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ABSTRACT 
Performance analysis and prediction of parallel applications using 
the Message-Passing Interface (MPI) standard is a challenging 
task.  Collecting, organizing, and making sense of profiling data 
for MPI jobs of even modest scale is difficult and time-
consuming.  The task is further complicated by the inherent 
difficulty in interpreting the resulting communication 
measurements.  In this paper we introduce MPInside, a new 
profiling and diagnostic tool that overcomes these constraints with 
carefully considered choices for measurement techniques, 
capabilities, and output formats.  Using examples from real-world 
applications, we illustrate the innovative features of the tool—
including late senders for point-to-point calls and unaligned 
collective calls—all in an instrumentation-free framework.  We 
also demonstrate the in-flight modeling capabilities of MPInside 
with several “what if” experiments. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]:  Measurement techniques, 
Modeling techniques, Performance attributes. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Parallel applications, MPI, Performance analysis, Performance 
modeling. 

1. INTRODUCTION 
Analysis tools for MPI [1] programs are a critical requirement for 
both application developers and end users, providing a means to 
understand program behavior, identify performance bottlenecks, 
and predict performance on a variety of system configurations.  
Numerous tools available today attempt to satisfy these needs 
with varying degrees of instrumentation, tracing, and post-
processing capabilities.  In our experience these tools provide 
either too little information concerning key parameters of the MPI 

communications or too much information to be summarized 
easily.  In addition, the majority of tools require application 
recompilation and/or re-linking in order to obtain sufficiently 
detailed communication statistics. 
In this paper we first describe the motivations that led us to 
develop yet another MPI profiling tool, MPInside. We then 
present the basic profiling features and the advanced methods 
used to measure the wait time related to unaligned MPI calls for 
both collective and point-to-point communications. Section 4 
describes the modeling capabilities developed within the tool 
framework to estimate application behavior on a perfect 
interconnect, thus providing a best-case signature for the 
application. We also show how more sophisticated models can be 
applied to predict application performance on arbitrary system 
configurations. Finally, we close with a case study illustrating 
how MPInside modeling can identify why a real-world 
application, LAMMPS, scales poorly on one platform and runs 
well on another. 

2. MPINSIDE MOTIVATIONS 
The MPInside project began as an investigation on parallel 
applications using the MPI standard. With a classical profiling 
tool, one measures the time an application spends in the user code 
versus the MPI library. Usually, when the computation time 
dominates, the application scales well. On the other hand, a large 
percentage of communication time typically indicates a poor 
parallel efficiency. One would naively believe that better 
communication hardware directly translates into reduced 
communication time and better parallel efficiency. 
Surprisingly, our measurements showed that applications with a 
high communication rate did not always benefit from a hardware 
interconnection network upgrade. Conversely, some 
communication-intensive MPI applications appeared to scale 
noticeably well even on low-performance networks. Finally, 
faster processors reduced not only the computation component of 
an application but also, unexpectedly, the communication time. 
It became clear that simple inspection of the profile (the timing 
breakdown) was insufficient to analyze and predict the 
performance of MPI applications. One needed to check what was 
happening “inside” the application, “inside” the MPI library and 
how the two (application and MPI) were interacting together. 

2.1 MPI Profiling and Tracing Tools 
When the MPI standard specifications were first released in 1994, 
they included the description of a profiling interface (see chapter 
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8 in reference [1]). Each MPI function calls a PMPI internal 
function (e.g., MPI_Send calls PMPI_Send). This simple 
mechanism enables a portable method for MPI profiling and 
performance tools and is used for example by the perfcatch utility 
in the SGI Message Passing Toolkit (MPT) [2]. In addition to the 
accumulated time, some simple statistics are gathered for each 
MPI function call (number of calls, message sizes, etc.) and are 
dumped at the end of the run. This high-level information 
provides a quick summary of the MPI activity, but is disconnected 
from the application itself. For a given MPI call, it is not possible 
to identify the contribution of different call sites (source lines 
from which the function is called). 
A second class of tools identifies the contributions of MPI calls at 
the line level. For example, mpiP is a “lightweight profiling 
library for MPI applications” [3] that requires re-linking the 
application. More sophisticated tools (e.g., Dynaprof [4]) 
instrument an MPI application at runtime without any 
recompilation or re-linking. These tools enable sampling of the 
various call sites for each MPI function. 
The ultimate level of detail is provided by tracing tools such as 
the Intel Trace Analyzer [5] (based on the original Vampir tool 
[6]) or the new Vampir tool [7]. Using the PMPI interface, each 
MPI call is recorded and dumped into files. After post-processing 
the raw data and with the help of an interactive visual tool, the 
developer can replay the entire run and check every single MPI 
transfer. 
Other tools attempt to find a middle ground in the degree of detail 
that is provided.  For example, Scalasca [8] takes an incremental 
approach to performance analysis, using successive measurement 
refinements that can combine summary profiles with trace 
information. But Scalasca requires an initial recompilation of the 
code, which is not always possible or convenient. 
In summary, the available tools will incrementally 
• report the time spent in each MPI function, 
• identify where in the code the MPI function is called, 
• detail individual calls to that function. 
The information that can be extracted with such tools is very 
useful to developers, but the sophistication of the graphical 
interface requires a certain level of expertise when dealing with a 
large number of cpus. In addition the size of the traces is an issue, 
especially at run time. In order not to interfere with the timing of 
the communications the trace must remain small enough to fit in a 
memory buffer. Reducing the scope of a job is absolutely 
necessary to make tracing manageable, and this reduction entails 
extra tedious effort and risk. 

2.2 Bandela: modeling MPI communications 
For a one millisecond MPI_Recv call, the hardware performance 
and network stress will be quite different if the message size is 8 
Mbytes versus 8 bytes. In the first case, the limitation will 
certainly be the network hardware. In the latter case, no hardware 
characteristic can explain such a long duration for a one-word 
message. But this behavior could be easily understood if the 
message is posted late, well after the receiver process is blocked 
in MPI_Recv. Similarly, an MPI_Barrier or MPI_Allreduce call 
will be at least as long as the time difference between the first and 
the last calls. For imperfectly scheduled communications, there is 
an incompressible amount of time spent in MPI which does not 
depend on the communication network characteristics. 

The majority of profiling tools we have discussed measure the 
duration of MPI calls, but it is also important to evaluate the 
impact of the communication synchronicity: the relative arrival 
times of the different calls involved in an MPI communication. 
Although that information is available to the tracing tools for each 
individual MPI communication, the tools are not configured to 
estimate the global contributions. For this purpose we developed a 
research tool, Bandela [9], using the same tracing tool approach, 
but with the ability to play back MPI event traces using a crude 
bandwidth/latency model for point-to-point communications. The 
model assumes that all messages of length Nbytes are transferred 
in the time 

 T(Nbytes) = Tlatency + Nbytes / Bandwidth 

By adjusting the bandwidth and latency, one can estimate the 
importance of these basic network hardware parameters. In the 
extreme case, with zero latency and infinite bandwidth—the so-
called perfect interconnect—all transfer times are reduced to zero. 
Yet, even in that ideal case, the unsynchronized MPI calls can 
generate substantial MPI time as seen in Figure 1. 
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Figure 1. Comparing Bandela SGI Altix 4700 model (left), 
Bandela perfect interconnect (middle) and measurements 

(right) for a 16 CPU run.  
The Bandela tool, even with its simple communication model, 
successfully explained the behavior of real-world MPI 
applications. By varying the communication latency and 
bandwidth, their relative importance could be evaluated. More 
often than not, we found the hardware communication parameters 
to be less important than commonly thought. 

Bandela remained a research tool difficult for the average user to 
master.  The trace files generated became unwieldy when running 
a large number of ranks. For iterative applications, the trace file 
sizes could be reduced by restricting the trace collection to a 
smaller time window, but that feature was too awkward to be 
practical. Although Bandela had an advantage compared to other 
tracing tools in that runtime overhead did not degrade the validity 
of the measurements, it still suffered from painfully long trace 
playbacks even for reduced jobs. 

3. MPINSIDE DIAGNOSTIC FEATURES  
3.1 MPInside specifications 
Our experience with Bandela suggested that a new MPI 
performance tool was required—one that would provide the same 
insight as Bandela, but without the overhead.  Thus was born 
MPInside, a tool designed to: 
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• be useable with thousands of ranks without overhead. 
• work without traces and without post-processing. All 

processing should be performed in-flight. 
• not require re-compilation or re-linking. 
• use a simple command line interface, without the need for an 

interactive GUI. 
• produce simple text output to be fed into spreadsheets or 

other scripts. 
• be portable to any MPI library for its basic features. 
• support the full MPI 1.2 specifications and the MPI-2 one-

sided communications, MPI_Put, MPI_Get, MPI_Win_xx.  
• handle various communication models, in particular the 

perfect interconnect (zero latency, infinite bandwidth). 

3.2 Basic run  
The MPInside tool is activated simply by inserting MPInside in 
the mpirun command line, e.g.: 

   mpirun –np 128 MPInside ./a.out args… 

By default only a basic light-weight wrapping of the MPI 
functions is performed. The MPI profiling information is gathered 
into a single text file. The sample output for a 4-rank run in 
Figure 2 contains five tables:  timing breakdown, total size sent, 
number of “send” calls, total size received, number of “recv” 
calls.  Each table contains one entry per rank. 

 
Figure 2. MPInside statistics basic output 

Thanks to its simple format, the raw data is readily imported into 
a spreadsheet where it can be easily plotted (see Figure 3) and 
where derivative metrics such as average message size can be 
computed.  We believe this provides a convenient and scalable 
solution to the data management problem inherent to large 
parallel jobs, and therefore describe the various array outputs in 
more detail. 

 

Aladin 256 CPUs on Altix ICE

0

50

100

150

200

250

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
MPI ranks

el
ap

se
d 

tim
e 

(s
)

alltoallv
isend
recv
compute

 
Figure 3. MPI profile from the MPInside elapsed time 

statistics 
As shown in Figure 2, sizes and requests are split into a “send” set 
and a “receive” set.   Note that for point-to-point communications, 
the tool reports the number of bytes physically transferred, not the 
size specified on the receive side. 
For a collective operation such as MPI_Bcast, the size and 
increment are assigned as a send for the root of the broadcast and 
as a receive for the other ranks participating in the operation. To 
better match the actual data transfer for collective operations, e.g. 
MPI_Alltoall, the sizes reported are the buffer size multiplied by 
the number of ranks participating in the function. 
Finally, the user may optionally request a report of the following 
transfer matrices, with one row and one column per rank 
representing 

• TIME(i,j): the aggregate time rank “i” spent receiving data 
from rank “j”; 

• SIZE(i,j):  the amount of data transferred from “i” to “j”; 

• REQUEST(i,j): the number of calls involved in these 
transfers. 
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Figure 4. MPI Byte Transfer Matrix (x= sender rank, 

y=receiver rank, z=Mbytes transferred) 
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For example, Figure 4 plots the “SIZE” matrix as a 3D surface, 
revealing the cyclic pattern of the data transfers in the LAMMPS 
application. 

3.3 Collective Wait time 
As mentioned in section 2.2, a fraction of the time in MPI 
collective functions (e.g., MPI_Barrier or MPI_Allreduce) is 
spent waiting for the last rank to reach the rendezvous point. To 
evaluate the cost of these timing misalignments a call to 
MPI_Barrier is inserted before each MPI collective, as illustrated 
in Figure 5. Since it synchronizes all ranks, the inserted 
MPI_Barrier measures the collective wait time. The time in the 
subsequent MPI collective is assumed to be spent entirely in the 
physical transfer of data. 

 
Figure 5. MPI_Barrier insertion for collective wait time  

Such a strategy could be considered counter-productive and 
highly intrusive since it doubles the number of collective calls, 
and hence it is not enabled by default. In practice, however, the 
associated overhead generally is not noticeable and seldom adds 
more than a few percent to the application elapsed time. 
In the particular cases of functions like MPI_Gather,  MPI_Scatter 
or MPI_Reduce, the forced synchronization with the MPI_Barrier 
predecessor introduces some distortion at the root rank. All 
messaging is concentrated in a shorter time instead of being 
spread across the whole duration of the call. This can be notably 
seen for MPI_Reduce on figure 6. However, this is not a major 
drawback for a diagnostic tool compared to the valuable insight 
provided. 
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Figure 6. Basic profiling and Collective Wait Time example 

Although the PAM-CRASH [12] application generally scales well 
to hundreds of ranks, the corner case shown in Figure 6 exhibits a 
high percentage of time in MPI_Allreduce (light grey on the left). 
With the scheme we just detailed most of that time is shown to be 
“collective wait” time (“b_allreduce”, dark downward diagonal on 

the right), while the actual MPI_Allreduce time is insignificant. 
Hence this MPI “collective” time is primarily the result of 
application workload imbalance, which not even the mythical 
perfect interconnect would remedy. 
 

3.4 Late Senders 
3.4.1 Send Late Time 
The MPI communication time, Tcomm, for blocking functions such 
as MPI_Wait, MPI_Recv, or MPI_Send can be modeled as 

Tcomm = Twait + Ttrans 
where Ttrans is the physical transfer time and Twait denotes any 
remaining time between the posting of the operation and the time 
it completes. 
For MPI_Send or MPI_Isend/MPI_Wait couplets, Twait represents 
“late” receivers. With sufficient buffers, however, the impact of 
such late receivers can be minimized, particularly on shared 
memory systems such as the SGI Altix 4700 [10]. This is less true 
on InfiniBand (IB) clusters such as the SGI Altix ICE [11], where 
the locked memory buffers allocated for IB are limited. 

 
Figure 7. Transfer with Late Sender arrival 

Conversely, for MPI_Recv or MPI_Irecv/MPI_Wait couplets Twait 
is nonzero when the matching sender is late. This situation, which 
we refer to as “send late time” (SLT), is illustrated in Figure 7. 
Unlike the case for sends, this wait time cannot be avoided with 
any kind of buffering and hence is important to monitor. 
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Figure 8. Basic MPI profiling and Send Late Time evaluation  

Figure 8 shows MPInside results for Paratec [13] on a 256-core 
SGI Altix ICE system. The profile on the left was obtained with 
default MPInside settings and indicates that MPI_Allreduce and 
MPI_Wait are the most time-consuming MPI functions. The 
profile on the right illustrates both the collective wait time 
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evaluation described in section 3.3 and the send late time.   The 
two charts have similar characteristics despite the changes the 
instrumentation introduced. In this case, most of the 
MPI_Allreduce time is spent transferring data (labeled 
“allreduce” on the right chart) rather than synchronizing (labeled 
“b_allreduce”). The MPI_Wait time is separated between the time 
ostensibly spent transferring (labeled “wait”) and the send late 
time (labeled “w_wait”), the latter of which is dominant.  

With this additional information, the Paratec developer will know 
that the application spends most of its time for point-to-point 
communications waiting rather than transferring. At this stage, 
she might also conclude that some micro-load imbalance in the 
computation is responsible for this staggered arrival on the 
MPI_Wait functions. The MPInside modeling capabilities (see 
section 4.2) will help identify the real cause of the problem. 

Several additional metrics of interest can be derived from the 
transfer time estimations. For example, the average MPI_Recv 
raw bandwidth may be computed as: 

   BWraw  =  bytes_received _MPI_Recv / recv_transfer_time 

This should be compared with the average effective bandwidth: 

   BWeff  =  bytes_received _MPI_Recv / recv_total_time 

3.4.2 Clusters lack a universal clock 
To estimate the send late times, MPInside initially relied on time 
stamps inserted into the point-to-point messages. For a 
MPI_Send/MPI_Recv couplet, the send late time was simply 

SLT = Max (0; Tsend – Trecv) 
This approach works well on a single system image (SSI) system 
such as the SGI Altix 4700 where a very precise (40 ns 
resolution) real-time synchronized clock is available. On clusters, 
however, the clocks for the different nodes are typically not 
synchronized with sufficient precision. To compensate for this 
deficiency, we attempted to estimate both the time difference 
between nodes and the time drift on each node. Unfortunately the 
precision of such calibration was unacceptably large, ranging 
from 2 to 20 µs depending on the number of ranks: the larger the 
MPI communicator size, the larger the imprecision of the 
“universal” clock. 

3.4.3 Stuttering communications 
To overcome the lack of universal clock we implement a 
“stuttering” technique in which a short tagged message is posted 
in front of each point-to-point message. Thus the receiver will see 
two messages: the short one, followed by the original payload. 
The send late time is simply estimated as the time the receiver had 
to wait for the tagged message minus a fixed delay calibrated 
during initialization. This method uses only local time, thereby 
removing the necessity of a universally synchronized clock.  

Consider the following simple sequence: 

Rank 0   Rank 1 
1-MPI_Isend(to 1)  MPI_Isend(to 0) 
2-MPI_Recv(from 1) MPI_Recv(from 0) 
3-MPI_Wait (Isend) MPI_Wait(Isend) 

The stuttering technique will transform it into: 
 

Rank 0   Rank 1 
1a-MPI_Isend(tag to 1) MPI_Isend(tag to 0) 
1b-MPI_Isend(data to 1) MPI_Isend(data to 0) 
2a-MPI_Recv(tag from 1) MPI_Recv(tag from 0) 
2b-MPI_Recv(data from 1) MPI_Recv(data from 0) 
3a-MPI_Wait (Isend tag) MPI_Wait(Isend tag) 
3b-MPI_Wait (Isend data) MPI_Wait(Isend data) 
 

In applications for which communication times are predominantly 
spent waiting for unsynchronized arrivals, the distortion 
introduced by this approach is minimal.  Under these conditions 
the supplemental zero-size messages have negligible impact.  The 
supplemental messages have a similarly small effect on highly 
synchronized applications provided that the communications are 
primarily bandwidth-limited.  For latency-sensitive applications, 
on the other hand, the stuttering approach may bias the 
measurements.  Hence a good practice when using the advanced 
features of MPInside is to compare the results with those obtained 
with basic profiling to ensure that no unexpected artifacts were 
introduced.   

3.5 Coupling MPInside with application 
hardware counter profiling 
A complete application analysis requires not only a 
communications profile, but also detailed information on the 
computational portion of the job. Hence for this task MPInside 
must be coupled with an application profiling tool. If simply 
gathering timing information with a PC sampling experiment, one 
can easily exclude the sampled MPI or MPInside routines from 
the profiling results. But it is not such a straightforward matter to 
exclude the MPI calls in a hardware performance counter event 
experiment. MPInside has been integrated with the NCSA 
Perfsuite [14] tool to do just that—hardware event counting will 
stop when entering an MPI function and then restart upon 
returning to the application. 

4. MPINSIDE APPLICATION RUNTIME 
MODELING 
There are a number of possible approaches to parallel applications 
performance modeling. Some use an analytical method to model 
the application computation and communication in order to 
predict performance on future systems, e.g. Kerbyson et al. [16]. 
Others, such as the Performance Modeling and Characterization 
framework (PMac) [17], record an application signature which 
can then be convolved with the target machine profile. 
MPInside uses an in-flight modeling approach to estimate the 
application behavior on any hypothetical platform. Each input 
case and cpu count of interest requires a separate simulation in 
order to account for differences in MPI event sequences. Since the 
modeling calculations are incorporated into the MPI library calls, 
the computational portion of the application still runs undisturbed 
at full speed and in parallel. With this strategy the modeling 
overhead is constrained to the MPI calls, such that even for the 
most complex models the application runtimes are typically not 
increased by more than 20%.  
Although the principles described in the following sections are 
relatively simple and general, the implementation requires 
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detailed knowledge of MPI library internals and can therefore 
become quite complex. As of this time the MPInside modeling 
capability is available only with the SGI MPI library, but our 
investigations suggest that this capability could be extended to 
other MPI libraries such as MPICH2 [18].   

4.1 Virtual clocks for virtual systems 
As mentioned in section 3.4.3, MPInside maintains a local clock 
which measures the application events as they occur. The 
MPInside modeling feature adds one virtual clock per simulated 
system. At every MPI event in the application, each virtual clock 
is incremented according to its platform-specific model.  

 
Figure 9. MPI application modeling 

Figure 9 illustrates the principle of the MPInside modeling for a 
two-rank MPI run. The topmost timeline displays the events as 
they are recorded by the real clock; underneath are two virtual 
timelines for systems with the following characteristics: 
• (middle) a twice faster processor than the reference, but with 

the same interconnect; 
• (bottom) the same processor as the reference, but with a 

twice faster  interconnect. 
Because virtual timestamps are inserted into each MPI message, 
the receivers can easily compute the point-to-point send late times 
as the difference between the virtual send and receive times. 
Similarly the collective wait time is the difference between the 
maximum of all timestamps with those of each rank. 
Computation time outside MPI is measured using hardware clocks 
which are typically not synchronized across ranks, but this poses 
no problems since application runtime modeling does not require 
an initial synchronization at time 0. Time drifts may matter, but 
virtual clocks are one-to-one synchronized at each MPI send/recv 
exchange, and all clocks are synchronized at most collective MPI 
operations. 

4.2 Perfect interconnect 
MPInside uses the Bandela formula from section 2.2 to estimate 
MPI transfer time as the sum of a latency component and the 
message size divided by the bandwidth. 
For a perfect interconnect the latency is zero and the bandwidth is 
infinite, thus all message transfer times are null. However, even in 
this ideal case the MPI wait time can still be substantial (recall  
Figure 1). 
We now return to the Paratec example from section 3.4. Figure 10 
compares the measured MPI profile with the simulated perfect 
interconnect.  As expected from the “collective wait” estimation, 
most of the time in MPI_Allreduce disappears in the perfect case. 
However, comparison to Figure 8 reveals that the MPI_Wait time 
has been significantly reduced, thus pointing to a hardware 
limitation rather than any micro-load imbalance in the 
application. 
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Figure 10. Paratec measured basic MPI profiling and Perfect 

Interconnect model 
The perfect interconnect, though physically unrealizable, is an 
extremely useful modeling tool. Because the transfer time 
requires no approximations, the profile can be computed with 
high accuracy. It provides an upper bound for application 
performance and is therefore quite valuable in assessing the 
impact of the communication network. 

4.3 Changing MPI latency and Bandwidth 
The bandwidth-latency transfer model introduced in section 2.2, 
 T(Size) = TLatency + Size / Bandwidth   
works well on SGI Altix shared memory systems. One can easily 
adjust the two parameters to fit the measurements, and then 
modify them to simulate various configurations. 
On gigabit Ethernet or InfiniBand clusters, we found that this 
model required substantial refinements. First, a cluster is quite 
non-uniform for MPI communications—it is much more efficient 
within the node (shared memory) than across nodes (network). 
Second, the inter-node transfer bandwidth is a function of the 
message size. Finally, the latency and, more importantly, the raw 
bandwidth are impacted by the network load. Neglecting the 
effect of the load on latency, this is summarized with  
       T(Size) = TLatency + Size / Bandwidth (Size,load)  
The network load is a highly variable global component: the 
effect on a certain transfer will depend on all other 
communications using the same network subset. As an 
approximation we assume that the global load will vary as the 
number of live requests on the local node. The transfer time 
formula becomes  
        T(Size) = TLatency + (Size / Bandwidth (Size)) * LR * DR  
where LR represents the number of local live requests and DR is a 
fudge factor, the “degradation ratio”. 
Depending of the application, the degradation ratio typically 
ranges between 0.1 (minimal effect) to 20 (saturated network). 
Multiple DR values can be specified in a single modeling run, 
thereby providing a convenient means to bracket the actual 
measurements. The DR itself has no absolute meaning, only a 
relative one:  it allows the model to be tuned to match the 
measurements.  This tuned model can then serve as a basis for 
studying configurations different than that on which the 
application was executed.  The next section provides an example 
of this. 

5. CASE STUDY  
LAMMPS [19] is a well-known scalable molecular dynamics 
code. On SGI Altix ICE systems, a particular LAMMPS 
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benchmark with a small fixed-size problem scales up to 128 
ranks; beyond that it slows down and demonstrates negative 
scaling.  
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Figure 11.  Small test case model outputs for LAMMPS on the 
SGI Altix ICE cluster, 8 processes per node (PPN8) 

Figure 11 shows several MPInside model profiles (the left charts) 
and the measured profile (the rightmost chart) for this application 
at 256 processors using 8 processes per node (PPN8). In this case 
the MPI engine accounts for a significant portion of the overall 
runtime: a perfect interconnect would provide a four-fold 
improvement in overall performance. All the model scenarios in 
the figure use the same experimentally-derived Bandwidth(Size) 
function; what varies are the inter-node degradation ratios. A 
degradation ratio of approximately 10 provides the best fit to the 
measured profile. 
Figure 12 shows the 256-process LAMMPS model results using 4 
processes per node (PPN4); note the marked reduction in the 
measured elapsed time compared to the PPN8 case. For many 
applications PPN4 substantially improves the computation time 
due to reduced memory contention. However, since this 
LAMMPS benchmark demonstrates very good cache locality, 
there is negligible difference in the computation time between the 
PPN4 and PPN8 cases.   
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inter-node Degradation Ratio (DR)

MPI ranks

el
ap

se
d 

tim
e

allreduce
waitany
other MPI
compute

D
R

=3
2

D
R

=1
6

D
R

=1
2

D
R

=8

D
R

=4

D
R

=2

D
R

=1

pe
rf

ec
t

m
ea

su
re

d

 
Figure 12.  Model outputs for LAMMPS on the SGI Altix ICE 

cluster, 4 processes per node (PPN4) 
The drastic drop in elapsed time in the PPN4 case is due entirely 
to improved communication performance, as the MPInside model 

best-fit degradation ratio drops substantially from 10 to 2.  This 
correlation between processes per node and MPI engine load 
merits further investigation. 

Table 1. LAMMPS Node 0 off-node activity 

 PPN4 PPN8 

Mb received from remote nodes 533 542 

Number of remote requests per node 325 581 372 231 

 
Table 1 summarizes the off-node communications extracted from 
the MPInside transfer matrices. Although from the perspective of 
a single node there is slightly less off-node activity with PPN4 
than with PP8, at the global level there is far more off-node 
activity with PPN4 than with PP8 because there are double the 
number of nodes in the PPN4 case.  Hence with the same 
computational profile and the same nominal interconnect 
performance, the application should run at least as well if not 
better with PPN8 than with PPN4.  
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Figure 13. LAMMPS rank 0 size distribution 

The size histogram extracted from the MPInside statistics output 
file (Figure 13) reveals that most of the message exchanges are 
very short (<128 bytes). This suggests that the large MPI 
overhead with PPN8 is due to inefficiency in the MPI engine 
when processing a flurry of small messages.  

Following this analysis we modified the LAMMPS code in order 
to coalesce the inter-node messages, thereby minimizing the 
number of MPI requests on the interconnection network. This 
approach resulted in a two-fold reduction in the global elapsed 
time for the PPN8 case. 

As a final experiment, we ran the original LAMMPS code on an 
SGI Altix 4700 with Intel Itanium2 (Montecito) processors 
(Figure 14).  Compared to the SGI Altix ICE system with Intel 
Xeon (Nehalem) processors, the global performance on the Altix 
4700 is the same despite the fact that the application’s 
computational routines run three times faster on Nehalem than on 
Montecito. On the shared-memory Altix 4700, the 
communications do not suffer from the same bottlenecks that the 
InfiniBand hardware components present. 
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LAMMPS - 256 ranks - measured
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Figure 14. LAMMPS fixed-size 256 CPU relative performance 

on ICE/Nehalem and Altix/Montecito 
Based on the Altix 4700 measurements, the MPInside model  
indicates that a hypothetical future system with a Nehalem 
processor and an interconnect that is twice as fast as the Altix 
NUMAlink4 will run this unmodified LAMMPS test case with a 
performance close to that of the perfect interconnect (Figure 15). 
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Figure 15.  Expected performance on LAMMPS standard for 

a hypothetical shared memory system  

6. CONCLUSION 
In this paper we have introduced MPInside and described its basic 
features, the primary of which allow the impact of unaligned MPI 
events to be measured without distortion. 
Further development work, already in progress, allows: 
• characterization of communication event dependencies, 
• profiling for unaligned MPI events, and 
• cross-referencing of MPI call stacks across ranks. 
Together with its ease of use, low overhead, and modeling 
capabilities, MPInside constitutes a powerful analysis and 
diagnostic tool to meet the challenges of peta-scale MPI 
application development. 
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