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ABSTRACT 
Data encryption/decryption has become an essential component for 
modern information exchange. However, executing these 
cryptographic algorithms is often associated with huge overhead 
and the need to reduce this overhead arises correspondingly. In this 
paper, we select nine widely adopted cryptography algorithms and 
study their workload characteristics. Different from many previous 
works, we consider the overhead not only from the perspective of 
computation but also focusing on the memory access pattern. We 
break down the function execution time to identify the software 
bottleneck suitable for hardware acceleration. Then we categorize 
the operations needed by these algorithms. In particular, we 
introduce a concept called “Load-Store Block” (LSB) and perform 
LSB identification of various algorithms.  Our results illustrate that 
for cryptographic algorithms, the execution rate of most hotspot 
functions is more than 60%; memory access instruction ratio is 
mostly more than 60%; and LSB instructions account for more than 
30% for selected benchmarks. Based on our findings, we suggest 
future directions in designing either the hardware accelerator 
associated with microprocessor or specific microprocessor for 
cryptography applications. 

Categories and Subject Descriptors 
E.3 [Data Encryption]: Standards (e.g., DES, PGP, RSA)  

D.4.6 [Operating Systems]: Security and Protection – Security 
Kernels, Cryptographic controls.  

General Terms: Algorithms, Performance, Security 

Keywords 
Cryptographic algorithms, Load-Store Block (LSB), Overhead 

 

1. INTRODUCTION 
Security is of increasing importance in everyday life. With the 
rapid development in computer and communication technology, 
most information is stored in the form of electronic data. Without a 
good security protection scheme, confidential data can be easily 
stolen. For instance, credit card numbers may be stolen during 
online payments and/or Internet transactions. Confidential business 
information, such as intellectual property, customer rosters, 
employee information, etc., may be accessed with a fake digital 
signature. People constantly try to hack into the mainframe in 
Pentagon in searching for classified data. To solve these problems 
and protect the secrecy and integrity of data, cryptography provides 
some highly useful property: for example, even an intruder is able 
to somehow get access to some sensitive data, if the data is 
encoded, then it cannot be easily decrypted. Therefore, many 
organizations have been investing heavily on cryptography and 
information security research. As a result, many cryptography 
algorithms were released by academia institutions and the 
industrial world.   

However, there are two concerns regarding cryptography 
algorithms: performance and security. From the security 
perspective, if strictly implemented in software, this security 
program can be altered by another piece of software, such as a 
computer virus. What’s more, with the emergence of hardware-
based attacks, the software approach would not offer protection 
against those. Hackers can observe the hardware changes and guess 
the transmitted data by using appropriate tools. For example, as 
Huang [20] indicates, hackers can physically observe or interfere 
with the operation of the system by putting a device onto the 
communication path between the processor and the main memory. 
One can attach the snooping devices to various buses and get 
unencrypted sensitive data by observing the voltage or current 
changes from oscilloscopes and multi-meters. From the 
performance point of view, cryptography algorithms are extremely 
expensive in terms of execution time, especially for asymmetric 
encryption algorithms, such as ECC (Elliptic Curve Cryptography), 
Diffie-Hellman Key Exchange algorithm or other public key 
algorithms. Encryption/decryption are quite computation-intensive 
since transmitted data needs to be enciphered via many arithmetic 
operations so that cipher text will not easily be cracked; and this 
process is quite memory-intensive too if the amount of data need to 
be encrypted/decrypted is huge. Using a general-purpose processor 
for such scenario will be very time-consuming, impact system 
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performance negatively and increase the power consumption 
largely.  

The performance degradation when running the security 
application may be due to the computation or the memory access 
overhead. Many previous work focused effort on improving the 
efficiency of computation. They used software and hardware 
approaches to improve the efficiency of computation, the 
“arithmetic and logical instructions” of the cryptographic 
applications. However, memory access part is often overlooked, 
which is actually the real performance bottleneck nowadays as the 
“Memory Wall” problem is worsened. Based on our observation, 
the percentages of memory read and write instructions reaches at 
least 52% and up to 88% of the total instruction mix for 
cryptographic algorithms, as will be discussed in detail in later 
sections. This shows the intensity of data movement for encryption/ 
decryption that goes between the CPU and memory, during which 
much time has been wasted. That is our motivation to study the 
memory access behavior in order to enhance the performance of 
cryptographic algorithms. If the time of memory access can be 
reduced, not only the overall execution time will be saved but also 
the security strength will be enhanced because it will leave little 
space for hackers to detect or tamper the data transmitted off-chip. 
In this paper, we investigate the dynamic behavior of the security 
applications from the perspective of both computation and memory 
access pattern.  

One thing we want to specify is that we are not looking into the 
characteristics of these algorithms from a compiler designer’s point 
of view, trying to come out with some application-specific flag 
design for the compiler; actually we are looking at the problems 
from a computer architect point of view, hoping our analysis could 
aid the microarchitecture design to improve the performance of 
these algorithms. During the process, we employ a performance 
analyzer to observe the kernel part of the cryptographic 
benchmarks, as well as a binary instrumentation tool to observe the 
ratio of the categorized dynamic instructions in each benchmark. 
Besides, we are especially interested in the behavior of the load 
and store instructions due to the data intensive characteristic of the 
cryptographic applications. 

The contributions of this paper are mainly three-fold:  

 Firstly, we identify that many cryptographic algorithms 
are mainly consumed by the execution of “hotspot 
functions”, which is suitable for hardware acceleration;  

 Secondly, we study the instruction mix of various 
algorithms and observe that majority of the instructions 
fall into very limited categories, which provides the aid 
for the instruction set extension design;  

 Thirdly, we introduce the concept of Load-Store Block 
(LSB) and identify the LSB distribution for all 
algorithms. Our analysis suggests for algorithms with 
high LSB distribution, they provide us an opportunity to 
perform data parallel operations in a SIMD fashion.    

The remainder of the paper is organized as follows. We present 
background research on different algorithms in Section 2. Then we 
describe our experiment environment and show the methodology to 
conduct the research in Section 3. In Section 4 we present our 
simulation results. Lastly, we conclude in Section 5. 

2. BACKGROUND RESEARCH 
In this section we introduce the algorithms we are going to study in 
this work and briefly present some related work in cryptographic 
algorithm analysis. 

2.1 Algorithms 
In this study, we choose nine cryptographic algorithms: AES, 
3DES, RC5, MD5, IDEA, SHA1, Blowfish, ECC and RSA, as our 
benchmarks.  

Rijndael’s algorithm [23] was selected from 15 candidates as AES 
and became the new U.S. federal standard. Compared with other 
algorithms, it has a good balance in terms of speed, security, and 
flexibility. It can run on a wide range of processors with high 
performance and resist against known attacks then. It can be 
efficiently implemented on general purpose hardware such as 32-
bit CPUs, even as low as 8-bit microprocessors. Please note in this 
study we use the key size of 256-bit for AES. 3DES [22] applied 
the DES [1] three times to each data block. Although executing it is 
time-consuming, 3DES is widely adopted in banking information 
system and electronic payment industry. IDEA [27] is a symmetric 
key algorithm used by PGP (Pretty Good Privacy) v2.0 to transmit 
message bodies [21]. Blowfish [24] provides a good encryption 
rate. It takes only 18 cycles to encrypt one byte on a 32-bit 
processor with a memory requirement of only 5KB. RC5 [25] is 
notable for its simplicity. What’s more, the length of its secret key, 
word size, and number of rounds of computation can be 
configurable. It is used in devices with restricted memory size such 
as smart cards. 

MD5 and SHA1 are both hash algorithms, which are used to verify 
the integrity of data blocks. MD5 [26] is widely used to assure if 
the transmitted file has arrived intact and to store passwords. SHA1 
[28] is often used in firewall, VPN, and IP-security.  

ECC [29-30] and RSA [31] are public key algorithms. Public key 
cryptography is also called asymmetric key cryptography. Contrary 
to the symmetric key algorithm which uses the same key to encrypt 
and decrypt transferred data, asymmetric algorithm has two keys: 
public key and private key. The sender uses a published public key 
to encrypt the data and receiver uses the private key to decrypt the 
data. ECC is based on the algebraic structure of elliptic curves over 
finite fields. It is now popular due to the fact that it offers the same 
security level as offered by other contemporary algorithms at a 
shorter key length. RSA is suitable for encryption and digital 
signature and used in E-Commerce protocols. Although the 
execution of ECC and RSA are time-consuming, in these 
asymmetric algorithms each data can be encrypted or decrypted 
independently and the operations on these data can be performed in 
parallel. Table 1 lists the algorithms we use, the category each of 
them belongs to, and the programming language of their source 
code. The reason we choose these nine algorithms is not only due 
to their popularity but also because their program structures being 
representative of the contemporary cryptography works. Some of 
these algorithms, like 3DES, Blowfish, and RC5, use Feistel cipher 
[16], where the text is split into two halves. The first half is applied 
round function using a subkey. The output will be XORed with the 
second half. Then the two halves will be swapped. The following 
round will have the same pattern. Some other algorithms, such as 
AES, use the iterative cipher [32]. 
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Table 1. The Benchmarks 

Algorithm Category Language 

AES Symmetric Key C 

3DES Symmetric Key C 

Blowfish Symmetric Key C 

IDEA Symmetric Key C 

RC5 Symmetric Key C 

MD5 Hash C 

SHA1 Hash C 

ECC Public Key C++ 

RSA Public Key C 

 
In each round it operates on the entire data block. The program 
structures of these two ciphers are pervasive in the design of 
modern cryptographic algorithms, so we choose them in an effort 
to observe their impact on the performance of modern 
microprocessor in finding ways to optimize the hardware 
microarchitecture correspondingly. 

2.2 Related Work 
Many efforts have been made in speeding up the cryptographic 
applications using both hardware and software approaches.  

Bielecki et al. [14] and Beletskyy et al. [15] used parallel 
programming as a way to increase the performance of the 
cryptographic algorithm, targeting at a series of algorithms like 
DES, 3DES, AES, IDEA, Blowfish, RC5, LOK191, GOST, and 
RSA. Focusing on the loop structures, they performed data 
dependency analysis on loops and used loop parallelization 
technology with OpenMP. They observed that the execution time 
can be decreased significantly with the usage of symmetric 
multiprocessing (SMP). 

The research in [2] and [3] used a dedicated cryptographic 
coprocessor to alleviate the CPU from cryptographic workload. 
Although this way of implementation is several orders of 
magnitude faster than the software implementation, coprocessors 
lack the flexibility to support different parameters such as the key 
size or the mode of operations. Moreover, the silicon area will be 
increased and the system bus connecting the CPU and coprocessor 
forms a performance bottleneck.  

With the rapid development and increasing popularity of graphic 
processing unit (GPU), people tried to implement cryptographic 
applications on it due to the high-level parallelism this many-core 
structure provides. Harrison et al. [9] implemented AES 
Encryption ECB mode on GPU, taking advantage of its large 
number of simple processing units and stream processing. They 
mapped the AES algorithm onto GPU by implementing XOR using 
the Raster Operation Unit and fragment processor hardware. They 
showed that GPU can run AES with high efficiency and alleviate 
the cryptographic loads from CPU if used as a coprocessor. 

Others tried to implement the cryptographic systems on the 
reconfigurable architecture. In [12-13], AES was implemented on 
the Xilinx FPGA board. Instead of translating a high-level 
language into HDL code, they used Handel-C to design the system 
and mapped to FPGA directly. This methodology is less error-

prone and Handel-C has pipelining and parallelism constructs. The 
results showed enhanced performance and less die area is required.  

The recent research trend is to perform instruction set extension 
(ISE) through designing some customized instructions and adding 
them to the existing instruction set architecture (ISA). This way the 
problems associated with coprocessor design will be mitigated with 
additional benefit as improved power consumption. In [6] and [7] 
the custom instructions were designed to implement the costly 
Subbytes and MixColumn stages of AES algorithm. Moreover, 
these instructions were enhanced with the ability to implicitly 
perform ShiftRows transformation. Bertoni et al. [8] incorporated 
the SubByte, ShiftRow, and MixColumns stages of AES into one or 
two instructions. 

However, a good profiling is necessary in order to extend 
instruction set properly. Through the profiling tool we can learn 
what operations account for most of the execution time and get an 
insight in how to extend the instruction set architecture for these 
operations. Burke et al. [4] performed profiling on eight 
benchmarks: Blowfish, 3DES, Mars, RC4, RC6, IDEA, Rijndael, 
and Twofish. They illustrated possible hardware factors for the 
performance bottlenecks, which were the issue width and the 
number of function units. They also identified the computation and 
memory access intensive parts being the kernel for all encryption 
application. They proposed instructions for operations such as 16-
bit modular multiplication, bit permutation, rotation, and memory 
table lookup that executed heavily in the kernel. Finally, they 
designed and implemented the extended instructions and 
architecture for these heavy kernel operations.  

Fiskiran et al. [11] investigated ECC, AES, and SHA1 for their 
usage in constraint environment, such as in PDA. They used the 
PLX RISC architecture and divided the instructions into seven 
classes: Store, Load, Arithmetic, Logical, Shift, and Branch 
(conditional and unconditional) and reported the ratio of these 
instruction classes. By analyzing the instruction frequencies, they 
showed that these benchmarks can be implemented by a simple 
RISC processor.  

Clapp [10] analyzed the AES candidates by using software critical 
path as a metric to determine the upper limit performance of each 
candidate. A software critical path has the largest weighted 
instruction count, which means in this path the machine spends the 
longest time to encrypt each block. Given the number of 
instructions per data block, the effective parallelism is defined as 
the ratio of the total number of instructions per block to the number 
of cycles in the critical path, which can indicate maximum number 
of concurrent execution units could be put into usage in order to 
achieve the highest performance. Then these benchmarks were run 
on a family of hypothetical VLIW CPUs. The results showed that 
two candidates, Crypton and Rijndael, had potential to benefit from 
the improved instruction-level parallelism (ILP) by increasing the 
instruction issue slots. 

3. EXPERIMENT ENVIRONMENT/           
METHODOLOGY 
In order to properly perform the workload characterization, we use 
a performance analyzer and a binary instrumentation tool to 
observe the dynamic behavior and characterize the performance for 
each  
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3.1 Experiment Environment 
We choose VTune [18] and PIN [19] as our basic tools. Developed 
by INTEL® as a commercial product, VTune analyzes the software 
performance on IA-32 and Intel64-based machines. It collects 
performance data of the application running on the host system, 
organizes and displays the data in an interactive view. PIN is a 
binary instrumentation tool that can inject code dynamically while 
the executable is running. Through instrumentation, PIN is able to 
generate and collect data such as instruction count, instruction 
address trace, memory reference trace, load store trace, etc., to help 
us better understand the program behavior. In this experiment, all 
the algorithms are running on a base machine with INTEL® 
Core™ i7 processor. The major experiment parameters are listed in 
Table 2. 

Table 2. The Experiment Environment 

CPU  
INTEL i7-920 

2.66GHz 4-core  

I-Cache and D-Cache 32KB each (per core) 

L2 Cache 256KB (per core) 

L3 Cache 8MB (shared) 

Memory Size 12GB 

Operating System 
Fedora Release 8 

(Red Hat 4.1.2-33) 

Compiler gcc version 4.1.2 

Binary Instrumentation Tool PIN 2.8 

Performance Analyzer VTune 9.0 

 

3.2 Methodology 
First, we employ VTune to characterize the performance of these 
nine algorithms. VTune’s call graph view provides a tree structure 
to show the call relationship among all functions. VTune also 
provides us with the Self Time and Total Time for each function. 
Total time is the execution time of this function and all the 
subroutines it calls, while the Self Time is without counting all 
those subroutines. If we observe that a function’s Total Time is 
high but Self Time is low, there must be some subroutine of it 
having high workload. Thus, this would help us identify what we 
call “hotspot functions”. The hotspot function normally consumes a 
substantial amount of the execution time of the specific algorithm, 
which we can focus on for hardware acceleration.  

Another way to inspect the dynamic behavior of these benchmarks 
is to observe at assembly language level. We utilize the instruction 
mix to observe the operations needed by these algorithms. We 
categorize the instructions based on their functionality. In this way 
we would know what types of instructions account for the most of 
the instruction stream so that we can design instruction set 
extension correspondingly. 

Since the cryptography algorithm belongs to data intensive 
application, there are frequent memory accesses represented by 
load and store instructions which accounts for a major part of the 
total execution time (as we will see in Section 4). We define a 
concept called “Load-Store Block” (LSB), which is a block of 
instructions started with a LOAD and ended with a STORE, with 
both pointing at the same effective address, within a single basic 

block. Here we use LSB(i) to represent a LSB with i instructions in 
between the pair of load-store instructions. LSB(0) means this LSB 
has no other instruction aside the load-store pair. The size of LSB 
varies and we use PIN to record the frequency of Load-Store 
Blocks of different size. We are interested in observing the 
behavior of LSB, especially in knowing what percentage of total 
instruction count falls into the Load-Store Blocks. The percentage 
of LSB instructions can be expressed by the metric, LSB_Perc, 
which is defined as: 

 







N

i IC
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0
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where i is the size of LSB, Occr(i) is the number of occurrence of 
the LSB(i), and IC would be the total instruction count. Note that 
we use (i+2) is because we need to include the starting Load and 
ending Store instructions for the instruction count.  

Actually, the purpose of introducing LSB metric is to implement 
cryptographic algorithms on parallel architecture like Processor-in-
Memory (PIM). Traditionally, people would like to deal with the 
cryptographic algorithm from the perspective of arithmetic 
intensity. They either explore the ILP or use caching effects to 
enhance the performance. However, the off-chip transmission is 
actually the real performance bottleneck nowadays as the “Memory 
Wall” problem is worsened. The memory access latency degrades 
the performance more than the traditional ILP problem. Thus, 
instead of considering the caching effects and ILP-centered 
approach such as out-of-order execution, we focus on 
implementing the LSBs as functional units and incorporate them 
into memory modules of the memory-SIMD hybrid machine such 
as PIM. In this way, data can be accessed in the local module and 
much time of the memory access can be saved. We believe that if 
the memory-wall problem can be relieved by a memory-SIMD 
hybrid machine, the performance will be improved much more than 
the conventional ILP-centered approach.  

4. RESULT ANALYSIS 
We have performed experiments on the nine cryptographic 
algorithms to study their workload characteristics. We will observe 
the function behavior, the instruction class and memory access 
pattern of these benchmarks, from which we can enhance their 
performance by possible hardware solution. 

4.1 Function Breakdown 
We use VTune to break down the total execution time at the 
granularity of function level so that we can observe where the 
hotspot function is. In the example of 3DES, function main calls 
function des_encrypt, which in turn calls function des_crypt. Table 
3 shows the self time and total time of each function, all 
normalized to the total time of function main, which is pretty much 
the time required to execute the whole algorithm. Note that the 
des_encrypt’s total time accounts for 93.67% of the total execution 
time, but its self time (excluding the execution time of its 
subroutines) accounts only 7.24%, as illustrated. It clearly shows 
that the hotspot function here is function des_crypt, the execution 
time of which accounts for 86.43% of the total execution time. 
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Table 3. The Self Time and Total Time of the Function Main, 
des_encrypt, and des_crypt in 3DES Benchmark 

Function Name Self Time Total Time 

Main 6.27% 100% 

des_encrypt 7.24% 93.67% 

des_crypt 86.43% 86.43% 

 

Figure 1 shows the percentage of the hotspot function(s) occupying 
the total execution time for each benchmark. We only consider the 
crypto computation (key setup, encryption, and decryption) part of 
an application, excluding the file I/O or some system call within 
the dynamic linking library. We can see the execution time of 
hotspot function account for majority of the execution time for 
most of the benchmarks. For example, for 3DES, AES, Blowfish, 
IDEA, MD5, and RSA, the hotspot functions for each algorithm 
occupy either in exceed of or as near as 70% of the total exaction 
time of the whole algorithm. However, SHA1 is an exception 
because most of its execution time is spent in I/O operation called 
by the crypto computation functions, such as reading from a file, so 
there is really no hotspot function we can locate. Thus, the function 
breakdown helps us to identify the software bottleneck of the 
application.  What’s more, for all the benchmarks there are only 
one or two hotspot functions. These hotspot functions are good 
candidates for hardware acceleration because we only need to 
target the extracted hotspot functions in order to achieve satisfying 
speedups, following Amdahl’s Law. 
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Figure 1. Execution Rate of Hotspot Function(s) 

4.2 Instruction Mix 
In order to profile the instruction mix, all the benchmarks are 
compiled into IA-32 assembly instructions. The IA-32 ISA has 
eight General-Purpose Registers (GPR), six Segment Registers, one 
Flags Register and an Instruction Pointer. Seventy-five instructions 
are actually used and are grouped into seven classes based on their 
functionality: Binary Arithmetic Instructions (BA), Bit and Byte 
Instructions (BB), Control Transfer Instructions (CT), Data 
Transfer Instructions (DT), Logical Instructions (L), Shift and 
Rotate Instructions (SR), and Miscellaneous Instructions (M)1,2 

                                                                 
1 I/O Instructions and Segmentation Register Instructions do not 

appear in the applications. 

[17]. These categories and the instructions belonging to them are 
listed in Table 4.  

Table 5 shows the instruction class frequencies for these 9 
benchmarks and Figure 2 is the 100% stacked column graph for 
Table 5. The data are collected by running all the algorithms on the 
same input file, a 1GB video file in this case. We can see that Data 
Transfer class accounts for majority of the instruction count in all 
the benchmarks, ranging from at least 46% for 3DES to as high as 
86% for AES Decryption, with the only exception for RSA at 28%. 
Binary Arithmetic class is the heaviest in RSA at around 37% 
because RSA itself has a lot of multiplications and modulo 
arithmetic operations. Binary Arithmetic class is the second 
heaviest instruction class in AES Decryption, IDEA, MD5, RC5, 
SHA1, and ECC, ranging between 18% and 30%. Logical class is 
extremely high for 3DES at 34% and accounts substantially in AES 
Decryption, Blowfish, and MD5, all at more than 10%. Shift & 
Rotation class ranks third for 3DES and RC5 while it is Control 
transfer class for RC5 and SHA1. Note that as the size of input file 
becomes larger, the distribution of each instruction class will 
converge to a certain value and remains stable. 

Many operations involved in these algorithms, such as bitwise 
operations, fixed length rotations, non-circular shifts and 
permutations are simple. Because huge amount of data (for 
example, video files) need to be encrypted before they are sent to 
the clients, the asymmetric encryption algorithms contain high data 
parallelism. Data can be encrypted and decrypted independently. If 
we perform optimization on those classes of instructions we 
identified, the performance of these applications can be 
dramatically enhanced. 

Undoubtedly, Data Transfer instructions are heavy in most 
benchmarks. Binary Arithmetic is also heavy across all 
benchmarks except 3DES. Shift & Rotation class is only heavy for 
3DES and RC5. Logical and Control Transfer classes are heavy in 
half of the benchmarks, as in 3DES, AES_Decrypt, Blowfish, and 
MD5; while Control Transfer is heavy the rest of the benchmarks, 
as in AES_Encrypt, IDEA, SHA1, ECC, and RSA. Overall, the top 
three instruction classes for each algorithm account for almost 80% 
of instruction count.  

Data transfer instructions include the transfer of data between 
memory and register and within them. In order to differentiate 
among those, we need to examine at an even finer degree. 

Table 6 shows the percentage of the memory read and memory 
write instructions over the total instruction count. The first row 
represents the instructions with memory read, the second row is the 
instructions with memory write, and the third row with both 
because IA-32 is of CISC ISA and some instructions include both 
read and write operations. The fourth row is the sum of the first 
two rows minus the third row to eliminate the overlapped 
instructions with both memory read and write. Thus the fourth row 
would be the ratio of total memory access instructions. Readers 
may notice that memory read/write percentage is higher than the 
Data Transfer class percentage shown in Table 5. The reason is that 
not only Data Transfer class but also other classes such as Binary 
Arithmetic, Logic, or Shift & Rotation classes include mode of the 

                                                                                                             
2 Flag control instructions are merged into the Control Transfer 

Instruction class and String instructions are merged into Data   
Transfer instruction class because of their low frequency and 
similar characters. 
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memory access. For example, for memory read mode we will see 
mov [addr], Reg, but add [addr], Reg and xor [addr], Reg 
belonging to Binary Arithmetic and Logic classes are also included 
in IA-32. This explains the higher memory read/write percentage 
than that of the Data Transfer class.  

AES_Encrypt has the highest total memory access ratio of 88%. 
This matches with its highest Data Transfer class instruction of 
86% among all algorithms studied. It is followed by Blowfish and 
RSA with 85% and 76% of the total instruction count being 
memory access, respectively. The memory access ratio for IDEA, 
MD5, RC5, SHA1 and ECC are all well over 60%. While for 3DES 
and AES_Decrypt, the ratios are not that high compared with 
others, but still count for significant amount of total instructions, at 
least 52%. The observation demonstrates that memory access 
operations are indeed heavy in the cryptographic algorithms.  

From the instruction mix (Figure 2) and the percentage of memory 
read and write operations (Table 6), not only can we see the 
instruction mix among all the benchmarks but also we can see that 
memory access overhead plays an important role in downgrading 
the performance of security applications. Since the cryptographic 
algorithm belongs to the data intensive application, there must be 
frequent memory accesses represented by the Load and Store 
instructions. These results motivate the introduction of Load-Store 
Blocks.  

4.3 Load-Store Blocks 
   Given the instruction mix information in the previous subsection, 
we know that memory access instructions count a significant 
amount of time in many cryptographic algorithms. It is the part that 
is overlooked by many previous research works of performance 
enhancement for the cryptographic applications. Traditionally the 
computation part receives much attention – arithmetic and logical 
operations to encrypt/decrypt data have been optimized and 
corresponding hardware architectures have been designed to 
improve the performance in an effort to deal with this arithmetic 
intensity problem. However, the memory part would be the real 
performance bottleneck: during the encryption / decryption 
process, data needs to be sent on- and off-chip, which occupies the 
majority of the execution time. If the performance of this part 
could be enhanced, total performance would be improve 
dramatically. 

That’s the purpose of our study on the LSB behavior. If we build 
many function units associated with the memory module, we 
offload the work from CPU and the memory access time will be 
saved. We can further duplicate the single memory module with 
function unit so that data could be preloaded and executed in 
parallel.  

Given this insight, we know that the load and store instructions 
represent the memory access operations and the Load-Store Block 
is a potential target for us to perform the hardware optimization. 
Different from the data transfer class in Section 4.2, the target we 
are interested here is the number of instructions needing to be 
executed after the data loaded from one memory address and 
before they are stored back to the same address. That is the number 
of instructions between the Load and Store instructions with the 
same effective address. These instructions with the outer Load 
Store instruction pair form the Load-Store Block. The ratio of the 
number of instructions belonging to Load-Store Blocks to the total 
instruction count would be our metric for cryptographic algorithms 
implementation on parallel architectures, as Section 3.2 indicates.   

Figure 3 shows the percentage of instructions belonging to the 
Load-Store Block for all benchmarks, following the Formula (1) 
from Section 3. We can see that 3DES, IDEA, MD5, and RC5 have 
a good percentage of Load-Store Block instructions, around 30% to 
37%. SHA1 and ECC are about 16%. 

One interesting phenomena we observe is that as the input file size 
increases, the LSB percentage converges to a certain value. Figure 
4(a) and (b) illustrates this using the MD5 and RC5 as examples. 
Mostly after the input file size exceeds 6MB, we can see no 
fluctuation in LSB percentage with the rate converging to 33.4%. 

Figure 5 illustrates the ratio of Load-Store Block of various sizes to 
the total Load-Store Block instruction count. Following our 
definition from Section 3, we use LSB(i) to represent the Load-
Store Block of size i. Here the LSBs of size 19 or above (LSB(i) 
with i ≥ 19) are ignored because their occurrence is negligible. It 
can be clearly observed that in 3DES large load-store blocks are 
dominated as LSB(8) and LSB(10) account for 89% of all the load-
store blocks. While in IDEA, MD5 and RSA, it is small load-store 
blocks that account for the most, with LSB(3) and LSB(5) for 
IDEA at 94%, LSB(1) and LSB(2) for MD5 at 97%, and LSB(2) 
and LSB(3) for RSA at 99%, respectively. RC5 is very interesting 
because load-store blocks of various sizes are evenly distributed. 
SHA1 is a mixture of small and large load-store blocks as LSB(2), 
LSB(3), and LSB(7) are the prominent. Same for ECC, the LSB(2), 
LSB(6), and LSB(>10) accounts for 73% of the total load-store 
blocks.  

The data presented above provide us with insight of the 
computation load in the Load-Store Block and the cost to 
implement it. If the LSB size is large, it indicates that for a single 
data loaded, many operations will be performed upon it before it is 
written back to memory. Hence, we can categorize the application 
into LSB-computation-bound. On the other hand, if the LSB size is 
small, this indicates that few operations are performed on the data 
before write it back to memory. Hence, most probably the memory 
access will be the bottleneck. So we can categorize the application 
into LSB-memory-bound. If the LSB is of various sizes, then the 
application is a mixture of LSB-computation-bound and LSB-
memory-bound. If the application is of LSB-computation-bound, 
then we may consider increase the number of execution unit when 
designing the hardware; if the application is of LSB-memory-
bound with good data parallelism, then it is good candidate for a 
memory-SIMD hybrid machine, which means grouping multiple 
elements together and perform the operation using multiple 
processing units all at once. This can be implemented by exploiting 
an extra vector processing core inside the microprocessor or 
implemented in Processor-In-Memory (PIM). More specifically, if 
there is a small-sized LSB, e.g., Load—Add—Store, a lot of time is 
spent on Load and Store instructions for the memory accesses 
while the Add operation only takes one or a few cycles. If we put 
the data of the Add operation in a memory module with an Adder 
or a simple ALU, the time for the Load/Store execution will be 
greatly reduced. Furthermore, if there are a lot of Load-Add-Store 
LSBs, we can build many memory modules with the same 
functional unit and load the data in advance. Not only will the time 
spent on load/store be saved but also multiple additions can be 
performed simultaneously. Since we only focus on LSB of small 
size, the function units implementing the instructions will not be 
complex, which means the hardware overhead will be minimal.  
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Table 4 Instruction Breakdown Based on their Functionality 

 

That is why the study on LSB can be used to perform data parallel 
operations in a SIMD fashion. Thus, this approach not only saves 
the time for data access through memory but also takes the 
advantage of data parallelism. 

To achieve the concept of parallel workloads, small sized LSB is a 
good candidate for a memory-SIMD hybrid machine, which means 
grouping multiple elements together and performs the operation 
using simple processing units all at once. Certainly, another 
approach would be to construct a multi-core/many-core platform 
for the LSB speedup. The differences between the two approaches 
are: 

 The load/store in SIMD hybrid machine is just a memory 
read/write by the function unit in the local memory 
module and data doesn’t need to pass through the 
memory hierarchy to reach the core.3  

 The operations in the LSB are rather simple and the 
hardware overhead needed to implement it is much 
smaller than a core. Besides, more data parallelism could 
be explored with our SIMD approach.  

5. CONCLUSION 
Enhancing the performance of cryptographic application is critical 
to improve the security mechanism in modern enterprise or 
industry information systems. An effective workload 
characterization on security algorithms is important before we 
work on the hardware acceleration for cryptographic applications. 
In this paper, we observe the dynamic behavior of memory access 
operations in addition to the computation operations since memory 
access issue would be a key for the strength and performance 
breakthrough of the security application. We address this issue by 
choosing nine cryptographic algorithms of which program structure 
is pervasive in modern cryptographic algorithm design and 
performed the following study: 

                                                                 
3 We assume the data in PIM and cache structure to be mutual 

exclusive so they will not have the cache coherence problem. 

 We profiled each application and identified the “hotspot” 
functions. In seven out of nine benchmarks the hotspot 
functions take around 70% of the total execution time, 
which would be suitable for the hardware acceleration. 

 We analyzed the instruction mix and observed Data 
Transfer class and Binary Arithmetic class count for 
majority of the instruction mix. And the top three 
instruction classes account for 80% of the total 
instruction count for all the benchmarks. What’s more, 
the memory access instruction ratio is more than 50% for 
all the benchmarks.  

 We instrumented the dynamic behavior in running the 
cryptographic applications and observed that four out of 
nine applications has a Load-Store Block (LSB) 
instruction count of more than 30%. If the same LSB 
appears often with good data parallelism, we could take 
advantage it by duplicating functional units to implement 
those operations in an SIMD fashion. 

The result of our work provides a solid starting point in building a 
memory-SIMD hybrid machine to enhance the performance of 
cryptographic algorithms. Also, previous hardware 
implementations are difficult to reconfigure to satisfy the 
requirement of different algorithms like key sizes and data block 
sizes. Based on this paper’s work, our next step is to design a 
Processor in Memory architecture which satisfies the requirement 
of high memory bandwidth, parallelism, and reconfigurability. For 
future research, we will study the program structure of selected 
algorithms in great detail so that we could extend our works to 
perform the hardware acceleration. We are also interested in 
constructing a comprehensive cryptographic benchmark suite if the 
need arises. 
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Table 5. Instruction Class Frequencies in the Nine Benchmarks 

 

Table 6. The Percentage of Memory Read and Write Instructions 

 3DES 
AES 

Decrypt 
AES 

Encrypt 
Blowfish IDEA MD5 RC5 SHA1 ECC RSA 

Memory Read 51.47% 49.09% 83.35% 63.62% 53.31% 49.95% 52.52% 49.39% 39.68% 68.84% 

Memory Write 14.83% 40.36% 74.66% 35.25% 26.56% 13.62% 13.33% 24.87% 29.06% 36.68% 

Memory 
Read/Write 

8.74% 37.22% 70.29% 13.63% 11.06% 1.65% 2.61% 10.37% 0.14% 29.37% 

Total Memory 
Access 

57.56% 52.23% 87.71% 85.25% 68.81% 61.92% 63.25% 63.88% 68.60% 76.15% 

 

 
Figure 2. The Instruction Mix for the Benchmark

 3DES AES_Dec AES_Enc Blowfish IDEA MD5 RC5 SHA1 ECC RSA Average 

Binary Arithmetic 4.63% 18.33% 4.89% 7.38% 23.38% 19.91% 30.43% 20.41% 15.75% 36.57% 18.17% 

Bit & Byte 0.01% 0.04% 0.06% 0.01% 7.33% 0.04% 0.01% 2.41% 0.96% 0.11% 1.1% 

Control Transfer 0.51% 2.63% 4.17% 7.30% 8.80% 0.56% 4.35% 11.78% 10.91% 21.70% 7.27% 

Data Transfer 46.25% 54.51% 86.49% 66.50% 52.67% 49.44% 52.15% 52.34% 66.67% 27.99% 55.50% 

Logical 34.40% 10.87% 1.62% 11.72% 4.12% 16.81% 0.01% 5.68% 0.28% 0.01% 8.55% 

Shift & Rotation 14.05% 5.82% 2.06% 5.15% 3.64% 8.41% 13.03% 4.78% 2.54% 13.61% 7.31% 

Miscellaneous 0.15% 7.81% 0.71% 1.95% 0.06% 4.83% 0.01% 2.60% 2.89% 0.01% 2.1% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%  
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Figure 3. Load-Store Block Percentage 
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Figure 4(a). The Percentage of LSB for MD5 with Input File 

of Various Sizes  
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Figure 4(b). The Percentage of LSB for RC5 with Input File of 
Various Sizes  

 
Figure 5. The Ratio of Load Store Block of Various Size in Each Benchmark 
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