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ABSTRACT 
Performance models are typically written by hand for a new 
model or assembled piece-meal from the prior simulation code 
of an old model. In either case, many man-months of work may 
be required to write the new model and validate design details 
against a prior or current design. In reality, the majority of 
information about the performance of the design already exists 
in the design structure of either the old hardware model or the 
new model or both. 

To harvest this information and eliminate the significant 
duplicate coding and validation efforts, we propose that a 
performance model be automatically synthesized from a prior or 
current hardware design using a bottom-up, design-oriented 
approach. We demarcate the performance-critical boundaries of 
the design and perform backward-trace cone analysis to identify 
logic to include in the performance model. We then abstract 
specific components for design changes and expend modeling 
effort only on the few functions relevant to a particular design 
study. Engineering effort then becomes focused on workload 
selection and quality, defining and projecting new designs, and 
assessing design tradeoffs and sensitivities – the small set of 
tasks with the highest potential to improve design performance.  

We present a case-study that shows that even the simplest 
proposed transformations on a high-performance IBM L2 cache 
design result in a simulation speedup of 3.9, with evidence that 
an order of magnitude speedup can be obtained using a few 
additional modeling abstractions. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modeling techniques 

General Terms 
Performance, Design, Verification, Hardware Acceleration 

Keywords 
Benchmarking, Performance Modeling, Hardware Description 
Languages, Hardware Acceleration 

1. INTRODUCTION 
Performance models that are developed to assess computer 

performance in the early stages of design are traditionally 
written by hand or assembled piece-meal from prior code long 
before actual hardware is available. Development is generally 
top-down, starting with analysis of overall instruction flow and 
finishing with detailed microarchitectural tradeoffs. In a 
development environment, a new hardware design is usually 
based on an old prior design, and, likewise, the associated old 
performance model is enlisted for the new modeling effort, but 
only after the old model has been validated against the old 
hardware using a functional model compiled from a hardware 
description language (HDL) or by executing on a physical 
machine if it is available [4].  

In general, validation with hardware alone is difficult due 
to limited performance monitor events, the coarse granularity of 
the logical functions expressed by events, or imprecise counts, 
so usually validation against an HDL functional simulation 
model is employed. Experience shows that instruction latencies 
and throughput through serial logic components of the system 
must be correctly understood and accurately modeled, which 
calls for direct compare with internal random logic macro 
(RLM) and logical unit signals, the details of which may only be 
available in a HDL functional model. 

Validation of a hand-written performance model using an 
HDL model or hardware is a laborious and error prone process 
[5, 7, 4]. On a large, custom microprocessor design, many man-
months may be expended validating elements of the 
performance model against the hardware. Hand-coded 
microbenchmarks [5] or synthetic codes [14] may be used to 
quickly validate specific instruction sequences. Automatic 
benchmark synthesis improves the process by reducing the 
number of instructions to be executed while assuring the 
representativeness of the codes [3, 4]. Hardware acceleration 
systems built from FPGA arrays or custom hardware may be 
used to speedup processor simulations [4]. Despite these 
techniques, HDL model simulation speeds may be orders of 
magnitude slower than native hardware execution [4]. 

In this paper, we show that additional simulation speedups 
may be obtained by reducing the size and complexity of the 
HDL functional model itself. The implication is that a useful 
performance model may be created by transforming a functional 
HDL model into a reduced model that executes more efficiently. 
This process of functional model reduction is a form of 
performance model synthesis in which the design logic and 
structures that are not performance-critical are identified and 
pruned from the synthetic performance model. This bottom-up, 
design-oriented performance model synthesis starts with the 
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low-level logic blocks of a fully-functional design and ends with 
a smaller control network that is capable of obtaining 
representative performance running real workloads. Also 
available are techniques specific for modeling data-dependent 
design performance and design space exploration. 

Significant benefits accrue from such a famework. Since 
HDL models are frequently required for functional verification 
as the design development proceeds, every verified HDL model 
is potentially a more accurate performance model, in lockstep 
with the design itself, and simulation of the synthesized model – 
with only a few limitations – may proceed on the same 
simulation platforms as the design verification, consolidating 
verification and simulation resources. Automatic model 
synthesis relaxes the need for hand-coded performance models 
which, in turn, eliminates or reduces laborious and expensive 
model validations against hardware. Engineering effort then 
becomes focused on workload selection and quality, defining 
and projecting new designs, and assessing design tradeoffs and 
sensitivities – the small set of tasks with the highest potential to 
improve design performance. 

Essentially, we suggest that the HDL hardware model and 
the performance model, including model compilation, analysis 
and simulation, are two sides of the same coin. To our 
knowledge, this is the first case study to combine a functional 
verification environment with performance model synthesis. 

The rest of this paper is organized as follows. Section 2 
describes the performance model synthesis approach. Section 3 
presents our case study, experimental results and current status. 
Section 4 presents related work, and the final sections present 
conclusions, future work and references. 

2. PERFORMANCE MODEL SYNTHESIS 
 To be automatic and current, a performance model must be 

synthesized from the most recent HDL model, the same model 
required for functional verification of the design. 

Figure 1 shows a typical performance model development 
effort for a real-world billion-transistor microprocessor. The 
writing of the initial performance model (version “0”) begins 
before the first HDL model (also version “0”) has been 

compiled from the design and verified. Once both performance 
and HDL models are in a relatively stable state, 
microbenchmarks are executed on performance model 0 and on 
HDL model 0, and any performance differences are resolved. 
Meanwhile, HDL models 1 through 3 have been generated by 
the design team as they check in code to fix bugs and add 
function, prompting more validations. There is a large lag 
between the start of the validation process and the perception 
that the performance model is accurate and can project design 
tradeoffs correctly. If the lag is too long, the final design 
changes may go into the design before the performance model is 
ready to assess them. 

Eventually, the performance team codes the model for the 
next pass design. When the performance model and HDL design 
again reach stable states, another validation effort is undertaken, 
again paralleling several iterations of new designs. Eventually, 
code changes stabilize and validations become easier, but each 
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effort is still a lengthy process. The design-oriented approach 
described below merges these efforts such that each verified 
HDL model may be automatically processed into an equivalent 
performance model. Note that design verification is required 
before manufacture, and therefore a performance model 
generated from a verified model is practically already validated. 

2.1 Model Synthesis Overview 
Figure 2 shows an overview of performance model 

synthesis. The verification model in the upper left of Figure 2 is 
a complex jumble of logic blocks and associated RLM 
interfaces that have been compiled from an HDL design and are 
ready to be simulated in a verification environment [10], labeled 
“RTX”. We then verify that real workloads execute on the 
design in the verification framework. 

A design can be perceived from its several dimensions of 
functionality, but the two most significant aspects of a design 
are its control and data paths. The throughput of a modern 
machine is generally determined by the control paths 
independent of the data being used. In addition to the data path, 
many other structures such as those related to reliability, 
availability and serviceability (RAS), test and bring up, debug 
switches, distributed clock buffers, and error checking and 
handling have no impact on machine performance and can be 
removed for the purposes of building the synthetic performance 
model. In addition, depending on the type of performance model 
desired, such as a basic model or specific unit test model, we 
may remove large chunks of logic, eg. whole units, accelerator 
functions, I/O units, non-cacheable instruction units, coherency 
and synchronization operation logic, bus and memory prediction 
structures, etc. In the case of a memory-subsystem only model, 
entire cores of a chip multiprocessor may be pruned out. 

We manually maintain a file of Keep/Cut nets for the 
design, or, equivalently, annotate the HDL nets as necessary, so 
as to define the set of nodes that will be preserved in or pruned 
from the design. To enable high-level abstraction and design 
studies (discussed below), we preserve the RLM and unit 
boundary names in the final compiled HDL model, unless the 
entire RLM can be removed in the synthesis process. As shown 
in Figure 2, nets are also annotated for use by RTX control input 
drivers, statistics collection, and output checker verification.  

Figure 3 shows a simple example of the synthesis process. 
In this case the Keep/Cut file or net annotations specify cuts at 

points A and O2, and a keep for output O1. The process then 
starts at the kept outputs and carries out a backwards cone trace 
to inputs or cut nodes, marking as kept each node encountered. 
When the cone analysis is finished, all unmarked nodes are 
removed from the model.  

Figure 4 shows a flowchart of the overall synthesis process. 
Analogously to how design logic is removed in the cone 
analysis, much of the RTX simulation environment may also be 
removed. The “Lite-RTX” no longer contains drivers and 
checkers for the datapath, RAS, error handlers, bring up, etc., 
and therefore is much smaller and faster.  

If the synthesized performance model executes too slowly, 
the Keep/Cut file may be augmented to further reduce the 
performance model and RTX environment and thereby speed up 
simulation run time more. Units or specialized functions may be 
targeted, or nest or even unit performance models synthesized. 
When the Lite-RTX monitors a chip model, it may do very little 
other than check inputs and drive control grants for a memory 
behavioral or check for the proper control signals on unit 
interfaces as execution-driven workload instructions exercise 
the model control paths. For a unit or nest model, it may provide 
input driver stimulus from a performance verification pattern 
(PVP) file or random pattern generator and check control signals 
on outputs. All of these functions would exist already and 
separately for the control interfaces in a properly-partitioned 
verification environment [10]. In any case, the performance of 
the synthesized performance model – in the form of the cycle-
accurate statistics monitored by the RTX - is equivalent to the 
actual design performance at the desired level of model size and 
complexity, without the need for additional laborious 
simulations and validations. 

2.2 Model Synthesis for Throughput Studies 
Figure 5 shows an example of a trace-driven synthesized 

performance model for a core-nest design. Since the data paths 
have been removed from the model by the synthesis process, the 
instruction trace consisting of addresses without any data feeds 
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naturally into the control functions of a throughput model 
consisting of a reduced core and memory subsystem. The Lite-
RTX supports a DIMM memory behavioral and tracks system 
performance but otherwise is required to do very little, which 
improves simulation time. The Trace Interface Module formats 
the trace into model-readable addresses and opcodes, and may 
be written in high-level C-code or in HDL itself for compilation 
and linkage into the performance model. The IBM HDL 
simulation model permits linkage of VHDL compiled code with 
high-level C-compiled code as long as the interface signal 
definitions match and clocking semantics are understood [10]. 

2.3 Extensions for Data-Dependent Models 
In modern processor designs, there are several cases in 

which system performance is dependent on the particular data 
set being processed. Examples include value prediction, bus 
power reduction techniques, barriers, locking and 
synchronization of multiprocessor threads. These structures can 
still be studied using the reduced HDL model.  

Figure 6 gives an example of extending the model to 
support data-dependent performance simulation. A fast, register 
transfer level (RTL) simulation of the application binary is 
executed in parallel with the synthetic performance model. The 
RTL simulator either interfaces to the trace formatter or formats 
the instructions for the model itself, and it also supplies the 
required data for instructions that are data-dependent. In the 
PowerPC ISA, for example, the core HDL that compares a 
cached data value with a reservation register value for a STCX 
instruction would be provided with the data associated with the 
instruction address, so that the correct locking behavior would 
ensue. In the case of value prediction, a datum retrieved from 
memory could be compared to a value previously predicted for 
an execution unit calculation, which could lead to instruction 
rollbacks and predictor updates. In the throughput case, data is 
not needed to project performance, but for accurate multi-
threaded simulation, synchronization and locking may come to 
dominate performance [8]. 

2.4 Design Space Exploration 
With a framework as described above, an accurate 

performance model can be synthesized from a functional HDL 
model. But in addition to projecting the performance of a 
design, performance models are required to carry out design 
space explorations. Figure 7 depicts a reduced HDL model with 
one RLM abstracted from low-level HDL to high-level C-code, 
with a final transformation of the C-code to new design 
functionality for a design study. As alluded to earlier, it is a 
good idea to generously annotate the boundaries of units or 
logic function in the HLD in order to enable design studies. The 
performance engineer writes a high-level C-code replacement 
for a unit or function, compiles and links it with the rest of the 
compiled C-HDL complex, and quantifies its performance by 
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simulating workloads on it. He then replaces the high-level 
function with the new design and compares the performance. 

2.5 Model Validation Elimination 
As described above, performance model synthesis virtually 

eliminates the validation effort. In the traditional methodology, 
the performance engineer must validate the old performance 
model against the old hardware, update the model for the new 
design, project performance, and, when available many months 
later, hand-validate the new hardware against the new model. In 
the new methodology, the performance model is synthesized 
such that either old or new model is automatically valid versus 
the target design. Synthesis based on an old design and model 
can be carried out in order to confirm a correct synthesis 
methodology prior to synthesizing the new model. 

For design studies, the engineer abstracts and changes just 
the few units or functions necessary for a particular design 
study. RLM boundaries rarely change, so that as new designs 
are generated, new performance models can be synthesized and 
similarly modified by linking in previously-written high-level 
code. Whereas in the past the vast majority of effort and 
resources went to hand-code and/or validate a base performance 
model for an old or new design, now the performance engineer 
puts effort only into workload selection and quality, defining 
and projecting new designs, and assessing tradeoffs. This results 
in a more productive performance engineer focused on the tasks 
with the most impact on design improvement. 

3. MODEL SYNTHESIS CASE STUDY 
The performance model synthesis process was applied to 

the L2 unit of the POWER6 microprocessor. The POWER6 L2 
is a 4 MB, 8-way set-associative, store-through, unified data and 
instruction cache consuming a significant portion of the 341mm2 
of the POWER6 chip die [9]. It contains 32 read-claim 
machines, 8 castout machines, 8 bus snoop machines and runs at 
half the frequency of the high-performance 5GHz+ frequency 
core [9]. The L2 possesses well over one hundred unique RLMs 

and custom logic blocks that comprise the L2 directory and 
cache control, L3 castout control, bus snoop logic, error 
correction and detection logic, distributed clock buffers, 
datapath control, and coherency management and control. 

3.1 Experimental Setup 
The L2 VHDL compilation into an IBM HDL simulation 

model for design verification replaces the directory SRAM cells 
with high-level RTX behaviorals, which were retained for 
performance model synthesis. The chip RTX was already well 
partitioned into separate drivers and checkers for control and 
datapath logic, which simplified development of the L2 Lite-
RTX as well as for mapping the unit and cache SRAM I/Os and 
structures to nodes in the Keep/Cut file for model reduction. 
Other nets internal to the L2 VHDL on datapath boundaries 
were identified, annotated in the VHDL before compilation if 
necessary, and placed in the Cut file. We focused on 
synthesizing a model for throughput studies, so structures and 
signals in the retained RLMs that rely on particular values for 
reservation logic or coherency logic were tied to non-controlling 
values using explicit assertions on annotated nodes.  

The resulting Keep/Cut file was used for cone analysis and 
pruning of the compiled L2 design. Of the unique RLM classes 
in the design, about half operated only on the datapath and were 
completely removed in the synthesis process. Well over two-
thirds of the total nodes in the original design were removed. 

Figure 8 shows the resulting synthetic L2 performance 
model simulation environment. The Lite-RTX can drive random 
loads and store addresses into the control paths and check for 
the proper addresses and store ordering on the directory, cache, 
and bus interfaces, and it can drive the resulting grants and 
acknowledgements back into the logic. As an alternative, a unit 
PVP interface can drive specific sequences of strided addresses 
and bursty traffic onto the interfaces, with the Lite-RTX 
continuing to check ordering and drive expected return flow.  

3.2 Experimental Results and Status 
Experiments on random and PVP workloads show that the 

synthesized performance model achieves equivalent 
performance, including throughput, while experiencing a 3.9x 
speedup in simulation time versus the original full L2 hardware 
model. We hypothesize that an additional 2x speedup or more 
may be obtained by abstracting the latch-clocking framework 
and simulating latches logically, the so-called single-phase 
clock simulation that is supported in the IBM HDL simulation 
environment. For our experiments, we ran the simulation 
environment without this feature, simulating both up and down 
phases of clocks at the inputs of latches to accurately simulate 
various latch design styles, such as L1-only or L2-only cycle-
stealing designs. 

In addition, the current environment simulates both up and 
down edges of clocks and signals in time to correctly handle the 
special case of pulse generators. An additional speedup may be 
obtained by removing clock generators and simulating logical 
single-clock the design, also supported in the IBM HDL 
simulation environment. 

Overall, current results indicate that an order of magnitude 
speedup over the base HDL model simulation is quite possible, 
even without high-level abstraction of logic function. With high-
level abstraction as shown in Figure 7 and described in Section 
2, simulation runtimes would improve further by consolidating 
RLMs, simplifying control functions, and removing duplication 
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of function in different parts of the design. 

4. RELATED WORK 
There has been much work on synthesizing hardware 

designs from high-level descriptions or co-design based on 
performance descriptions (eg. [11]) but not on the reverse 
process of synthesizing a performance model from a hardware 
design. However, the need for more automatic performance 
model synthesis from a design, especially for large system-on-
chip designs, is well-established [2].  Darringer, et al. [2] 
recommend a top-down approach in which the system design is 
mapped into a performance model either at a low-level for 
accuracy or at a high-level in C++ for simulation speed.  

Performance model functions can be mapped to design 
blocks to ease model validation. Pimentel et al. [13] calibrate 
the inter-component latencies in system-level simulation models 
based on static latency tables and dynamically perturb the 
system latencies to better match expected latencies. 

Software and compiler studies can benefit from inferring 
processor performance at a high-level. Cavazos et al. [6] predict 
machine performance for compiler development using execution 
results of a small set of benchmarks operated on by some 
compiler transformations. Similarly, Augonnet et al. [1] 
calibrate high-level models used for estimating performance of 
code-scheduling algorithms in multi-processor pipelines. At a 
higher level, Nurmi et al. [12] schedule workflow tasks in a grid 
based on component simulation results on specific machines. 
These techniques are suitable for fast performance estimation at 
a static design point but are not appropriate for detailed 
processor design studies.  

5. CONCLUSIONS AND FUTURE WORK 
Most of the information necessary for accurate 

performance simulation and design studies already exists in old 
or new hardware models compiled for the purposes of functional 
verification. We propose that a performance model be 
automatically synthesized from a prior or current hardware 
design by demarcating the performance-critical boundaries of 
the design and performing cone analysis to identify the logic to 
include in the performance model, a bottom-up, design-oriented 
approach. We then abstract components for design changes and 
expend modeling effort on only the few functions relevant to a 
particular design study. Engineering effort focuses on workload 
selection and quality, defining and projecting new designs, and 
assessing design tradeoffs and sensitivities – the small set of 
tasks with the highest potential to improve design performance.  

We provide a case-study showing that even the simplest 
proposed transformations on a high-performance IBM L2 cache 
design result in a simulation speedup of 3.9, with evidence that 
an order of magnitude speedup can be obtained using a few 
additional logical abstractions. Future work will focus on 
extending the methodology to nest and system models, and 
incorporating a functional simulator to project data-dependent 
performance. 
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