graphs,
are listed in Table 1.

Table 1. Interaction patterns

1. Simple
RPC

2. RPC with
second phase

3. Async

RPC

4. Multi tier
RPC

5. Forward

6. Async

Figure 6: Loops of RPC interactions

Figure 5: Event types in a RPC interaction

Figure 7: Generation of a thread to respond to the
client when the server performs a second phase

65

Case 1 in this table, the simple RPC, shows a pattern in which the
first task blocks and the server doesn’t do a second phase, so all
the events are executed in the same thread.

In the Case 2, the RPC interaction contains two threads as the
server performs a second phase.

In the Case 3 both of the conditions hold, that is the client doesn’t
block and the server performs a second phase; therefore this
pattern of interaction is formed by three threads.

Case 4 shows that the phases of one and two have nested
interactions with the server tasks in the lower layers. The types of
these interactions, which are not displayed, are identified based on
which pattern of the Table 1 they have followed. Since the client
and the server have blocked, their requests are both modeled by
one thread. The server uses the same thread it was acknowledged
by the third-tier server to make a second phase nested service
request. This thread spawns a new one to send acknowledge to the
client.

Case 5 shows the simplest form of a Forward interaction. With the
same principals it uses a single thread. A Forward interaction can
have all the same variations of patterns of an RPC interaction that
were illustrated through cases 1 to 4.

Case 6 shows a simple Asynchronous interaction, which
obviously is performed by a spawned thread.

4.2 Events Abstraction
The method that is used to identify an interaction pattern is to
transform the sequence of events in the execution graph to a
higher level of abstraction to make the process of interaction
identification easier. The sequences of events in the execution
graph are decomposed to different types of chains of events that
are named here as “transition”, “connector” and “segment”, as
shown in Figure 8. A transition represents a directed arc between
events that belong to two different tasks in the execution graph. A
connector represents a directed chain of consecutive events that
have been executed within a single entry of a task (A connector
bridges the gap between two consecutive transitions in an
execution graph). The overlapping event between a connector and
a transition is shared by each of them. A segment is a directed arc
that consists of a pair of consecutive transition and connector,
starting with the segment. Segments are used to identify the task
interactions and connectors and are used to identify the phase of
an interaction throughout the interaction pattern matching.

4.2.1 Anti-parallel segments
Two segments are anti-parallel when both of their interacting
tasks (and entries) are identical but the directions of their
interactions are different. Figure 9 shows two anti-parallel
segments

4.2.2 Matched segments
Two anti-parallel segments are matched when either of the
following happens:

1. They have a shared event. This event is located at the
end of one segment and beginning the other one. This
case happens when the requested task is a pure server,
i.e. it doesn’t have a nested interaction with a lower
layer task.

2. The ending event of one segment and the beginning
event of the other one are not identical but are attached
by a connector.

These are named as “type-one” and “type-two” matched anti-
parallel segments respectively throughout the rest of this paper.
For example Figure 10 shows a pair of type-two matched
segments which corresponds to the interaction of case 4 of Table
1.

4.2.3 Double-segment
A double-segment is an extended segment which consists of two
connected segments, as shown in Figure 11.The segments share
an event which is the head event of one and end event of the other
or vice versa, but the two segments are not matched. A double-
segment can be considered like a new type of segment whose
head event is that of the first segment and whose end event is that
of the second segment. By this in mine a double-segment can
match up against a single segment just like the way two segments
do.

4.2.4 Multi-segments
A multi-segment is a further and the same way extended of a
double-segment, or another multi-segment, with a single segment,
as shown in Figure 12.

Figure 8: Abstracting event sequences in an operation graph

Figure 10: Two type-two matched segments

Figure 9: Anti-parallel segments

Figure 11: Formation of a double-segment

66

4.3 Identification of Simple Forms of
Interactions
By using the segments and multi-segments identified, various
interaction types can easily be identified. This section discusses
simple forms of these interactions in the sense that they don’t
have a nested interaction.

4.3.1 Synchronous interaction
Two matched anti-parallel segments can identify a Synchronous
interaction between their corresponding two tasks, as shown in
Figure 13. In a Synchronous interaction, an event from one task
requests a service from that of another. The initiating task blocks
until it receives a response. This is usually found in remote
procedure calls.

4.3.2 Forward interaction
Figure 14 shows that when a multi-segment is matched against a
single segment, a forward interaction is identified.

4.3.3 Asynchronous interaction
When all the synchronous and Forward interactions are identified,
the remaining segments that have not participated in any of the
Synchronous or Forward interactions specify Asynchronous
interactions.

4.4 Identification Complex Forms of
Interactions
Simple forms of interactions consist of interactions of type-one
which occur at lowest two layers, i.e. the pure server layer and the

one immediately above it. Interactions of type-two, in which the
serving task performs nested interaction, are first converted to
interaction of type-one and then identified by the methods of the
previous section. This may prevent any uncertainty in terms of
matching two wrong segments in complex unanticipated behavior
of a system.

4.4.1 Type-two to type-one interactions conversion
A nested interaction places a gap between the two segments of its
corresponding type-two interaction which should be removed to
convert the type-two interaction to that of type-one. This is done
by extending the connector of the first segment with a pseudo
connector, which is a replacement for its identified (type-one)
nested interaction at the lower layer, as shown in Figure 15.

Obviously the identification system must first identify the nested
interactions and it starts from the lowest layer. The process of
replacing a nested interaction with a pseudo connector and using it
to extend its succeeding connector will be referred to as a “gap-
filling” process throughout the rest of this paper. Now it is time to
illustrate the whole interaction identification process in the
following subsection.

4.4.2 Interactions identification algorithm
The main steps involved in identification of interactions are
summarized as follows:

1. Transformation of execution graph to transitions,
connectors, segments and multi-segments

2. Identification of matched anti-parallel segment pairs

3. Identification of matched pairs of multi-segments and
single segments

4. Forming new connectors which are constructed by
bridging over identified interaction

5. Extending the available connectors by the bridging
connectors

6. Looping to step 3 until no new interactions identified

7. Remaining segments form asynchronous interactions

8. Determining the phase in which an interaction took
place

The first iteration of these steps identifies the interactions between
the entries of the tasks in the lowest two layers, i.e. the pure server
layer and the one immediately above it. The gap-filling process
will remove all the interactions at lowest layer and qualify the
layer above with having only type-one interactions. Other
iterations to step 3 of the above algorithm will further remove the
layers, one per iteration, until it reaches to the top two layers
wherein all interactions are identified. Therefore, the number of
iterations required to identify all the interactions will be “n-1”,
where “n” is the number of layers.

Figure 12: Formation of a multi-segment

Figure 15: Bridging over an iteration and connector extension

Figure 13: An RPC interaction with two matched anti-

parallel segments

Figure 14: A matched multi-segment and segment to form a

forward interaction

67

4.5 Phase Two Nested Interaction
Determination
Figure 16 shows the Interaction A which has a second phase
nested Interaction B. The specifications of the relationship
between these two interactions are listed below:

 The Connector C connects Interaction A to that of B

 First event of Connector C is shared with first event of
the second segment of Interaction A

 Second event of connector C is shared with the first
event of first segment of Interaction B

Therefore the phase two nested interaction determination process
consists of examining the connectivity of one interaction to all the
other identified interactions through one connector, in the way
described above.

4.6 Merging of the Interactions
Many of the interaction identified from the same execution graph
might be analogous in the following sense:

1. They have both the same source and the same
destination tasks

2. Their entries both at the source and the destination ends
are the same

3. Their interactions are of the same type

4. They have happened at the same phase of other
analogous interactions

The analogous interactions are classified into what is termed as an
“interaction-class”. An entry request of an LQN model is
determined by finding its corresponding interaction-class,
resource demand and host demand.

4.7 Workload of a Task
An interaction-class specifies a request for service from a specific
entry of one specific task, termed as entry-task pair, to that of
another.

4.7.1 Partial resource demand
When all the interactions mapped to a particular interaction-class
are quantified, it specifies a partial resource demand.

4.7.2 Total resource demand
Summation of all partial resource demands of all interaction-
classes with the same target task-entry pair specifies the total
resource demand of that target.

4.7.3 Resource demand
The resource demand of the entry-task pair “A” from the entry-
task “B” is the ratio of the partial resource demand of entry-task

“A” to entry-task “B” over the total resource demand of entry-task
“B”.

4.7.4 Host demand
The host demand of an entry is determined by measuring the total
CPU time consumed by an entry operation. Measurement of this
time is not the early target of this work and it is provided through
the resource database by estimation.

5. INSTRUMENTATION
Instrumentation simply means splicing probes or analysis code
consisting of e.g. logging instruction or print statements at
particular locations in the source code. There are various
mechanisms for adding instrumentation to a program such as
using: compiler, libraries, direct source code and binary
instrumentation. The basic requirement for an instrumentation
infrastructure is to have zero probe effect when disabled and must
be absolutely safe when enabled. There must be no way to
accidentally induce system failure through system misuse.

To create an executable, instrumentation probes of this work are
added to a simulation program as has been explained in the
following section. Adding the probes to a real system and dealing
with the corresponding practical details is an ongoing project and
is not the main emphasis of this paper. In the following the pseudo
code of the probes required to get the executable of a software
system to generate the suitable event traces for identification of
the interaction based on the methodologies illustrated is provided.

Regardless of the interaction types, the following basic operations
will be performed to record and update the state of an event for
instrumentation:

 The event index is incremented

 The event’s timestamp is recorded

 Indices of event, thread and operation are passed to the
following event

For specific events types, the above operation will be
complemented with other operation specific to the event type.
These operations per event types are illustrated below.

5.1 Fork Events
In addition to the above steps, the fork event performs the
following:

 The fork event is responsible for generating the new
thread index for the thread that was spawned.

 The event type label of this event is “Fo”

 The new thread index will update the next thread
element of timestamp in the fork event

5.2 Begin Event
A “Begin” event starts when the sending event type is “Fork”.
The following extra steps are performed for a begin event:

 The current thread index is changed to the next thread
index coming from a fork event.

 The event type label of this event is “Be”

 The event index is set to 1

Figure 16: Second phase interaction identification

68

5.3 External Event
An external event initiates an operation; therefore this is where the
operation index is incremented. The following steps are
performed for an external event:

 The operation index is set to “1”

 The thread event index is set to “1”

 The event index is set to “1”

6. CASE STUDY
This case study demonstrates automatic LQN model building by
using an application called Building Security System (BSS). This
application has been previously used in [18] and [19] to create its
LQN performance model based on different methodologies. This
work has adopted the same application to demonstrate the method
of automatic LQN model building from event-traces generated
from an executable. The executable of the BSS application is
created by simulating it with PARASOL [20] which is a
simulation environment by C and C++ libraries for distributed
parallel applications, explained in the following paragraph. The
resulting simulation is instrumented based on the rules of the
previous section and its executable is used to generate the event-
traces for the illustrated post-mortem analysis. It will be shown
that this work is able to construct the same LQN models
developed in [18] and [19] by using the new explained
methodologies. Figure 17 shows the activities performed in this
case study.

The PARASOL software interface looks like a primitive
distributed operating system, containing a number of functions to
support task management including dynamic task
creation/destruction and inter-task communication. It allows true
concurrency to be simulated in a multi-processor system, with
scheduled concurrent tasks. The simulated execution environment
on which PARASOL tasks execute is constructed from nodes and
one-way communication links. A PARASOL node may have one
or several processors. Each node has a single ready-to-run queue
and is managed by either a built-in scheduler or by a user-defined
scheduler. Network connections are made through point-to-point
one-way links.

The BSS is intended to control access and to monitor activities in
a building like a hotel or a university laboratory. To assess the
performance and improve the design, two main scenarios of this
application are modeled. The first scenario, Access Control, is
used for the control of door locks by access cards. In this
scenario, a card is inserted into a door-side reader where its
contents are read and transmitted to a server. The server checks
the access rights associated with the card in a database of access
rights, and then either triggers the lock to open the door, or denies
access. The second scenario, Acquire/Store Video, is used for
video surveillance. In this scenario, video frames are captured
periodically from a number of cameras located around the
building, and stored in the database. The referenced papers
perform the assessment of the performance, improvement of
design and planning of capacity for the number of cameras for

future scaling by looking at various alternatives such as system
configuration. The sequence diagrams of the two scenarios
described earlier are shown in Figure 18 and Figure 19.

The video surveillance scenario has a 5-tier architecture. The
tasks of Buffer, StoreProce, AquProce, DB and Disk are multi-
threaded with each having 15, 3, 12, 10 and 2 threads
respectively. Tasks DB and Disk are shared by both scenarios.
All of the interactions except one are of types RPC or Forward.

The access control scenario has a 4-tier architecture. With the
exception of the user task, all of the tasks are multi-threaded.
Tasks SCR, AccCtrl, DLA, DB and Disk each have 50, 60, 50, 10
and 2 threads respectively.

6.1 Making an Executable
A PARASOL [20] simulation is used to create the event-traces
required for construction of the execution graph. PARASOL is an
execution-based tool, which provides a flexible software

Figure 19: Sequence diagram of access control card scenario

Figure 18: Sequence diagram of video surveillance scenario

performance model Executable performance model

Figure 17: Case study

69

prototyping environment for distributed and/or parallel computer
systems.

PARASOL is built up of multi-processor nodes interconnected
with communication devices of various types and capacities. The
concurrent software is created explicitly with user-defined tasks
written in C or C++. Operationally, a PARASOL-based simulator
runs as a single task in a POSIX compliant host environment.

The workload of this case study is created by the “User” and
“vidCtrol” tasks, which initiate interactions by sending their
service requests to the lower layer tasks of SCR and AcqProc,
respectively. The arrival rate is defined by an exponential random
delay time between each request in the simulator.

After prototyping the application, instrumentation is added to
enable the resulting executable to generate the desired event-
traces. The details regarding creation of the simulation of the
application will be provided in an extension paper.

6.2 LQN Model
The state of knowledge before tracing is the resources service
demands associated with the entries, the task multi-threading
level, CPU multiplicity and task to CPUs allocation map. The
user provides this information through the resource database. The
system identifies the tasks, entries, the interactions between them
and the number of times they have been repeated in a specified
period. It also identifies if an interaction is nested in another one
and whether it is in “first phase” or “second phase. After merging
each interaction into various interaction-classes identified, the
system determines the visit ratios and resource demand associated
with each request. After taking care of a few other details such as
counting the total number of tasks, entries and CPUs, the process
of building the LQN model is finished. The visual representation
of the LQN performance evaluation model of this case study is
shown in Figure 20, which is very similar to the model presented
in referenced paper [20], from which the executable of this case
study was created.

Figure 20: The resulting LQN model of the BSS case study

70

7. CONCLUSION AND RESULTS
This research introduces a framework consisting of specifications,
methods and tools to capture the workload and interaction
architecture between the nodes of a parallel distributed software
application to generate its LQN performance evaluation model in
an automatic fashion. To capture interaction architecture a trace-
based methods is utilized. Timestamps, with a new structural
format, are attached to the events by an instrumented software
program which currently is the simulation of a parallel
distribution application. A formal post-mortem analysis approach
is used which takes the event-traces as input and produces the
LQN performance evaluation model. This approach of
performance model generation is appropriate for systems without
a time reference, such as distributed software systems, since the
new timestamp format is independent of physical time. It is also
appropriate for parallel or concurrent processing systems since the
interaction identification and workload detection methods used in
this work allow for internal concurrency in individual nodes. The
contributions of this paper are:

1. Introduction of a new lightweight format for logical
time

2. Providing pseudo code of the instrumentation probes to
be added to the source code of the parallel distributed
application based on the new timestamp format

3. Providing a low overhead communication for
interactions in a distributed application

4. Introducing a framework of specifications, algorithms,
methodologies and tools to identify the architectural
structure and workload activities of a distributed
computing system from the event-traces

5. Automatic, end to end, creating of LQN performance
evaluation model from the executable of a computing
system

6. Demonstrating the automatic performance evaluation
model creation method using PARASOL as a
distributed parallel software simulator

The definition of the probes in the instrumentation system and the
interaction identification method are designed in a way to capture
the sequence of consecutive interactions in a loop interaction
between two tasks, which is a common behavior in distributed
systems. The system has demonstrated a strong ability to
correctly identify the various patterns which map to the
Synchronous and Forward interactions, which are the crucial part
in any performance model making process for distributed systems.
Application of the method on different event-traces extracted from
same prototype has always led to the exact same identified
distributed software architecture, which is an indication of
robustness of the method. This is compared to the case of proper
time method [3,6] in which the accuracy and reliability of the end
result is dependent to the correct determination of the service
period of a task.

The hosts service demands, tasks to CPUs mapping and the
anticipated multiplicity of the CPUs and threads in a task are the
only manually provided information to complete the LQN
performance evaluation model. Automatic determination of these
parameters is an ongoing research and will be addressed in a
separate work, which analyzes the application specifications and
information of the involved components for their determination.

Application of this method allows for automatic construction of
the LQN evaluation performance model for a software system and
would prevent human interventions error, which is likely to occur
in large systems. This method is suited to be applied in a software
performance engineering (SPE) fashion by which the target
systems performance is automatically monitored as the system
evolves.

8. ACKNOWLEDGMENTS
Financial support for this research was provided by the Natural
Sciences and Engineering Research Council of Canada.

9. REFERENCES
[1] A. D’Ambrogio and P. Bocciarelli, “A Model-Driven

Approach to Describe and predict the Performance of
Composite Services”, In Proc. Sixth International workshop
on software and performance (WOSP’07), pp. 78-89, Buenos
Aires, Argentina, 2007, ACM Press.

[2] Curtis E. Hrischuk , C. Murray Woodside, Jerome A.
Rolia, Rod Iversen, “Trace-Based Load Characterization for
Generating Performance Software Models”, IEEE
Transactions on Software Engineering, v.25 n.1, pp. 122-
135, January 1999

[3] Curtis E. Hrischuk, “Trace-Based Load Characterization for
Automated Development of Software Performance Models”,
PhD Thesis, System and computer engineering department,
Carleton University, 1998

[4] C. Fidge, “Logical Time in Distributed Computing
Systems”, Computer, Volume 24, Issue 8, pp. 28–33, Aug.
1991.

[5] T. Israr, “A Light Weight Technique for Extracting Software
Architecture and Performance Models from Traces”, Master
Thesis, System and Computer Department, Carleton
University, April 200.

[6] C. E. Hrischuk , C. M. Woodside, “Logical Clock
Requirements for Reverse Engineering Scenarios from a
Distributed System”, IEEE Transactions on Software
Engineering, v.28 n.4, pp. 321-339, April 2002

[7] C.U. Smith, Performance Engineering of Software Systems.
New York: Addison-Wesley, 1990.

[8] I. Jacobson, G. Booch and J. Runbugh, “ The United
Software Development Cycle”, Object Technology Series,
Addison-Wesley, Boston, MA, 1999

[9] C. Hrischuk, J. Rolia, and C.M. Woodside, “Automatic
Generation of a Software Performance Model Using an
Object-Oriented Prototype”, Proc. Int’l Workshop
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’95), pp. 399–409,
1995

[10] S. Vaidehi, D. J. Ram, A. Shukla, “Difference Clock: A
new Scheme for Logical Time in Distributed Systems”, IEE
Proc., Comput Digit Tech, Vol. 143, No. 6, November 1996

[11] H. Koetz and W. Ochsenreiter, “Clock synchronization in
distributed real-time systems IEEE”, Transactions on
Computers Volume 36 , Issue 8 (August 1987), Special
Issue on Real-Time Systems, pp. 933 - 940

71

[12] E.D. Lazowska, J. Zahorjan, G. Graham and K. Sevcik,
Quantitative System Performance. Englewood Cliffs, N.J.,
Prentice Hall, 1984.

[13] C.U. Smith, “Robust Models for the Performance Evaluation
of Software/Hardware Designs,” Proc. Int’l Workshop
Timed Petri Nets, pp. 172–180, Torino, Italy, July 1985.

[14] J. Rolia and K. Sevcik, “The Method of Layers”, IEEE
Trans. Software Eng., vol. 21, no. 8, pp. 689–700, Aug.
1995.

[15] C.M. Woodside, J.E. Neilson, D. Petriu, and S. Majumdar,
“The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like Distributed
Software,” IEEE Trans. Computers, vol. 44, no. 1, pp. 20–
34, Jan. 1995.

[16] G. Franks, S. Majumdar, J. Neilson, D.C. Petriu, J. Rolia,
and C.M. Woodside, "Performance Analysis of Distributed
Server Systems," in the Sixth International Conference on
Software Quality (6ICSQ), Ottawa, Ontario, pp. 15-26, 1996

[17] “Layered Queuing Network Solver and Simulation User
Manual”, Department of System and Computer Engineering,
Carleton University, April28, 2010, Revision 9242

[18] Jing Xu, Murray Woodside, Dorina Petriu, “Performance
Analysis of a Software Design Using the UML Profile for
Schedulability, Performance and Time”, Proc. 13th
International Conference on Modeling Techniques and Tools
for Computer Performance Evaluation, ,2003

[19] Lianhua Li, Franks G., “Performance modeling of systems
using fair share scheduling with Layered Queuing
Networks”, Modeling, Analysis & Simulation of Computer
and Telecommunication Systems, 2009. MASCOTS '09.
IEEE International Symposium on

[20] J. E. Neilson, "Parasol: A simulator for distributed and/or
parallel systems," Tech. Rep. SCS-TR-192, Carleton
University, 1991.

[21] F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Proc. Int’l Workshop Parallel and Distributed
Algorithms, pp. 215–226, Amsterdam, Bonas, France,
North-Holland, 1988

72

