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ABSTRACT 
Performance models can be built at early stages of software 
development cycle to aid software designers to assess design 
alternatives and identify fundamental design pitfalls before the 
implementation phase starts.  These models are flexible for 
varying operational conditions and design alternatives; however, 
their creation is not trivial and requires considerable efforts. This 
paper addresses this problem by introducing automation in 
process of Layered Queuing Network (LQN) performance model 
creation for traces of events generated from instrumented software 
programs in the nodes of a distributed parallel software 
application.   

The event-traces are created based on a new timestamp format, 
which is independent of physical time and uses extremely low 
count elements.  A set of post-mortem methodologies have been 
introduced to identify the interactions between the service nodes 
of the parallel distributed software application and determine their 
workload activities, while supporting concurrent executions in the 
nodes. It can capture Forward, Asynchronous, Synchronous and 
loops of Asynchronous or Forward interactions. The final result is 
a framework of methodologies, specifications and tools which is 
appropriate for model-based performance evaluation parallel 
distributed software applications.  

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: PERFORMANCE OF 
SYSTEMS, Modeling techniques 

General Terms 
Performance 

Keywords 
Performance, distributed parallel systems, performance models, 
Layered Queuing Systems (LQN), execution graphs, event traces 

 

1. INTRODUCTION 
Performance, defined as the response time and throughput of a 
system, is a pervasive quality of distributed computing systems 
because everything from the low level hardware all the way to the 
application software affects it.  It is a function of the amount of 
communication and interaction between the components of the 
system and is primarily concerned with the architecture of the 
software system.  The lack of performance is often found to be a 
serious problem in significant fractions of projects because it 
causes delays, cost overruns, failure on deployment and 
abandonment of a project [1].   

Evaluation of the performance of a system is often performed by 
measuring the requests arrival rates, distribution of requests, 
processing times, queue size, latency and the rate at which queues 
are serviced.  This method of performance evaluation yields 
accurate knowledge of the system which is built under a particular 
set of assumptions and design parameters.  If the results are not 
satisfactory the system should be rebuilt under another set of 
assumptions which is laborious and expensive and inflexible to 
provide enough room for intuition to find favorite design 
assumptions.   

An alternative to this approach would be to evaluate the 
performance of a model of the software system rather than 
working with the software itself.  The model is an abstraction of 
the system, which is distilled from the mass of details essential to 
its performance. Once the model is defined, it can be 
parameterized to reflect any of the design alternatives under study.  
Evaluation of the model also can help to determine the system’s 
behavior under various design alternatives.  The models are build 
by stochastic queuing models such as queuing network (QN) [12] 
and layered queuing networks (LQN) [14, 15, 17], or state-based 
systems such as a Petri Net [13], and solved by either analytic or 
simulation techniques.  The models can provide performance 
predictions under various operation conditions or design 
architectures, which give valuable hints to detect root cause of 
performance issues.  It means that by help of the models it is 
possible to design a software system and analyze its performance 
before even it is implemented.  The down side to this approach is 
that a right amount of architectural features from the software 
documents or its source code must be abstracted in order to 
parameterize these models.  This process is very difficult and time 
consuming, so the general trend is to postpone the performance 
evaluation until the software is developed, when it might be too 
late to fix fundamental architectural problems [7].   
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This paper describes an approach to simplify this process by 
automating the model making process and parameterization from 
recorded information of an instrumented live parallel distributed 
software system. A prerequisite for this approach is the 
availability of an executable early in the life cycle of the product 
which is quite feasible as modern software engineering promotes 
a release early in the development cycle [8].  The final 
performance model of this work is an LQN model.  The LQN 
model is an extended queuing network [12] that includes the visits 
between processes so that their layered requests for service, and 
hence their contention effects, are represented. 

 A distributed system is composed of multiple autonomous 
computers or hardware nodes, which interact with each other in 
order to achieve a common goal, such as solving a large 
computational problem.  The interactions between the nodes are 
solely performed by message passing.  A problem is divided into 
many tasks, each of which is taken up by one particular computer.  
Tasks are software components whose execution are scheduled 
and may be performed in parallel on different nodes.  From 
another perspective, a task is a resource that could potentially be 
shared by other entities therefore the set of active tasks are 
dynamic and constantly changing.   

To have a trace of executed events in the computing system, 
instrumentation is added to the corresponding application 
software.  This instrumentation consists of splicing probes, or 
analysis code, at specific locations in the source code.  This 
enables the system to automatically create a time-stamped trace of 
events as it runs which is termed here as event-traces. By 
identification of the order in which the events are executed in an 
event-trace one can create an execution graph. An execution graph 
characterizes the partial order or independence relationship among 
the events that are executed in a scenario application of a parallel 
computing system. It consists of linear (consecutive events) sub-
graphs which are termed as threads. A more comprehensive 
characterization of an execution graph is given in section 3.  

The model making process involves capture of traces of events, 
creation of execution graph, identification of tasks and their 
interactions, estimating the workload imposed on tasks, recording 
of some environmental information associated with the distributed 
system, and transformation of the collected information into an 
LQN model. 

The advantage of constructing models form an event-trace over 
using the software documentation and source code is that the 
former takes care of the dynamic features of a software system 
that are hard to impossible to extract for the latter.  This feature of 
trace-based approach allows for identification of interactions in 
complicated software contexts such as dynamic bounding, 
inheritance, polymorphism and data dependent branching.  

It is highly desirable to have a notion of global time in a 
distributed system. It can be used as the timestamps attached to 
events to enable one to identify the causality and independence 
relationship among the events. Taking local time of one particular 
node as the reference for the global time, as have been assumed 
by some works [5, 9], is not a practical solution. Some factors 
such as poor clock granularity and synchronization, clock drift 
and communication delays will not allow this reference to be 
perceived uniquely by all the nodes of a distributed system. It is 
not difficult to imagine a different mechanism, termed as virtual 
time, can reflect the same feature as time does to enable one to 

capture the causal and independence relationship among the 
events.  Devising a format for virtual time is an essential part of 
constructing a distributed system performance model-making 
system, which has great impact on its performance, accuracy and 
complexity. 

 Fidge [4] and Mattern[21] introduced “vector time” and Fidge 
used it along with some rules to extract the execution graph of an 
application.  Each component of the vector time corresponds to 
the current logical time of one live thread of execution.  Each 
process, during its life span, maintains a variable holding its 
corresponding current vector time.  In each thread only one 
element of the vector, which corresponds to the same thread, is 
immediately updated.  The other elements are updated when the 
threads can exchange information which happens when they join. 
The rules dictate how the vector time is initialized, its components 
are inherited, incremented, and finally terminated.  The causality 
of events and construction of the execution graph are performed 
by comparing the vector times of the different events.   

An alternative way to represent the virtual time in a distributed 
application is “proper time” which was introduced in [3,6].  In this 
method, the events in executing software are characterized based 
on their situation in two different event graphs, namely their task 
and thread of operation event graphs.  In the event operation 
graph, the event is executed in a thread of execution in which the 
event has a specific event number.  In a task event graph, the same 
event has a name and a different event number which corresponds 
to the order in which that event is executed in that particular task.  
Although these two graphs are independently created, they are 
overlaid and give new characterization to the event. 

The number of elements in “proper time” method is fixed, while 
in “vector time” it increases with the number of execution threads.  
This tends to make the “vector time” method incur an excessive 
communication overhead due to increased vector elements count 
as the distributed computing system gets larger, with potentially 
more threads of operation simultaneously being executed.  
Conversely, the proper time method suffers from some technical 
challenges in which the most significant one concerns with correct 
recording of the task event indices when the task performs 
concurrent operations.  Separately indexing the events in 
concurrent threads of one task is not a trivial job.  The same 
author has enhanced the method to solve the problem by recording 
one more parameter, the service period index, to be able to 
distinguish the events of different threads when concurrently are 
executed by the same task [19].  The task service period 
corresponds to the period in which a task fulfills a request, 
including all the nested interactions made with the servers in the 
lower layers.  To do so the service period index must be traced 
through all the lower layer servers until it is recovered in the 
request acknowledgment.  This operation significantly increases 
the model making process complexity because it must deal with a 
large amount of redundant information. 

This works introduces a new format to represent a virtual time for 
a distributed system.  Despite the “vector time”, the number of 
elements in this format is constant and does not change as the 
number of threads in the distributed system increases.  These 
elements are only associated with the operation context of a 
scenario application which makes the format significantly 
different and simpler than that of “proper time”.  This simplicity 
has significantly reduced the number of ways, or patterns, by 
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which the interactions between tasks in a distributed application 
can be represented.   

A performance evaluation model builder based on this new logical 
time format is constructed which is able to identify all the various 
types of interactions supported by an LQN model even when the 
tasks are executing concurrent threads including Synchronous, 
Asynchronous, Forward and loops of Forward and Synchronous 
interactions. This system is also able to identify interactions 
among different entries of the same tasks, determine workload 
activities of the entries, and provide the final LQN model through 
a limited number of processing steps and transformations. 

The paper is structured to illustrate the performance evaluation 
model building process based on the new approach.  Section 2 
gives a brief introduction to LQN model.  Execution graph and its 
parameters are explained in Section 3.  The methodologies used 
and steps needed to identify the interactions of the tasks are 
brought in Section 4. A general explanation of the actions 
involved in adding instrumentation to a system for each type of 
events is given in Section 5. In Section 6, the application of the 
method in a Building Security System is studied and Section 7 
concludes the paper. 

2. LQN MODEL OF A DISTRIBUTED 
SYSTEM 
In this work a distributed system is modeled by a layered queuing 
network (LQN) performance evaluation model [14, 15, 17].  In 
the LQN model, software resources are represented by tasks.  
Each task is characterized by a queue, a level of concurrency and 
one or more classes of services, which are called entries.  Entries 
have directed arcs to other entries to represent requests for 
services.  An entry may either block, until it receives a reply, or 
continue operation.  The former case is referred to as Synchronous 
interaction or remote procedure call (RPC) and the latter as 
Asynchronous interaction.  The receiving entry may forward the 
request to an entry in another task rather than issuing a reply.  
Forwarding can continue until the reply is sent to the task made 
the original request.  This model of task interactions is called 
Forward.  An entry may continue to be busy after it sends a reply 
to an initiating interaction.  This is referred to as a “second phase” 
of operation and is a common way of performance optimization, 
for example, for transaction cleanup logging and delayed writes.  
An entry is characterized by its number of phases, the type of 
interactions it makes with the entries of other tasks and its host 
and service demands.  Each phase has its individual demands.  
Service demand specifies the mean number of service requests the 
entry makes to the entries of the tasks in a lower layer.  The host 
demand specifies the mean total required CPU time for the entry 
in units of time [17].  Figure 1 shows an LQN model where task A 
makes Synchronous interactions with the task B which, in turn, 
makes a different Synchronous interaction with the task C.  In this 
figure the parallelograms represent tasks and rectangles are 
entries, and arcs between entries represent messages or requests to 
a responding task.  The task B is multi-threaded and this is 
indicated in the Figure 1 by the stack of parallelograms.  The 
maximum number of the concurrent threads in task B is shown 
inside braces.  Task A is a pure customer task, which is a 
surrogate for the workload generator of the system.  The ovals 
represent the hosts where the tasks are executed.  The numbers in 
brackets are the host demands and numbers in the parenthesis are 
request rates between entries. 

 

In distributed software systems, the delays and congestions are 
heavily influenced by Synchronous interaction types.  An LQN 
model captures these delays by incorporating the lower layer 
queuing and service time into upper layer servers.  Therefore the 
holding time for one class of service, or entry service time, is not 
a constant parameter but determined by its lower servers.   

To construct the LQN model of a distributed system in this work, 
the elements of the model, including tasks and entries, and the 
interactions among the elements are identified from the parallel 
distributed system’s execution graph.  The execution graph is 
created from event-traces. An event-trace is constructed by 
recording of events while the distributed system is running. The 
events are simply points of interest in the course of program 
execution.  The most common event types are: 

 Call and return of functions or subroutines 

 Send and receive in a point-to-point message passing 
operations. 

There are some other specifications that are to be provided for 
entries and tasks, which are referred to as “resource information” 
here.  The resource information is a database which contains:  

 The scheduling policy of the resources,  

 The concurrency level of the tasks,  

 Resource assignment (e.g.  task to CPU assignment) 

 The workload intensity or the rate at which requests are 
made by the reference task. 

 Host demands can either be provided through the resource 
database or automatically evaluated from the event-traces by 
addition of adequate extra instrumentation provided that the 
system clock’s resolution is high enough.  To do so the events 
should be annotated by high resolution CPU time usage while 
being recorded.   

Part of the validation process of the model is performed by 
iterative assessment of the performance results and adjustment of 
parameters in the resource database until optimum performance 
indices are achieved; however, achievement of satisfactory 
performance results sometimes requires assessing different 
architectural design alternatives. 

 
Figure 1: An LQN model 
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The steps involved to construct the LQN model from an 
executable are summarized below. 

1. Adding instrumentation probes into the software 

2. Executing the program to create its execution graph 

3. Identifications of tasks and entries involved 

4. Identification of interactions between the entries from 
the execution graph 

5. Estimation of host and resource demands 

6. Using the resource database to complete the LQN model 

3. EXECUTION GRAPH 
An execution graph is characterized by a network of nodes which 
are connected together by a set of directed arcs.  A node 
represents an event which is a uniquely identifiable runtime 
instance of an atomic action performed in an non-interleave 
manner by a single task. The relationship between two events is 
represented by a directed arc which is the indication that they are 
sequentially executed. An execution thread, or thread, is 
characterized by a sequence of events connected by directed arcs. 
If two threads are shared in one or two point, the points are either 
join or fork events. A fork event is where a new thread is spawned 
and a join event is where two threads merge to a single thread. 

A node in the execution graph is a 3-port entity to represent 
various types of events including activity, fork and join events. 
One of the ports is of input type which receives a transition from 
another event. The two other ports are of output type; one to send 
a transitions to an event in the same thread and the other to a 
different thread, when it represents a fork event. Figure 2 shows 
the execution graph of a simple Synchronous interaction (RPC), 
which has been performed in one thread of execution. 

An execution graph is constructed from an event-trac 

 

 

 

3.1 Event-Trace Creation 
The computing system is loaded when a request for service is 
made by a reference task.  This initiates an operation that can be 
performed through one or more threads of operations.  Each 
thread consists of several activities performed sequentially in one 
or several tasks.  The requests for services and replies are in the 
form of messages passed between the entries.  An event index is 
attached to each recorded event.  This index is incremented and 
passed to the following event as the program runs.  The passed 
event index includes other information in order to specify in 
which thread and application scenario or operation the event is 
executed, i.e. the passed information includes the thread index and 
operation identifier to which the event belongs.  A fork event is 
responsible for generating a new thread index.  This thread index 
is used in turn to identify the event indices of the new thread.  It is 
feasible for each fork event to know the indices belonging to the 
threads that are spawned from it.  Similarly, the events in the 
spawned thread are able to know the thread index of the thread 
preceding the fork event.  This helps to identify the connections 
between the execution threads, by which the identification of the 

reply corresponding to a request would be feasible (when the 
request-reply pair is performed in different threads).   

 

 

 

 

 

 

 

By attaching some predefined strings to each event, named “event 
types”, as shown in Figure 3, the process of finding the start, the 
end and the places where forks occur would be possible.  This 
also helps to find the initiating request in a Forward and loops of 
RPC or Forward interactions.  In summary the following 
information are included in the timestamps attached to an event by 
the instrumentation system: 

1. Thread index: 

a. Current  

b. Next 

2. Thread event index 

3. Event types (External, Begin, Activity, Fork , Send, 
Receive, SendAck, ReceiveAck and End) 

4. Task name 

5. Entry name 

The thread index consists of two elements, the current and next 
thread index.  This information is used to determine the 
connectivity of the threads.  The execution graph is obtained by 
ordering of the threads as well as the events in each thread, based 
on their recorded timestamps. Event ordering is performed by 
finding out the causal and independence relationship between the 
events by using the timestamps attached to the recorded events in 
the event-trace.  

Figure 4 shows how timestamps are used to create the execution 
graph of an Asynchronous interaction. The circles in the figure 
represent the events and the numerator and denominator of the 
fractional value inside the circles represent the “thread event 
index” and the “thread index” respectively. 

 

 

 

 

 

Event 2 in Thread 1 is a fork event which uses all its three ports.  
The external output port of this event goes to the Event 1 of 
Thread 2 and the internal output port goes to the Event 3 of the 
same thread.  

3.2 Event Types 
In every interaction the type of event that an initiating task 
produces is either “fork” (“Fo”), or “send” (“Se”). When a task 
receives a request for service the corresponding event type is 

 
Figure 3: Event types in a Forward interaction 

 
Figure 2: An execution graph 

 
Figure 4: An Asynchronous interaction 
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“receive” (“Re”). When the task produces a response to a service 
request, the event type is “send acknowledge” (“Sa”). When a task 
receives a response to its service request the event type is “receive 
acknowledge” (“Ra”). Figure 5 and Figure 3 show the event types 
in RPC and Forward interaction. 

 

 

 

 

 

It is notable that a distinction is made between “send” and “send 
acknowledge” as well as “receive” and “receive acknowledge” 
event type. This is for convenient identification of interactions of 
types Forward and loops of either RPC or Forward. For example 
in the Forward interaction of Figure 3, using the “Sa” and “Ra” 
types make the service acknowledgement distinguishable which 
otherwise would have been confusing among the other two “send” 
and “receive” requests. The same situation applies to the loops of 
RPC interactions in which there are several requests for service 
and acknowledgements between two tasks as shown in Figure 6. 

 

 

 

 

If the “send acknowledge” and receive acknowledge” were not 
used the responding tasks would incorrectly perceived as the 
initiating task. 

3.3  Event-Trace to Execution Graph 
Transformation 
An event in the execution graph is characterized by the following 
parameters: 

 The event’s task name 

 The event’s entry name 

 The event type 

 The succeeding event in the current thread 

 The succeeding event in the forked thread 

These parameters can be directly extracted from the timestamps of 
events in the event-trace. This form of event representation is 
easier to handle throughout the rest of processing steps.  

Transformation from event-trace to execution graph is easy and 
involves ordering of events with the same thread indices to form 
the individual threads; ordering of threads and finally finding the 
fork and join events by looking at the ending events of ordered 
threads.  

4. INTERACTION IDENTIFICATION 
This section illustrates how the interactions between the entries of 
tasks can be identified from their corresponding execution graph.  
Interactions are higher abstractions level of events, to which 
events are mapped by “patterns”.  There might be varieties of 
patterns that correspond to a particular interaction type.  This 
section starts by describing the possible patterns corresponding to 

each interaction type and continues to explain the mechanism 
used to identify them.  

4.1 Interaction Patterns 
Interactions between tasks are modeled by patterns of events and 
their interrelationships. A pattern can be constructed by one or 
several threads. For modeling purpose, it is assumed that a pattern 
starts with one thread but for any of the following situations it 
spawns a new thread: 

1. A task doesn’t block when it request a service from 
another task 

2. A responding task performs a second phase after it 
replies to the requesting task 

Figure 2 and Figure 3 depict the first situation. Figure 7 
demonstrates the second situation where the server generates a 
new thread to respond to the client when it needs a second phase 
operation. 

 

 

 

 

 

The various interaction patterns identified in a distributed 
application, represented by their corresponding operation graphs, 
are listed in Table 1.  

Table 1.  Interaction patterns 

1.  Simple 
RPC 

 

2.  RPC with 
second phase 

 

3.  Async 

RPC 

 

4.  Multi tier 
RPC  

 

5.  Forward 

 

6.  Async 

 

 
Figure 6: Loops of RPC interactions 

 
Figure 5: Event types in a RPC interaction 

Figure 7: Generation of a thread to respond to the 
client when the server performs a second phase 
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Case 1 in this table, the simple RPC, shows a pattern in which the 
first task blocks and the server doesn’t do a second phase, so all 
the events are executed in the same thread.  

In the Case 2, the RPC interaction contains two threads as the 
server performs a second phase. 

In the Case 3 both of the conditions hold, that is the client doesn’t 
block and the server performs a second phase; therefore this 
pattern of interaction is formed by three threads.   

Case 4 shows that the phases of one and two have nested 
interactions with the server tasks in the lower layers.  The types of 
these interactions, which are not displayed, are identified based on 
which pattern of the Table 1 they have followed.  Since the client 
and the server have blocked, their requests are both modeled by 
one thread. The server uses the same thread it was acknowledged 
by the third-tier server to make a second phase nested service 
request. This thread spawns a new one to send acknowledge to the 
client.  

Case 5 shows the simplest form of a Forward interaction. With the 
same principals it uses a single thread. A Forward interaction can 
have all the same variations of patterns of an RPC interaction that 
were illustrated through cases 1 to 4.  

Case 6 shows a simple Asynchronous interaction, which 
obviously is performed by a spawned thread. 

4.2 Events Abstraction 
The method that is used to identify an interaction pattern is to 
transform the sequence of events in the execution graph to a 
higher level of abstraction to make the process of interaction 
identification easier.  The sequences of events in the execution 
graph are decomposed to different types of chains of events that 
are named here as “transition”, “connector” and “segment”, as 
shown in Figure 8.  A transition represents a directed arc between 
events that belong to two different tasks in the execution graph.  A 
connector represents a directed chain of consecutive events that 
have been executed within a single entry of a task (A connector 
bridges the gap between two consecutive transitions in an 
execution graph).  The overlapping event between a connector and 
a transition is shared by each of them.  A segment is a directed arc 
that consists of a pair of consecutive transition and connector, 
starting with the segment.  Segments are used to identify the task 
interactions and connectors and are used to identify the phase of 
an interaction throughout the interaction pattern matching.  

 

4.2.1 Anti-parallel segments 
Two segments are anti-parallel when both of their interacting 
tasks (and entries) are identical but the directions of their 
interactions are different. Figure 9  shows two anti-parallel 
segments 

 

 

 

 

 

 

 

4.2.2 Matched segments 
Two anti-parallel segments are matched when either of the 
following happens: 

1. They have a shared event.  This event is located at the 
end of one segment and beginning the other one.  This 
case happens when the requested task is a pure server, 
i.e. it doesn’t have a nested interaction with a lower 
layer task. 

2. The ending event of one segment and the beginning 
event of the other one are not identical but are attached 
by a connector. 

These are named as “type-one” and “type-two” matched anti-
parallel segments respectively throughout the rest of this paper. 
For example Figure 10 shows a pair of type-two matched 
segments which corresponds to the interaction of case 4 of Table 
1. 

 

 

 

 

 

4.2.3 Double-segment 
A double-segment is an extended segment which consists of two 
connected segments, as shown in Figure 11.The segments share 
an event which is the head event of one and end event of the other 
or vice versa, but the two segments are not matched. A double-
segment can be considered like a new type of segment whose 
head event is that of the first segment and whose end event is that 
of the second segment. By this in mine a double-segment can 
match up against a single segment just like the way two segments 
do.  

 

 

 

 

 

 

 

 

4.2.4 Multi-segments 
A multi-segment is a further and the same way extended of a 
double-segment, or another multi-segment, with a single segment, 
as shown in Figure 12.  

 

 
Figure 8: Abstracting event sequences in an operation graph 

 
Figure 10: Two type-two matched segments 

 
Figure 9: Anti-parallel segments 

 
Figure 11: Formation of a double-segment
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4.3 Identification of Simple Forms of 
Interactions 
By using the segments and multi-segments identified, various 
interaction types can easily be identified. This section discusses 
simple forms of these interactions in the sense that they don’t 
have a nested interaction. 

4.3.1 Synchronous interaction 
Two matched anti-parallel segments can identify a Synchronous 
interaction between their corresponding two tasks, as shown in 
Figure 13. In a Synchronous interaction, an event from one task 
requests a service from that of another. The initiating task blocks 
until it receives a response. This is usually found in remote 
procedure calls. 

 

 

 

 

 

 

4.3.2 Forward interaction 
Figure 14 shows that when a multi-segment is matched against a 
single segment, a forward interaction is identified. 

 

 

 

 

 

 

 

 

4.3.3 Asynchronous interaction 
When all the synchronous and Forward interactions are identified, 
the remaining segments that have not participated in any of the 
Synchronous or Forward interactions specify Asynchronous 
interactions.   

4.4 Identification Complex Forms of 
Interactions  
Simple forms of interactions consist of interactions of type-one 
which occur at lowest two layers, i.e. the pure server layer and the 

one immediately above it.  Interactions of type-two, in which the 
serving task performs nested interaction, are first converted to 
interaction of type-one and then identified by the methods of the 
previous section. This may prevent any uncertainty in terms of 
matching two wrong segments in complex unanticipated behavior 
of a system.   

4.4.1 Type-two to type-one interactions conversion 
A nested interaction places a gap between the two segments of its 
corresponding type-two interaction which should be removed to 
convert the type-two interaction to that of type-one. This is done 
by extending the connector of the first segment with a pseudo 
connector, which is a replacement for its identified (type-one) 
nested interaction at the lower layer, as shown in Figure 15.   

 

 

 

 

 

 

Obviously the identification system must first identify the nested 
interactions and it starts from the lowest layer. The process of 
replacing a nested interaction with a pseudo connector and using it 
to extend its succeeding connector will be referred to as a “gap-
filling” process throughout the rest of this paper. Now it is time to 
illustrate the whole interaction identification process in the 
following subsection. 

4.4.2 Interactions identification algorithm  
The main steps involved in identification of interactions are 
summarized as follows: 

1. Transformation of execution graph to transitions, 
connectors, segments and multi-segments 

2. Identification of matched anti-parallel segment pairs 

3. Identification of matched pairs of multi-segments and 
single segments 

4. Forming new connectors which are constructed by 
bridging over identified interaction 

5. Extending the available connectors by the bridging 
connectors 

6. Looping to step 3 until no new interactions identified 

7. Remaining segments form asynchronous interactions 

8. Determining the phase in which an interaction took 
place 

The first iteration of these steps identifies the interactions between 
the entries of the tasks in the lowest two layers, i.e. the pure server 
layer and the one immediately above it.  The gap-filling process 
will remove all the interactions at lowest layer and qualify the 
layer above with having only type-one interactions. Other 
iterations to step 3 of the above algorithm will further remove the 
layers, one per iteration, until it reaches to the top two layers 
wherein all interactions are identified. Therefore, the number of 
iterations required to identify all the interactions will be “n-1”, 
where “n” is the number of layers.   

 
Figure 12: Formation of a multi-segment 

 
Figure 15: Bridging over an iteration and connector extension

 
Figure 13: An RPC interaction with two matched anti-

parallel segments 

 
Figure 14: A matched multi-segment and segment to form a 

forward interaction 
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4.5 Phase Two Nested Interaction 
Determination 
Figure 16 shows the Interaction A which has a second phase 
nested Interaction B. The specifications of the relationship 
between these two interactions are listed below: 

 The Connector C connects Interaction A to that of B 

 First event of Connector C is shared with first event of 
the second segment of Interaction A 

 Second event of connector C is shared with the first 
event of first segment of Interaction B 

Therefore the phase two nested interaction determination process 
consists of examining the connectivity of one interaction to all the 
other identified interactions through one connector, in the way 
described above. 

 

 

 

 

 

 

 

4.6 Merging of the Interactions 
Many of the interaction identified from the same execution graph 
might be analogous in the following sense: 

1. They have both the same source and the same 
destination tasks 

2. Their entries both at the source and the destination ends 
are the same 

3. Their interactions are of the same type 

4. They have happened at the same phase of other 
analogous interactions 

The analogous interactions are classified into what is termed as an 
“interaction-class”. An entry request of an LQN model is 
determined by finding its corresponding interaction-class, 
resource demand and host demand. 

4.7 Workload of a Task 
An interaction-class specifies a request for service from a specific 
entry of one specific task, termed as entry-task pair, to that of 
another.  

4.7.1 Partial resource demand 
When all the interactions mapped to a particular interaction-class 
are quantified, it specifies a partial resource demand.  

4.7.2 Total resource demand 
Summation of all partial resource demands of all interaction-
classes with the same target task-entry pair specifies the total 
resource demand of that target.  

4.7.3 Resource demand 
The resource demand of the entry-task pair “A” from the entry-
task “B” is the ratio of the partial resource demand of entry-task 

“A” to entry-task “B” over the total resource demand of entry-task 
“B”.  

4.7.4 Host demand 
The host demand of an entry is determined by measuring the total 
CPU time consumed by an entry operation. Measurement of this 
time is not the early target of this work and it is provided through 
the resource database by estimation.  

5. INSTRUMENTATION 
Instrumentation simply means splicing probes or analysis code 
consisting of e.g. logging instruction or print statements at 
particular locations in the source code. There are various 
mechanisms for adding instrumentation to a program such as 
using: compiler, libraries, direct source code and binary 
instrumentation. The basic requirement for an instrumentation 
infrastructure is to have zero probe effect when disabled and must 
be absolutely safe when enabled. There must be no way to 
accidentally induce system failure through system misuse.  

To create an executable, instrumentation probes of this work are 
added to a simulation program as has been explained in the 
following section. Adding the probes to a real system and dealing 
with the corresponding practical details is an ongoing project and 
is not the main emphasis of this paper. In the following the pseudo 
code of the probes required to get the executable of a software 
system to generate the suitable event traces for identification of 
the interaction based on the methodologies illustrated is provided.  

Regardless of the interaction types, the following basic operations 
will be performed to record and update the state of an event for 
instrumentation: 

 The event index is incremented 

 The event’s timestamp is recorded  

 Indices of event, thread and operation are passed to the 
following event 

For specific events types, the above operation will be 
complemented with other operation specific to the event type.  
These operations per event types are illustrated below.  

5.1 Fork Events 
In addition to the above steps, the fork event performs the 
following: 

 The fork event is responsible for generating the new 
thread index for the thread that was spawned.   

 The event type label of this event is “Fo” 

 The new thread index will update the next thread 
element of timestamp in the fork event 

5.2 Begin Event 
A “Begin” event starts when the sending event type is “Fork”.  
The following extra steps are performed for a begin event: 

 The current thread index is changed to the next thread 
index coming from a fork event. 

 The event type label of this event is “Be” 

 The event index is set to 1 

 
Figure 16: Second phase interaction identification 
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5.3 External Event  
An external event initiates an operation; therefore this is where the 
operation index is incremented.  The following steps are 
performed for an external event: 

 The operation index is set to “1” 

 The thread event index is set to “1” 

 The event index is set to “1” 

6. CASE STUDY 
This case study demonstrates automatic LQN model building by 
using an application called Building Security System (BSS). This 
application has been previously used in [18] and [19] to create its 
LQN performance model based on different methodologies.  This 
work has adopted the same application to demonstrate the method 
of automatic LQN model building from event-traces generated 
from an executable.  The executable of the BSS application is 
created by simulating it with PARASOL [20] which is a 
simulation environment by C and C++ libraries for distributed 
parallel applications, explained in the following paragraph. The 
resulting simulation is instrumented based on the rules of the 
previous section and its executable is used to generate the event-
traces for the illustrated post-mortem analysis. It will be shown 
that this work is able to construct the same LQN models 
developed in [18] and [19] by using the new explained 
methodologies. Figure 17 shows the activities performed in this 
case study. 

 

 

 

 

The PARASOL software interface looks like a primitive 
distributed operating system, containing a number of functions to 
support task management including dynamic task 
creation/destruction and inter-task communication. It allows true 
concurrency to be simulated in a multi-processor system, with 
scheduled concurrent tasks. The simulated execution environment 
on which PARASOL tasks execute is constructed from nodes and 
one-way communication links. A PARASOL node may have one 
or several processors. Each node has a single ready-to-run queue 
and is managed by either a built-in scheduler or by a user-defined 
scheduler. Network connections are made through point-to-point 
one-way links. 

The BSS is intended to control access and to monitor activities in 
a building like a hotel or a university laboratory.  To assess the 
performance and improve the design, two main scenarios of this 
application are modeled.  The first scenario, Access Control, is 
used for the control of door locks by access cards.   In this 
scenario, a card is inserted into a door-side reader where its 
contents are read and transmitted to a server.  The server checks 
the access rights associated with the card in a database of access 
rights, and then either triggers the lock to open the door, or denies 
access.  The second scenario, Acquire/Store Video, is used for 
video surveillance. In this scenario, video frames are captured 
periodically from a number of cameras located around the 
building, and stored in the database.  The referenced papers 
perform the assessment of the performance, improvement of 
design and planning of capacity for the number of cameras for 

future scaling by looking at various alternatives such as system 
configuration. The sequence diagrams of the two scenarios 
described earlier are shown in Figure 18 and Figure 19.  

The video surveillance scenario has a 5-tier architecture.  The 
tasks of Buffer, StoreProce, AquProce, DB and Disk are multi-
threaded with each having 15, 3, 12, 10 and 2 threads 
respectively.  Tasks DB and Disk are shared by both scenarios.  
All of the interactions except one are of types RPC or Forward. 

The access control scenario has a 4-tier architecture.  With the 
exception of the user task, all of the tasks are multi-threaded.  
Tasks SCR, AccCtrl, DLA, DB and Disk each have 50, 60, 50, 10 
and 2 threads respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Making an Executable 
A PARASOL [20] simulation is used to create the event-traces 
required for construction of the execution graph.  PARASOL is an 
execution-based tool, which provides a flexible software 

 
Figure 19: Sequence diagram of access control card scenario 

 
Figure 18: Sequence diagram of video surveillance scenario 

performance model Executable performance model

 
Figure 17: Case study 
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prototyping environment for distributed and/or parallel computer 
systems.  

PARASOL is built up of multi-processor nodes interconnected 
with communication devices of various types and capacities. The 
concurrent software is created explicitly with user-defined tasks 
written in C or C++. Operationally, a PARASOL-based simulator 
runs as a single task in a POSIX compliant host environment.  

The workload of this case study is created by the “User” and 
“vidCtrol” tasks, which initiate interactions by sending their 
service requests to the lower layer tasks of SCR and AcqProc, 
respectively. The arrival rate is defined by an exponential random 
delay time between each request in the simulator.  

After prototyping the application, instrumentation is added to 
enable the resulting executable to generate the desired event-
traces.  The details regarding creation of the simulation of the 
application will be provided in an extension paper.   

6.2 LQN Model 
The state of knowledge before tracing is the resources service 
demands associated with the entries, the task multi-threading 
level, CPU multiplicity and task to CPUs allocation map.  The 
user provides this information through the resource database.  The 
system identifies the tasks, entries, the interactions between them 
and the number of times they have been repeated in a specified 
period.  It also identifies if an interaction is nested in another one 
and whether it is in “first phase” or “second phase. After merging 
each interaction into various interaction-classes identified, the 
system determines the visit ratios and resource demand associated 
with each request.  After taking care of a few other details such as 
counting the total number of tasks, entries and CPUs, the process 
of building the LQN model is finished.  The visual representation 
of the LQN performance evaluation model of this case study is 
shown in Figure 20, which is very similar to the model presented 
in referenced paper [20], from which the executable of this case 
study was created. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 20: The resulting LQN model of the BSS case study 
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7. CONCLUSION AND RESULTS 
This research introduces a framework consisting of specifications, 
methods and tools to capture the workload and interaction 
architecture between the nodes of a parallel distributed software 
application to generate its LQN performance evaluation model in 
an automatic fashion. To capture interaction architecture a trace-
based methods is utilized. Timestamps, with a new structural 
format, are attached to the events by an instrumented software 
program which currently is the simulation of a parallel 
distribution application. A formal post-mortem analysis approach 
is used which takes the event-traces as input and produces the 
LQN performance evaluation model. This approach of 
performance model generation is appropriate for systems without 
a time reference, such as distributed software systems, since the 
new timestamp format is independent of physical time. It is also 
appropriate for parallel or concurrent processing systems since the 
interaction identification and workload detection methods used in 
this work allow for internal concurrency in individual nodes. The 
contributions of this paper are: 

1. Introduction of a new lightweight format for logical 
time 

2. Providing pseudo code of the instrumentation probes to 
be added to the source code of the parallel distributed 
application based on the new timestamp format 

3. Providing a low overhead communication for 
interactions in a distributed application 

4. Introducing a framework of specifications, algorithms, 
methodologies and tools to identify the architectural 
structure and workload activities of a distributed 
computing system from the event-traces 

5. Automatic, end to end, creating of LQN performance 
evaluation model from the executable of a computing 
system 

6. Demonstrating the automatic performance evaluation 
model creation method using PARASOL as a 
distributed parallel software simulator 

The definition of the probes in the instrumentation system and the 
interaction identification method are designed in a way to capture 
the sequence of consecutive interactions in a loop interaction 
between two tasks, which is a common behavior in distributed 
systems.  The system has demonstrated a strong ability to 
correctly identify the various patterns which map to the 
Synchronous and Forward interactions, which are the crucial part 
in any performance model making process for distributed systems.  
Application of the method on different event-traces extracted from 
same prototype has always led to the exact same identified 
distributed software architecture, which is an indication of 
robustness of the method.  This is compared to the case of proper 
time method [3,6] in which the accuracy and reliability of the end 
result is dependent to the correct determination of the service 
period of a task.   

The hosts service demands, tasks to CPUs mapping and the 
anticipated multiplicity of the CPUs and threads in a task are the 
only manually provided information to complete the LQN 
performance evaluation model.  Automatic determination of these 
parameters is an ongoing research and will be addressed in a 
separate work, which analyzes the application specifications and 
information of the involved components for their determination. 

Application of this method allows for automatic construction of 
the LQN evaluation performance model for a software system and 
would prevent human interventions error, which is likely to occur 
in large systems.  This method is suited to be applied in a software 
performance engineering (SPE) fashion by which the target 
systems performance is automatically monitored as the system 
evolves.   
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