Improving the Efficiency of Information Collection and
Analysis in Widely-used IT Applications

Sergey Blagodurov*

Systems Research Lab

Simon Fraser University
sergey_blagodurov@sfu.ca

ABSTRACT

Modern IT environments collect and analyze increasingly large vol-
umes of data for a growing number of purposes (e.g., automated
management, security, regulatory compliance, etc.). Simultane-
ously, such environments are challenged by the need to minimize
their environmental footprints. A general solution to this problem
is to utilize IT resources more efficiently. This paper describes our
work to systematically evaluate the inefficiencies in the informa-
tion collection and analysis of several widely-used IT applications,
to implement a more efficient solution, and to quantify the im-
provements. In particular, the logging of HTTP transactions by
the Apache Web server and of network events by the Bro intrusion
detection system are converted from text files to DataSeries [24].
The costs of recording, storing and analyzing the information in
the different formats are thoroughly evaluated and compared. We
converted the text logs to DataSeries online, with no discernable
overhead on the logging applications. We achieved upto a 7x de-
crease in the logfile sizes relative to the sizes of the default text
logs, and speedups of 3x-8.4x to analyze the logfiles.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques—
Software libraries

General Terms

Design, Experimentation, Measurement, Performance

Keywords

DataSeries, Log Analysis, Log Storage and Representation, Multi-
core systems

1. INTRODUCTION

Improving the environmental sustainability of IT is an impor-
tant challenge. A popular way to target it is to use IT resources

*Work completed as an intern at HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’11, March 14-16, 2011, Karlsruhe, Germany.

Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

359

Martin Arlitt
Sustainable Ecosystems Research Group
Hewlett-Packard Laboratories
martin.arlitt@hp.com

(e.g., multicore servers) more efficiently. Simultaneously, busi-
nesses have recognized the value of gathering and using digital
information. As a result, organizations may want to collect more
data, retain data longer and analyze it quicker, without paying for
larger or faster IT systems.

DataSeries is a toolset developed at Hewlett-Packard Laborato-
ries for manipulating large datasets [24, 15, 11]. It is intended for
storing structured serial data, so it is similar to an append-only SQL
database in that it stores data organized into extents (the DataSeries
equivalent of tables in a database). DataSeries is different from an
SQL database in that the rows of the tables have an order that is
preserved. Each row consists of a number of fields (similar to SQL
columns) of various types. DataSeries can use one of a number of
different compression algorithms. The choice of compression al-
gorithm can be made to either decrease creation time, read time or
storage space, and also provides other options to further optimize
performance. Since DataSeries compresses the entire extent as one
entity, it is not efficient to append rows to an existing and packed
extent in a DataSeries file. We implement a workaround to this
to use DataSeries for online logging. DataSeries includes a C++
interface to quickly read and analyze DataSeries files.

Previous studies have shown that DataSeries provides significant
performance and storage benefits for saving and analyzing of struc-
tured serial data [11, 23, 24]. This type of information is collected
by numerous applications in many areas of computing and science
(e.g., maintaining event logs or logging transactions) [24, 2]. In
this paper we focus on two widely-used IT application groups: Web
servers and network monitoring. In the first category, we specifi-
cally consider the Apache Web server (version 2.2.14) [2] which
services and logs Web requests, and Webalizer (version 2.01), a
popular open source tool for analyzing Web server logs [22]. In the
second category, we examine the Bro intrusion detection system
(version 1.5.1) [7] for monitoring and logging network traffic and
GNU awk (version 3.1.6) for analyzing the Bro logfiles.'

The study described in this paper compares the cost of recording,
storing and analyzing the information in the default text formats
used by the aforementioned applications against the DataSeries for-
mat. A goal of the project is to stimulate adoption of DataSeries, by
demonstrating its benefits for commonly used applications, and by
providing exemplary integrations. We intend to share all the source
code additions and improvements, developed within this project,
with the respective open source projects. The modifications made
in this work are available for download at [18]. For related work on
DataSeries, readers are referred to [11, 23, 24].

The rest of the paper is organized as follows. Section 2 describes

'In preparation for this study, we asked Bro developers which tools
they used to analyze Bro logs. They indicated that awk was a tool
they commonly used for this purpose.

our experimental design for evaluating the benefits of DataSeries
for several popular open source tools. Sections 3 and 4 illustrate
the benefits of DataSeries through two case studies: Section 3 ex-
plains the DataSeries integration and experimental results for the
Apache-Webalizer program pair, while Section 4 discusses the cor-
responding case study for the Bro-awk program pair. Section 5
briefly describes the lessons learned within this study and Section 6
concludes the paper with a summary of our project and a list of fu-
ture directions.

2. EXPERIMENTAL DESIGN
2.1 HTTP workload generator

To perform the experiments with logging of Web transactions,
we need a benchmark to generate the Web traffic. We sought a
generator that satisfied the following requirements:

e It should be able to generate the requests with different fre-
quency (number of requests per unit of time) and duration.

e It should generate a meaningful workload: that is, the pattern
of requests should closely mimic the behavior of actual Web
users visiting a Web site.

After considering several HTTP traffic generators (Table 1), we
chose RUBIS [16] as our main workload generator since it ad-
dresses both requirements.

RUBIS is an auction site prototype modeled after eBay.com. RU-
BiS is used to evaluate application design patterns and a Web site’s
performance and scalability. It is widely used as a benchmark in
network research [26, 27]. RUBIS implements the core function-
ality of an auction site: selling, browsing and bidding. It distin-
guishes between three kinds of user sessions: visitor, buyer, and
seller. For a visitor session, users need not register but are only
allowed to browse. Buyer and seller sessions require registration.
In addition to the functionality provided during visitor sessions, a
buyer session user can bid on items and consult a summary of their
current bids, rating and comments left by other users. Seller ses-
sions require a fee before a user is allowed to put up an item for
sale. The seller can also perform other tasks, like specifying a re-
serve (minimum) price for an item [16].

Multiple implementations of RUBIS are available, based on sev-
eral different technologies: EJB (versions 2.0, 2.1 or 3), PHP, Servlet
or Servlet_Hibernate. Additionally, the distribution can be down-
loaded as RUBiSVA 1.0 (RUBIiS Virtual Appliance) [17]. We in-
stalled and configured the RUBIS version based on PHP.

One challenge we encountered with RUBIS is that it is not de-
terministic: RUBIS generates a slightly different workload every
time it is launched. The number and order of requests is slightly
different for the runs with the same experimental setup and dura-
tion. We addressed this challenge by running RUBIS three times
for every experimental configuration and comparing average val-
ues and standard deviation of the results. Step-by-step installation
instructions for RUBiS PHP and other programs used in our work
are available in [25].

2.2 Experimental configuration

We created an experimental design that allows us to simultane-
ously evaluate two different applications that record logs and two
different applications that analyze logs. The design is illustrated
in Figure 1. First, we use a workload generator that generates
HTTP requests. These requests are served by a Web server that
records logs about which requests are served. The traffic between

360

the workload generator and the Web server are observed by a net-
work monitor that collects and records data on network activity.
We then perform an offline analysis of both types of logs collected
during the previous step.

Web server
« serves HTTP requests
« records logs

GET/HTTPAA Web Analysis
« offline analysis of

server logs

Workload
« generates HTTP requests

-
HTTP/1.1 200 OK

r—-—---

flet\lalvoﬁ l:lz;mtor Network Analysis
> * collects data on = = + offline analysis of
network activity L
network activity
« records logs

Figure 1: The experimental design used in this study.

Figure 2 shows the testbed we ran our experiments on.

RUBIS Apache/Bro Web server
AMD Opteron 8435 Istanbul 2.6GHz
24 cores (4 CPUs)

NUMA system: 4GB per CPU

NFS server
388GB filesystem

C Y 3
Figure 2: The experimental configuration used in this study.

RUBIS Java client

AMD Opteron 2435 Istanbul 2.6GHz
12 cores (2 CPUs)

NUMA system: 8GB per CPU

§

76 GB SCSI
local
hard drive

100MbE/1GbE

76 GB SCSI
local
hard drive

One server, which we refer to as the RUBIS Java client, gener-
ated the HTTP workload. This server has two AMD Opteron 2435
Istanbul 2.6 GHz CPUs, each with six cores (12 total CPU cores).
It is a NUMA system: each CPU has an associated 8§ GB memory
block, for a total of 16 GB main memory. Each CPU has 6 MB
48-way L3 cache shared by its six cores. Each core also has a pri-
vate unified 512 KB 16-way L2 cache and a private 64 KB 2-way
L1 instruction and data caches. The client machine was configured
with a single 76 GB SCSI hard drive.

A second server ran the Apache Web server and Bro intrusion
detection system. The RUBiS Apache/Bro Web server has four
AMD Opteron 8435 Istanbul 2.6 GHz CPUs, each with six cores
for a total of 24 CPU cores. It is a NUMA system: each CPU
has an associated 4 GB memory block, for a total of 16 GB main
memory. Each CPU has 5 MB 48-way L3 cache shared by its six
cores. Each core also has a private unified 512 KB 16-way L2
cache and a private 64 KB 2-way L1 instruction and data caches.
The server was configured with a single 76 GB SCSI hard drive.

The servers were configured with Linux Gentoo 2.6.29 release
6. Both of these servers could access a 388 GB NFS filesystem.
Initially, these servers were inter-connected via a 100 Mb/s Ether-
net network. During our experiments, we determined this network
link became a performance bottleneck, so we upgraded to a 1 Gb/s
Ethernet.

A goal of our study is to determine how the efficiency of the
two application groups described above can be improved through
more effective use of multicore servers, such as those in our testbed
(depicted in Figure 2). The efficiency of logging and analysis in the
two application groups will be improved in two ways. First, logs
will be created using DataSeries rather than plaintext. Second, the
analysis tools will be parallelized to take advantage of the multicore
processors available on the modern servers. The improvements are
quantified using two metrics: the decrease in the amount of disk
space required to store the logfiles; and the speedup in analysis
time.

| | Varying workload | Meaningful workload |

Pre-collected traces [15, 20] No Yes
Pktgen, Http Traffic Generator, etc. | Yes No
httperf [13] Yes Partially (can be emulated with the user defined sessions)
RUBIS [16] Yes Yes

Table 1: The comparison of web traffic generators.

Another important consideration is whether the DataSeries log-
ging implementation works properly. For offline conversion of a
plaintext log, this is straightforward to check. However, with on-
line creation of DataSeries logs, verification is more difficult, ow-
ing to the nondeterministic nature of the RUBiS workload gener-
ation. Therefore, we validate the conversion of plaintext logs to
DataSeries using the following two metrics: the time for the ap-
plication to log a similar number of items, and the amount of data
logged for a similar workload. In both cases, we expect to see sim-
ilar numbers with and without the integration of DataSeries.

2.3 DataSeries configuration

DataSeries has a variety of options that can be selected, to give
users flexibility in how they use it [11]. We performed several of-
fline experiments with DataSeries to determine which parameter
settings to use in our online experiments. For these offline experi-
ments, we converted an existing Apache logfile into DataSeries for-
mat. The logfile was created by the Apache Web server and a RU-
BiS workload that lasted 10 hours with 1,000 RUBIS clients. This

resulted in almost 25 million log records in the Apache access. log

file, which required about 3 GB of storage space. We found out that
the DataSeries conversion tool csv2ds creates files with a very small
default extent size (64 KB, which is approximately 500 rows from
an Apache log), resulting in many small extents of the same type
being included in the DataSeries file (once the current extent was
full, csv2ds wrote it into the file and created a new one). We inves-
tigated how the size of the extent affects the size of the resulting
DataSeries logfile. Figure 3 shows that if the size of the extent is
kept relatively large (10,000 rows or higher), the difference in log
filesize is kept within 10%.With larger extent sizes, slightly bet-
ter compression can occur. However, the tradeoff is more log data
must be buffered before the extent can be written to disk. We se-
lected 10,000 rows per extent as a reasonable tradeoff to use in our
online experiments.

DataSeries files can be compressed by one of four compression
algorithms (Izf, 1zo, gzip and bzip2) [11], with lzf being the least
efficient in terms of storage space, but the fastest one in terms of
access time, and bzip2 vice versa. We consider both 1zf and bzip2
in our online experiments.

The ideal choice of compression algorithms and extent size de-
pends on the intended use of the data. While we found an ex-
tent size of 10,000 rows and the lzf compression algorithm en-
abled quick analysis results, if our priority was to minimize storage
space we could use larger extent sizes and bzip2. If we wanted to
quickly generate a report on a dataset but then archive the dataset,
we could also store the data initially using 1zf, but then convert the
1zf-compressed data set to a bzip2-compressed data set (potentially
with larger extent sizes) before archiving the dataset.

3. APACHE-WEBALIZER CASE STUDY

In this section we describe how we integrated DataSeries into the
Apache Web server and Webalizer, and quantify the benefits that it
provides.

361

500
450 -
400 -
350
300 -
250
200 -
150 -
100 |
50

Olzf compressed DataSeries log

B bzip2 compressed DataSeries log

DataSeries log size, MB

1,000 rows 10,000 rows 100,000 rows 1,000,000 rows

Rows per extent

Figure 3: DataSeries filesize with different extent sizes.

3.1 Apache Web server logging

Mod_log_config [3] is the module that allows the Apache Web
server to log client requests. Logs can be written in a customiz-
able format directly to a file or to an external program. Each string
in the logfile corresponds to a distinct Web request. The format
for the logfile can be specified as a string argument to the Log-
Format or CustomLog directives in the module’s configuration file
(/etc/apache2/modules.d/00_mod_log_config.conf on Linux Gen-
too). This string is used to specify what information will be in-
cluded in each log record and how it will appear in the logfile.

The log format we use is called combined_plus. In comparison
with the default common format, it has three additional fields: ref-
erer, user-agent and request time (Table 2). The first two fields are
usually included since they can provide useful information about
the Web site audience (where visitors came from and what browsers
they are using). The last field is included to test the efficiency of
logging with DataSeries. Specifically, we want to verify that the
time it takes for the modified Apache Web server to service a re-
quest does not change relative to logging in plaintext. The com-
bined_plus log format appears in the configuration file as follows:
"y su %t \"sr\" %>s 3b
"%${User-Agent}i\" %D"

LogFormat %1
"${Referer}i\"
combined_plus

A corresponding sample string from the logfile:

127.0.0.1 - - [11/Jul/2010:13:13:39
-0700] "GET /PHP/index.html HTTP/1.1" 200
2149 "-" "Java/1.6.0_17" 69

To create a new module for Apache, a tool called apxs [12] can
be used. apxs allows compiling, linking and installing of the mod-
ule into the Apache framework. The main difficulty we encoun-
tered is that the module must be written in C, while DataSeries
uses C++. To build C++ source as a valid Apache module, the
commands used by apxs need to be modified as is shown in [12].

| Field | Description
host The IP address or fully qualified domain name (FQDN) of the client that made the HTTP resource request.
user ID A unique identifier for the user making the HTTP request. If no value is present, a "-" is substituted.
username The username provided for authentication. If no value is present, a "-" is substituted.
date:time The date and time the HTTP request was received.
request The request field contains three pieces of information: the HTTP method (e.g., GET), the requested resource (e.g.,
index.html), and the HTTP protocol version (e.g., 1.1).
statuscode A numeric code indicating the success or failure of the HTTP request.
bytes The number of bytes of data transferred in the HTTP response, not including the HTTP response header.
referer The page from which the user issued the current request.
user-agent The user-agent (browser) that issued the request.
request time | The time taken to serve the request, in microseconds.

Table 2: The description of the fields used in the default common (in italic) and combined_plus (in italic and italic bold) log formats.

Table 3: Verification results (Apache).

(a) The number of strings in the Apache logfile.

(b) Apache Web server service times.

1 hour, 240 clients | 2 hours, 240 clients 1 hour, 240 clients | 2 hours, 240 clients

Mean | Stdev Mean | Stdev Mean | Stdev Mean | Stdev
Plaintext log (mod_log_config) 324,966 | 2,315 645,814.5 | 1,034 255.838 | 287.517 | 253.392 | 283.396
DataSeries log (1zf compressed) 323,611 | 2,254 646,302 93 251.02 290.091 | 244.359 | 333.965
DataSeries log (bzip2 compressed) | 327,156 | 1,310 645,846 903 244274 | 370.158 | 240.071 | 333.917

The ability of DataSeries to compress the data of the created ex-
tents is very useful for maximizing storage space savings. How-
ever, it makes it very difficult to append new rows to the existing
packed extent, a feature that would be useful when logging Web
transactions. The issue is the extent would have to be first read
from the DataSeries file, decompressed into main memory and then
compressed back with the new rows appended to it. We use the fol-
lowing logging scheme to avoid this:

e The data about each serviced request is first saved into the
usual text logfile (the way mod_log_config would do it).

e Once the number of strings in the logfile reaches a threshold
number K, the data in the logfile is converted into an ex-
tent by the DataSeries toolset. The extent is then compressed
and appended to the end of the DataSeries logfile. On one
hand, K should not be too small, as in this case there could
be conflicts between the threads that write into the temporary
text log and the thread that reads from it, dumps the data into
the DataSeries logfile and truncates it. On the other hand,
K should not be too big, as that would cause an unneces-
sarily large temporary text log, and would increase the time
of conversion it to DataSeries format. We experimantially
chose K = 10, 000 as a trade-off value (as discussed in Sec-
tion 2.3).

o After the DataSeries extent is saved to disk, the small text
logfile is truncated and the cycle repeats. One issue with
writing a temporary file to disk and then writing the DataSeries
file also to disk is that it actually increases the amount of disk
traffic in comparison with the default Apache setup (where
only one textfile is being modified). Although the increase in
the disk traffic is not high (DataSeries compresses the extents
so the amount of data being transferred is low), the disk traf-
fic increase might be crucial on a busy Web server or when
using nfs filesystem as a storage space. An alternative we

tested is writing the temporary file to tmpfs” [19], a filesys-
tem that exists in the main memory of the machine. This
substantially decreases the disk traffic (even in comparison
with the default case as only packed DataSeries files will be
written to disk). The disadvantage of this solution is that,
during unexpected crash of the machine, the data in such a
temporary file might be lost. As the local disk was not a
bottleneck in our experiments, the results we present in the
remainder of the paper use the local disk approach for storing
the temporary file.

The resulting DataSeries module, which we call mod_log_dataseries,

allows for logging of HTTP transactions in both DataSeries and
plaintext as well as DataSeries only. It uses the following schema
[24] when creating DataSeries logfiles:

<ExtentType name="apache2ds" version="1.0">
<field type="variable32" name="ip_address"
pack_unique="vyes" />

<field type="variable32" name="client_identity"

pack_unique="yes" />
<field type="variable32" name="userid"
pack_unique="yes" />

<field type="variable32" name="request_time"
<field type="variable32" name="request_data"

pack_unique="yes" />

<field type="variable32" name="status_code"
pack_unique="yes" />

<field type="int32" name="object_size" />
<field type="variable32" name="referrer"
pack_unique="yes" />

2 Another alternative is to create an in-memory buffer to store the
temporary log file. However, as we are unfamiliar with Apache’s
memory management, we did not attempt this approach. However,
should Apache developers adopt DataSeries, they should consider
the in-memory approach.

/>

<field type="variable32"

pack_unique="yes" />

<field type="int32" name="time_to_serve"
</ExtentType>

name="user_agent"

/>

The schema is used by the DataSeries module to determine the
name and structure of the extent that holds the data within the
DataSeries logfile, i.e., which fields each row of this extent will
contain. In our case, the extent is called "apache2ds" and each of
its rows contains ten fields that correspond to the log format fields
from Table 2. DataSeries currently supports six data types: bool
(0 or 1), byte (0-255), int32 (signed 32 bit integer), int64 (signed
64 bit integer), double (IEEE 64 bit floating point) and variable32
(up to 23! bytes of variable length data, such as strings) [24]. The
information contained in most of the fields can be described as a
string (variable32), with two fields (object_size and time_to_serve)
presented as 32 bit integers. For most of the string fields, the field-
level option pack_unique is also specified. This option enables each
unique variable32 value to be packed only once within that extent.
For fields with many repeated values this option increases the effec-
tive compression ratio. Object_size and time_to_serve were chosen
to be represented as integers due to its numerical nature and also
because storing integer values were empirically proven to consume
less space than variable32.

After integrating DataSeries into Apache, we needed to verify
that it worked properly. Table 3(a) shows the number of records
logged by the DataSeries module (in its 1zf and bzip2 implementa-
tions) as well as the number of records in the plain Apache log cre-
ated by mod_log_config for different durations of the experiment.
Each combination of Apache module and experiment duration was
tested three times. Due to the non-deterministic workload, there are
minor variations in the results. However, the consistency indicates
that the DataSeries module captures the same information as the
default Apache mod_log_config.

The second validation experiment examined the overhead of on-
line logging in DataSeries on the Apache Web server. Table 3(b)
shows that the request service time when using mod_log_dataseries
is quite similar to those recorded by the original mod_log_config.
The small variations in the average service time are negligible in
comparison with the high persistent standard deviation of the re-
quest times that exists even with the default Apache setup.

Satisfied that our integration of DataSeries into Apache worked
correctly with negligible performance overhead, we then turned our
attention to quantifying the benefits DataSeries provides. Figure 4
shows the improvements in terms of storage space when logging
with the DataSeries module for the different experiment durations
and number of RUBIS clients. It shows that the 1zf-compressed
DataSeries logs are on average 7 times more compact than the orig-
inal Apache logfiles. The improvement in terms of disk space is
even greater when using bzip2 compression. The size of DataSeries
logfiles is close to that of the plaintext Apache logs, compressed
with gzip as a whole. For the latter case however, the logs would
first have to be collected in plaintext and then compressed offline
(e.g., with gzip), which takes additional disk space during logging
phase and compression time afterwards, whereas our DataSeries
Apache module is able to gather compressed logs online, as Apache
services Web requests.

The average number of lines in the DataSeries files for experi-
ments with various duration is provided on Figure 5. In the short-
est of our experiments, ~1 million records were logged while the
longest experiment had approximately 189 million records. One
concern that system administrators may have in adopting DataSeries
is how to work with a binary format rather than the text format they
are accustomed to. Fortunately, it is straightforward for system ad-

363

ministrators to convert DataSeries files back into plaintext, if they
so choose. It can be done with the special parallelization library
from HP Labs called Lintel (available for download from [15]).
The DataSeries distribution includes a tool called ds2txt that uses
Lintel and will utilize all available CPUs on a multicore machine
to speed this process up. It also allows user to skip unnecessary
DataSeries internal information in the output log (i.e., names, types
and position of extents in the input DataSeries file):

ds2txt —-skip-index —--skip-types \
--skip-extent-type --skip-extent-fieldnames \
access.ds > access_log_from_ds

Figure 6 shows the time it takes to convert the DataSeries logfiles
back into plaintext (the sizes and the average number of records
in each DataSeries file is given on Figures 4 and 5). The results
obtained with ds2txt tool suggest that even for logfiles with almost
200 million entries, it only takes 11-12 minutes to regenerate the
complete plaintext logfile.

25

21.4

O gz compressed Apache log

@ .

S 20 Olzf compressed DataSeries log

% B bzip2 compressed DataSeries log

9 15 - M plain Apache log

k]

v

N

‘@

o 10 -

oo

e

]

< 5 -
©ownmnR o N2 1N
§888 g§BE% 3%g
ccooco cco©® S © o

0 T T

3 hours, 240 7 hours, 240 10 hours, 1000 4 days, 1000
clients clients clients clients

1 day, 5000
clients

Figure 4: Effect of format on logfile size.

189

200

1m lines

Average number of records in logfile,

3 hours,
240 clients 240 clients

7 hours, 10 hours,
1000

clients

4 days,
1000
clients

1 day, 5000
clients

Figure 5: Number of records (Web requests) per logfile.

3.2 Analysis of Apache DataSeries logs

In this section we demonstrate the improvements that logging in
DataSeries format can provide to the analysis time of the Apache
logfiles. We tried several different analysis tools (awstats [4], Ana-
log [1], etc.) before choosing Webalizer [21] as our log analyzer.
Webalizer is a Web server logfile analysis tool created by Bradford
Barrett and distributed under the GNU GPL. Webalizer produces
usage statistics for different time periods, along with the ability to
display usage by site, URL, referer, user agent (browser), search
string, entry/exit page, username and country. We chose Webalizer
for the following reasons:

800

705
682

Olzf compressed DataSeries log

700 B bzip2 compressed DataSeries log

600 -
500 -

375
352

400
300 -

parallelization, sec

200

Time to convert with Lintel

102

100 -

o0
-

<+ o [

3 hours, 240 7 hours, 240
clients clients

10 hours,
1000 clients

4 days, 1000 1 day, 5000
clients clients

Figure 6: DataSeries to plaintext conversion times (Apache).

1) It is widely used [26, 27] and is included in all main Linux
software package trees so can be easily installed and config-
ured on almost any Linux distribution.

2) It is written in C (as opposed to Perl for awstats), which
makes it easy to modify for working with DataSeries (C++).
Note that working with C++ classes in Perl is also possible
with the special modules for Perl called Inline-CPP [14], but,
since the latter generally takes more time to configure and

debug, we decided to use Webalizer instead.

3) It has a special mode (if enabled at compile time) in which
it can analyze logfiles compressed with gzip. Any logfile-
name that ends with a ".gz" extension is assumed to be in an
archive format and is uncompressed as it is read. This makes
it possible to compare the analysis time of DataSeries logs
with not only plaintext logs, but also with the logs stored in

a popular compression format.

To take full advantage of DataSeries and multicore servers, we
first needed to parallelize the single-threaded Webalizer. The im-
portant details when parallelizing Webalizer are:

Each thread in our multi-threaded version of Webalizer works
independently on its own piece of the input DataSeries file. The
threads exchange data only when the results are aggregated into
the final report, as explained below. In this way we can maximize
the parallelization of processing the logfile. We use the following
scheme to break the logfile into pieces:

e We first obtain the number of extents of type "apache2ds"
from the footer of the DataSeries file (with 10,000 rows in
each extent). We refer to this as extent_num.

We then divide extent_num by the number of analyzing threads
thread_id_max specified as a #define directive during We-
balizer compilation. This determines the fraction of the data
(i.e., the number of extents) that will be processed by each
thread.

We obtain the initial and the last extent that each DataSeries
thread will process.

We open the DataSeries logfile for reading in each thread,
move the read pointer to the start of the corresponding piece
and start reading/decompressing the data.

Webalizer produces several reports (html) and graphics for each
reporting period (e.g., one month) processed. The main report is
written in a file "index.html" to the directory that can be specified as

364

a configuration parameter OutputDir in /etc/webalizer.conf (by de-
fault /var/www/localhost/htdocs/webalizer) and is a summary page
for the current and previous periods. The various totals shown in
the report are explained in Table 4. When parallelizing the analysis
stage (report generation), we considered the following issues.

Since the initial version of Webalizer processes strings from the
logfile in a single-threaded mode, all of its internal structures must
be transformed into arrays to make the parallelization possible. For
example, there is a temporary variable called t_hit, which con-
tains the total number of hits in the currently processing month. For
the parallelized version of Webalizer we need to turn it into an ar-
ray t_hit [MAX_THREAD_NUM] that contains a distinct copy of
that variable for each processing thread (otherwise, all the threads
would have to work with the same variable, which would be very
costly in terms of access synchronization as the number of threads
grows).

The initial version dumps all the total information for the report-
ing period into the report, once all the log records for the current
period have been processed. In the multi-threaded version we need
to detect when the period has been processed in all of the threads
and only then generate the overall report. The difficulty here is that
we need to combine the totals from each processing thread. For
hits, files, pages and Kbytes this is straightforward (e.g., just sum
t_hit[t]). Total unique request senders (sites) and the num-
ber of sessions (visits), however, are not simple summations of the
corresponding variables from every thread. For example, the total
number of unique addresses per the whole period (the "sites" to-
tal) is not simply a sum of unique addresses from each processing
thread, since each thread worked only on its own piece of data and
hence has the information about only a subset of the total records.
As aresult, the sum of all the t_site[t] values will always be
greater than or equal to the entire site’s value.

Although each analyzing thread will be able to correctly de-
termine the number of unique visits within its piece of the log-
file, the total number of visits could be less than the sum of all
t_visit[t], because the time of the last records in one piece
can be no earlier than within 30 minutes of the time the next piece
starts (30 minutes is the default visit timeout in Webalizer, which
can be changed in /etc/webalizer.conf).

Due to space limitations, we refer the interested reader to our
technical report [25] for the description of the multi-threaded solu-
tion.

Besides the varying level of parallelization (the number of paral-
lel threads of execution), we also tested several different schemes
of parallelization as described below.

Plaintext, single-threaded is the initial sequential version of We-
balizer that works on the plaintext logs obtained with mod_log_config.
The scheme compressed plaintext, single-threaded is the same as
the plaintext, single-threaded, except we first compressed the input
text log with gzip.

We designed and implemented four parallelization schemes. In
the unified scheme (Figure 7(a)), each thread of the multi-threaded
Webalizer performs the entire cycle of processing for each row in
its log chunk: it reads the data from the DataSeries log, decom-
presses it, and performs the analysis. This is the most straightfor-
ward parallelization scheme. The schemes unified and unified with
parser (Figure 7(b)) are essentially the same, except unified does
not take advantage of the pre-parsed fields already present in the
DataSeries file (each string from the Apache logfile is stored in the
DataSeries file as a row of fields in an extent). Instead, unified first
converts all the fields to one string and parses it with the standard
Webalizer function parse_record (), while unified with parser
takes DataSeries fields and incorporates them directly into the We-

| Parameter | Description

Hits Any request made to and logged by the server during the specified reporting period is considered a ’hit’.

Files Some requests require the server to send an object, such as an html page or image, back to the requesting client. When
this happens, it is considered a file response, and the files total is incremented.

Pages Any request that retrieves an HTML object or causes an HTML object to be generated is considered a page. This does
not include the other content that is embedded in a Web page, such as images, audio clips, etc. The default action is to
treat anything with the extension ‘. htm’, “.html’ or ‘.cgi’ as a page.

Sites Each request made to the server comes from a unique site, which can be an IP address or FQDN. The Webalizer
maintains a cache of DNS lookups to reduce processing the same addresses in subsequent runs. The final value of sites
indicates how many unique sites made requests to the server during the reporting period.

Visits Whenever a request is made to the server from a given site, the amount of time since a previous request (if any) by the
address is calculated. If the time difference is greater than a pre-configured visit timeout value (or the site has never
made a request before), it is considered a new visit, and this total is incremented. The default timeout is 30 minutes.

KBytes This parameter shows the amount of data, in KB, which was sent out by the server during the specified reporting period.

Table 4: The description of the parameters presented in the total report generated by Webalizer.

balizer structure 1og_rec [thread_id] that describes the cur-
rently processed log record. Unified with parser skips the Webal-
izer parsing. By comparing the performance of these two schemes
we can determine the usefulness of keeping the fields separately for
each row in DataSeries file.

A third parallelization scheme we examined is Separated (Fig-
ure 7(c)). In this scheme there are two kinds of threads. The first
type we call DataSeries threads. These threads read the DataSeries
file, decompress the extents and supply the information to the anal-
ysis module (by taking advantage of the pre-parsed DataSeries fields,
similar to unified with parser). The second type we call analysis
threads. These analyze the data provided by DataSeries threads,
save the intermediate results and create the resulting report.

The separated scheme works as follows. Once the current extent
in a DataSeries thread has been decompressed, the thread starts to
read rows of the extent one by one. The row data then goes into
a temporary buffer organized as a doubly-linked list. There is one
such buffer dedicated for every DataSeries thread. Each element in
the buffer contains all of the fields of a log record (a row from the
extent currently being processed by that DataSeries thread). Once
all rows from the current extent are processed, the buffer with the
extent data is then appended to a FIFO channel. Rows from the
FIFO channel are then read by the corresponding analysis thread
(keeping the buffer and the FIFO channel separate reduces syn-
chronization overhead). As with the buffers, the number of FIFO
channels is equal to the number of DataSeries threads. Each anal-
ysis thread works independently on its own channel, so the num-
ber of analysis threads is also equal to the number of DataSeries
threads. The purpose of this scheme is to further parallelize the
processing of each record: now obtaining the data from the logfile
and analyzing it can be done concurrently.

A fourth scheme called Separated with DataSeries sub-threads
(Figure 7(d)) is similar to the separated scheme. The difference
with this fourth scheme is there are two DataSeries threads per each
analysis thread: one DataSeries sub-thread works on odd rows of
the currently processed extent, while the other works on the even
rows. Both sub-threads dump information into the same doubly-
linked list, which is in turn appended to the FIFO channel of the
single analysis thread. We added this scheme after we observed
that analysis threads in separated tests occasionally stalled due to
a lack of data (i.e., DataSeries threads can be a bottleneck in the
separated scheme).

The results of testing these different parallelization schemes on
an lzf-compressed DataSeries logfile (1 day, 5,000 RUBIS clients,

365

approximately 189 million hits) are provided in Figure 8. By de-
fault, Webalizer can parse plaintext logs and text logs compressed
with gzip. The analysis of the Apache plaintext log by the default
Webalizer takes ~646 seconds. It does not benefit from the multi-
core system, as Webalizer is a single threaded application. If we
compress the plaintext log with gzip, this reduces the storage re-
quirement but increases the analysis time by 9% if we ignore the
time to create the gzip compressed file, and more than doubles
the analysis time if we take into account the time it takes to con-
vert the plaintext logs into gzip format. The results for DataSeries
parallelization suggest that unified with parser is the fastest paral-
lelization scheme with more than 8x speed up over the naive single-
threaded approach, when all 24 cores of the multicore server run-
ning the analysis are fully utilized. Unified is slower by 48% on
average than unified with parser, since the unified approach does
not take advantage of the already parsed DataSeries fields. We ex-
pected separated might be faster than unified with parser, since it
parallelizes obtaining the data from the logfile with analyzing. It
gives in fact almost the same performance results as unified with
parser when the number of analysis threads is small due to the ad-
ditional overhead of data exchange between the DataSeries thread
and its analyzing thread within the same multi-threaded applica-
tion. As the number of analysis threads increase, this scheme be-
comes slower than unified with parser. This is because there are
twice as many threads in separated as in unified with parser. Thus,
when the number of analysis threads is high, the separated ap-
proach has twice the contention for the shared resources of the mul-
ticore system (shared last-level caches, memory controllers, etc.)
This results in the corresponding slowdown. For the separated with
DataSeries sub-threads case, the additional DataSeries thread in-
creases the speed with which the data is supplied for analysis, but
it also increases the synchronization costs of accessing the doubly-
linked list buffer by two DataSeries threads. Nevertheless, it gives
the fastest results (by up to 16% relative to unified with parser) un-
til the number of analysis threads reaches six, after which the over-
head of the increased number of threads results in the slowdown
for this parallelization scheme as well. In fact, the overhead be-
comes even greater for the separated with DataSeries sub-threads
approach, due to the extra DataSeries thread used.

Our next set of experiments read data from an NFS filesytem
rather than from local disk on the server. Figure 9 shows the re-
sults for both the local disk and NFS experiments. The results are
normalized to the analysis time of the default set-up of a single
threaded Webalizer parsing uncompressed plaintext logs, read from

Thread 0 Thread 1

* Read and decompress

a row from DataSeries extent

* Make a string from the row fields
* Parse the string with Webalizer’s
parse_record() function

* Analyze the row

* Read and decompress

a row from DataSeries extent

* Make a string from the row fields
* Parse the string with Webalizer’s
parse_record() function

* Analyze the row

* Generate the final report

[* Aggregate the results from different threads

(a) Flow diagram for unified parallelization scheme.

To DataSeries thread 1

[—

DataSeries thread 0

Analysis thread 0

« append double linked list data to
FIFO channel

* Read and decompress
a row from DataSeries extent
« append the row to a double linked list

The last row in the extent?

No

*Read extent data from FIFO channel
row by row
“Analyze the row

From analysis thread 1

| + Aggregate the results from different threads
« Generate the final report

(c) Flow diagram for separated parallelization scheme.

Thread 0 Thread 1

* Read and decompress

a row from DataSeries extent

« Include DataSeries fields directly into
Webalizer’s structure log_rec[0]

* Analyze the row

* Read and decompress

a row from DataSeries extent

* Include DataSeries fields directly into
Webalizer’s structure log_rec[1]

* Analyze the row

* Generate the final report

[* Aggregate the results from different threads

(b) Flow diagram for unified with parser parallelization
scheme.

—
| Dataseries thread 1
DataSeries thread 0

To DataSeries threads 2, 3

Analysis thread 0

« append double linked list data to
FIFO channel

*Read extent data from FIFO channel
row by row
*Analyze the row

« Read and decompress
a row from DataSeries extent
« append the row to a double linked list

Yes
The last row in the extent?

No

From analysis thread 1

-}

« Aggregate the results from different threads
* Generate the final report

(d) Flow diagram for separated with DataSeries sub-threads
parallelization scheme.

Figure 7: Flow diagrams for the parallelization schemes studied.

local disk. For the DataSeries tests, both 1zf- and bzip2-compressed
DataSeries logfiles were used. The duration of the experiments was
the same as for the tests depicted on Figure 8 (1 day, 5,000 RUBiS
clients, 189 million requests). The results from Figure 9 suggest
that:

The highest performance was obtained using the parallelized We-
balizer with DataSeries (1zf compression), read from local disk (the
solid grey line with circles, up to 8.4x speedup). This configuration
was parallelizable until approximately 24 cores, at which point the
server system becomes fully loaded.

We discovered that the speedup of the corresponding NFS anal-
ysis depends on the speed of underlying Ethernet network. With
the relatively slow 100 Mb/s network, the link quickly saturates, as
the 100 MbE link connecting the analysis server to the NFS filesys-
tem becomes a bottleneck. The effect of this bottleneck can be seen
from the dotted grey line in Figure 9. To verify that the network was
indeed the bottleneck in this case, we used capstats [9], a package
that is shipped with Bro to measure the network bandwidth used
by a TCP connection. This problem disappeared as soon as we
switched to the 1 Gb/s network (the solid black line with circles).
Here the analysis time was very close to that of the local analysis,
with up to 8.0x speedup.

We also observed that, while the DataSeries bzip2 curves are not
affected by the Ethernet speed within the networks tested (the data
that needs to be transferred via the network in case of a tightly
packed bzip2 files is significantly less than that of the 1zf files), the
analysis speedup actually decrease for large numbers of threads.
The reason is that the decompression threads that DataSeries spawns
for bzip2 are significantly more computationally expensive than the
decompression threads for 1zf. Hence, when the number of analysis

366

threads is high and the system is fully loaded, bzip2 decompression
takes CPU time from analysis threads.

Lastly, we consider the experiments where the data is accessed
via NFS. In this case, the plaintext analysis of the default single-
threaded Webalizer experiences more than 2.5x slowdown if a 100
MBE rather than a 1GbE network is used. Similar to DataSeries
bzip2 curves, the analysis of the plaintext logfiles, compressed with
gzip as a whole, is not affected by the Ethernet speed and is close
to the uncompressed plaintext analysis over 1GbE. Note that the
speedups for "plaintext gzip (single-threaded)" are given for analy-
sis stage only and do not include the time to compress the logfiles
with gzip during their offline creation. If we were to include it, the
plaintext gzip curves of the default Webalizer would be more than
2x slower (DataSeries logs are created online and hence do not have
such an overhead).

4. BRO-AWK CASE STUDY

As further evidence of the benefits DataSeries provides to data
collection and analysis processes, we integrate it into tools used in
a different domain, and quantify its benefits over current practices.

4.1 Bro Intrusion Detection System Logging

Bro is a Unix-based Network intrusion detection system (IDS)
[8]. Bro monitors network traffic and detects intrusion attempts
based on the traffic characteristics and content. Bro may record
summaries of different network events (e.g., connection character-
istics), or generate alerts to potential intrusions.

Bro can read live traffic from a machine’s local network inter-
face by specifying the -i flag and the interface’s name. Bro stores
the information about the traffic it has observed in several log-

1600

1400

1200

[
[=]
[=]
o

800

600

Processing time, sec

400

200

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of analysis threads
=®~gzipped Apache log, single-threaded @-plain Apache log, single-threaded
-separated =#separated with DataSeries sub-threads
«~E~unified ‘©-unified with parser

Figure 8: Webalizer processing times (189M requests).

10
g S
6
4

1

0.8
0.6 0 8

0.4

16 24 32 40 48 56 64

0.2

Speedup relative to plaintext — local disk

0.1
Number of analysis threads

=®=DataSeries Izf — nfs (1 GbE)
@ DataSeries bz2 — local disk
=X=plaintext (single-threaded) — nfs (1 GbE)
&= plaintext gzip (single-threaded) — local disk

©=DataSeries lzf - local disk
DataSeries lzf — nfs (100 MbE)
=&=DataSeries bz2 - nfs
====plaintext (single-threaded) — nfs (100 MbE)
== plaintext gzip (single-threaded) — nfs

Figure 9: Webalizer analysis speedup (189M requests, logarith-
mic scale).

files. A commonly used Bro module called conn produces a log
that contains one-line ASCII summaries of each "connection" [5].
The summaries are produced by the record_connection ()
function, and have the following format (all reported on a single
line):

<start> <duration> <local IP> <remote IP> \
<service> <local port> <remote port> \
<protocol> <org bytes sent> \

<res bytes sent> <state> <flags> <tag>

These fields are explained in Table 5.
Here is an example of a conn.log connection summary:

1280879507.515707 3.533462 192.168.1.1 \
10.0.0.1 ssh 55092 22 tcp 538 1713 SF \
X @47-4187-11

The connection began at timestamp 1280879507.515707 (Aug 3
16:51:47 2010 as is shown by cf utility [6]) and lasted 3.533462
seconds. The service was SSH (this conclusion is based just on the
responder’s use of port 22/tcp). The originator sent 538 bytes, and

367

the responder sent 1,713 bytes. Because the L flag is absent, the
connection was initiated by host 10.0.0.1, and the responding host
was 192.168.1.1. When the summary was written, the connection
was in the SF state. The connection had neither the L nor U flags
associated with it, and there was additional information, summa-
rized by the string @47-4187-11.

Adding DataSeries logging to Bro is more straightforward than
with Apache, since Bro does not use modules to log the information
about transactions on the monitored network interface. The source

file that is responsible for logging is located at <Bro_ source>/src/File.cc.

This file contains the method BroFile: :Write () of class Bro-
File (each instance of that class describes one logfile). The method
writes strings to the appropriate Bro log depending on the spe-
cific BroFile object has called it. To add the ability of logging in
DataSeries format, we added the function convert_log_to_ds
which is invoked once the number of strings in the plaintext log
conn. log reaches 10,000. As is the case with Apache module
mod_log_dataseries (Section 3.1), this function creates a new ex-
tent, populates it with the data from the temporary conn.logfile and
then appends the extent to conn.ds. Convert_log_to_ds ()
uses the following schema [24] when creating DataSeries conn.ds
file:

>

/>

<ExtentType name="conn2ds" version="1.0"
<field type="int64" name="start_time"
<field type="double" name="duration"
opt_nullable="yes" />
<field type="variable32" name="local_ IP"

pack_unique="yes" />
—_n

<field type="variable32" name="remote_IP"
pack_unique="yes" />
<field type="variable32" name="service"

pack_unique="yes" />

<field type="int32" name="local_port" />
<field type="int32" name="remote_port" />
<field type="variable32" name="protocol"
pack_unique="yes" />

<field type="int32" name="org_bytes_sent"

opt_nullable="yes" />
<field type="int32" name="res_bytes_sent"
opt_nullable="yes" />

<field type="variable32" name="state" />
<field type="variable32" name="flags" />
<field type="variable32" name="tag" />

</ExtentType>

The DataSeries extent name is "conn2ds" and each of its rows
contains 13 fields that correspond to the log format fields from Ta-
ble 5. The description of each field type and the field-level op-
tion pack_unique can be found in section 3.1. The information
contained in most of the fields can be described as a string (vari-
able32), with some fields (start_time, local_port and remote_port)
presented as 32 or 64 bit integers. Fields such as org_bytes_sent,
res_bytes_sent or duration are typically numeric, but occasionally
include a "?" when Bro cannot determine the corresponding value.
For this reason, such fields could be described as variable32 values.
Since only one non-numeric character will ever be present in these
fields, an alterative approach is to replace the "?" in those fields by
null values (field-level option opt_nullable) and represent them as
either double or int32. We chose this approach because, according
to our observations, numerical fields consume less space than do
the corresponding strings.

Table 6 shows the number of records logged by the Bro intrusion
detection system with DataSeries modifications (logs were com-

(

),

Parameter | Description |

Start The connection’s start time, in seconds since the beginning of Unix epoch. (cf, a Bro utility, can
convert this to human readable format [6]).

Duration The connection’s duration, in seconds.

Local IP, Remote IP The local and remote IP addresses that participated in the connection, respectively.

Service The connection’s service (e.g., http, ftp, etc); this is based on well known port number mappings.

Local port, Remote port The transport-level ports used by the connection.

Protocol The transport protocol that was used (e.g., tcp, udp, icmp).

Org bytes sent, res bytes sent | The number of bytes sent by the originator and responder, respectively.

State The state of the connection at the time the summary was written. SE state means the normal connection
establishment and termination was observed ([10] describes other possible connection states).

Flags Reports a set of additional binary state associated with the connection: L indicates that the connection
was initiated locally; U indicates the connection involved one of the networks listed in the neighbor_nets
Bro variable. X is used to indicate that neither the L nor U flags is associated with this connection.

Tag Reference tag to log lines containing additional information associated with the connection in other
logfiles, (e.g., http.log).

Table 5: The description of the fields in conn.tag.log Bro logfile.

25

pressed with either lzf or bzip2 compression algorithm) and with- Ogz compressed conn.log -
out them. Due to the non-deterministic workload, we conducted Ozf compressed DataSeries log -
three experiments for each testing combination and experimental & 2 B bzip2 compressed DataSeries log
duration. The results are generally similar to those presented in Ta- %, M plain conn.log
ble 3(a). This indicates that our implementation is functioning as § 15
intended. &
Since the Bro IDS only passively monitors the data on the net- & 1
work interface (i.e., it does not affect actual network traffic), we g os |
do not provide the results showing that Bro implementation with ’ 2888 5SE8 g g
DataSeries does not slow down the usual system work (similar to 0 L2 wEZ I CIGER BT

those in Table 3(b)). However, as future work a comparison of the 30 min, 5000 1 hour, 5000 2 hours, 5000 7 hours, 5000 2 days, 5000
overhead of logging the default text logs versus the compressed clients clients clients clients clients
DataSeries logs should be conducted.

Figure 10 shows the improvements in terms of storage space
when logging the conn network transactions with DataSeries sup- Figure 10: Storage space by logfile format (Bro).
port for different experiment durations and number of RUBIS clients.

It shows that the 1zf-compressed DataSeries conn.log is on average @ 25 - E
2.6x more compact than the original plaintext conn.log. The im- 2

provement in terms of disk space with bzip2-compressed DataSeries, § 20

conn. log is higher, reaching 4.3x. According to these results, £

the DataSeries benefits for Bro conn.log is less than that for the g 2 1

Apache logs (7.3x for lzf- and 21.4x for bzip2-compressed logs, =)

see Figure 4). The reason is that the conn.log data in general is less 5 5

compressible than the Apache access.log. Even for the case when 'g 5

the entire conn.log file was compressed with gzip -best (something ;o 0

that is slow and not achievable online), the resulting .gz file was c 30min, 1hour, 2hours, 7hours, 2 days,
only 25% smaller than the bzip2-compressed DataSeries file. The Z 5000 5000 5000 5000 5000

average number of lines in DataSeries conn.log files for experi- clients clients clients clients clients

ments with various duration is provided in Figure 11. The number
of records per file is noticeably smaller than for the corresponding
Apache log, as the Bro log contains records of TCP connections,
each of which can carry multiple HTTP request/response transac-
tions. Due to the smaller number of records, the conversion times
for these logfiles from DataSeries back to plaintext (shown in Fig-
ure 12) is also much lower than was seen in the corresponding
Apache tests (Figure 6).

Figure 11: Number of records per DataSeries file (Bro).

are not aware of any specially crafted analysis tools for Bro. In-
stead, we asked the Bro developers which tool(s) they use to ana-
lyze conn.log. They indicated the awk processing tool was com-

. . monly used.
4.2 AnalySIS of conn.log DataSeries logs To};ompare analyses done with awk on plaintext logs with DataSeries,
To describe the performance benefits that DataSeries provides to we performed the following analysis to look for potentially mali-
the analysis of the Bro transaction conn.log, we needed an anal- cious traffic in the Bro logs. For each record in conn.log file we:
ysis application as a baseline to compare DataSeries results with.
While Webalizer is a popular tool for analyzing Apache logs, we 1. Check if the IP address of the originator is not in the list of

368

30 minutes, 5,000 clients | 1 hour, 5,000 clients

Mean Stdev Mean Stdev
Plaintext conn.log 230,435 | 491.4 458,171 | 205
DataSeries conn.log (1zf compressed) 231,557 | 566 455,521 | 336
DataSeries conn.log (bzip2 compressed) | 235,967 | 1,360 460,002 | 113

Table 6: The number of strings in the conn logfile.

O lzf compressed DataSeries conn.log

96
95

100 -
@ bzip2 compressed DataSeries conn.log

60 -

Time to convert with Lintel
parallelization, sec

20

30 min, 5000 1 hour, 5000 2 hours, 5000 7 hours, 5000 2 days, 5000
clients clients clients clients clients

Figure 12: DataSeries to plaintext conversion times (Bro).

allowed IP addresses. The list of allowed IP addresses/net-
works is stored in the neighbor_nets Bro variable.

2. If the value of the Flags field is "X" (see the description in
Table 5), then a possible network intrusion attempt may have
occurred.

3. If so, check the State field: the values "S1" or "SF" mean that
an untrusted connection was established.

4. 1If so, record the IP addresses, ports and duration of this con-
nection.

After all the records are processed, return the untrusted connec-
tions, sorted by duration.

In awk, the malicious traffic analysis performed over the plain-
text logs looks like this:

time awk "{ if (($12 == "X") && \

($11 == "s1" || $11 == "SF")) A\

print $2, $3, $4, $6, S$7 | \

"sort -n +0 -1"}’ conn.log > conn.log.reported

We implemented the same analysis in C++ using the RowAnaly-
sisModule DataSeries class [24], which is provided by the DataSeries
APIL. RowAnalysisModule performs an analysis a row at a time. It
handles the issues of iterating over the rows in each extent, and
calling preparation and finalization functions.

The performance results for the experiments with RowAnalysis-
Module/awk over Bro conn. log are provided in Figure 13. For
DataSeries tests with RowAnalysisModule, 1zf- and bzip2-compressed
DataSeries conn. 1og collected from a two-day long experiment
with 5,000 RUBIS clients was used. The main results are similar to
those for the Apache log analysis (Section 3.2). For the Bro case
study, DataSeries’ RowAnalysisModule provided over 3x faster
analysis time for 1zf-compressed and over 2.3x for bz2-compressed
DataSeries files relative to the default awk analysis. The results
differ from Apache log analysis in the following ways:

For the single-threaded mode, DataSeries analysis consistently
provides faster results in comparison with the single threaded awk

369

(up to 38%). The reason is the robust implementation of the mali-
cious traffic analysis directly in C++ using the DataSeries toolset.

The NFS analysis over the DataSeries and plaintext files (the
solid black lines) is significantly slower (by up to 57% for the
fastest results) than the analysis of the same logs performed lo-
cally. The reason is that, unlike with the concise Apache analysis,
the malicious traffic report may contain a lot of connections and so
requires writing data to the NFS directory. Even with 1GbE con-
nection that corresponds to the slowdown mentioned. The dotted
lines correspond to the experiments when the initial conn.log was
stored on the nfs server, while the report was saved locally on the
analysis machine. As can be seen, the speedup in this case closely
resembles that of the local analysis.

We also observed that the RowAnalysisModule analysis is get-
ting slower for large numbers of threads. The reason for this slow-
down is the consolidation of data prior to generation of the final
malicious traffic report. In order to sort the connections according
to its duration (part of the analysis), we need to first unite all the
small arrays with connection data from every thread. As the num-
ber of threads goes up, the overhead of making and sorting one big
array is also increasing.

3 -
-

3

£ 5 26 -
£3
53

X 9 2.2 -
23

o =

L 218
>'U
.Bg
® =
[
oo
S
T E 3
R

Q.

wv

[od
o

0 8 16 24 32 40 48 56 64
Number of analysis threads

=@=RowAnalysisModule (lzf) - local disk

=8=RowAnalysisModule (lzf) - nfs (1 GbE)

**++RowAnalysisModule (Izf) - nfs (1 GbE with local report)

«=@=RowAnalysisModule (bz2) — local disk

~@=RowAnalysisModule (bz2) — nfs (1 GbE)

**++RowAnalysisModule (bz2) - nfs (1 GbE with local report)

=d=awk plaintext (single-threaded) — nfs (1 GbE)

= = awk plaintext (single-threaded) — nfs (1 GbE with local report)

=X=awk plaintext gzip (single-threaded) — local disk

=X=awk plaintext gzip (single-threaded) — nfs (1 GbE)

= = awk plaintext gzip (single-threaded) — nfs (1 GbE with local report)

Figure 13: RowAnalysisModule/awk speedup (Bro).

5. LESSONS LEARNED

The main goal of the project described in this paper was to demon-
strate how reuse of an existing software toolset (DataSeries) could
enable more efficient and quick analysis of large data sets. Our
experiences in completing the project revealed that a variety of

common performance engineering properties continue to hold. We
briefly describe several of these.

Exploiting parallelism is challenging. While we were able to
improve performance by up to an impressive 8.4x, this is still well
below the potential speedup of 24x that one might have expected,
moving from a single-threaded application to a multi-threaded im-
plementation running on a 24 core server. In several cases, the
performance actually decreases as additional cores are used, owing
to contention amongst the various threads. Clearly, the opportunity
remains to improve performance further.

Bottlenecks shift. When we began our work, the performance
of the single-threaded application was limited by the use of a sin-
gle CPU core. When we introduced a multi-threaded implemen-
tation, that bottleneck was eliminated, but new ones emerged. In
our NFS experiments, the bottleneck then became the 100 Mb/s
network link. We eliminated that by upgrading to a 1 Gb/s link.
The bottleneck is now contention amongst the decompression and
analysis threads. Addressing this bottleneck is left for future work.

6. CONCLUSION AND FUTURE WORK

In this paper we described how we used DataSeries as the on-
line logging format for two popular open source applications, the
Apache Web server and the Bro intrusion detection system. We
modified the Webalizer tool to efficiently analyze Web server logs
in DataSeries format. We also demonstated how to efficiently ana-
lyze the Bro Intrusion Detection System logs in DataSeries format.
We quantified the benefits of storing and accessing information in
DataSeries format relative to the default log format of the chosen
applications.

Our experimental results showed significant benefits are possi-
ble from leveraging DataSeries and multicore servers. The sizes
of the Apache logs decreased by up to 7x (2.6x for Bro), and the
time to analyze the Apache logs decreased by 8x (3x for Bro). Our
work verifies that DataSeries is beneficial for online logging appli-
cations, and that it facilitates efficient analysis. A motivating goal
of our work is to have our initial implementations serve as examples
that others can use to integrate DataSeries into the applications we
examined, or into other applications that generate or analyze struc-
tured serial data. We have shared our results and source code with
the developers of Bro, who are considering adding DataSeries to a
future release of the IDS, as improving the efficiency of Bro is one
of their key goals. As future work, we will perform a comparison
of the performance of binary log formats and logging libraries with
the best applicability areas for each. We intend to communicate our
results and source code with the Apache and Webalizer groups, and
to continue to search for opportunities to improve the effective use
of IT infrastructure.

7.
(1]

REFERENCES

Analog: a free logfile analyzer. [Online] Available:
http://www.analog.cx/.

Apache HTTP server project. [Online] Available:
http://httpd.apache.org/download.cgi.

Apache logging module mod_log_config. [Online]
Available:
http://httpd.apache.org/docs/2.0/mod/mod_log_config.html.
Awstats: a free logfile analyzer. [Online] Available:
http://awstats.sourceforge.net/.

Bro IDS Reference Manual: Analyzers and Events. [Online]
Available: http://www.bro-

(2]

(3]

(4]

(3]

ids.org/wiki/index.php/Reference_Manual:_Analyzers_and_Events.

370

[6] Bro IDS Reference Manual: Getting Started (the cf utility).
[Online] Available: http://www.bro-
ids.org/wiki/index.php/Reference_Manual:_Getting_Started#
The_cf _utility.

Bro intrusion detection system. [Online] Available:
http://www.bro-ids.org/download.html.

Bro Quick Start Guide. [Online] Available:
http://www.bro-ids.org/Bro-quick-start.pdf.

Capstats: a quick hack to get some NIC statistics. [Online]
Available: http://www.icir.org/robin/capstats/.

Conn.log connection summaries. [Online] Available:
http://tinyurl.com/bro-conns.

DataSeries technical report. [Online] Available:
http://tesla.hpl.hp.com/opensource/DataSeries-tr-
snapshot.pdyf.

How do you create a new Apache module? [Online]
Available: http://ivascucristian.com/how-do-you-create-a-
new-apache-module.

Httperf: a tool for measuring web server performance.
[Online] Available:
http://www.hpl.hp.com/research/linux/httperf7.

The Inline::CPP module: put C++ source code directly
"inline" in a Perl script. [Online] Available:
http://search.cpan.org/ neilw/Inline-CPP-
0.25/1ib/Inline/CPP.pod.

Open Source software at Hewlett-Packard Laboratories.
[Online] Available: http://tesla.hpl.hp.com/opensource/.
RUBIS: an auction site prototype. [Online] Available:
http://rubis.ow2.org/.

RUBiSVA: a virtual appliance of the RUBiS benchmark.
[Online] Available:
http://rubis.ow2.org/download/rubisva_v1.0.pdf.

Source files with modifications done within this work.
[Online] Available:

http://www.sfu.ca/ sba70/files/dataseries/.

Tmpfs: a temporary file storage facility. [Online] Available:
http://en.wikipedia.org/wiki/Tmpfs.

Traces from the Internet Traffic Archive. [Online] Available:
http:/fita.ee.lbl.gov/html/traces.html.

Webalizer: a free logfile analyzer. [Online] Available:
http://www.webalizer.org/.

The Webalizer: free web server log file analysis program.
[Online] Available:

http://www.webalizer.org/download. html.

E. Anderson. Capture, conversion, and analysis of an intense
NFS workload. In FAST 09, pages 139-152, 2009.

E. Anderson, M. Arlitt, C. B. Morrey, III, and A. Veitch.
DataSeries: an efficient, flexible data format for structured
serial data. SIGOPS Oper. Syst. Rev., 43(1):70-75, 2009.

S. Blagodurov and M. Arlitt. Improving the efficiency of
information collection and analysis in widely-used IT
applications. HPL Technical report [Online] Available:
http://www.hpl.hp.com/techreports/2010/HPL-2010-
164.html.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and

A. Tantawi. An analytical model for multi-tier internet
services and its applications. In SIGMETRICS 05, pages
291-302, 2005.

T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling
and modeling resource usage of virtualized applications. In
Middleware ’08, pages 366-387, 2008.

[7

—

[8

—_—

[9

—

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

