
A Little Language for Rapidly Constructing Automated
Performance Tests

Shaun Dunning
NetApp, Inc.

Kit Creek Road P.O. Box 13917
Research Triangle Park, NC 27709, USA

shaun.dunning@netapp.com

Darren Sawyer
NetApp, Inc.

475 East Java Drive
Sunnyvale, CA 94089, USA

darren.sawyer@netapp.com

ABSTRACT
In order to effectively measure the performance of large scale
data management solutions at NetApp, we use a fully au-
tomated infrastructure to execute end-to-end system per-
formance tests. Both the software and user requirements
of this infrastructure are complex: the system under test
runs a multi-protocol, highly specialized operating system
and the infrastructure serves a diverse audience of develop-
ers, analysts, and field engineers (including both sales and
support). In this paper we describe our approach to rapidly
constructing automated performance system tests by using
a lightweight, little, or domain-specific language called SLSL
in order to more effectively express test specifications.

Using a real world example, we illustrate the efficacy of
SLSL in terms of its expressiveness, flexibility, and ease of
use by showing a complex test configuration expressed with
just a few language constructs. We also demonstrate how
SLSL can be used in conjunction with our performance mea-
surement lab to quickly deploy performance tests that yield
highly repeatable measurements.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.3.2 [Software]: Programming Languages—Lan-
guage Classifications

General Terms
Language, Measurement, Performance

Keywords
performance, test automation, domain-specific language, lit-
tle language

1. INTRODUCTION
Emerging technologies like virtualization and cloud com-

puting are having a profound impact on the ways that data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

storage systems are configured and deployed in modern data
centers. In the past it would be common to see data from a
relatively small number of different applications hosted on
a single storage system. Today we are seeing unprecedented
levels of consolidation, resulting in data from many appli-
cations, possibly from many different departments within a
company or even from multiple companies hosted on a sin-
gle shared storage system. Enterprise storage systems from
companies like NetApp are evolving their storage architec-
tures to meet the challenges of today’s data centers. While
automated storage management tools may simplify the pro-
cesses used by a storage administrator to configure and pro-
vision storage in these environments, the level of complexity
of the resultant system configurations can be quite high.
This complexity, coupled with the increased levels of stor-
age consolidation, greatly increases the demand on both the
scale and flexibility of the performance measurement tools
and processes used by engineering to thoroughly test and
characterize the performance of our systems. The impact of
the changes needed to fulfill the growing demands on per-
formance testing posit the need for the ability to quickly
and reliably build and deploy new, automated performance
tests. This paper describes a simple language-based ap-
proach to rapidly create complex automated storage per-
formance test scenarios that are representative of the envi-
ronments in which we increasingly find our systems being
deployed.

The organization of the rest of this paper is as follows:
Section 2 provides background information on performance
testing of storage systems, the performance testing envi-
ronment at NetApp, and the structure of NetApp storage
systems. The concepts presented should also serve to moti-
vate our approach detailed in Section 3, where we introduce
a little language for describing the setup and execution of
an automated storage performance test. Each subsection
of Section 3 details a different test automation phase and
includes mini code examples that are used to demonstrate
how the language can be applied to meet the objectives of
that phase. The section concludes with a description of the
Python-based implementation of the little language. Sec-
tion 4 follows with a more extensive example that demon-
strates how the language can be used to create a rather
complicated test scenario with a reasonably small amount
of code. Section 5 summarizes the conclusions of this work
and includes proposals for future extensions.

371

2. BACKGROUND AND MOTIVATION

2.1 Storage System Performance Testing
Evaluating the performance of a storage system typically

involves measuring its behavior while servicing a series of
I/O requests. The I/O requests originate from one or more
“load generator” programs that run on general purpose com-
pute server hardware that has access to a storage system
through one or more standard storage interfaces. We re-
fer to the hardware running the load generator programs as
clients of the storage system, though hosts is another com-
monly used term. The storage system under test may be
directly attached to a client (typically referred to as direct-
attached storage, or DAS) or may be connected via some
form of storage network, over which the client communi-
cates using one or more network storage protocols. Network
storage protocols allow a client to access data on the storage
system by making requests related to specific blocks of data
over a Storage Area Network (SAN) protocol (e.g., FCP or
iSCSI), or to specific files made available by the storage sys-
tem over a Network Attached Storage (NAS) protocol (e.g.,
NFS or SMB). The diagram in Figure 1 shows the physical
layout of a 4 node storage system where the load generating
clients send I/O requests using one of the network storage
protocols through a data network switch that connects the
clients to the storage.

Figure 1: Physical View of a System Under Test

The characteristics of the series of I/O requests made by
a load generator to the storage system defines the workload
that the storage system must service. The workload may
be an actual application making I/O requests in support of
functions it is providing to a user, or it may be a simulated
workload designed to mimic the I/O request stream of a real
application or to exercise specific sets of operations of inter-
est during the evaluation. A client machine may execute one
or more load generator programs, each of which may create
one or more workloads to be served by the storage system
under test. A workload may also originate on the storage
system itself. This could be an internal process that operates
on the data resident on the storage system (e.g., data ver-
ification, virus scanning, data deduplication) or that sends
data to another storage device, typically for data replication
or protection (e.g., tape backup, data mirroring to a disaster
recovery storage device, etc. . .). While some of these pro-

cesses may run continually on a storage system, others may
need to be explicitly initiated at a specific point of inter-
est during the performance test. Observing how this “back-
ground” load created by internal workloads affect the service
delivered to “foreground” workloads originating from exter-
nal load generators is particularly interesting in the evalu-
ation of storage systems as the tasks performed by internal
background workloads are common, and important, to the
proper operation of a storage infrastructure.

Evaluation of the storage system is performed by collect-
ing metrics of interest over the course of the time the work-
load is being serviced. Metrics may be observed from either
the load generator itself or from the storage system under
test. Load generators typically report the amount of work,
or throughput, delivered by the storage system over some pe-
riod of time, and the latency, or response time, of requests
made to the storage server. Both types of metrics may be
expressed in storage-centric terms (e.g., megabytes/second,
I/Os per second, microseconds per I/O) or in terms related
to higher level transactions that result in a series of I/O op-
erations to the storage device. Metrics collected on the stor-
age server may provide the combined, storage-centric view
of the throughput and latency from all load generators ac-
cessing the storage, as well as storage server resource uti-
lization metrics for various components within the storage
server (e.g., CPU utilizations, utilization and response times
for individual disk devices, etc. . .). Measuring key metrics
on both the load generators and storage server provides a
comprehensive view of the performance of the storage sys-
tem.

It is important to note that the storage system under test
may not consist of a single storage server, but rather may
be a network of storage servers that together provide clients
access to various pieces of data. Access to any particular
piece of data may be provided through all of the constituent
servers or through some subset. Thus there may be different
paths by which data may be accessed, and not all paths may
be able to reach any given pool of data created within the
subsystem. Specifying how load is presented to such systems
during a performance test can be particularly complex, but
is useful in evaluating how using different combinations of
paths through a network of storage servers can affect per-
formance delivered to load generators.

2.2 Performance Measurement at NetApp
Storage system performance testing at NetApp serves the

widely varying needs of numerous internal customers. Dur-
ing design and development, performance analysts and soft-
ware developers execute tests to evaluate the performance
of new features or enhancements to existing features. Per-
formance regression tracking tests are run continually dur-
ing this phase on a wide range of configurations and work-
loads to identify unexpected and, not surprisingly, usually
negative changes in performance. Before the release of a
new hardware or software product, a final set of character-
ization measurements is performed to provide information
that is used by our sales and support organizations. Also
during this time industry standard performance benchmark
results are generated and publicly published. Finally, cus-
tomer sales or support engagements occasionally require re-
producing a customer workload using a customer script or
program, or using a simulated workload with one of many
possible I/O load generating tools.

372

The demands placed on our performance test infrastruc-
ture require not only the capability to handle a large volume
of performance tests, but extreme flexibility in the types
of supported tests and configurations. Additionally, there
is a high degree of variance in performance measurement
expertise amongst the users who wish to run performance
tests. We need to provide a simple interface for the av-
erage software developer who just wants to see if proposed
code changes affect system performance, while providing the
ability for performance analysts who want to collect compre-
hensive performance data on a complex set of configurations
and workloads.

To meet these demands, NetApp invested heavily in the
creation of a completely automated performance test en-
vironment. Human intervention required for any perfor-
mance test is limited, in almost all cases, to providing a
test specification to our automated performance test sys-
tem. The configuration of physical components used during
a test, including load generating clients and storage servers,
as well as the physical connections between them, is per-
formed with automated scripts that reserve and connect re-
quired resources out of pools of clients, storage servers, and
disk drives. Physical equipment reconfiguration is generally
only required when resources are added or removed from the
pools. Once the physical test configuration is completed,
configuration of operating system parameters on both the
client machines and the storage server is performed, as is
creation of disk pools, logical storage objects located with
them, and configuration of storage network ports. It is the
automated process of configuring the test environment once
the physical equipment is in place that is the primary focus
of this paper.

This high degree of automation allows us to complete
many times more performance tests than we would be capa-
ble of with manual execution. It ensures tests are run in an
extremely repeatable manner, removing almost any chance
of test execution flaws that can result during manual setup
of complex test environments. Anyone in the company who
needs to run a performance test can do so with minimal
training, while those with more extensive testing needs are
given the flexibility to meet their objectives using the same
test environment. The remaining sections of this paper ex-
plain the core software infrastructure that allows us to meet
the extensive demands facing our performance testing envi-
ronment.

2.3 NetApp Storage and Data ONTAPR©

At the core of all NetApp storage systems is the unifying
Data ONTAP R©software technology. Data ONTAP R©runs
on the full array of NetApp storage controller hardware to
provide shared access to stored data. Data can be simultane-
ously accessed through any of the most common block-based
and file-based networked storage protocols, including NFS,
SMB, iSCSI, and FCP. In this section, we’ll describe the
general structure of NetApp storage platforms and the Data
ONTAP R©architecture as it relates to the methods we use
later to describe the systems that we want to target with
automated performance tests.

The physical structure of a NetApp storage system con-
sists of one or more storage controllers that contain CPUs
to process requests, memory used for caching data, and I/O
controller expansion slots. Each controller provides a num-
ber of“front-end”network ports to connect to external client

machines that make storage requests over Ethernet or fiber
channel networks. It also provides storage ports to connect
to physical disk drives via a storage interconnect (e.g. fiber
channel arbitrated loop or SAS). Disk drives connected to
a storage controller can be divided into groups called aggre-
gates. Disks within an aggregate are arranged into RAID
groups that provide a selection of protection levels against
single or double disk failures. When configured in cluster-
mode, two or more storage controllers can be connected via
a cluster network that allows requests entering on a net-
work port of one controller to access data on an aggregate
attached to another controller.

NetApp uses virtualization technology to build a logical
view of the storage system on top of the physical controllers
and disk storage devices. A system administrator can con-
struct data volumes, one or more of which can reside on top
of a physical disk aggregate. The volume is then further di-
vided into LUNs or files depending on the type of storage
protocol used to access the data. Physical network ports
can host one or more “logical interfaces”, or LIFs. LIFs are
assigned a particular address, IP address for Ethernet ports
or a WWN address for fiber channel network ports, and are
used to export data in a volume or a LUN to clients on a
network. Any subset of volumes and LIFs can be grouped
together to form a secure “virtual server”, or vserver, within
the physical storage server. Much like virtual machines that
can be hosted on a physical compute server, storage vservers
appear as completely separate storage systems to the outside
world, while many vservers may actually share underlying
physical storage hardware [2]. Figure 2 shows how storage
vservers span physical hardware boundaries. In this exam-
ple clients access volume data through LIFs hosted on one
of three storage vservers and are unaware of the four under-
lying physical storage controllers.

Figure 2: Logical View of a System Under Test

Virtualized storage objects are less constrained than the
physical objects on which they reside. A physical storage
server may play host to hundreds or thousands of vservers,
each with hundreds or thousands of volumes and LIFs. In
fact, such configurations are becoming more and more com-
mon as storage administrators and cloud storage service
providers consolidate data from many different applications
from different users or “tenants” [3].

Needless to say, attempting to create test scenarios in

373

which a storage system is simultaneously serving data to
many different tenants, each with its unique set of appli-
cations running on clients accessing many volumes of data
over any of the various storage protocols, can be a particu-
larly daunting task. Yet it is the type of world we wish to
be able to describe and automatically build with the auto-
mated performance test system described in the rest of this
paper.

3. LITTLE LANGUAGE APPROACH
SLSL (pronounced “sizzle”) is designed to provide flexi-

bility in the construction and configuration of performance
tests for data storage systems. We highlight these benefits
in flexibility within the context of four automation phases of
performance testing shown in Figure 3. Automation tasks
in the Hardware Configuration phase involve the configura-
tion of physical testbed components. Because of the static
nature of these components, there is less opportunity for
SLSL to enhance the richness of supported configurations
in this phase of automation. Conversely, automation tasks
associated with the configuration of logical test components,
represented in Figure 3 by phases 2, 3, and 4, are much
more flexible in nature and allow for a greater number of
potential valid configurations. Therefore, SLSL is mainly
focused on providing high-level abstractions that support of
a rich variety of logical component configurations.

Figure 3: Phases of Performance Testing

The philosophy behind our approach is to identify com-
mon tasks within each automation phase and provide suc-
cinct, high-level language abstractions to encapsulate these
tasks. SLSL abstractions can represent a trivial task, like
sending a message to a testbed component, or a complex
task, like executing a collection of load generation processes
in parallel from multiple hosts to multiple storage servers.
In this way these tasks, no matter how trivial or complex,
become reusable units that can be specified using language
elements. The re-usability of SLSL elements implies they
can be “mixed-and-matched” in support of a wide variety of
possible performance test implementations.

SLSL has three key language properties: (i) it is a declar-
ative language [7], (ii) it is hierarchical, and (iii) it is a lit-
tle, or domain-specific, language [20, 8]. SLSL declarations
are typed using a reserved word type parameter, while the
remaining parameters are tailored specifically to the type
of element being declared. This technique allows language
elements to be overloaded such that a single element can
abstract multiple, similar, tasks. Complete SLSL specifi-
cations result in a hierarchical relationship between dec-
larations because certain SLSL elements are used to de-
clare other SLSL elements. Figure 4 illustrates these con-
cepts using two client declarations, of type “linux” and

“windows”, that are later used to declare ports on lines
3 and 4.

1 c1 = client(type="linux")
2 c2 = client(type="windows")
3 port(type="ethernet", client=c1, name="eth1")
4 port(type="fc_initiator", client=c2, name="1a")

Figure 4: SLSL port and client Declarations

Each automation phase in Figure 3 has an associated col-
lection of SLSL elements that target the common tasks per-
formed within each phase. Table 1 groups SLSL elements
according to their associated phase and shows the various
types of declarations supported by each element.

Language Element Supported types
Hardware Configuration Phase

controller default
client linux, windows
port ethernet, fc target, fc initiator
aggregate default
cluster default

Test Configuration Phase
vserver default
volume 7mode, clustered
datastore volume, LUN
lif tcp ip, fcp
io_path nfsv3, nfsv4, fcp, smb

Workload Modeling Phase
path_mapper round robin, linux multipath
workload sio, spc1, sfs, iozone, iometer,

filebench
Measurement Phase

command bsd, dblade, ngsh, linux, windows
event timer
result_collector perfstat, perfant
iteration default
test_runner default

Table 1: SLSL Elements Grouped by Phase

3.1 Hardware Configuration Phase
The first phase of automation involves configuring the

testbed hardware components. This includes tasks like boot-
ing, installing operating systems, and configuring network
switches. There is little opportunity for SLSL to enhance
flexibility at this phase due to the static nature of these
configurations and it is required that this phase be com-
pleted before SLSL can be applied. In our performance mea-
surement lab discussed in Subsection 2.2, we use hardware
configuration automation to build a testbed on-demand and
then populate designated SLSL structures with hardware
configuration information as shown in Figure 5 with an ex-
ample declaration of a gigabit ethernet port e0c residing
on a storage controller fas6080_1. Other static hard-
ware information is captured similarly using the remaining
Hardware Configuration SLSL elements shown in Table 1.

1 n1 = controller(mgmt_ip="192.168.2.1",
2 hostname="fas6080_1")
3 port(type="ethernet", name="e0c", node=n1)

Figure 5: Ethernet port on a Storage controller

374

3.2 Test Configuration Phase
The second phase of automation shown in Figure 3 in-

volves configuring the logical components of the test. We
define two high-level automation tasks in this phase: (i)
configuring datasets, and (ii) specifying how datasets can
be accessed. Each task contains key properties that affect
the behavior of the system under test and, ultimately, the
outcome of the results. Therefore, these properties are made
accessible through SLSL elements so that they can be con-
figured by the test designer.

3.2.1 Dataset Configuration
The first task of the Test Configuration phase is config-

uring the dataset. In our context, we define the dataset as
the total set of data objects from which a subset will be
chosen as the target for the measurable work. To effectively
abstract the task of dataset configuration, SLSL needs to
express the following key properties:

• size: how big is the dataset?

• type: what type of data is being stored? (e.g., files,
LUNs, etc. . .)

• attributes: are there any “special” attributes of the
datastore? (e.g., de-duplicated, compressed, etc. . .)

• container: where and how does the dataset reside on
the storage? (e.g., aggregates and volumes in Data
ONTAP R©)

Table 2 highlights how the configuration of these properties
is useful in the context of data storage system performance
testing.

Property Uses in Performance Testing
size control access at various cache levels
type target specific storage sub-systems
attributes test specific data management features
container control over various container properties

control where dataset gets stored

Table 2: Effects of Dataset Properties on Storage
System Performance

SLSL provides a datastore element representing a col-
lection of data objects related by size, type, attributes, and
container. Figure 6 shows an example of a volume datastore
containing 100 files, each 10 gigabytes in size, residing in a
16 terabyte Data ONTAP R©volume container.

1 vol1 = volume(size="16t", name="vol1",
2 server=n1)
3 datastore(type="volume", container=vol1,
4 num_files=100, file_size="10g")

Figure 6: SLSL datastore and volume Declarations

3.2.2 Dataset Access Configuration
The second task in the Test Configuration phase is defin-

ing the set of paths in the system that can be used to access
the datastores. This is not to be confused with the config-
uration of the paths that will be used to access datastores

that is later described in Susbsection 3.3. The key proper-
ties of dataset access that need to be specified with SLSL
elements are:

• end points: what are the end points from which data
access requests are transmitted and received?

• available data: what datastores are exported through
paths defined?

• protocol: how do end points communicate with one
another?

Table 3 highlights how these properties are useful in control-
ling various aspects of performance testing.

Property Uses in Performance Testing
end points control physical capabilities

test bandwidth/limits of inter-link
identify bottlenecks in inter-link

available data control optimal and sub-optimal paths
protocol control of protocol-specific properties

test protocol limits and overhead

Table 3: Effects of Data Access Properties on Stor-
age System Performance

The SLSL elements lif (abbreviation for logical inter-
face) and io_path are designed to allow for the config-
uration of dataset access. lif abstractions represent end
points, while io_path abstractions encapsulate a single path
from which I/O requests can travel between two end points
to the data. Figure 7 shows these concepts using two stor-
age server TCP/IP lifs declared on lines 1–6 that live on
port p1, which was declared back in Figure 5, and one client
lif declared on lines 7–9 that is mapped to a hardware port
p2. An io_path is constructed on lines 10 and 11 between
client_lif and server_lif1 using the NFS protocol to
access the contents of datastore nas_store (declared
back in Figure 6).

1 server_lif1 = lif(type="tcp_ip", port=p1,
2 address="192.168.10.1",
3 netmask="255.255.255.0")
4 server_lif2 = lif(type="tcp_ip", port=p1,
5 address="192.168.11.1",
6 netmask="255.255.255.0")
7 client_lif = lif(type="tcp_ip", port=p2,
8 address="192.168.10.2",
9 netmask="255.255.255.0")

10 io_path(type="nfsv3", datastore="nas_store"
11 end_points=(server_lif1,client_lif))

Figure 7: NFSv3 Mount Expressed as SLSL io_path

3.3 Workload Modeling Phase
The third automation phase described back in Figure 3 is

comprised of tasks aimed at modeling the work being gen-
erated and measured. We identify two main tasks in this
phase that need to be configurable using SLSL elements:
(i) choosing dataset access paths (ii) describing the work
to perform on the system under test.

375

3.3.1 Choosing Dataset Access Paths
Previously in the Test Configuration phase, we used SLSL

io_path elements to configure the paths that can be taken
to access the dataset. The first task of the Workload Model-
ing phase is to decide which of the configured paths should
be taken to access the dataset. Modern storage architec-
tures contain multiple paths to the same data, with some
paths being active or optimal and some being passive or
sub-optimal. This “multipath” approach allows for higher
availability of systems, i.e., they exhibit tolerance to fail-
ures because requests can be re-routed via passive paths
when active paths go off-line; or, the systems can be con-
figured for higher performance, meaning all paths can be
configured as active and requests can be sent to the system
according to an optimal load-balancing algorithm. Table 4
shows how controlling dataset access patterns is useful in
storage performance testing.

Property Uses in Performance Testing
dataset access patterns create edge-case scenarios

test capabilities of a link/port
create failure scenarios
minimize run-to-run variability

Table 4: Effects of Access Patterns on Storage Sys-
tem Performance

To allow the test designer to choose a dataset access pat-
tern, SLSL provides a path_mapper abstraction consisting
of an algorithm and a list of configured io_paths. The
io_paths are reordered according to the underlying algo-
rithm so that the work will arrive at the system under test
according to the desired access pattern. Some algorithms
are created manually and designed to test a specific sce-
nario, while other algorithms may utilize a third-party mul-
tipathing I/O solution provided on the storage clients [6,
10, 13]. Figure 8 shows an example of a path_mapper dec-
laration that uses a round_robin algorithm to order the
io_path declarations mount1, mount2, and mount3.

1 path_mapper(type="round_robin",
2 io_paths=[mount1, mount2, mount3])

Figure 8: SLSL Round-Robin path_mapper

3.3.2 Describing Workloads
The final responsibility of the Workload Modeling phase is

creating the description of the work being used to evaluate
the performance of the system under test. SLSL provides the
test designer with the ability to specify properties of work-
loads, like their models (e.g., open, closed, or hybrid [19]),
access pattern, or operation mix. There are seemingly count-
less possible types of workloads that can be presented to a
system. However, most common workloads can be catego-
rized by one of the five descriptions below:

• microbenchmarks: basic load generators that exer-
cise specific functionality (e.g., SIO [15], Iometer [18],
and Iozone [23])

• application benchmarks: vendor-neutral and in-
dustry standard benchmarks that simulate a partic-

ular application workload (e.g., SPC [22], SFS [21],
and JetStress [9])

• workload languages: provides flexibility in building
custom microbenchmarks or application benchmarks
using a more general workload modeling language (e.g.,
FileBench [12] and fio [4])

• applications: non-simulated workload from a live ap-
plication

• system workload: workload that is internal to the
system and often interferes with user-perceived perfor-
mance (e.g., RAID parity reconstruction, virus scans,
backup operations, etc. . .)

SLSL supports a variety of these workload descriptions
using a workload abstraction. SLSL workloads use one
or more path_mapper declarations to determine the access
pattern. Figure 9 illustrates these concepts using two differ-
ent workload descriptions: 1 sio microbenchmark, declared
on lines 1–6, configured as a single-threaded sequential read
process, and 1 spc1 application benchmark, declared on
lines 7–13, configured with a target I/O rate of 5000 opera-
tions per second.

1 workload(type="sio", num_processes=1,
2 warmup=480, runtime=600,
3 path_mapper=nas_paths,
4 options={"read_pct":100,
5 "rand_pct":0,
6 "threads":1})
7 workload(type="spc1",
8 target_iops=5000,
9 runtime=600, warmup=480,

10 path_mapper_asu1=map1,
11 path_mapper_asu2=map2,
12 path_mapper_asu3=map3,
13 javaparms="-Xmx512m -Xss256k")

Figure 9: SLSL workload Declarations

3.4 Measurement Phase
In the previous automation phases we configured the test-

bed hardware, created the datastores, defined the possible
I/O paths to the dataset, and configured our workloads to
model the work that is going to be measured on the sys-
tem under test. The final phase of automation, shown back
in Figure 3, involves running the performance test and col-
lecting measurements. We identify two high-level tasks of
the Measurement Phase: (i) configuring performance test
runtime (ii) configuring measurement data.

3.4.1 Configuring Performance Test Runtime
A typical runtime scenario for a performance test consists

of several iterations of “start workload and take measure-
ment” cycles. Often attributes of the workload (e.g., add or
remove load, change access patterns, etc. . .) or properties
of the system under test (e.g., create interference, create a
system failure, etc. . .) are changed between iterations so
that the system behavior can be observed. SLSL provides
flexibility in configuring the runtime of performance tests by
allowing test designers to specify the following key proper-
ties:

376

• number of test cycles: how many iterations of“start
workload and take measurements” cycles are to be ex-
ecuted?

• workloads: what workloads should be run in parallel
during a particular test cycle?

• custom user actions: what controls are provided
to allow users to execute custom actions that change
system properties before, during, or after a test cycle?

SLSL provides the iteration and test_runner elements
to allow the user to define a list of time-bound test cycles we
call measurement intervals. Figure 10 shows a measurement
interval for one iteration as the elapsed time between tx
and ty, where tx is a time-stamp when all workloads have
started, and ty is a time-stamp when the first workload has
completed.

Figure 10: Timeline of one SLSL iteration

Iterations are comprised of a collection of workloads that
will be executed in parallel and bound by a measurement in-
terval. The test_runner element allows the user to spec-
ify the order in which multiple iterations will be executed.
Lines 1–4 in Figure 11 show two SLSL iteration decla-
rations, itr1 and itr2, each containing 2 workloads. The
test_runner declaration on lines 5–6 will result in the ex-
ecution of iteration itr1 first, followed by iteration itr2.

1 itr1 = iteration(workloads=[spc1_workload,
2 sio_read])
3 itr2 = iteration(workloads=[spc1_workload,
4 sio_write])
5 test_runner(name="OLTP with Interference",
6 iterations=[itr1, itr2])

Figure 11: SLSL test_runner Declaration

The behavior of the system under test can be altered
during test execution using SLSL command and event el-
ements. SLSL command elements provide a mechanism for
specifying arbitrary commands to execute over command
line interfaces. Command specifications are carried out from
within pre-defined call-out points during an iteration. Two
such call-out points are denoted on the time-line in Figure 10
at time t0 as “pre-measurement commands”, which are com-
mands issued before the start of the measurement interval,
and at time ty+1 as “post-measurement commands”, which
are commands issued after the measurement interval is over.
SLSL event elements provide further customization by al-
lowing the user to define python function handlers that will
get invoked when the event occurs during the measurement
interval. All event listeners are started at the beginning of
the measurement interval as shown in Figure 10 at time tx

by the “start event listeners” call-out. Lines 1 and 2 in Fig-
ure 12 show a command declaration used to invoke an Data
ONTAP R©feature that will create a point-in-time snapshot
on volume vol1. This snapshot will be created before the
measurement interval of iteration itr1, because it is spec-
ified in the pre_commands list on line 8. The event on
lines 3–6 uses a timer that will fire 30 seconds into the
measurement interval of iteration itr1, at which point the
handler defined by the delete_snapshot() function on
lines 11-19 will get executed.

1 cmd = command(node=n1,
2 msg="snap create -V vol1 snap1")
3 evt = event(type="timer", delay="30",
4 handler="delete_snapshot",
5 kwargs={"snap_name":"snap1",
6 "vol":"vol1"})
7 itr1 = iteration(workloads=[sio_read],
8 pre_commands=[cmd],
9 events=[evt])

10 # Define delete event handler
11 def delete_snapshot(**kwargs):
12 controller = kwargs["controller"]
13 log = kwargs["logger"]
14 snap_name = kwargs["snap_name"]
15 vol = kwargs["vol"]
16 snap_delete = ("snap delete -V " +
17 vol + snap_name)
18 log.info("deleting " + snap_name)
19 controller.send(snap_delete)

Figure 12: SLSL command, event, and Example
Event Handler

3.4.2 Configuring Measurement Data
The second task in the Measurement Phase involves col-

lecting measurement data necessary to determine whether
or not the test meets the pass/fail criteria. The measure-
ment data is consumed directly by analysts, or used as input
to applications that aid in analysis by presenting a variety
of views into the data. Since most analysis is done after
test execution, it is important that the test be configured to
collect relevant and accurate measurement data. Depending
on the requirements of the analysis, there are many different
types of measurement data ranging from high-level system
reports (e.g., Linux SYSSTAT Utilities [5]) to low-level sys-
tem data (e.g., function call-graph profiling [14], traces, raw
OS counters, and core dumps). We must take into consider-
ation that many of these measurement data collection mech-
anisms have an impact on system performance. Therefore,
it is important to configure measurement data collection so
it bears minimal impact on system performance and also
contains all data needed to accomplish the analysis. SLSL
provides a result_collector element that can be tai-
lored to collect measurement data for a particular system,
like Data ONTAP R©, Linux, etc. . . , and it can be configured
to include or exclude specific sets of data depending on anal-
ysis requirements. SLSL event elements can also be used
to trigger measurement data collection based on events that
occur during test execution. For example, data can be col-
lected periodically using timer events, or conditionally using
events that are triggered by specific conditions in the system
under test.

377

3.5 Implementation
One of our main requirements of a little language imple-

mentation is that it be lightweight with respect to mainte-
nance and extensibility. We don’t want SLSL to be bogged
down with complexities introduced by compiler technologies,
which is a trait typical of other little language approaches [1].
We also don’t want to focus our efforts on implementing
general-purpose language control structures (e.g., loops and
conditional statements), but we want to make use of these
control structures in SLSL when they are needed. For these
reasons we chose to leverage existing python language com-
ponents to implement SLSL. The SLSL parser is built as an
extension of the python parser module [16], making SLSL a
superset of the python language. SLSL users are granted ac-
cess to all python language features for free, and developers
working on SLSL extensions can focus their efforts solely on
the implementation of the language elements. This choice
of implementation also facilitates the application of SLSL
semantics because the underlying core automation libraries
are also written in python. The SLSL translation layer relies
on the python inspect module [17] to programmatically
translate SLSL specifications into automation tasks using
introspection [11].

4. CASE STUDY
We demonstrate the efficacy of SLSL within the context

of multi-tenant, storage cloud applications. We base this
case study on these applications because they provide great
working examples that showcase the richness in possible test
configurations afforded by SLSL. Storage multi-tenancy re-
lies on a variety of client and server virtualization technolo-
gies [3] that are applied at a logical component level and
can lead to complex test scenarios due to the sheer number
of possible variations in system configurations. For exam-
ple, a common storage multi-tenancy configuration would
include many tenants with each “tenant” residing within
its own storage vserver and having its own independent set
of requirements on the physical hardware, configuration of
datasets, data access patterns, storage policies, and applica-
tion workloads.

For the purpose of this case study, our multi-tenant stor-
age application example consists of two “tenants”: (i) the
first “tenant”, whom we’ll refer to as NAS tenant, repre-
sents a group of users accessing home directories served over
NFS (ii) the second “tenant”, whom we’ll refer to as SAN
tenant, represents an online transaction processing (OLTP)
database application being served from a SAN over FCP.
The objective of our performance test is to observe the per-
formance of the system when each storage tenant is active in
isolation and when both tenants are active in unison, while
gradually increasing the system load as the test progresses.
The rows in Table 5 list the requirements this objective
places on the respective automation phases shown back in
Figure 3.

To meet these requirements we use a combination of the
SLSL constructs shown in Table 1 and python language el-
ements. Figure 13 is a complete implementation in 54 lines
of code of a performance test that meets all of the require-
ments outlined in Table 5. For the sake of completeness,
lines 2–12 contain example declarations needed to describe
a testbed with hardware components consisting of one Linux
client (c1) with an Ethernet port (eth2) and two FCP ini-

Phase Requirements
Test Configuration 2 volume containers

1 virtual server for each tenant
1 SAN datastore
1 NAS datastore

Workload Modeling an OLTP benchmark using SAN
a file-system benchmark using NAS

Measurement measurement with NAS tenant active
measurement with SAN tenant active
measurement with both tenants active
vary system load across measurements

Table 5: Multi-tenant Storage Test Requirements

1 # Define Hardware Configuration
2 c1 = client(type="linux")
3 c1_eth2 = port(name="eth2", type="ethernet", node=c1, speed="10gig")
4 c1_2a = port(name="2a", type="initiator", node=c1, speed="4gig")
5 c1_2b = port(name="2b", type="initiator", node=c1, speed="4gig")
6 n1 = controller(type="ontap8", model="FAS6080")
7 n1_e0b = port(name="e0b", type="ethernet", node=n1, speed="10gig")
8 n2 = controller(type="ontap8", model="FAS6080")
9 n2_4a = port(name="4a", type="target", node="n2", speed="4gig")

10 a1 = aggregate(node=n1, name="aggr1", num_disks="84", raidsize="16")
11 a2 = aggregate(node=n2, name="aggr2", num_disks="84", raidsize="16")
12 my_cluster = cluster(nodes=[n1, n2])
13
14 # Define Test Configuration
15 nas_vs = vserver(cluster=my_cluster, name="nas_server")
16 san_vs = vserver(cluster=my_cluster, name="san_server")
17 vol1 = volume(name="vol1", aggregate=a1, size="2t", server=nas_vs)
18 vol2 = volume(name="vol2", aggregate=a2, size="2t", server=san_vs)
19 nas_store = datastore(type="volume", container=vol1)
20 san_store = datastore(type="LUN", container=vol2, num_luns=100,
21 lun_size="20g")
22 c1_nas_lif = lif(type="tcp_ip", port=c1_eth2, addr="192.168.10.1")
23 n1_nas_lif = lif(type="tcp_ip", port=n1_e0b, server=nas_vs,
24 addr="192.168.10.2")
25 nas_path = io_path(type="nfsv3", datastore=nas_store,
26 end_points=(c1_nas_lif, n1_nas_lif))
27 c1_san_lif1 = lif(type="fcp", port=c1_2a)
28 c1_san_lif2 = lif(type="fcp", port=c1_2b)
29 n2_san_lif = lif(type="fcp", port=n2_4a, server=san_vs)
30 san_path1 = io_path(type="fcp", datastore=san_store,
31 end_points=(c1_san_lif1, n2_san_lif))
32 san_path2 = io_path(type="fcp", datastore=san_store,
33 end_points=(c1_san_lif2, n2_san_lif))
34 nas_mapper = path_mapper(type="round_robin", io_paths=[nas_path])
35 san_mapper = path_mapper(type="multipath_linux",
36 io_paths=[san_path1, san_path2])
37
38 # Define Workloads and Test Execution
39 test_cycles = 3
40 start_tenant_ops = 5000
41 scale_tenant_ops = 5000
42 iteration_list = []
43 cur_op_rate = start_tenant_ops
44 for i in range(test_cycles):
45 sfs = workload(type="sfs", target_iops=cur_op_rate, warmup=300,
46 runtime=900, mount_path=nas_mapper)
47 spc = workload(type="spc1", target_iops=cur_op_rate,
48 asu1=san_maps, asu2=san_maps, asu3=san_maps,
49 warmup=300, runtime=900)
50 iteration_list.append(iteration(workloads=[sfs]))
51 iteration_list.append(iteration(workloads=[spc]))
52 iteration_list.append(iteration(workloads=[sfs, spc]))
53 cur_op_rate += scale_tenant_ops
54 test_runner(name="multi_tenancy", iterations=iteration_list)

Figure 13: Multi-tenant Storage Performance Test

tiators (2a and 2b), two storage controllers (n1 and n2)
with one Ethernet port (e0b) and one FCP port (4a). Fi-
nally we construct a Data ONTAP R©cluster (my_cluster)
using the 2 controller nodes (n1 and n2) on line 12.

On lines 15–36 in Figure 13 the Test Configuration is spec-
ified, starting with vserver declarations on lines 15 and 16 for
each“tenant”. The vservers are later used to create volumes,
declared on lines 17 and 18, that contain the NAS and SAN
datastores declared on lines 19–21 and logical interfaces on
lines 23 and 29 for accessing the two datastores.

Finally on lines 39–54 we define the necessary compo-
nents to meet the requirements of the Workload Modeling
and Measurement phases. For the NAS tenant, we use a
workload declaration of type sfs on line 45 to utilize the
SPEC SFS Benchmark — an industry standard network file-
system performance benchmark [21]. Likewise on line 47,
we use a workload declaration of type spc1 to make use

378

of the SPC-1 Benchmark — an industry standard OLTP
benchmark [22]. Notice on line 39 we introduce a python
variable test_cycles to represent the total number of“cy-
cles” to execute. In the for loop in lines 44–53 we define
a test “cycle” as three iterations (lines 50, 51, and 53) of
measurements where we activate the NAS tenant work only,
SAN tenant work only, and both, respectively. The three
iterations are appended to a Python list iteration_list
which is attached to the test_runner declaration on line
54 to complete the specification.

The performance test implementation shown in Figure 13
exemplifies how a relatively few number SLSL elements can
be used to implement a performance test that meets fairly
complex testing requirements. From our experience, because
of the expressivity captured within the language constructs
and the flexibility in the possible arrangements of declara-
tion references, our approach allows test developers to more
rapidly and more reliably implement new performance tests
than traditional methods that use general purpose program-
ming languages to implement automated performance tests.

5. CONCLUSION
Our goal has been to facilitate the rapid implementation

of complex, automated performance tests for data storage
systems using language abstractions that hide the complexi-
ties of common performance test automation tasks. To that
end, we presented our little language, SLSL, and highlighted
its key language elements within the context of the specific
automation tasks they were designed to facilitate. We sup-
plied several small code examples throughout the paper to
show how automation tasks can be fulfilled with SLSL. We
also discussed how the implementation of SLSL meets our
lightweight design goals with respect to its maintenance con-
siderations and extensibility. Finally, we provided one com-
plete SLSL implementation that was demonstrative of how
SLSL can be used to achieve a high degree of flexibility in
performance test configurations.

Future extensions of SLSL will focus on providing the test
designer with more control over various aspects of a test’s
runtime. For example, current measurement intervals are
based solely on time. We are discussing future extensions
that will allow a test designer to specify measurement inter-
vals based on phases. Phase changes can be triggered by an
arbitrary set of conditions in the system (e.g., a desired CPU
utilization is reached, a failure event has occurred, etc. . .).

We also plan to explore adding gate elements in support of
more event types. Gates will be used as background tasks
that check various system conditions over periods of time
and signal some other component when that condition has
been satisfied. We are planning to use gates to perform rudi-
mentary automated analysis during test execution. Among
other things, this analysis can be used to provide a“score”for
the“goodness”of the measurements collected by a particular
test. These “goodness checks” will be used to omit bad mea-
surement data in the event of a undesired system behavior
during test execution (e.g., incorrect port speed, undesired
bottlenecks, etc. . .). This will aid greatly in performance
regression analysis, as there are hundreds of automated test
results collected each week.

6. ACKNOWLEDGMENTS
The authors would like to thank the rest of the develop-

ment team, including George Dowding, Will Spearman, Jay
Goldfinch, Steven Yap, and Gordon Young for their hard
work and ingenuity. Additional thanks goes out to Pete
Wyckoff and Gary Little for lending ideas and providing
guidance in times when guidance was needed, and to Jill L.
Ferguson for graciously assisting with the editing process.

7. REFERENCES

[1] A. V. Deursen and P. Klint. Little Languages: Little
Maintenace? Journal of Software Maintenace:
Research and Practice, 10(2), 1998.

[2] M. Eisler, P. Corbett, M. Kazar, D. Nydick, and
C. Wagner. Data ONTAP GX: A Scalable Storage
Cluster. In FAST ’07: Proceedings of the 5th USENIX
conference on File and Storage Technologies, pages
23–23. USENIX Association, 2007.

[3] P. Feresten. Storage Multi-Tenancy for Cloud
Computing. Website, 2010. http://www.snia.org/
cloud/CloudStorageMultiTenancy.pdf.

[4] Geeknet Inc. fio. Website, 2010.
http://freshmeat.net/projects/fio/.

[5] S. Godard. Welcome to the SYSSTAT Utilities Home
Page. Website, 2010. http:
//sebastien.godard.pagesperso-orange.fr/.

[6] E. Goggin, A. Kergon, C. Varoqui, and D. Olien.
Linux Multipathing. Linux Symposium, pages
147–168, 2005.

[7] J. W. Lloyd. Practical Advantages of Declarative
Programming. In Joint Conference on Declarative
Programming. GULP-PRODE’94, 1994.

[8] M. Mernik, J. Heering, and A. M. Sloane. When and
How to Develop Domain-Specific Languages. ACM
Computing Surveys, 37(4):316–344, 2005.

[9] Microsoft. Using Jetstress to Test Disk Performance.
Website, 2005. http://technet.microsoft.com/
en-us/library/aa998462(EXCHG.65).aspx.

[10] Microsoft. Multipath I/O overview. Website, 2008.
http://technet.microsoft.com/en-us/
library/cc725907.aspx.

[11] P. O’Brien. Guide to Python Introspection. Website,
2002. http://www.ibm.com/developerworks/
library/l-pyint.html.

[12] Open Solaris. FileBench. Website, 2010.
http://www.solarisinternals.com/wiki/
index.php/FileBench.

[13] Oracle and Sun Microsystems. Solaris SAN
Configuration and Multipathing Guide. Website, 2010.
http:
//docs.sun.com/app/docs/doc/820-1931.

[14] J. Osier. GNU gprof. Website, 1993.
http://www.cs.utah.edu/dept/old/texinfo/
as/gprof.html.

[15] T. Powell. March Tool of the Month: Simulated IO
(SIO). Website, 2006. http://partners.netapp.
com/go/techontap/tot-march2006/0306tot\
_monthlytoolSIO.html.

[16] Python Software Foundation. Website, 2010. http:
//docs.python.org/library/parser.html.

379

[17] Python Software Foundation. Website, 2010. http:
//docs.python.org/library/inspect.html.

[18] C. Querol, D. B. Dov, D. Scheibli, J. Eiler, M. Zhang,
R. Riggs, R. Altherr, T. Harmon, and V. Degoricija.
Iometer. Website. http://www.iometer.org.

[19] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open versus closed: a cautionary tale. In NSDI’06:
Proceedings of the 3rd conference on Networked
Systems Design & Implementation, pages 18–18,
Berkeley, 2006. USENIX Association.

[20] D. Spinellis. Notable Design Patterns for Domain
Specific Languages. Journal of Systems and Software,
56(1):91–99, 2001.

[21] Standard Performance Evaluation Corporation.
Website, 2010. http://www.spec.org/.

[22] Storage Performance Council. Website, 2010.
http://www.storageperformance.org/home/.

[23] webmaster@iozone.org. IOzone Filesystem Benchmark.
Website, 2006. http://www.iozone.org.

380

