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ABSTRACT
A new approach for detecting security attacks on software
systems by monitoring the software system performance sig-
natures is introduced. We present a proposed architecture
for security intrusion detection using off-the-shelf security
monitoring tools and performance signatures. Our approach
relies on the assumption that the performance signature of
the well-behaved system can be measured and that the per-
formance signature of several types of attacks can be identi-
fied. This assumption has been validated for operations sup-
port systems that are used to monitor large infrastructures
and receive aggregated traffic that is periodic in nature. Ex-
amples of such infrastructures include telecommunications
systems, transportation systems and power generation sys-
tems. In addition, significant deviation from well-behaved
system performance signatures can be used to trigger alerts
about new types of security attacks. We used a custom
performance benchmark and five types of security attacks
to derive performance signatures for the normal mode of
operation and the security attack mode of operation. We
observed that one of the types of the security attacks went
undetected by the off-the-shelf security monitoring tools but
was detected by our approach of monitoring performance
signatures. We conclude that an architecture for security
intrusion detection can be effectively complemented by mon-
itoring of performance signatures.

Categories and Subject Descriptors
C.2.3 [Computer Communications Networks]: Network
Operations—network monitoring ; D.2.0 [Software Engi-
neering]: General—protection mechanisms

General Terms
Security, Performance, Measurement, Monitoring

1. INTRODUCTION
Software systems that are used to support high-reliability

mission-critical systems are usually monitored for both soft-
ware defects and performance. In addition, several layers
of security defenses are commonly deployed to protect these
systems from intrusion by non-authorized users.

We use a non-intrusive logging and analysis approach that
analyzes system data generated by Microsoft Windows Man-
agement Instrumentation API (WMI). We present empiri-
cal results that show that security intrusion of software can
leave the software in a state in which it is still operational,
but the system’s available capacity has been reduced. Such
a condition is sometimes referred to as a soft failure. In
earlier studies, [1, 2, 3, 4, 5] we have presented examples of
soft failures that represent cases of system-wide performance
problems.

In this paper we present an architecture for monitoring
mission-critical systems for security intrusion that takes ad-
vantage of system-wide performance signatures. In addition,
we suggest an approach to distinguish between performance
signatures that can be identified as being associated with
security intrusions and those that are associated with faults
that will lead to soft failures.

Security has been a documented issue for several millenia,
with recorded cases of ancient Egyptian and Hebrew scribes
devising codes to secure their messages [11]. In modern
times there has been a great deal of foundational research
including pioneering work at IBM [10] that led to the in-
vention of the US Data Encryption Standard (DES), the
Diffie-Hellman algorithm [7], and the RSA algorithm that
led to a practical public key system [14].

Currently, securing a computer is a multi-layered process,
in which some security is provided at each layer, the edge
routers, the local area networks, and at individual comput-
ers by restricting user access according to user roles. Each
security layer builds towards the goal of securing a set of
valuable assets according to a threat model. For example,
for an Internet Service Provider (ISP), RFC 2827 (Network
Ingress Filtering) ensures that the packets originating from a
network have source IP addresses from the specified address
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range of the network. In addition, at the Network level,
an access control mechanism is implemented through which
some machines are denied access to the network (blacklist-
ing), and some IP addresses and port numbers are moni-
tored. If needed, deep packet content inspection takes place
to detect the presence of attacks. This takes place at layers
2 through 7 of the OSI network protocol.

Intrusion detection systems (IDS) and intrusion preven-
tion systems (IPS) are deployed to analyze packet contents
and to counter security threats that may occur at the net-
work layer. At the application layer, firewalls, anti-virus,
and anti-spam software provide a combination of network
and application-level security.

In spite of all of these precautions, the role of user educa-
tion to ensure the security of mission-critical infrastructures
cannot be underestimated. For example, many security at-
tacks succeed because a significant part of the user commu-
nity continues to select weak passwords [15].

The outline of this paper is as follows: In Section 2 we
provide a brief literature review of approaches to system
monitoring based on performance signatures. In Section 3
we present the tool architecture used for security intrusion
detection. In Section 4 we present the approach used in
this paper for security testing, including test procedures.
In Section 5 we present the empirical results derived from
our experiments. In Section 6 we compare the effectiveness
of the off-the-shelf performance monitoring tools described
in this paper to our detection approach based on perfor-
mance signatures. In Section 7 we present the algorithm
for the detection of performance degradation using perfor-
mance signatures. In Section 8 we discuss our conclusions
and directions for future work.

2. RELATED WORK
In earlier work, our research group studied a number of

related problems that have provided a foundation for our
current research. Deterministic State Testing (DST) [1] is
a load test generation and execution approach, designed for
telecommunication systems. When executing load tests gen-
erated using the DST approach, we observed soft failures
that caused the system-under-test to operate with reduced
capacity.

[2] described an approach for non-intrusive monitoring
of software components that took advantage of the perfor-
mance signatures of the components, while [3] introduced
the concept of software capacity restoration by the use of
timely reboots of the software system. Software capacity
restoration is also known as software rejuvenation [9]. Sev-
eral faults that led to soft failures were detected by monitor-
ing performance signatures of a large mission-critical telecom-
munications system [4].

In [5], we introduced an approach to ensure performance
of mission-critical systems by monitoring a customer-affecting
metric leading to software rejuvenation when degradation
was observed.

In the current paper we extend the bucket algorithm intro-
duced in [5] to account for a multi-dimensional performance
signature. Our goal is to be able to differentiate between
performance degradation resulting from faults that lead to
performance problems and those that result from security
intrusions. The approach described in this paper is related
to the algorithm presented in [6] in which a bucket algorithm

Figure 1: Tools used for security testing

combined with software was employed to thwart worm prop-
agation in a MANET.

In [13], a brief outline of the use of performance signa-
tures for intrusion detection was presented, based on the
monitoring of time, memory, and communications require-
ments of certain program functions to differentiate between
well-behaved and suspicious patterns of program usage.

Performance signatures were introduced in [12] as way to
provide qualitative design guidelines to programmers before
source code development is started. The work presented
in [2], [13] and [12] is related to performance specification
and performance monitoring for software components. In
contrast, the work presented in the current paper is related
to using performance signatures for security intrusion detec-
tion of mission-critical systems.

Other interesting research related to security enforcement
using expected system usage includes [8], in which system
call policies are enforced for applications by constraining the
application’s access to the system.

3. ARCHITECTURE FOR INTRUSION
DETECTION

Several tools were deployed to drive the security tests, log
test results, detect security attacks, and analyze the results.
Figure 1 shows the list and locations of the tools used for
security testing.

Cain & Abel is a password recovery tool for Microsoft op-
erating systems. It allows easy recovery of various kinds
of passwords by sniffing the network, cracking encrypted
passwords using a dictionary, brute-force and cryptanaly-
sis attacks, recording VoIP conversations, decoding scram-
bled passwords, recovering wireless network keys, revealing
password boxes, uncovering cached passwords and analyz-
ing routing protocols. The program does not exploit any
software vulnerabilities or bugs that could not be fixed with
a little effort. We used this tool mainly to do ARP poi-
son routing in order to conduct man-in-the-middle attacks
against the system-under-test.

DoSHTTP is a powerful HTTP flood Denial of Service
(DoS) testing tool for Microsoft Windows. DoSHTTP in-
cludes URL verification, HTTP redirection, port designa-
tion, performance monitoring and enhanced reporting. It

94



uses multiple asynchronous sockets to perform an effective
HTTP flood and can be used simultaneously on multiple
clients to emulate a Distributed Denial of Service (DDoS)
attack. We used this tool to attack a particular web service
hosted on the system-under-test.

The System Performance Monitor & Alerter tool was de-
ployed at the system-under-test to log security test results.
It is a Java-based tool developed for the framework by our
research group, which runs as a background application. It
was created as a wrapper around the open source software
Hyperic Sigar [19] to gather system performance parameters.
It continuously monitors the CPU, memory usage, and inter-
face parameters and compares the values against the values
taken from the baseline profile. The values are sampled pe-
riodically. We used a frequency of 5 seconds. This helps us
prevent spikes and avoid false positives.

The Wireshark [18] and Snort [16] tools were used to mon-
itor network traffic. These were also deployed at the system-
under-test. Wireshark inspects the payloads of flagged pack-
ets. Packets are usually flagged when errors are detected,
such as non-compliance with a protocol or a checksum fail-
ure. Wireshark can also be used to certify that the packet
has taken the correct route, and is therefore useful in the
case of a man-in-the-middle attack.

Snort was the primary tool used in the analysis of the
security attacks, and was deployed as an Intrusion Detec-
tion System. MySQL was installed along with Snort so that
when network traffic corresponding to a Snort rule was de-
tected, the signature match can be logged into its MySQL
database for post mortem analysis.

The Base tool [21] provides the graphical user interface to
Snort IDS, notifying the user about attacks against the host
machine which match the Snort rules list.

The Currports tool [22] is used to scan open ports and
monitor the number of established ports and connections.

The MD5 Hasher Filehasher, and the Systracer [23] tools
are used to track changes to the Registry and file system
of the system-under-test. MD5 Hasher Filehasher is a tool
developed for the framework by our research group, which
generates MD5 hashes of files of given types. Hashes of the
files are written into a flat file for later analysis. Hashes
of files taken after the exposure of the system-under-test
to threats can be compared to those taken before to detect
changes to those files. Similarly, the Systracer tool takes
snapshots of the registry and file systems before and after
threat exposure to help detect changes.

4. APPROACH FOR SECURITY TESTING
AND INTRUSION DETECTION

Our objective in this paper is to assess the effectiveness of
using performance signatures for security intrusion detection
as compared to using off-the-shelf intrusion detection tools.

We modeled the performance characteristics of the system-
under-study to generate a background load that was a rea-
sonable representation of system usage. The background
load was composed of CPU, memory, I/O, and network us-
age.

The steps we used to generate the background load were:

1. Create a system profile to mimic the performance char-
acteristics of the system-under-study,

2. Customize an available shell script-based benchmark
to mimic the identified user profile.

This background load was invoked along with the test set-
up required to measure the security test cases. We identified
the following security test cases to be used to attack the
system-under-study:

• Buffer Overflow,

• Stack Overflow,

• SQL Injection,

• Denial of Service (DoS), and

• Man-in-the-Middle (MITM).

The process to generate performance signatures for secu-
rity attacks consists of the following steps:

1. The system-under-test logs all data from the deployed
intrusion detection tools and from Microsoft Windows
Management Instrumentation API (WMI),

2. The logged data is analyzed offline to identify the per-
formance signatures of each security attack.

Each experiment was conducted in two stages: a regular
usage test stage to collect the baseline performance profile,
and a security test stage to collect the attack profile. Each
stage is composed of three steps:

1. System running with baseline load for five minutes
(“pre-attack baseline time frame”),

2. System running with baseline load and additional load
for 1 minute (“test activity time frame,” wherein a
regular usage test or security test is run depending on
the stage), and

3. System running with baseline load for four minutes
(“post-attack baseline time frame”).

We now describe in detail the procedures performed dur-
ing the test activity time frame for each of the five security
tests.

Since the security detection framework involves both net-
work and system level monitoring, the vulnerable applica-
tions were selected in such a way that they were readily
accessible through the network.

In computer security and programming, a buffer overflow,
or overrun, is a vulnerability in which data being written by
a process exceeds the memory space allocated for it. The
extra data overwrite adjacent memory, which may contain
other program data, or even program instructions. This may
result in erratic program behavior, including memory access
errors, incorrect results, program termination (a crash), or a
breach of system security (e.g., execution of arbitrary com-
mands with the privileges of the exploited program.) This
sort of breach is known as a buffer overflow attack.

Some programming languages including C and C++ do
not have native mechanisms to check memory bounds be-
fore writing, which makes applications developed in these
languages potentially vulnerable. One of the first steps in
a buffer overflow attack is the attempt to access a memory
location outside the memory space allocated for the data
structure. This may cause a system crash and a subsequent
entry in the application log.

The test procedure for buffer overflow attack security test
uses a web client as the attacker and the web server as the
system under test. The procedure is summarized here:
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1. The attacker requests the test page (which provides an
interface to a web application with a buffer overflow
vulnerability) from the server,

2. The SUT returns the test page,

3. The attacker submits the query via the test page, in-
serting a large amount of data to cause a buffer over-
flow,

4. The SUT crashes, displaying an error message on the
SUT console.

For man-in-the-middle attacks, the connection between
the system-under-test and the router was hijacked by the
attacking machine using a technique called ARP (Address
Resolution Protocol) poisoning. Using the Cain & Abel
tool [17] tool, the ARP table of the system-under-test was
manipulated in such a way that, for packets sent to the out-
side network, the MAC address of the router was replaced
by that of the attacking machine. This gives the attacker
access to the SUT’s requests, as well as the corresponding
replies. Thus, the test procedure for the man-in-the-middle
attack security test uses the web client as the system under
test, and a man-in-the-middle machine as the attacker. The
procedure is described here:

1. The ARP table of the SUT is cleared using the Cain
& Abel tool,

2. The SUT requests a page from the Internet. In so
doing it issues an ARP request to find the address of
the router to the Internet,

3. The attacker, using the Cain & Abel tool, replies to
the SUT’s ARP request and provides its own MAC
address. This effectively hijacks the connection,

4. The attacker forwards the SUT’s request to the in-
tended destination,

5. The intended destination responds with the requested
web page,

6. The attacker receives the response and forwards it to
the SUT,

7. The SUT receives and displays the requested page.

For the stack overflow attack, a vulnerable application
was hosted on the system-under-test machine which would
have resulted in a stack overflow if the application is ever
accessed in a particular manner. The test procedure uses
the web client as the attacker, and the web server machine
as the SUT. The procedure is described here:

1. The attacker requests the test page (which provides
an interface to a web application with a stack overflow
vulnerability) from the server,

2. The SUT returns the test page,

3. The attacker submits the query via the test page, in-
serting data to cause a stack overflow,

4. The SUT processes the query:

• If the stack space is exhausted then the SUT host
responds with an error message indicating “out of
stack space.”),

• else return normal application response.

The denial of service attack test procedure uses the web
client as the attacker and the web server as the SUT. The
test procedure was executed with the help of the DoSHTTP
tool [20] running on the attacker to flood the SUT with
HTTP connections. The procedure is shown here:

1. The attacker probes the URL of a resource on the SUT
by making a request,

2. The SUT responds with the requested resource,

3. The attacker uses the DoSHTTP tool to flood the URL
with connection requests,

4. The SUT receives the request and attempts to service
it if connections are available:

• If connections are available then the SUT returns
the requested resource,

• else the SUT ignores the request,

5. Failure of the SUT can be detected by the attacker by
requesting the same resource. If no response is forth-
coming then the denial-of-service attack is succeeding.

SQL Injection is a code injection technique that targets
the database layer of an application. The vulnerability is
present when user input is either incorrectly filtered for
string literal escape characters embedded in SQL statements
or user input is not strongly typed and thereby unexpectedly
executed. Another form of attack is made in the hope of re-
vealing some exploitable details about the database system
behind the web application. Often, an attacker may con-
duct such an attack to obtain details about the database
(e.g., brand, version, table schema) before conducting fur-
ther, more focused attacks.

The test procedure for the SQL injection attack security
test uses the web client as the attacker and the web server as
the SUT. The SQL Injection test case was run using three
different inputs. First it was run with a normal legal in-
put to the web application. This input is in line with the
expectations of the web application and produces an ex-
pected result. Second, the test case was run with an input
manipulated to result in the execution of a desired attack
query. This input contains an SQL query paired with a con-
dition that evaluates to true (e.g. “’ OR SELECT * FROM
mytable OR 1=1”.) Note that the leading “’ OR” is inten-
tionally included to preserve correct syntax and trick the
web application into executing the attack query. Third, it
was run with an input crafted to cause the web application
to return with an error statement to the client.

The procedure is described here:

1. The attacker requests the test page (which provides an
interface to a web application with an SQL injection
vulnerability) from the SUT,

2. The SUT responds with the test page,

3. The attacker submits either a normal, SQL-injection,
or error-causing query,

4. The SUT returns its response to the attacker:

• For the case of a normal input, the SUT returns
a normal response,
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Figure 2: CPU usage during normal load and DoS
attack

• For the injection case, the SUT returns the result
of the injected command. In our case, all the data
from a specified table in the database,

• For the error case, the SUT returns an error mes-
sage issued by the database.

5. EMPIRICAL RESULTS
We executed the security test cases described in Section 4

using the tool architecture described in Section 3. In this
section we show the plots obtained as a result of each secu-
rity test case execution.

5.1 Denial of Service Attacks
The performance signature developed for the DoS security

test is presented in Figures 2, 3, 4, 5, and 6. These figures
plot the CPU usage, memory usage (as a percentage,) num-
ber of TCP resets, number of active threads, and number
of TCP connections established for both the regular usage
test stage, and the security test stage. We observe that the
memory percentage usage plot, Figure 3, indicates degra-
dation due to security attack after the test activity time
frame. This degradation continues into the post-attack base-
line time frame. The CPU usage plot, Figure 2, shows signif-
icant degradation in CPU usage only during the test activity
time frame. In addition, the number of active threads shown
in Figure 5, shows a spike at the time of execution of the
security test which did not recover fully from the DoS at-
tack. In particular, the number of active threads remaining
in the post-attack baseline time frame is about 555, which is
larger than the original number of baseline threads (about
540-550.)

5.2 SQL Injection
Along with the system performance monitor, we wrote

Snort rules specific to the applications we were running on
the system-under-test. In particular, Snort rules were cre-
ated to detect specific patterns in payloads, such as SQL
injection patterns. Table 1 shows a sample of the log file
generated by Snort, which shows violations to the set of
permissible inputs to the MySql database.

Figure 7 shows transmitted bytes/second for a normal
SQL query, the malicious SQL injection, labeled “craft”
in the plot, and the purposely error-causing query, labeled
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Figure 6: Number of TCP connections established
during normal load and DoS attack
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Figure 7: Transmitted bytes per second for normal,
SQL-injected, and SQL crash-invoking queries

“crash” in the plot. We observe that in all three cases the
performance signature of transmitted bytes/second was ef-
fective in detecting abnormal behavior.

5.3 Man-in-the-Middle
The performance signature developed for MITM security

testing is presented in Figures 8, 9, 10, 11, and 12.
Figures 8 and 9 show results of the security test case that

indicate higher CPU and memory usage than is normal. Fig-
ures 10, and 11 show similar trends for working set size,
and number of active threads, although the former does not
entirely return to pre-attack levels as the others do. We
attribute this to the effort needed to compute and authen-
ticate the fake certificate issued by the Cain & Abel tool.
In the normal case, the certificate is actually issued by the
site visited, and is likely already in the cache of the system-
under-test.

A warning pop-up was issued by Internet Explorer to the
system-under-test indicating the possibility of a potential
threat since it could not authenticate the SSL certificate.
Figure 12 shows the number of TCP Resets in both stages.
The attack shows a more significant rise in the value since
we observed more connection drops happening in the case
of the MITM attack.
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Figure 8: CPU usage during normal load and man-
in-the-middle attack
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load and man-in-the-middle attack
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and under man-in-the-middle attack
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1512-(1-1514) [local] [snort] Deletion attempt 2009-04-23
11:23:20

129.73.15.15:22586 129.73.15.56:8080

1513-(1-1515) [local] [snort] Deletion attempt 2009-04-23
11:49:27

129.73.15.15:22943 129.73.15.56:8080

1514-(1-1516) [local] [snort] Drop table
attempt

2009-04-23
12:02:09

129.73.15.15:23124 129.73.15.56:8080

1515-(1-1517) [local] [snort] Command
prompt attempt

2009-04-23
12:03:46

129.73.15.15:23124 129.73.15.56:8080

1516-(1-1518) [local] [snort] Command
prompt attempt

2009-04-23
12:07:33

129.73.15.15:23124 129.73.15.56:8080

1517-(1-1519) [local] [snort] Illegal display
attempt

2009-04-23
14:36:58

129.73.15.15:24815 129.73.15.56:8080

1518-(1-1520) [local] [snort] Illegal display
attempt

2009-04-23
14:38:06

129.73.15.15:24815 129.73.15.56:8080

Table 1: Application-specific Snort rules based on suspicious payloads (SQL Injection)
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Figure 11: Number of active threads under normal
load and man-in-the-middle attack
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Figure 12: Number of TCP resets under normal load
and man-in-the-middle attack
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Figure 13: CPU usage during normal and buffer
overflow attack
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Figure 15: Page faults per second during normal
and buffer overflow attack

5.4 Buffer Overflow
The performance signature developed for the buffer over-

flow security test is presented in Figures 13, 14, and 15.
Figures 13, 14, and 15 show the CPU percentage usage,

working set size, and page faults per second for both stages
of the Buffer Overflow security test. All of these graphs
show significantly higher activity in the attack graph when
compared to the normal traffic graph. The illegal access of
memory space can explain these elevated parameters. Dur-
ing this test the system application log entry generated an
illegal memory access alert. The System Log Monitor shown
in Figure 21 is the presentation layer of the proposed attack
detection architecture, and is used by the system adminis-
trator to look at the log files.

5.5 Stack Overflow
The performance signatures developed for Stack Overflow

security testing are presented in Figures 16, 17, and 18.
Figure 16 shows a considerable increase in the number

of active threads in the case of a Stack Overflow attack.
The program used up the stack before crashing it and a
large number of threads were used for this purpose thus
explaining the increase in this parameter. Figures 17 and 18
show that when the program was exploited to reserve large
chunks of memory, the swap memory percentage and the
virtual memory usage elevated dramatically.

The interesting aspect of the test case Stack Overflow was
that none of the off-the-shelf products detected the attack.

6. ANALYSIS OF EFFECTIVENESS OF
PERFORMANCE SIGNATURE
IN DETECTING SECURITY INTRUSIONS

The performance signatures derived from the execution of
the security tests are presented in Table 2. In Table 3 the in-
trusion detection ability of the off-the-shelf tools composing
the security infrastructure is shown.

Here a ‘Y’ indicates that the performance metric for that
row was effective in indicating the presence of the specific
attack defined for that column. An ‘N’ indicates that the
performance metric gave no discernible indication of the at-
tack. Ideally we would like to discover that one, or a small
handful of, performance metrics would be 100% effective in
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Figure 16: Number of active threads during normal
load and stack overflow attack
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Figure 17: Swap memory usage during normal load
and stack overflow attack
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Figure 18: Virtual memory usage during normal
load and stack overflow attack
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Metric DoS Buffer
Overflow

Stack
Overflow

Man-
in-the-
Middle

SQL In-
jection

Success

Active threads Y Y Y Y N 4
CPU Percentage Y Y Y Y N 4
Memory Percentage Y N N Y N 2
Interface Received bytes per sec Y N N N N 1
Swap Percentage Y N Y Y N 3
TCP Connections established Y N N N N 1
TCP Resets Y N N Y N 2
Interface Transmitted bytes per sec Y N N N Y 2
Virtual Memory N N Y N N 1
Working Set Y Y N Y N 3

Table 2: Performance Signatures intrusion detection ability. Y = yes, N = no

Metric DoS Buffer
Overflow

Stack
Overflow

Man-
in-the-
Middle

SQL In-
jection

Success

System Log N Y N N N 1
Browser Warning N N N Y N 1
Snort Logs Y N N N Y 2

Table 3: off-the-shelf security intrusion detection ability. Y = yes, N = no

indicating a broad set of security attacks. From Table 2, we
see that most attacks were flagged by the Active Threads
and the CPU Percentage performance signatures, while only
the Interface Transmitted Bytes per Second (IfXmit) perfor-
mance signature flagged the presence of the SQL Injection
attack. If we evaluate the metrics by their number of suc-
cesses in detecting attacks (indicated by the last column in
the table), then we see that the Active Threads, CPU, then
SWAP Percentage, Process Working Set, Memory Percent-
age, TCP Resets and IfXmit metrics were most successful
on average in detecting attacks. A small and robust set of
performance signatures for general security attack detection
from the information in this table might include (a) CPU
Percentage, (b) Active Threads, (c) SWAP Percentage, and
(d) IfXmit signatures. Clearly more empirical studies are
required.

Our initial study just scratches the surface of the total set
of empirical studies necessary to make strong recommenda-
tions on an appropriate set of performance signatures for
security attack detection. However, we are encouraged by
our initial results.

7. DISTINGUISHING BETWEEN SOFT FAIL-
URES AND SECURITY INTRUSIONS

The data analysis of performance signatures presented in
Table 2 has motivated us to compare the performance signa-
tures obtained from our security tests with some of the per-
formance signatures we obtained due to non-security faults
in earlier work [4]. When analyzing performance signatures
that were derived from failure events, we have observed sig-
nificant degradation with CPU spikes to 100% and constant
increase in memory usage. In contrast, when security intru-
sions have occurred, we have observed smaller spikes in us-
age that are usually within a well-defined range. Figures 19
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Figure 19: Increase in CPU usage due to a soft fail-
ure

and 20 show examples of CPU and memory degradation due
to a non-security fault.

Motivated by these observations, we present an extension
of the bucket algorithm introduced in [5]. This will be used
for detection of a multi-dimensional performance signature
that can distinguish between performance issues and secu-
rity intrusions. The monitoring infrastructure uses WMI to
capture the performance signature periodically. We used
five second periods in our security testing experiments. At
each sampling period, the value of each component i of the
performance signature SN [i] is estimated by counting the re-
cent number of occurrences, d, of sample values that exceed
x[i] + N [i]σ[i] where x[i] is the reference average expected
value of the performance signature component i, N [i], (i=
0,1,2,...,I), is the index to the current bucket of the ith com-
ponent of the performance signature, and σ[i] is the reference
expected standard deviation of the performance signature
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Figure 20: Decrease in available memory due to a
soft failure

component i. KIDS represents the total number of buck-
ets required for a single component i of the algorithm for
security intrusion detection. KSOFT represents the total
number of buckets required for a single component i of the
algorithm for detection of a soft failure. KSOFT > KIDS.
DN [i] represents the depth of bucket N [i].

If an overflow is observed in any of the last available buck-
ets i, the algorithm signals the detection of a soft failure
or a security intrusion. The algorithm works by tracking
the levels of K contiguous buckets for each component i.
Therefore K times i buckets are monitored. At any given
time, the level d[i] of only the Nth bucket of each compo-
nent i is considered. N [i] is incremented when the current
bucket overflows, i.e. when d[i] first exceeds DN [i], and is
decremented when the current bucket is emptied, i.e., when
d[i] next takes the value zero. Whenever the Nth[i] bucket
overflows, the depth DN [i]+1 of the next bucket will be com-

puted as DN [i]+1 = DMAX[i]/( SN [i] -(x[i] + N [i]σ[i] )),
where DMAX[i] is the maximum depth configured for the
first bucket of each component and I is the dimension of the
performance signature vector.

7.1 Algorithm to Estimate Current Value of
Monitored Performance Signature

1. for (i=0,i < I, i++) { /* do loop Steps 2-7*/

2. if (N[i] == KIDS) issue an security intrusion detection
notification.

3. if (N[i] == KSOFT) issue a soft failure notification.

4. if (SN [i], > x[i] + N[i]σ[i] )

then

do{ d[i] := d[i] + 1;}
else

do { d[i] := d[i] - 1; }
5. if (d[i] > DN [i] )

do { d[i] := 0;

DN [i]+1 := DMAX[i] /( SN [i] - ( x[i] + N[i]σ[i])) ;

N [i]:=N [i]+1;}

6. if ((d[i] < 0) AND (N [i] > 0))

then

do {d[i] := DMAX[i] ;

N [i] := N [i] -1;

DN [i]: = DMAX[i]; }
7. if ((d[i] < 0) AND (N [i] == 0))

then

do {d[i] := 0;}
} /* end of do loop of Step 1 */

8. CONCLUSIONS AND FUTURE WORK
We have described the technique and the process through

which we developed performance signatures for some com-
mon security tests. In addition, we have introduced an al-
gorithm to be used in conjunction with the framework to
automatically detect and distinguish between failures and
security attacks.

We have successfully demonstrated that it is possible to
obtain performance signatures based on security tests, sys-
tem performance monitoring, and extensive logging from dif-
ferent security monitoring tools. We are very encouraged by
these preliminary results and are planning to extend this re-
search in the following ways:

• Analyze and tune our proposed monitoring algorithm
against our set of security attacks. Our analysis will
trade window size versus responsiveness, since too large
a window will likely result in sluggish performance,

• Expand the definition of normal/baseline behavior for
industrial software systems to accommodate varying
load conditions based on time of day, day of week, or
day of month. As the baseline conditions change, the
variations in the relative values need to be adjusted
appropriately,

• Develop performance signatures for additional security
test cases,

• Develop an intelligent analyzer that can make assump-
tions about unknown performance signatures.

Figure 21 shows the proposed attack detection architec-
ture. System Performance Monitor & Alerter SPEMA is
implemented in the bucket framework with the aim of look-
ing at the pre-defined signatures along with the other tools
(CurrPorts, Wireshark, System Log monitor). When a sig-
nature is matched, the alerter (UI) provides live warning to
the user and logs the attack. If SPEMA notices erratic be-
havior, it warns the user through the alerter and logs the
possible attack (which can be further analyzed). SPEMA
also logs the software degradation data. If the parameters
are within permissible limits, it lets the data go through
without logging it. Our future work will focus on fleshing
out and developing this architecture.
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Figure 21: Proposed attack detection architecture
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