
Workload-Intensity-Sensitive Timing Behavior Analysis for
Distributed Multi-User Software Systems

∗

Matthias Rohr1,2, André van Hoorn2, Wilhelm Hasselbring2,3,
Marco Lübcke4, Sergej Alekseev5,6

1 BTC Business Technology Consulting AG, Germany
2 Graduate School TrustSoft, University of Oldenburg, Germany

3 Software Engineering Group, University of Kiel, Germany
4 CeWe Color AG & Co. OHG, Oldenburg, Germany
5 Nokia Siemens Networks GmbH, Berlin, Germany

6 Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany

ABSTRACT

In many multi-user software systems, such as online shop-
ping systems, varying workload intensity causes high sta-
tistical variance in timing behavior distributions. However,
this major impact on timing behavior is often ignored.

This paper introduces our approach WITiBA (Workload-
Intensity-Sensitive Timing Behavior Analysis) to consider
inter-dependencies between concurrent executions of soft-
ware operations within a distributed system to reduce the
standard deviation for succeeding analysis steps. This can
be beneficial for analysis methods or simulation methods in
terms of tighter confidence intervals, or shorter simulations.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; D.2.2
[Software Engineering]: Design Tools and Techniques

General Terms

Performance, Measurement

Keywords

software performance, profiling, workload intensity, scalabil-
ity, monitoring, concurrency, response time distribution

1. INTRODUCTION
Response time distributions of operations in enterprise soft-
ware systems often show high variance (see e.g., [7]). High
variance can make it more difficult to draw statistical con-
clusions [6].

Our hypothesis is that varying workload intensity (e.g.,
from concurrent user activity) is a major reason for high

∗This work is supported by the German Research Founda-
tion (DFG), grant GRK 1076/1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

variance in distributed multi-user systems, such as online
stores, and online banking sites, and that typical evaluations
of monitoring data can be significantly improved by explic-
itly considering workload intensity. This paper introduces
the novel statistical method WITiBA (Workload-Intensity-
Sensitive Timing Behavior Analysis) for evaluating software
timing behavior in the context of the workload intensity that
is present at the time of the execution.

WITiBA provides a workload-intensity-specific timing be-
havior model with significantly lower variance by defining
classes based on workload intensity. This follows the gen-
eral idea of Menasce and Almeida [6], with the difference
that they grouped similar requests in terms of performance
resource usage to reduce variability.

Many evaluation and simulation techniques can benefit
from our variance reduction approach in terms of requiring
less observations, providing tighter confidence intervals, or
requiring less or shorter simulation runs [4]. Empirical re-
sults from field and lab studies demonstrate the benefits of
our approach and quantify the variation related to varying
workload intensity.

This paper is structured as follows. Sections 2 and 3 intro-
duce the system model and our approach to timing behavior
analysis. The case studies are presented in Section 4, before
related work and the conclusions follow in Sections 5 and 6.

2. BACKGROUND
This section describes the system model underlying our ap-
proach, foundations on timing behavior, and variance reduc-
tion.

2.1 System Model
It is assumed that software systems are (or can be) hierar-
chically structured into entities of the following types: op-
erations, components, and execution environments. Compo-
nents provide operations that might be requested by other
components, external users, or systems. Components are de-
ployed to a number of possibly distributed, inter-connected
execution environments. An execution environment com-
prises the physical hardware platform including the com-
putational resources, the operating system, as well as the
component container, e.g., a Java EE application server.

Primary artifacts of system runtime behavior are execu-
tions of software operations. A trace represents the internal
control-flow among executions originating from an external

87

service request. We limit the scope to synchronous commu-
nication, i.e., a trace is the result of a sequence of executions
serviced by a single thread of control. This implies that ex-
ecution sequences that are connected by asynchronous com-
munication are represented as separate traces.

2.2 Timing Behavior of Software Systems
The execution-related timing metrics used in our approach
are response time and execution time. The response time
of an execution is defined as the time period between the
start and end of an execution including the response time
of nested executions. The execution time excludes the re-
sponse of nested executions. e with op(e) = o represents an
execution of operation o. The start time, response time, and
execution time of e are denoted st(e), rt(e), and et(t).

Due to a finite number of shared hardware and software
resources, the timing behavior of a software system is influ-
enced by the workload it is exposed to. Workload can be
divided into workload intensity and individual request char-
acteristics (cp. [6]). Typical workload intensity metrics are
arrival rates and the number of jobs in a system. Individual
request characteristics are the properties of individual re-
quests, e.g., in terms of request types and parameter values.

Response times tend to increase non-linearly by workload
intensity [4]: Up to a first workload intensity level the re-
sponse time does not increase significantly. Starting with
a second level, the response time increases approximately
linearly, before it tends to increase rapidly by increasing
workload intensity due to resource contention.

2.3 Standard Deviation Reduction
The benefit of our approach will be quantified by the re-
duction of standard deviation (in percent) in relation to the
original dataset. First, it is computed for each operation how
much the standard deviation for all observations is reduced
compared to the average (weighted by the class size) stan-
dard deviation for each workload-intensity-specific sub-class
(short: standard deviation reduction). In a second step, the
relative standard deviation values of all instrumented opera-
tions of the software are aggregated (weighted by number of
observation per operation) into a single value for each vari-
ant of our approach. To achieve statistically robust evalua-
tion results, operations with less that 600 observations were
accounted with a standard deviation reduction of 0%.

3. OUR APPROACH TO TIMING BEHAV-

IOR ANALYSIS
This section presents our new approach, called WITiBA
(Workload-Intensity-Sensitive Timing Behavior Analysis), to
consider workload intensity in software timing behavior ana-
lysis. WITiBA’s idea is to group timing behavior corre-
sponding to different workload intensity scenarios. Each
class represents the timing behavior observations for a work-
load intensity interval. Figure 1 illustrates this for the three
classes of low, medium, and high workload intensity. As in-
dicated by the three probability density functions, consider-
ing workload intensity can reveal workload-intensity-specific
timing behavior. An approach splitting the observation set
into classes, such as ours, requires a suitably high number
of observations.

The key element of our approach is a workload intensity
metric, denoted pwi (Platform Workload Intensity). This

Response time in milliseconds

D
e
n
s
it

y

pwi [2.79, Inf]

pwi [2.00, 2.79]

pwi [1.00, 2.00]

0 5 10 15 20

0
.8

0
.4

0
.0

Figure 1: Example: Probability distributions for
low, medium, and high workload intensity of opera-
tion getItemListByProduct(..) of case study CS-1.

Table 1: pwi metrics overview.
Metric Time metric Execution Operation

environment weighting

pwi1 Response times Non-distributed No weighting
pwi2 Execution times Non-distributed No weighting
pwi3 Execution times Distributed No weighting
pwi4 Execution times Distributed Learned

paper introduces four alternative metrics (pwi1 − pwi4), or-
dered by complexity: pwi1 is relatively simple by being de-
fined as the number of concurrently executing traces in a
system, pwi2 uses execution times instead of response times,
pwi3 is extended for distributed systems, and pwi4 uses
weights in order to take into account that different soft-
ware operation in a distributed system can have different
timing behavior influences to each other. pwi4 is the aver-
age weighted sum of all concurrently executing operations
over a time period within the same execution environment.
Table 1 summarizes the characteristics of the metrics in
terms of whether they use response times or execution times;
whether the structure of distributed systems is considered;
and whether concurrent executions of other operations are
all equally weighted.

All metrics use basic control-flow information. Therefore,
the monitoring of the metrics can be implemented efficiently,
which makes them suitable for continuous operation in real
world systems.

3.1 Platform Workload Intensity pwi1
The pwi1 metric is defined as the average number of all con-
current traces during the time period between the start (call
action) and the end of an operation execution. More pre-
cisely, for an execution e with st(e), rt(e) ∈ N, the platform
workload intensity function pwi1 : e→ [1,∞] ⊂ R is defined
as follows:

pwi1(e) :=
1

rt(e)

st(e)+rt(e)∑

t=st(e)

|AT (t)| (1)

where |AT (t)| is the cardinality of a set AT(t). Time is
assumed to be discrete, therefore, t ∈ N. AT(t) is defined

AT(t) := {tr | ∃e′ ∈ tr : t ∈ [st(e′), st(e′) + rt(e′)]}. (2)

In words, for a point in time t, AT (t) is the set of traces
containing at least one execution that has been started and
has not yet been completed at time t. Hence, pwi1 provides
the average number of traces executing during the execution
time period of e. The values of pwi1 start at 1 since an

88

b()

Active Not activeoperation,

execution
trace

exec.

env.

1 1

pwi1

c(),1 1 1 3

2.2

a() 1 1 2.2

Time
0 10 20 30 40 50 60 70 80 90 100

c(),2 1 1 2.5

g() 3 1 2.71

h() 3 2 2.8

pwi 2

3

2

2

2.5

2.5

2.8

d() 2 1 3

e() 2 1 3

3

3

pwi3

3

1.66

1.5

1.5

2.5

1

2.25

2

Figure 2: pwi computation examples.

execution has always its own trace in the set AT . Examples
for the computation of pwi1 can be found in Figure 2. The
gray shading indicates which executions are active.

3.2 Platform Workload Intensity pwi2
pwi2 differs to pwi1 by considering the execution time period
instead of the response time period. Timing behavior analy-
sis using the execution time period is usually more precise,
i.e., only the time period is considered in which an opera-
tion execution is active and does not wait for the result of
sub-calls.

pwi2 uses the execution time et(e), based on the assump-
tion that an operation execution that is waiting for a sub-call
does not compete for resources during the waiting period.
The time periods in which the execution e to be evaluated is
waiting for the results of sub-calls are ignored. This extends
Equation 1 to

pwi2(e) :=
1

et(e)

st(e)+rt(e)∑

t=st(e)

|AT(t)| · Active(e, t) (3)

with Active → {0, 1} and Active(e, t) = 0 if the execution e
waits at time t for a sub-call to complete and 1 else.

Examples for the computation of pwi2 are in Figure 2.

3.3 Platform Workload Intensity pwi3
The following pwi metrics consider the structure of a dis-
tributed system. pwi3 and pwi4 assume that the active exe-
cutions within the same execution environment compete for
the same resources. For instance, a CPU is only typically
provided to local operation executions by the local execu-
tion environment. However, this assumption may not hold
for resources that are shared over the network.

A trace can only be active in one of the execution envi-
ronments a time, although it may contain executions span-
ning more than one execution environment. Therefore, com-
puting an execution’s pwi should include only the activity
within its corresponding execution environment, while activ-
ities in other execution environments must be ignored since
these do not directly compete for the same resources.

Mathematically, this extends Equations 3 and 2 to

pwi3(e) :=
1

et(e)

st(e)+rt(e)∑

t=st(e)

|AT (t, e)| · Active(e, t) (4)

with

AT(t, e) := {tr | ∃e′ ∈ tr : Active(e′, t) = 1

∧ env(e′) = env(e)} (5)

where env(e) provides the execution environment in which
an execution e executes. In words, AT(t, e) is the number of
traces having an execution e′ that executes in the execution
environment env(e) at time t without waiting for sub-calls.
Examples for the computation of pwi3 can be found in Fig-
ure 2.

3.4 Platform Workload Intensity pwi4
pwi1–pwi3 model each operation execution with equal re-
source demands. pwi4 uses weights to consider different re-
source demands for each operation. For this, W is defined
the weight matrix, where wo,p ∈ R is the weight to be used
within an execution of operation o for considering concur-
rent executions of operation p. A relatively high value of
wo,p indicates that executions of p have a strong influence
(e.g., because of resource sharing) to an execution of o.

The pwi4 is computed by aggregating and weighting opera-
tion-specific pwi values as defined by Equations 6 and 7. Let
e be an execution of operation o with its execution time et,
then pwi4(e) is defined as follows:

pwi4(e) :=
1

et(e)
·

m∑

p=1

wo,p · pwi4(e, p) (6)

pwi4(e, p) :=

st(e)+rt(e)∑

t=st(e)

|AT (t, e, p)| ·Active(e, t). (7)

pwi4(e, p), defined in Equation 7, extends Equation 4 by
a reference to the operation p. AT(t, e, p) is the set of traces
having an execution of operation p that is active at time t
in the execution environment env(e):

AT(t, e, p) := {tr | ∃e′ ∈ tr : Active(e′, t) = 1 ∧

env(e′) = env(e) ∧

op(e′) = p}. (8)

In order to use pwi4, the weight matrix W has to be pro-
vided. The determination of the weight matrix is an n di-
mensional optimization problem, with n as the number of
operations in the system, but the relevant search space is
usually much smaller, since only the number of operations
in the same execution environment are considered according
to Equation 8.
W can be determined from historical monitoring data by

either using machine learning algorithms or by determin-
ing a solution analytically. The computational costs can be
high for systems in which a large number of operations is
instrumented within the same execution environment and a
suitably large amount of observations is required. In the
case studies, a machine learning technique (gradient de-
scent) iteratively refines the weights randomly to determine
those that provide the highest variance reduction in average.
Heuristics, such as the method used, do usually not provide
an optimal solution, but are often more efficient in provid-
ing a reasonably good solution than analytical methods. A
first a priori estimate for the weight wo,p is given by the
correlation coefficient between the series of response times

89

Table 2: Example: Weight vectors (columns).
W

work
W

wait

work 2.01 1.03
wait -0.05 0.05

Mean

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
il
li
s
e
c
)

3
0
0

3
2
0

3
4
0

0.3 0.7 1.1 1.4 1.8 2.2 2.5 2.9
Workload Intensity pwi4

(a) pwiwait4

−0.9 0 0.8 1.6 2.4 3.2 4 4.8 5.6

Mean

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
il
li
s
e
c
)

5
0

1
0
0

1
5
0

Workload Intensity pwi4

(b) pwiwork4

Figure 3: Example boxplots: Relation between pwi4

and execution times.

for operation o and the series of corresponding pwi4(e, p)
values.

When the pwi4 weights are determined by machine learn-
ing techniques, there is the danger of so-called overfitting.
Overfitting denotes the case when a model fits well in the
context of the training data but fails for data sets that were
not used in training. Overfitting was prevented with so-
called early stopping, which stops the training of a model
parameter when it would reduce the performance in the con-
text of a second data set. Standard deviation reduction ben-
efits were only quantified with an independent third dataset.

Example pwi4. Let a program consist of the two operations
wait and work. Operation wait waits for some time with-
out requiring any resources during that period and work
performs CPU intensive computations. It is to expect that
executing wait() has less impact to other concurrent exe-
cutions than executing work, since executing work requires
more resource sharing with other executions than wait.

A straight forward Java implementation of this program
was executed 120,000 times under various workloads, with
1-20 concurrent executions. The pwi4 computation is pa-
rameterized with the weight vectors of Table 2, which have
been learned from training data.

Figure 3(b) shows a strong relation between execution
times of work and pwi4: both execution time mean and vari-
ance grow by increasing pwi4 values. Most monitored execu-
tion times of operation wait are relatively independent from
the corresponding pwi4 values, as displayed in Figure 3(a).
Table 3 provides the resulting standard deviation reduction
(see Section 2.3), showing that pwi4 performs best.

Table 3: Example: Standard dev. reduction (%).
pwi1 = pwi2 = pwi3 pwi

work

4
pwi

wait

4
pwi4

work 22.1± 2 72.0± 2 7.6± 1 72.5± 2

wait 16.3± 8 18.3± 9 11.7 ± 6 18.8± 9

Workload specification

Experiment time in minutes
0 5 10 15

N
u
m

b
e
r

o
f

c
o
n
c
u
rr

e
n
t

u
s
e
rs

0
2

0
4

0
6

0
8

0

Figure 4: CS-1: Workload intensity specification.

4. CASE STUDIES
In this section, empirical results from lab studies and a field
study are presented. As in the previous section, the evalua-
tion metric is the average relative standard deviation reduc-
tion (see Section 2.3). Table 4 summarizes the case studies.
CS-0 denotes the example of the previous section. Based on
experience in first experiments, the number of overlapping
bins is set to 10.

4.1 Distributed Web Shop (CS-1)
The software application analyzed in the case study is a re-
engineered distributed version of the iBATIS JPetStore 5
which represents an online shopping store. We divided the
JPetStore into four software components, each deployed to
a dedicated machine and a databaseon a fifth machine.

The workload is generated by the workload driver Apache
JMeter extended by Markov4JMeter [10]1. The workload
has two major characteristics: 1) the user behavior model is
probabilistic, specified by a Markov model, and 2) the vary-
ing workload intensity is specified based on a curve based on
24 hour monitoring data of a real system (Figure 4). The
curve is scaled to a maximum of 78 concurrent users to stay
below 80% utilization of the maximal capacity.

The experiment scenario was executed 5 times with sys-
tem executions of 18 minutes each. Each run provided about
740,000 executions from 34 probes in the system. Figure 5
shows the standard deviation reduction results. All four
methods strongly reduce standard deviation – in average
from 35% for pwi1 up to 56% for pwi4. Log-transforming
the pwi values, before defining bins additionally improves
standard deviation reduction by 29% in average. For pwi4,
this results in a standard deviation reduction of 65%.

4.2 Telecommunication System (CS-2)
CS-2 analyzes monitoring data from a telecommunication
signaling system of Nokia Siemens Networks. Eight mon-
itoring points have been placed in one particular module
of the large system that provides management and billing
services for mobile telecommunication.

Figure 6 displays the workload specification (BHCA =
Busy Hour Call Attempts). This is a low workload intensity
scenario, since the CPU utilization does not exceed 20%,

1
http://markov4jmeter.sourceforge.net/

90

http://markov4jmeter.sourceforge.net/

Case Study Workload % CPU # operations # execution environ- System type

study type Intensity User behavior utilization instrumented ments monitored

0 Example Linearly incr. Constant 10 – 80% 2 1 Two method example

1 Lab Adapted from Markov 0 – 80% 34 5 Distributed Web shop
real system Model

2 Lab Test Non-probabilistic 0 – 20% 8 2 Telecommunication
scenarios scenarios signaling system

3 Field Real Real 0 – 15% 161 1 Photo shopping
and service portal

Table 4: Case Studies.

pwi1 pwi2 pwi3 pwi4
Platform workload intensity metric

Non−log.
Log.

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 r

e
d
u
c
ti

o
n
 (

%
)

0
2

0
4

0
6

0
8

0

Mean

Figure 5: CS-1: Standard deviation reduction.

0 2000 4000 6000 8000

0
5
0

1
5
0

2
5
0

C
a
ll
s
 a

c
ti

v
e
 a

t
a
 t

im
e

Time in seconds

0
2
0

6
0

1
0
0

B
H

C
A

 (
ts

d
.)

Figure 6: CS-2: Workload specification.

which provides less potential for benefits from considering
workload intensity.

The monitoring data consists of 2.5 million executions for
eight software operations. Two load-balanced identical exe-
cution environments are monitored.

pwi2 and pwi3 are equal, since the traces monitored in
CS-2 never span over multiple execution environments.

Figure 8(a) shows the standard deviation reduction results
for CS-2. As in CS-1, pwi4 performs best in the compari-
son of the four alternative methods. The average standard
deviation is additionally improved by more than 40% if the
logarithm of the pwi values are used for defining timing be-
havior classes. Prior log-transformation of the pwi4 results
in 32.34% standard deviation reduction.

4.3 Photo Shopping and Service Portal (CS-3)
The monitoring data in CS-3, is from a portal of CeWe Color
AG, Europe’s largest digital photo service provider. Cus-
tomers use the portal to order photo prints and other photo
products.

The monitoring data consists of about 1.5 million obser-
vations for each day. A large number of software operations
(161) has been instrumented in a single execution environ-
ment of the load-balanced production environment. The
workload (shown in Figure 7) is the real system usage mon-
itored on a single of many load-balanced execution environ-
ments. The 100% line indicates the average workload during

50%

100%

200%

12:00 22:00 8:00 18:00 4:00 14:00 0:00 10:00 20:00 6:00 16:00

Wednesday Thursday Friday Saturday Sunday

Figure 7: Workload curve of CS-3 (active sessions).

0
1

0
3

0
5

0
7

0
S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 r

e
d
u
c
ti

o
n
 (

%
)

pwi1 pwi2&3 pwi4
Platform workload intensity metric

MeanNon−log.

Log.

(a) CS-2

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 r

e
d
u
c
ti

o
n
 (

%
)

0
1
0

2
0

3
0

4
0

5
0

Non−log.

Log.
Mean

pwi1 pwi2&3 pwi4
Platform workload intensity metric

(b) CS-3

Figure 8: Standard deviation reduction.

Friday’s daytime. The complete monitoring data from the
first three days were used in this paper.

The system was not under high load on the days of mon-
itoring. The CPU utilization did not exceed 15% for exe-
cuting the operation executions. Therefore, smaller benefits
from considering workload intensity in performance analysis
can be expected than in the case studies with higher work-
load intensity.

Figure 8(b) shows the standard deviation reduction results
for CS-3. Again, pwi4 performs best in the comparison of
the four alternative methods (26.46%, 29.15% for log.). As
only a single execution environment was monitored, pwi2

equals to pwi3. Several of the 161 instrumented operations
were only executed less times than required for statistically
robust computations. For these operations, a standard devi-
ation reduction of 0% was assumed in computing the average
relative standard deviation reduction.

4.4 Summary
The three case studies indicate slight benefits by preferring
pwi2 over pwi1, i.e., by using execution times and execution
time periods instead of using response times and the re-
sponse time period. The results in CS-1 show small benefits
by using the pwi3 metric in a distributed system over pwi1

and pwi2. Therefore, in this system, most timing behavior
inter-dependencies between concurrent software executions
are between executions within the same execution environ-
ment of a distributed system. In the non-distributed case
studies CS-2 and CS-3, pwi3 is equal to pwi2.

91

pwi4 performs best in all case studies. This indicates that
it is beneficial to model the timing behavior influence of con-
current executions for each software operation individually.

5. RELATED WORK
Our former work [8] also addressed the reduction of standard
deviation in software timing behavior models. It showed
that a large part of the standard deviation in software re-
sponse time distributions can be related to the position of
a software execution within its corresponding execution se-
quence. This paper’s approach is orthogonal to our former
work: instead of analyzing the position of a software execu-
tion in a trace, this paper analyzes the influence of concur-
rent software executions.

Menasce and Almeida [6] group similar requests in terms
of performance resource usage to reduce variability. In this
paper, classes are defined based on workload intensity in-
stead of request types.

In software profiling, timing behavior is correlated to op-
eration calls and to traces. Graham et al. [3] introduced the
profiler gprof, which provides caller-context information (i.e.,
makes caller-callee relations explicit). Ammons et al. [1] ex-
tend this work to stack-context equivalence, i.e., two execu-
tions are considered equivalent if the execution stack con-
tains the same sequence of operations. Both approaches do
not consider workload intensity.

Bailey and Soucy [2] categorize requests into trivial, inter-
mediate, and complex service requests. The timing behav-
ior of requests are compared against request-type-specific
response time objectives for failure diagnosis. Workload in-
tensity in terms of concurrent usage is not considered.

Maxion [5] evaluated network characteristics in the con-
text of workload intensity changes by considering the time
of the day. The approach is based on the observation, that
the system studied (a large university network) shows typical
workload intensity patterns over the day. The approach also
models week days and weekends separately. This approach
is similar to ours in that the workload intensity is consid-
ered in evaluating system behavior. However, our approach
addresses software timing behavior instead of network char-
acteristics and does not model day time patterns.

6. CONCLUSIONS
We addressed the relation between varying workload inten-
sity in multi-user software systems and the resulting statisti-
cal variance in timing behavior distributions obtained from
monitoring data. This paper introduces our approach for
the analysis of monitoring data, called WITiBA (Workload-
Intensity-Sensitive Timing Behavior Analysis). WITiBA con-
siders inter-dependencies between concurrent executions of
software operations within a distributed system to reduce
the standard deviation for succeeding analysis steps. This
can be beneficial for many timing behavior analysis meth-
ods or simulation methods in terms of smaller confidence
intervals, or shorter simulation time.

The case study results show that a significant amount
of model variance can be reduced by using our workload
metrics. The largest benefit can be achieved with the met-
ric pwi4, which considers concurrent executions of software
operations in a distributed system. pwi4 learns weights
from monitoring data to address the observation that con-
current executions of software operations have operation-

specific timing behavior inter-dependencies. These inter-
dependencies result for instance from the competition for
the same resources.

The implementation prototype reasonably scales: analyz-
ing hundred thousand executions requires less than a minute
on a standard desktop computer. The pwi4 metric requires
additional computational effort for learning the weight vec-
tors, which depends on the learning technique used, the
number of learning iterations, and the number of different
monitoring points within the corresponding execution envi-
ronments. In CS-3, weights for 161 software operations were
computed within several minutes for each operation.

A constant monitoring overhead in the order of microsec-
onds for each activated monitoring point and operation exe-
cution could be achieved with the Kieker framework2 [9] for
monitoring calling dependencies and response times. In our
ongoing field studies, the monitoring overhead was reported
to be small if only major platform services (e.g., ≤ 50) were
instrumented.

Future work is to compare workload intensity with other
timing behavior influences, such as parameter values, and
request types.

References
[1] Ammons, G., Ball, T., and Larus, J. R. Exploiting hard-

ware performance counters with flow and context sensitive
profiling. In Proc. Conf. on Programming Language Design
and Implementation (PLDI’97) (1997), ACM, pp. 85–96.

[2] Bailey, R. M., and Soucy, R. C. Performance and avail-
ability measurement of the IBM information network. IBM
Systems Journal 22, 4 (1983), 404–416.

[3] Graham, S. L., Kessler, P. B., and McKusick, M. K.
gprof: A call graph execution profiler. SIGPLAN Notes 17,
6 (1982), 120–126.

[4] Jain, R. The Art of Computer Systems Performance Ana-
lysis, first ed. John Wiley & Sons, Apr. 1991.

[5] Maxion, R. A. Anomaly detection for diagnosis. In Proc.
Int’l Symp. on Fault-Tolerant Computing (FTCS ’90) (June
1990), IEEE, pp. 20–27.

[6] Menascé, D. A., and Almeida, V. A. Capacity Planning
for Web Services: Metrics, Models, and Methods. Prentice
Hall, Oct. 2001.

[7] Mielke, A. Elements for response-time statistics in ERP
transaction systems. Performance Evaluation 63, 7 (July
2006), 635–653.

[8] Rohr, M., van Hoorn, A., Giesecke, S., Matevska, J.,
Hasselbring, W., and Alekseev, S. Trace-context sen-
sitive performance profiling for enterprise software applica-
tions. In Proc. SPEC Int’l Performance Evaluation Work-
shop (SIPEW ’08) (June 2008), vol. 5119 of LNCS, Springer,
pp. 283–302.

[9] Rohr, M., van Hoorn, A., Matevska, J., Sommer, N.,
Stoever, L., Giesecke, S., and Hasselbring, W. Kieker:
Continuous monitoring and on demand visualization of Java
software behavior. In Proc. IASTED Int’l Conf. on Software
Engineering 2008 (Feb. 2008), ACTA Press, pp. 80–85.

[10] van Hoorn, A., Rohr, M., and Hasselbring, W. Gener-
ating probabilistic and intensity-varying workload for Web-
based software systems. In Proc. SPEC Int’l Performance
Evaluation Workshop (SIPEW ’08) (June 2008), vol. 5119
of LNCS, Springer, pp. 124–143.

2
http://kieker.sourceforge.org

92

http://kieker.sourceforge.org

	Introduction
	Background
	System Model
	Timing Behavior of Software Systems
	Standard Deviation Reduction

	Our Approach to Timing Behavior Analysis
	Platform Workload Intensity pwi1
	Platform Workload Intensity pwi2
	Platform Workload Intensity pwi3
	Platform Workload Intensity pwi4

	Case Studies
	Distributed Web Shop (CS-1)
	Telecommunication System (CS-2)
	Photo Shopping and Service Portal (CS-3)
	Summary

	Related Work
	Conclusions

