
MassConf: Automatic Configuration Tuning By
Leveraging User Community Information∗

Wei Zheng, Ricardo Bianchini, Thu D. Nguyen
Department of Computer Science, Rutgers University
110 Frelinghuysen Road, Piscataway, NJ 08854, USA
{wzheng, ricardob, tdnguyen}@cs.rutgers.edu

ABSTRACT
Configuring modern enterprise software can be extremely
difficult because their behaviors often depend on large num-
bers of configuration parameters. Software vendors can sim-
plify the configuration process for new users by collecting
and using configuration information from existing users. In
particular, we observe that (1) a “good” configuration may
work well for many different users, and (2) multiple config-
urations may work well for each user. We leverage these
observations to design MassConf, a system that collects and
uses existing configurations to automatically configure new
software installations. Our evaluations with a case study
confirm our observations and show that MassConf success-
fully reaches the targets of many more new installations than
an existing efficient optimization algorithm.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software con-
figuration management

General Terms
Algorithms, Design, Experimentation, Management, Perfor-
mance

Keywords
Automatic configuration

1. INTRODUCTION
Enterprise software is becoming increasingly complex. A

single piece of server software may include hundreds of con-
figuration parameters, as software vendors and contribu-
tors (collectively called “vendors” hereafter) want their sys-
tems to be as flexible and adaptable as possible. Selecting
proper values for configuration parameters is critical, since

∗This research was partially supported by NSF grant CNS-
0916878.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

they may affect the software’s behavioral correctness, per-
formance, availability, and/or energy consumption.

Unfortunately, configuring modern software can be ex-
tremely difficult since a good configuration depends (at least)
on the hardware environment, the workload, the load in-
tensity, and the target behavior (e.g., some level of perfor-
mance or availability). Moreover, there can be relationships
between the parameters that are not made explicit by the
software documentation. Thus, it is very hard (if not impos-
sible) for users to completely understand the configuration-
hardware-workload-intensity-target relationships.

Due to the size and complexity of this configuration space,
previous research has focused on approaches and tools to
detect and troubleshoot misconfigurations [1, 10, 11, 15, 19,
20, 21], to study the resilience of systems in the face of con-
figuration errors [9], to automatically configure machines in
a single installation [2, 3], and to automatically tune config-
urations for best performance [18, 22].

Although these efforts have been useful, a user’s ability to
configure her software to achieve a certain target behavior
is still far from ideal in practice. For example, a user who
wants her server software to produce an average response
time of 50 milliseconds is left clueless, when the default con-
figuration reaches only 100 milliseconds. As long as the pa-
rameters that affect performance are identified, this user can
run existing algorithms (e.g., [12]) to optimize the server’s
performance by experimentation with different configuration
settings. However, tuning performance may involve a very
large number of time-consuming experiments [18, 22].

Vendors need to do more to help users configure their soft-
ware. One possible approach is to create automatic config-
urers that run locally at the users’ sites and select the best
values for the parameters, either through experimentation
or modeling. A simpler and cheaper approach, the one we
advocate here, is for the vendor to collect configuration in-
formation from the existing user community of its software
and use it in configuring the software for new users.

Our proposed approach is based on two key observations.
First, a configuration may actually work well for many users,
i.e., it may work well for many workloads, load intensities,
and target behaviors, especially when the users use similar
hardware platforms. The second observation is that multiple
configurations may actually work well for each user, i.e., they
may all meet the user’s target behavior. Together, these
observations mean that there is flexibility in which existing
configuration to select for each new user.

Further, any work that users may do to tune their con-
figurations can benefit new users of the software. Thus, we

283

propose to leverage the existing users’ configurations to find
a good configuration for each new user. To demonstrate
this idea, we designed MassConf, a system that automat-
ically collects configuration and environment information
from existing users, clusters users according to environment,
produces an ordered (ranked) list of possible configurations,
and tests each configuration in turn at the new user’s site
until the target behavior is met. After the configuration
of each new user is complete, MassConf may change the
ranking of configurations. MassConf seeks to (1) reach the
target behavior for as many new users as possible and (2)
minimize the average number of experiments required at the
new users’ sites.

The most interesting technical aspect of MassConf is its
ranking of configurations. Faced with our first observation
above, one might be tempted to rank configurations based
on popularity; more popular configurations would be tried
first at the new users’ sites. The popularity information is
readily available from the existing users’ deployed config-
urations. However, as our experiments shall demonstrate,
the popularity-based ranking is not the best choice. The
reason is that particularly effective but difficult-to-find con-
figurations would tend to appear towards the end of the list.
Ranking them higher would allow more new users to be con-
figured with fewer experiments.

To account for this effect, MassConf would require infor-
mation about how every deployed configuration would do for
every existing user. Unfortunately, this information is obvi-
ously not obtainable. Thus, MassConf adapts its behavior
over time, by moving the configuration that is selected for
each new user toward the front of the ranked list, regard-
less of its actual popularity. This adaptation increases the
chance that another new user will also experiment with (and
hopefully benefit from) the selected configuration.

An optimized version of MassConf, called MassConf+, im-
proves ranking further by pruning the ranked list of configu-
rations after an initial “learning” period. Shortening the list
rids MassConf+ of configurations that are unlikely to satisfy
a large number of new users, thereby reducing the average
number of experiments. We do not discuss MassConf+ fur-
ther in this paper because of space constraints; details about
MassConf+ can be found in [23].

To evaluate MassConf’s ranking of configurations in an
interesting (yet understandable) case study, we investigate
its use for automatically configuring the Apache Web server
to achieve a response-time target. As a baseline for com-
parison, we use Simplex, an efficient algorithm [12] that has
been successfully used to optimize server software [4, 22].

Our evaluation results show that adaptive ranking re-
quires many fewer experiments than popularity-based rank-
ing to configure a population of new users. In fact, we find
that the faster we move a selected configuration to the front
of the ranking, the better on average. We also find that
MassConf can configure many more new users than Sim-
plex. Moreover, MassConf requires many fewer experiments
than Simplex, even when we consider only those new users
that both systems can configure.

Our findings illustrate that software configuration can be
significantly simplified by having users contribute parts of
their configurations and use them to configure the software
for other users. Because of its simplicity and effectiveness,
we conclude that MassConf and its adaptive configuration
ranking have great potential to work well in practice.

Figure 1: MassConf overview.

2. MASSCONF

2.1 Design
Figure 1 illustrates the MassConf design. The next few

paragraphs detail each part of the design in turn.

Data collection from existing users. MassConf is run
by the software vendor. First (step 1 in the figure), it col-
lects configuration and environment information from each
existing user that is willing to participate. (Although some
users may refuse to participate, many would likely be willing
to contribute since they can benefit from it as shall be clear
below.) This information is extracted by instrumentation in
the server software itself and sent to the vendor.

The configuration information describes the setting of each
configuration parameter of the software. The settings can
be of any type, e.g., boolean, numeric, or character strings.
When the configuration information may include sensitive
data, only a few relevant parameter values may be collected.
(The vendor should know which parameters may include
sensitive data.)

As part of the configuration information, MassConf must
be informed about the users’ high-level goals when they se-
lected their configurations. For example, the goal may have
been to improve performance, improve performability (per-
formance + availability), or lower energy consumption.

MassConf stores the parameter settings it receives with-
out modification, except in the case of numeric parameters.
For each numeric parameter, MassConf breaks the range of
possible values into 10 evenly sized chunks. Two configura-
tions are grouped together if their values for each parameter
fall in the same chunk. For example, suppose that each
configuration has two parameters, p1 and p2, with possible
values ranging from 1 to 200 (chunks of size 20) and from
1 to 100 (chunks of size 10), respectively. Further, suppose
that the values of these parameters for configurations C4

and C5 are: C4(p1) = 10 (first chunk), C4(p2) = 18 (second
chunk), C5(p1) = 16 (first chunk), and C5(p2) = 12 (second
chunk). Because the chunks match for all parameters, C4

and C5 would be grouped together.
The configurations in each group are represented by a sin-

gle “average” configuration. In the average configuration,
each parameter is given the average of the values seen for
that parameter in the corresponding group. For example,
the average configuration Cavg for the cluster formed by
configurations C4 and C5 above would have Cavg(p1) = 13
and Cavg(p2) = 15.

The environment information is a description of the hard-
ware (e.g., number of cores, amount of memory) and pos-
sibly the low-level software (e.g., operating system, settings
for relevant environment variables) at the user’s site. This

284

information is necessary since the behavior of the software
to be configured may depend heavily on the environment.

Clustering existing users according to environment.
Using the environment information, MassConf then clusters
the existing users (step 2) as was done in Mirage [5] for soft-
ware upgrade deployment. The idea is to cluster users that
have similar environments together, so that their configu-
ration information can be used for new users with similar
environments. For example, the vendor of a multithreaded
server may want to separate out user sites with vastly differ-
ent numbers of cores or threading libraries, as these aspects
of the environment may have a significant effect on the ideal
number of threads with which to configure the server. Con-
versely, user sites with similar numbers of cores and thread
libraries should be clustered together. A number of algo-
rithms can be used for clustering, but we prefer the Qual-
ity Threshold (QT) algorithm [8]. QT starts with one site
per cluster. It then iteratively adds sites to clusters (effec-
tively merging clusters) while trying to achieve the smallest
average inter-site distance and not to exceed a pre-defined
maximum cluster diameter. The algorithm stops when no
more clusters can be merged together. Our distance metric
involves the aspects of the environment that differ between
clusters. Each aspect is weighted by the vendor, according
to its importance to the software configuration.

Collecting information from a new user. When con-
figuring a new user, MassConf first deploys the software to
the new user’s site and collects its environment information
(step 3). Then, it requests from the user a description of the
software’s target behavior (step 3). The target behavior re-
veals the high-level goal for the configuration tuning. With
the new user’s environment information, MassConf can now
identify the best cluster for it.

Ranking configurations. Using the configuration infor-
mation from this cluster, MassConf produces a ranked list
(or ranking) of configurations to be tried at the new user’s
site (step 4). The list is formed by the configurations of
the existing users that had the same goal as the new user.
(For example, we do not want to use information about con-
figurations that were selected to lower energy consumption
when configuring servers for maximum throughput.) The
exact ordering of the list is influenced by the order of the
users’ (both new and existing) arrivals, as described below.
The list is transferred to the new user’s site (step 5). At
this point, MassConf can run experiments with each config-
uration, until the desired behavior is met or it runs out of
configurations to try (step 6).

Testing configurations at the new user’s site. These
experiments are run under the user’s actual workload and
load intensity, so the user herself may have to provide a
realistic test harness to exercise the software. If all exper-
iments are run and the desired behavior is never achieved,
the user is warned. MassConf’s inability to reach a target
may mean that the target is unrealistic for the workload and
load intensity, or that it still does not have enough informa-
tion (i.e., enough existing users) to produce a large enough
coverage of the possible configurations. If the user confirms
that the target is achievable and the parameter values are
numeric, MassConf resorts to Simplex, starting from the best
configuration it has found so far. However, we expect that
MassConf would rarely have to resort to other approaches in
practice; in most cases, the new user would relax the target.

In these cases, MassConf would most likely have already
found an appropriate configuration.

Storing the selected configuration. When a configu-
ration is selected, MassConf includes information about it
in its central database of existing users (step 7). At that
point, the new user becomes one of the existing users within
the corresponding cluster. (As MassConf found the config-
uration for the new user, it already has all the information
required from an existing user.) Thus, after the bootstrap-
ping period, the population of existing users should exhibit
similar characteristics (as a group) to the new users (also
taken as a group).

Adapting the ranking. As it is impossible to predict the
set of new users that will want to join the system, MassConf
adjusts its ranking (step 8) by moving the configurations
that have been selected for each new user towards the top
of the ranking. This adjustment enables very good configu-
rations to be chosen more often. When MassConf needs to
resort to Simplex, the new configuration is added to the end
of the ranking. We discuss these decisions in detail below.

Providing feedback to existing users. Finally, Mass-
Conf warns existing users when their configurations seem
suboptimal (i.e., new users with the same goal have selected
other configurations) with respect to the rest of the users in
the same cluster (step 9). This feedback to existing users
is an incentive for them to provide their configuration and
environment information, even when they had to configure
their software entirely by hand or when the community was
still small. Another important incentive may be to help
these users configure an upgraded version of the software by
leveraging information from the users who benefited most
from MassConf to configure the existing version.

2.2 Configuration Ranking

Dynamically adapting the ranking. As mentioned above,
a popularity-based ranking can be misleading. It is possi-
ble that unpopular configurations can actually satisfy many
more new users than popular ones. The reason these highly
useful configurations are not more popular may be that they
are harder to find, e.g., they are only needed for heavy work-
loads or hard-to-achieve target behaviors.

Thus, MassConf dynamically adapts its rankings to even-
tually concentrate configurations that can satisfy many users
at the top. We study three approaches for promoting the
selected configurations within a ranking: slow, fast, and
fastest. The slow approach moves a selected configuration
one slot up in the ranking. The fast approach moves the
configuration to the halfway point between its current slot
and the top of the ranking. The fastest approach moves the
configuration directly to the first slot of the ranking. Fig-
ure 2 shows an example of how ranking (a) is adjusted after
configuration C4 and C5 are selected by two consecutive new
users, using the slow (b), fast (c), and fastest (d) adaptation
approaches. For example, in the fast approach, C4 is first
moved from the 8th to the 4th slot in the ranking. This
moves C5, C9, C1, and C8 one slot down the ranking. Then,
when C5 is selected by the next new user, it moves from the
5th to the 3rd slot. This moves C3 and C4 one slot down.

Regardless of the speed of promotion, any new configura-
tions that are added to the system are appended to the end
of the corresponding ranking. The reason is that we want

285

Figure 2: Original ranking (a) and slow (b), fast (c), and

fastest (d) adaptation approaches, after configurations C4

and C5 are selected by two consecutive new users.

to see more than one user benefit from a new configuration
before we promote it up the ranking.

Note that configurations from existing users are treated
the same as those selected for new users, despite the fact
that the former users select their configurations by means
other than MassConf. We also considered the possibility of
not altering the ranking when an existing user joins with
a configuration that had already been seen. We ultimately
decided against this approach because it would disregard the
fact that the configuration satisfied an additional user.

2.3 Bootstrapping
MassConf may only start to perform well when the exist-

ing users within each cluster become a good representation
of the new users to come into the same cluster. Until that
point, MassConf may be unable to meet the target behav-
ior requested by new users without resorting to Simplex.
A new user may also decide to optimize the configuration
manually until the target behavior is achieved. Fortunately,
these Simplex-derived or manually generated configurations
contribute to MassConf just the same as the configurations
of existing users that join MassConf.

3. CASE STUDY: CONFIGURING APACHE
We consider the configuration of the Apache Web server

to achieve a target average response time as a case study to
understand and evaluate MassConf. We study a synthetic
population of users representing a pessimistic scenario for
MassConf because we lack real configuration data.

3.1 Methodology
We briefly present our evaluation methodology, referring

the interested reader to [23] for more details.
Apache configuration parameters. We configure the
five main parameters that affect Apache performance: Start-
Servers, MinSpareServers, MaxSpareServers, MaxClients,
and MaxRequestsPerChild [17].

Workloads, intensities, and targets. Each synthetic
user represents a different combination of workload, load
intensity, and response-time target. Each workload is de-
fined by its fraction of requests for three types of content,
small static files, a cached large static file, and dynamic CGI
scripts, designed to stress the file system, networking, and
CPU, respectively. Then, for each workload, we assign load
intensities from 50 requests/sec (rps) to an experimentally
determined maximum throughput (using the default config-
uration) with a step of 50 rps. Also, for each workload, we
select different targets 5% apart within the range bounded

by the performance achieved using the default configuration
and the best performance achievable using Simplex.

User populations. We generate 219“existing users”evenly
spread in the 3D space of workloads, load intensities, and
response-time targets. We define the existing users’ configu-
rations by running Simplex to find configurations that meet
the users’ response-time targets.

We generate 195 “new users” who are also evenly spread
across the parameter space, but are completely distinct from
the existing users. Our goals are to select configurations
for as many of these new users as possible, while using the
smallest possible number of experiments on average.

Our evenly spread and non-overlapping populations of
users represent a pessimistic scenario for MassConf. The
reason is that any concentration of users in specific parts of
the workload-intensity-target space would increase the like-
lihood that (1) many users would deploy the same configura-
tion, and (2) many users could be satisfied by each configura-
tion, both of which would improve MassConf’s performance.

Platform. Our experiments are run on two PCs, each run-
ning Linux 2.6.18 and containing a 2.8 GHz Xeon CPU, 2
GB of memory, and a 7200 rpm disk. One machine hosts
an HTTP client emulator and the other the Apache Web
server (version v2.0.4). In each experiment, the client sends
a pre-defined load intensity with Poisson request arrivals.

3.2 Understanding Configuration Ranking
Figure 3 plots the popularity of the configurations (of the 5

parameters listed above) that met the performance targets
for the existing users. A configuration has popularity of
x% if it is used by x% of the users. The X-axis shows the
index of the unique configurations in decreasing order of
popularity while the Y-axis shows the cumulative popularity.
The leftmost point is the default configuration.

The figure confirms one of the basic premises of MassConf,
namely that certain configurations work well for many exist-
ing users. Specifically, the default configuration works well
for a large fraction of users. In addition, the fact that the
curves are not straight lines shows that other configurations
are also used by multiple users.

As we have suggested, however, ranking configurations
based on popularity only may miss very good configurations
that just happen to be unpopular. Figure 4 illustrates this
effect clearly. The X-axis lists the index of each unique ex-
isting configuration in decreasing order of popularity (from
left to right). Only the default configuration (index #0) is
not listed. The Y-axis lists the number of new users in our
population that could be satisfied by each configuration.

The default configuration can satisfy the performance tar-
gets of 66 new users. As the figure shows, there is another
configuration (#50) that can satisfy even more new users
(70) but is very unpopular. This means that 49 other con-
figurations would be tried before reaching this very good one
when using a popularity-based ranking. A similar observa-
tion can be made of configuration #20, which can satisfy
58 new users. In contrast, the two most popular configu-
rations can only satisfy 17 and 11 new users, respectively.
These observations provide clear motivations for MassConf’s
adaptive ranking approach.

3.3 Experimental Evaluation
We now turn to evaluating the use of MassConf for con-

figuring new user installations. We initialize MassConf with

286

20

40

60

80

100

120

C
u

m
u

la
ti

ve
 P

o
p

u
la

ri
ty

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

C
u

m
u

la
ti

ve
 P

o
p

u
la

ri
ty

Configuration Index

Figure 3: Popularity of configurations among exist-
ing users.

10

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

N
e

w
 U

se
rs

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

N
u

m
b

e
r

o
f

N
e

w
 U

se
rs

Configuration Index

Figure 4: Popularity ranking and number of new
users that can be satisfied by each configuration.

Table 1: MassConf vs. popularity and optimal static
for the 129 new users requiring different configura-
tions than the default.

of Popularity MassConf MassConf Optimal
Exp’s Ranking Adapt-fast Adapt-fastest Static
Total 1519 1380 1272 873
Avg. 11.8 10.7 9.9 6.8
Max. 84 84 84 84

configurations from our 219 existing users and use it to con-
figure our 195 new users to meet their response-time targets.

We compare MassConf’s adaptive ranking algorithms to
popularity-based ranking. (Note that the ranking also
changes dynamically in popularity-based ranking whenever
the selection of an existing configuration causes the popu-
larity ordering to change.) We also compare MassConf’s
performance against Simplex (running on its own starting
from the default configuration). In our experiments, we set
Simplex to terminate when the target average response time
is reached or the standard deviation of the vertices’ response
times is smaller than 5 milliseconds [12].

In addition, we present results for the “optimal” static
ranking, i.e., the static ranking that generates the smallest
possible number of experiments in configuring the new users.
This ranking sorts the configurations in decreasing order of
the number of new users that they satisfy. Obviously, the
optimal ranking can only be determined because we know
the entire set of new users in advance, which is impossible in
practice. We present results for the optimal ranking simply
as a lower bound on the number of experiments.

Table 1 summarizes some of the results. Since the be-
haviors of MassConf’s adaptation algorithms depend on the
exact sequence in which new users join the system, we gen-
erated 10 random sequences and averaged the results. We
make several observations from our experiments.

1. MassConf successfully reached the performance
targets of all new users. Out of our 195 new users, 66
were able to meet their response-time targets using the de-
fault configuration. MassConf was able to configure all 129
new users that could not use the default configuration.

2 and 3. Adaptive ranking beats popularity-based
ranking. The faster the adaptive algorithm pro-
motes configurations, the better. Table 1 shows that
MassConf with Adapt-fast and Adapt-fastest ranking algo-
rithms require fewer experiments on average than the popu-
larity-based ranking. The analysis of adaptive ranking from
the previous section suggested this result. In fact, the faster
selected configurations are promoted up the ranking, the
smaller the average number of experiments per user. Our

complete results [23] show that the best adaptive ranking
(Adapt-fastest) runs up to 24% fewer experiments per user
than popularity-based ranking on average. In contrast, Adapt-
slow (not shown in Table 1) requires up to 85% more exper-
iments per user than popularity-based ranking on average.
There are two effects at play here: (1) on the positive side,
moving a good configuration up enables it to satisfy more
users; and (2) on the negative side, it may increase the num-
ber of experiments required when a configuration that was
moved down is selected. When moving up one slot at a time,
only a few extra users can be satisfied by the promoted con-
figuration, so the negative effect becomes more prominent.
When moving configurations up faster, the good configura-
tions can satisfy many extra users, making the positive effect
more prominent.

The fact that Adapt-fastest is the best approach confirms
the two observations that motivated our MassConf design:
some configurations work well for multiple users and mul-
tiple configurations work well for each user. If only one
configuration met each user’s target, Adapt-fastest would
make the worst decision. At the other extreme, if all con-
figurations met all new users’ targets, all approaches would
produce the same number of experiments, i.e., 1.

MassConf Adapt-fastest is 31% slower compared to the
(unrealistic) optimal static ranking. However, MassConf+
actually outperforms this static ranking because it shortens
the list of configurations to be tried [23].

4. MassConf successfully reached the performance
targets for many more users than Simplex. As men-
tioned above, MassConf was able to configure all 129 new
users that could not use the default configuration. In con-
trast, Simplex failed to configure 74 of these new users. Even
when MassConf is not allowed to resort to Simplex, it still
can configure 67 more new users than Simplex (122 vs. 55).
Simplex cannot configure many new users because it gets
stuck at local minima, trying configurations that lead to
very similar performance.

The ability of MassConf to configure many more new users
than Simplex is particularly interesting since our existing
user configurations were originally derived using Simplex.
This result reinforces the point that Simplex has to search a
large space of configurations each time it is used and so, for
any particular search, it may miss some “good” configura-
tions. MassConf is completely different in that it is guided
by the tuning efforts of existing users and its adaptive rank-
ing algorithms.

5. MassConf is faster than Simplex. We compare the
number of experiments required by MassConf and Simplex
for the subset of 55 new users for which both approaches

287

were able to achieve the performance targets. Averaging
over 10 random sequences of new users, MassConf with the
three adaptive ranking approaches require between 13.3 and
17.8 experiments per user on average. The best approach,
Adapt-fastest, requires 13.3 experiments on average, which
is 28% faster than Simplex (18.6).

4. RELATED WORK
Leveraging existing data on configurations. Several
previous works have investigated how to leverage others’
configurations to diagnose and troubleshoot misconfigura-
tions [1, 16, 19, 20].

Even though MassConf also relies on configuration infor-
mation from a population of users, it focuses on a completely
different problem: configuration tuning; there are no mis-
configurations to troubleshoot. As detailed in Section 2, the
impact of this key difference is that our main focus has been
on issues that have not been addressed before, namely the
study of adaptive ranking algorithms and the average num-
ber of experiments to which they lead.

Configuration tuning. Many works have considered the
performance tuning of server configurations, e.g. [4, 6, 7, 18,
22]. Osogami et al. [13, 14] focused on shortening each ex-
periment, rather than reducing the number of experiments.

MassConf differs from these works in four main ways: (1)
it seeks to produce configurations that meet the users’ target
behaviors, rather than to find the best possible configura-
tion; (2) it relies on configuration information from a popu-
lation of systems, rather than a single system; (3) it relies on
adaptive ranking algorithms to tune performance efficiently;
and (4) unless it needs to resort to Simplex, it tests exist-
ing configurations for new users, rather than trying to use
experience or dependencies to create new configurations.

5. CONCLUSIONS
In this paper, we addressed the problem of configuring en-

terprise software efficiently. Specifically, we proposed Mass-
Conf, a system that uses existing configurations to automati-
cally configure the software for new users. The configuration
process relies on dynamic adaptation of the order of config-
urations (ranking) to be tried. To evaluate MassConf, we
used it to configure Apache to achieve the performance tar-
gets of a population of users. The results showed that our
fastest adaptation leads to the smallest number of experi-
ments. The results also showed that MassConf is able to
configure more users in fewer experiments than Simplex, an
efficient optimization algorithm.

Acknowledgements. We would like to thank Kai Shen
and Christopher Stewart for their comments on this work.

6. REFERENCES
[1] B. Aggarwal et al. NetPrints: Diagnosing Home

Network Misconfigurations Using Shared Knowledge.
In Proceedings of NSDI ’09, April 2009.

[2] P. Anderson et al. SmartFrog meets LCFG:
Autonomous Reconfiguration with Central Policy
Control. In Proceedings of LISA ’03, Oct. 2003.

[3] M. Burgess. Cfengine: A Site Configuration Engine.
USENIX Computing systems, 8(3), 1995.

[4] I. Chung et al. Automated Cluster-Based Web Service
Performance Tuning. In Proceedings of HPDC ’04,
June 2004.

[5] O. Crameri et al. Staged Deployment in Mirage, an
Integrated Software Upgrade Testing and Distribution
System. In Proceedings of SOSP ’07, October 2007.

[6] Y. Diao et al. Managing Web Server Performance with
AutoTune Agent. IBM Systems Journal, 42(1), 2003.

[7] S. Duan et al. Tuning Database Configuration
Parameters with iTuned. In Proceedings of VLDB ’09,
August 2009.

[8] L. J. Heyer et al. Exploring Expression Data:
Identification and Analysis of Coexpressed Genes.
Genome Research, 1999.

[9] L. Keller et al. ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors. In
Proceedings of DSN ’08, June 2008.

[10] E. Kiciman et al. Discovering Correctness Constraints
for Self-Management of System Configuration. In
Proceedings ICAC ’04, May 2004.

[11] K. Nagaraja et al. Understanding and Dealing with
Operator Mistakes in Internet Services. In Proceedings
of OSDI ’04, December 2004.

[12] J. A. Nelder et al. A Simplex Method for Function
Minimization. Computer Journal, 7(4), 1965.

[13] T. Osogami et al. Finding Probably Better System
Configurations Quickly. In Proceedings of
SIGMETRICS ’06, June 2006.

[14] T. Osogami et al. Optimizing System Configurations
Quickly by Guessing at the Performance.
SIGMETRICS Perform. Eval. Rev., June 2007.

[15] C. Stewart et al. Performance Modeling and System
Management for Multi-component Online Services. In
Proceedings of NSDI ’05, May 2005.

[16] Y. Su et al. AutoBash: Improving Configuration
Management with Operating System Causality
Analysis. In Proceedings of SOSP ’07, October 2007.

[17] The Apache Software Foundation. Apache HTTP
Server Version 2.0.
http://httpd.apache.org/docs/2.0/mod/prefork.html.

[18] R. Thonangi et al. Finding Good Configurations in
High-Dimensional Spaces: Doing More with Less. In
Proceedings of MASCOTS ’08, September 2008.

[19] H. J. Wang et al. Automatic Misconfiguration
Troubleshooting with PeerPressure. In Proceedings of
OSDI ’04, Dec. 2004.

[20] Y. Wang et al. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management
and Support. In Proceedings of LISA ’03, Oct. 2003.

[21] A. Whitaker et al. Configuration Debugging as Search:
Finding the Needle in the Haystack. In Proceedings of
OSDI ’04, Dec. 2004.

[22] W. Zheng et al. Automatic Configuration of Internet
Services. In Proceedings of Eurosys ’07, March 2007.

[23] W. Zheng et al. MassConf: Automatic Configuration
Tuning By Leveraging User Community Information.
Technical Report DCS-TR-664, Department of
Computer Science, Rutgers University, January 2010.

288

