
MPInside: a Performance Analysis and Diagnostic Tool
for MPI Applications

Daniel Thomas
SGI

21 rue Albert Calmette
78350 Jouy en Josas, France

+33 1 34 88 80 00

dthomas@sgi.com

Jean-Pierre Panziera
SGI

21 rue Albert Calmette
78350 Jouy en Josas, France

+33 1 34 88 80 00

jpp@sgi.com

John Baron
SGI

2750 Blue Water Road
Eagan, MN 55121 USA

+1 (651) 683 3544

jbaron@sgi.com

ABSTRACT
Performance analysis and prediction of parallel applications using
the Message-Passing Interface (MPI) standard is a challenging
task. Collecting, organizing, and making sense of profiling data
for MPI jobs of even modest scale is difficult and time-
consuming. The task is further complicated by the inherent
difficulty in interpreting the resulting communication
measurements. In this paper we introduce MPInside, a new
profiling and diagnostic tool that overcomes these constraints with
carefully considered choices for measurement techniques,
capabilities, and output formats. Using examples from real-world
applications, we illustrate the innovative features of the tool—
including late senders for point-to-point calls and unaligned
collective calls—all in an instrumentation-free framework. We
also demonstrate the in-flight modeling capabilities of MPInside
with several “what if” experiments.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
Modeling techniques, Performance attributes.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Parallel applications, MPI, Performance analysis, Performance
modeling.

1. INTRODUCTION
Analysis tools for MPI [1] programs are a critical requirement for
both application developers and end users, providing a means to
understand program behavior, identify performance bottlenecks,
and predict performance on a variety of system configurations.
Numerous tools available today attempt to satisfy these needs
with varying degrees of instrumentation, tracing, and post-
processing capabilities. In our experience these tools provide
either too little information concerning key parameters of the MPI

communications or too much information to be summarized
easily. In addition, the majority of tools require application
recompilation and/or re-linking in order to obtain sufficiently
detailed communication statistics.
In this paper we first describe the motivations that led us to
develop yet another MPI profiling tool, MPInside. We then
present the basic profiling features and the advanced methods
used to measure the wait time related to unaligned MPI calls for
both collective and point-to-point communications. Section 4
describes the modeling capabilities developed within the tool
framework to estimate application behavior on a perfect
interconnect, thus providing a best-case signature for the
application. We also show how more sophisticated models can be
applied to predict application performance on arbitrary system
configurations. Finally, we close with a case study illustrating
how MPInside modeling can identify why a real-world
application, LAMMPS, scales poorly on one platform and runs
well on another.

2. MPINSIDE MOTIVATIONS
The MPInside project began as an investigation on parallel
applications using the MPI standard. With a classical profiling
tool, one measures the time an application spends in the user code
versus the MPI library. Usually, when the computation time
dominates, the application scales well. On the other hand, a large
percentage of communication time typically indicates a poor
parallel efficiency. One would naively believe that better
communication hardware directly translates into reduced
communication time and better parallel efficiency.
Surprisingly, our measurements showed that applications with a
high communication rate did not always benefit from a hardware
interconnection network upgrade. Conversely, some
communication-intensive MPI applications appeared to scale
noticeably well even on low-performance networks. Finally,
faster processors reduced not only the computation component of
an application but also, unexpectedly, the communication time.
It became clear that simple inspection of the profile (the timing
breakdown) was insufficient to analyze and predict the
performance of MPI applications. One needed to check what was
happening “inside” the application, “inside” the MPI library and
how the two (application and MPI) were interacting together.

2.1 MPI Profiling and Tracing Tools
When the MPI standard specifications were first released in 1994,
they included the description of a profiling interface (see chapter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01...$10.00.

79

8 in reference [1]). Each MPI function calls a PMPI internal
function (e.g., MPI_Send calls PMPI_Send). This simple
mechanism enables a portable method for MPI profiling and
performance tools and is used for example by the perfcatch utility
in the SGI Message Passing Toolkit (MPT) [2]. In addition to the
accumulated time, some simple statistics are gathered for each
MPI function call (number of calls, message sizes, etc.) and are
dumped at the end of the run. This high-level information
provides a quick summary of the MPI activity, but is disconnected
from the application itself. For a given MPI call, it is not possible
to identify the contribution of different call sites (source lines
from which the function is called).
A second class of tools identifies the contributions of MPI calls at
the line level. For example, mpiP is a “lightweight profiling
library for MPI applications” [3] that requires re-linking the
application. More sophisticated tools (e.g., Dynaprof [4])
instrument an MPI application at runtime without any
recompilation or re-linking. These tools enable sampling of the
various call sites for each MPI function.
The ultimate level of detail is provided by tracing tools such as
the Intel Trace Analyzer [5] (based on the original Vampir tool
[6]) or the new Vampir tool [7]. Using the PMPI interface, each
MPI call is recorded and dumped into files. After post-processing
the raw data and with the help of an interactive visual tool, the
developer can replay the entire run and check every single MPI
transfer.
Other tools attempt to find a middle ground in the degree of detail
that is provided. For example, Scalasca [8] takes an incremental
approach to performance analysis, using successive measurement
refinements that can combine summary profiles with trace
information. But Scalasca requires an initial recompilation of the
code, which is not always possible or convenient.
In summary, the available tools will incrementally
• report the time spent in each MPI function,
• identify where in the code the MPI function is called,
• detail individual calls to that function.
The information that can be extracted with such tools is very
useful to developers, but the sophistication of the graphical
interface requires a certain level of expertise when dealing with a
large number of cpus. In addition the size of the traces is an issue,
especially at run time. In order not to interfere with the timing of
the communications the trace must remain small enough to fit in a
memory buffer. Reducing the scope of a job is absolutely
necessary to make tracing manageable, and this reduction entails
extra tedious effort and risk.

2.2 Bandela: modeling MPI communications
For a one millisecond MPI_Recv call, the hardware performance
and network stress will be quite different if the message size is 8
Mbytes versus 8 bytes. In the first case, the limitation will
certainly be the network hardware. In the latter case, no hardware
characteristic can explain such a long duration for a one-word
message. But this behavior could be easily understood if the
message is posted late, well after the receiver process is blocked
in MPI_Recv. Similarly, an MPI_Barrier or MPI_Allreduce call
will be at least as long as the time difference between the first and
the last calls. For imperfectly scheduled communications, there is
an incompressible amount of time spent in MPI which does not
depend on the communication network characteristics.

The majority of profiling tools we have discussed measure the
duration of MPI calls, but it is also important to evaluate the
impact of the communication synchronicity: the relative arrival
times of the different calls involved in an MPI communication.
Although that information is available to the tracing tools for each
individual MPI communication, the tools are not configured to
estimate the global contributions. For this purpose we developed a
research tool, Bandela [9], using the same tracing tool approach,
but with the ability to play back MPI event traces using a crude
bandwidth/latency model for point-to-point communications. The
model assumes that all messages of length Nbytes are transferred
in the time

 T(Nbytes) = Tlatency + Nbytes / Bandwidth

By adjusting the bandwidth and latency, one can estimate the
importance of these basic network hardware parameters. In the
extreme case, with zero latency and infinite bandwidth—the so-
called perfect interconnect—all transfer times are reduced to zero.
Yet, even in that ideal case, the unsynchronized MPI calls can
generate substantial MPI time as seen in Figure 1.

Bandela models and measurements
for a Crash application on SGI Altix

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14MPI ranks

El
ap

se
d

tim
e

(s
)

transfer
wait
MPI
computation

Altix Model
Perfect
Interconnect Measured

Figure 1. Comparing Bandela SGI Altix 4700 model (left),
Bandela perfect interconnect (middle) and measurements

(right) for a 16 CPU run.
The Bandela tool, even with its simple communication model,
successfully explained the behavior of real-world MPI
applications. By varying the communication latency and
bandwidth, their relative importance could be evaluated. More
often than not, we found the hardware communication parameters
to be less important than commonly thought.

Bandela remained a research tool difficult for the average user to
master. The trace files generated became unwieldy when running
a large number of ranks. For iterative applications, the trace file
sizes could be reduced by restricting the trace collection to a
smaller time window, but that feature was too awkward to be
practical. Although Bandela had an advantage compared to other
tracing tools in that runtime overhead did not degrade the validity
of the measurements, it still suffered from painfully long trace
playbacks even for reduced jobs.

3. MPINSIDE DIAGNOSTIC FEATURES
3.1 MPInside specifications
Our experience with Bandela suggested that a new MPI
performance tool was required—one that would provide the same
insight as Bandela, but without the overhead. Thus was born
MPInside, a tool designed to:

80

• be useable with thousands of ranks without overhead.
• work without traces and without post-processing. All

processing should be performed in-flight.
• not require re-compilation or re-linking.
• use a simple command line interface, without the need for an

interactive GUI.
• produce simple text output to be fed into spreadsheets or

other scripts.
• be portable to any MPI library for its basic features.
• support the full MPI 1.2 specifications and the MPI-2 one-

sided communications, MPI_Put, MPI_Get, MPI_Win_xx.
• handle various communication models, in particular the

perfect interconnect (zero latency, infinite bandwidth).

3.2 Basic run
The MPInside tool is activated simply by inserting MPInside in
the mpirun command line, e.g.:

 mpirun –np 128 MPInside ./a.out args…

By default only a basic light-weight wrapping of the MPI
functions is performed. The MPI profiling information is gathered
into a single text file. The sample output for a 4-rank run in
Figure 2 contains five tables: timing breakdown, total size sent,
number of “send” calls, total size received, number of “recv”
calls. Each table contains one entry per rank.

Figure 2. MPInside statistics basic output

Thanks to its simple format, the raw data is readily imported into
a spreadsheet where it can be easily plotted (see Figure 3) and
where derivative metrics such as average message size can be
computed. We believe this provides a convenient and scalable
solution to the data management problem inherent to large
parallel jobs, and therefore describe the various array outputs in
more detail.

Aladin 256 CPUs on Altix ICE

0

50

100

150

200

250

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
MPI ranks

el
ap

se
d

tim
e

(s
)

alltoallv
isend
recv
compute

Figure 3. MPI profile from the MPInside elapsed time

statistics
As shown in Figure 2, sizes and requests are split into a “send” set
and a “receive” set. Note that for point-to-point communications,
the tool reports the number of bytes physically transferred, not the
size specified on the receive side.
For a collective operation such as MPI_Bcast, the size and
increment are assigned as a send for the root of the broadcast and
as a receive for the other ranks participating in the operation. To
better match the actual data transfer for collective operations, e.g.
MPI_Alltoall, the sizes reported are the buffer size multiplied by
the number of ranks participating in the function.
Finally, the user may optionally request a report of the following
transfer matrices, with one row and one column per rank
representing

• TIME(i,j): the aggregate time rank “i” spent receiving data
from rank “j”;

• SIZE(i,j): the amount of data transferred from “i” to “j”;

• REQUEST(i,j): the number of calls involved in these
transfers.

0
6

12
18

24
30

31
26

21
16

11
6

1

0

40

80

120

160

200

sender

receiver

Lammps node to node Mb received

160-200

120-160

80-120

40-80

0-40

Figure 4. MPI Byte Transfer Matrix (x= sender rank,

y=receiver rank, z=Mbytes transferred)

81

For example, Figure 4 plots the “SIZE” matrix as a 3D surface,
revealing the cyclic pattern of the data transfers in the LAMMPS
application.

3.3 Collective Wait time
As mentioned in section 2.2, a fraction of the time in MPI
collective functions (e.g., MPI_Barrier or MPI_Allreduce) is
spent waiting for the last rank to reach the rendezvous point. To
evaluate the cost of these timing misalignments a call to
MPI_Barrier is inserted before each MPI collective, as illustrated
in Figure 5. Since it synchronizes all ranks, the inserted
MPI_Barrier measures the collective wait time. The time in the
subsequent MPI collective is assumed to be spent entirely in the
physical transfer of data.

Figure 5. MPI_Barrier insertion for collective wait time

Such a strategy could be considered counter-productive and
highly intrusive since it doubles the number of collective calls,
and hence it is not enabled by default. In practice, however, the
associated overhead generally is not noticeable and seldom adds
more than a few percent to the application elapsed time.
In the particular cases of functions like MPI_Gather, MPI_Scatter
or MPI_Reduce, the forced synchronization with the MPI_Barrier
predecessor introduces some distortion at the root rank. All
messaging is concentrated in a shorter time instead of being
spread across the whole duration of the call. This can be notably
seen for MPI_Reduce on figure 6. However, this is not a major
drawback for a diagnostic tool compared to the valuable insight
provided.

Pam-Crash 64 CPU Altix complex simulation

0

20

40

60

80

MPI ranks

el
ap

se
d

tim
e

(s
)

reduce
b_reduce
allreduce
b_allreduce
other MPI
compute

basic profiling collective wait
time evaluation

Figure 6. Basic profiling and Collective Wait Time example

Although the PAM-CRASH [12] application generally scales well
to hundreds of ranks, the corner case shown in Figure 6 exhibits a
high percentage of time in MPI_Allreduce (light grey on the left).
With the scheme we just detailed most of that time is shown to be
“collective wait” time (“b_allreduce”, dark downward diagonal on

the right), while the actual MPI_Allreduce time is insignificant.
Hence this MPI “collective” time is primarily the result of
application workload imbalance, which not even the mythical
perfect interconnect would remedy.

3.4 Late Senders
3.4.1 Send Late Time
The MPI communication time, Tcomm, for blocking functions such
as MPI_Wait, MPI_Recv, or MPI_Send can be modeled as

Tcomm = Twait + Ttrans
where Ttrans is the physical transfer time and Twait denotes any
remaining time between the posting of the operation and the time
it completes.
For MPI_Send or MPI_Isend/MPI_Wait couplets, Twait represents
“late” receivers. With sufficient buffers, however, the impact of
such late receivers can be minimized, particularly on shared
memory systems such as the SGI Altix 4700 [10]. This is less true
on InfiniBand (IB) clusters such as the SGI Altix ICE [11], where
the locked memory buffers allocated for IB are limited.

Figure 7. Transfer with Late Sender arrival

Conversely, for MPI_Recv or MPI_Irecv/MPI_Wait couplets Twait
is nonzero when the matching sender is late. This situation, which
we refer to as “send late time” (SLT), is illustrated in Figure 7.
Unlike the case for sends, this wait time cannot be avoided with
any kind of buffering and hence is important to monitor.

PARATEC 256 cores SGI Altix ICE

0

50

100

150

200

250

MPI ranks

el
ap

se
d

tim
e

(s
)

allreduce
b_allreduce
wait
w_wait
Other MPI
compute

basic profiling Send Late time and
Collective wait time

Figure 8. Basic MPI profiling and Send Late Time evaluation

Figure 8 shows MPInside results for Paratec [13] on a 256-core
SGI Altix ICE system. The profile on the left was obtained with
default MPInside settings and indicates that MPI_Allreduce and
MPI_Wait are the most time-consuming MPI functions. The
profile on the right illustrates both the collective wait time

82

evaluation described in section 3.3 and the send late time. The
two charts have similar characteristics despite the changes the
instrumentation introduced. In this case, most of the
MPI_Allreduce time is spent transferring data (labeled
“allreduce” on the right chart) rather than synchronizing (labeled
“b_allreduce”). The MPI_Wait time is separated between the time
ostensibly spent transferring (labeled “wait”) and the send late
time (labeled “w_wait”), the latter of which is dominant.

With this additional information, the Paratec developer will know
that the application spends most of its time for point-to-point
communications waiting rather than transferring. At this stage,
she might also conclude that some micro-load imbalance in the
computation is responsible for this staggered arrival on the
MPI_Wait functions. The MPInside modeling capabilities (see
section 4.2) will help identify the real cause of the problem.

Several additional metrics of interest can be derived from the
transfer time estimations. For example, the average MPI_Recv
raw bandwidth may be computed as:

 BWraw = bytes_received _MPI_Recv / recv_transfer_time

This should be compared with the average effective bandwidth:

 BWeff = bytes_received _MPI_Recv / recv_total_time

3.4.2 Clusters lack a universal clock
To estimate the send late times, MPInside initially relied on time
stamps inserted into the point-to-point messages. For a
MPI_Send/MPI_Recv couplet, the send late time was simply

SLT = Max (0; Tsend – Trecv)
This approach works well on a single system image (SSI) system
such as the SGI Altix 4700 where a very precise (40 ns
resolution) real-time synchronized clock is available. On clusters,
however, the clocks for the different nodes are typically not
synchronized with sufficient precision. To compensate for this
deficiency, we attempted to estimate both the time difference
between nodes and the time drift on each node. Unfortunately the
precision of such calibration was unacceptably large, ranging
from 2 to 20 µs depending on the number of ranks: the larger the
MPI communicator size, the larger the imprecision of the
“universal” clock.

3.4.3 Stuttering communications
To overcome the lack of universal clock we implement a
“stuttering” technique in which a short tagged message is posted
in front of each point-to-point message. Thus the receiver will see
two messages: the short one, followed by the original payload.
The send late time is simply estimated as the time the receiver had
to wait for the tagged message minus a fixed delay calibrated
during initialization. This method uses only local time, thereby
removing the necessity of a universally synchronized clock.

Consider the following simple sequence:

Rank 0 Rank 1
1-MPI_Isend(to 1) MPI_Isend(to 0)
2-MPI_Recv(from 1) MPI_Recv(from 0)
3-MPI_Wait (Isend) MPI_Wait(Isend)

The stuttering technique will transform it into:

Rank 0 Rank 1
1a-MPI_Isend(tag to 1) MPI_Isend(tag to 0)
1b-MPI_Isend(data to 1) MPI_Isend(data to 0)
2a-MPI_Recv(tag from 1) MPI_Recv(tag from 0)
2b-MPI_Recv(data from 1) MPI_Recv(data from 0)
3a-MPI_Wait (Isend tag) MPI_Wait(Isend tag)
3b-MPI_Wait (Isend data) MPI_Wait(Isend data)

In applications for which communication times are predominantly
spent waiting for unsynchronized arrivals, the distortion
introduced by this approach is minimal. Under these conditions
the supplemental zero-size messages have negligible impact. The
supplemental messages have a similarly small effect on highly
synchronized applications provided that the communications are
primarily bandwidth-limited. For latency-sensitive applications,
on the other hand, the stuttering approach may bias the
measurements. Hence a good practice when using the advanced
features of MPInside is to compare the results with those obtained
with basic profiling to ensure that no unexpected artifacts were
introduced.

3.5 Coupling MPInside with application
hardware counter profiling
A complete application analysis requires not only a
communications profile, but also detailed information on the
computational portion of the job. Hence for this task MPInside
must be coupled with an application profiling tool. If simply
gathering timing information with a PC sampling experiment, one
can easily exclude the sampled MPI or MPInside routines from
the profiling results. But it is not such a straightforward matter to
exclude the MPI calls in a hardware performance counter event
experiment. MPInside has been integrated with the NCSA
Perfsuite [14] tool to do just that—hardware event counting will
stop when entering an MPI function and then restart upon
returning to the application.

4. MPINSIDE APPLICATION RUNTIME
MODELING
There are a number of possible approaches to parallel applications
performance modeling. Some use an analytical method to model
the application computation and communication in order to
predict performance on future systems, e.g. Kerbyson et al. [16].
Others, such as the Performance Modeling and Characterization
framework (PMac) [17], record an application signature which
can then be convolved with the target machine profile.
MPInside uses an in-flight modeling approach to estimate the
application behavior on any hypothetical platform. Each input
case and cpu count of interest requires a separate simulation in
order to account for differences in MPI event sequences. Since the
modeling calculations are incorporated into the MPI library calls,
the computational portion of the application still runs undisturbed
at full speed and in parallel. With this strategy the modeling
overhead is constrained to the MPI calls, such that even for the
most complex models the application runtimes are typically not
increased by more than 20%.
Although the principles described in the following sections are
relatively simple and general, the implementation requires

83

detailed knowledge of MPI library internals and can therefore
become quite complex. As of this time the MPInside modeling
capability is available only with the SGI MPI library, but our
investigations suggest that this capability could be extended to
other MPI libraries such as MPICH2 [18].

4.1 Virtual clocks for virtual systems
As mentioned in section 3.4.3, MPInside maintains a local clock
which measures the application events as they occur. The
MPInside modeling feature adds one virtual clock per simulated
system. At every MPI event in the application, each virtual clock
is incremented according to its platform-specific model.

Figure 9. MPI application modeling

Figure 9 illustrates the principle of the MPInside modeling for a
two-rank MPI run. The topmost timeline displays the events as
they are recorded by the real clock; underneath are two virtual
timelines for systems with the following characteristics:
• (middle) a twice faster processor than the reference, but with

the same interconnect;
• (bottom) the same processor as the reference, but with a

twice faster interconnect.
Because virtual timestamps are inserted into each MPI message,
the receivers can easily compute the point-to-point send late times
as the difference between the virtual send and receive times.
Similarly the collective wait time is the difference between the
maximum of all timestamps with those of each rank.
Computation time outside MPI is measured using hardware clocks
which are typically not synchronized across ranks, but this poses
no problems since application runtime modeling does not require
an initial synchronization at time 0. Time drifts may matter, but
virtual clocks are one-to-one synchronized at each MPI send/recv
exchange, and all clocks are synchronized at most collective MPI
operations.

4.2 Perfect interconnect
MPInside uses the Bandela formula from section 2.2 to estimate
MPI transfer time as the sum of a latency component and the
message size divided by the bandwidth.
For a perfect interconnect the latency is zero and the bandwidth is
infinite, thus all message transfer times are null. However, even in
this ideal case the MPI wait time can still be substantial (recall
Figure 1).
We now return to the Paratec example from section 3.4. Figure 10
compares the measured MPI profile with the simulated perfect
interconnect. As expected from the “collective wait” estimation,
most of the time in MPI_Allreduce disappears in the perfect case.
However, comparison to Figure 8 reveals that the MPI_Wait time
has been significantly reduced, thus pointing to a hardware
limitation rather than any micro-load imbalance in the
application.

PARATEC 256 CPU Harpertown

0

50

100

150

200

250

MPI ranks

el
ap

se
d

tim
e(

s)

allreduce
wait
other MPI
compute

basic profiling perfect interconnect

Figure 10. Paratec measured basic MPI profiling and Perfect

Interconnect model
The perfect interconnect, though physically unrealizable, is an
extremely useful modeling tool. Because the transfer time
requires no approximations, the profile can be computed with
high accuracy. It provides an upper bound for application
performance and is therefore quite valuable in assessing the
impact of the communication network.

4.3 Changing MPI latency and Bandwidth
The bandwidth-latency transfer model introduced in section 2.2,
 T(Size) = TLatency + Size / Bandwidth
works well on SGI Altix shared memory systems. One can easily
adjust the two parameters to fit the measurements, and then
modify them to simulate various configurations.
On gigabit Ethernet or InfiniBand clusters, we found that this
model required substantial refinements. First, a cluster is quite
non-uniform for MPI communications—it is much more efficient
within the node (shared memory) than across nodes (network).
Second, the inter-node transfer bandwidth is a function of the
message size. Finally, the latency and, more importantly, the raw
bandwidth are impacted by the network load. Neglecting the
effect of the load on latency, this is summarized with
 T(Size) = TLatency + Size / Bandwidth (Size,load)
The network load is a highly variable global component: the
effect on a certain transfer will depend on all other
communications using the same network subset. As an
approximation we assume that the global load will vary as the
number of live requests on the local node. The transfer time
formula becomes
 T(Size) = TLatency + (Size / Bandwidth (Size)) * LR * DR
where LR represents the number of local live requests and DR is a
fudge factor, the “degradation ratio”.
Depending of the application, the degradation ratio typically
ranges between 0.1 (minimal effect) to 20 (saturated network).
Multiple DR values can be specified in a single modeling run,
thereby providing a convenient means to bracket the actual
measurements. The DR itself has no absolute meaning, only a
relative one: it allows the model to be tuned to match the
measurements. This tuned model can then serve as a basis for
studying configurations different than that on which the
application was executed. The next section provides an example
of this.

5. CASE STUDY
LAMMPS [19] is a well-known scalable molecular dynamics
code. On SGI Altix ICE systems, a particular LAMMPS

84

benchmark with a small fixed-size problem scales up to 128
ranks; beyond that it slows down and demonstrates negative
scaling.

LAMMPS - 256 ranks - PPN8
inter-node Degradation Ratio (DR)

MPI ranks

el
ap

se
d

tim
e

allreduce
waitany
other MPI
compute

D
R

=3
2

D
R

=1
6

D
R

=1
2

D
R

=8

D
R

=4

D
R

=2

D
R

=1

pe
rf

ec
t

m
ea

su
re

d

Figure 11. Small test case model outputs for LAMMPS on the
SGI Altix ICE cluster, 8 processes per node (PPN8)

Figure 11 shows several MPInside model profiles (the left charts)
and the measured profile (the rightmost chart) for this application
at 256 processors using 8 processes per node (PPN8). In this case
the MPI engine accounts for a significant portion of the overall
runtime: a perfect interconnect would provide a four-fold
improvement in overall performance. All the model scenarios in
the figure use the same experimentally-derived Bandwidth(Size)
function; what varies are the inter-node degradation ratios. A
degradation ratio of approximately 10 provides the best fit to the
measured profile.
Figure 12 shows the 256-process LAMMPS model results using 4
processes per node (PPN4); note the marked reduction in the
measured elapsed time compared to the PPN8 case. For many
applications PPN4 substantially improves the computation time
due to reduced memory contention. However, since this
LAMMPS benchmark demonstrates very good cache locality,
there is negligible difference in the computation time between the
PPN4 and PPN8 cases.

LAMMPS - 256 ranks - PPN4
inter-node Degradation Ratio (DR)

MPI ranks

el
ap

se
d

tim
e

allreduce
waitany
other MPI
compute

D
R

=3
2

D
R

=1
6

D
R

=1
2

D
R

=8

D
R

=4

D
R

=2

D
R

=1

pe
rf

ec
t

m
ea

su
re

d

Figure 12. Model outputs for LAMMPS on the SGI Altix ICE

cluster, 4 processes per node (PPN4)
The drastic drop in elapsed time in the PPN4 case is due entirely
to improved communication performance, as the MPInside model

best-fit degradation ratio drops substantially from 10 to 2. This
correlation between processes per node and MPI engine load
merits further investigation.

Table 1. LAMMPS Node 0 off-node activity

 PPN4 PPN8

Mb received from remote nodes 533 542

Number of remote requests per node 325 581 372 231

Table 1 summarizes the off-node communications extracted from
the MPInside transfer matrices. Although from the perspective of
a single node there is slightly less off-node activity with PPN4
than with PP8, at the global level there is far more off-node
activity with PPN4 than with PP8 because there are double the
number of nodes in the PPN4 case. Hence with the same
computational profile and the same nominal interconnect
performance, the application should run at least as well if not
better with PPN8 than with PPN4.

LAMMPS transfer size histogram

0

50 000

100 000

150 000

200 000

0 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

transfer size (Bytes)

re

qu
es

ts
sdrv
send
irecv
allreduce

Figure 13. LAMMPS rank 0 size distribution

The size histogram extracted from the MPInside statistics output
file (Figure 13) reveals that most of the message exchanges are
very short (<128 bytes). This suggests that the large MPI
overhead with PPN8 is due to inefficiency in the MPI engine
when processing a flurry of small messages.

Following this analysis we modified the LAMMPS code in order
to coalesce the inter-node messages, thereby minimizing the
number of MPI requests on the interconnection network. This
approach resulted in a two-fold reduction in the global elapsed
time for the PPN8 case.

As a final experiment, we ran the original LAMMPS code on an
SGI Altix 4700 with Intel Itanium2 (Montecito) processors
(Figure 14). Compared to the SGI Altix ICE system with Intel
Xeon (Nehalem) processors, the global performance on the Altix
4700 is the same despite the fact that the application’s
computational routines run three times faster on Nehalem than on
Montecito. On the shared-memory Altix 4700, the
communications do not suffer from the same bottlenecks that the
InfiniBand hardware components present.

85

LAMMPS - 256 ranks - measured

MPI ranks

el
ap

se
d

tim
e

allreduce
waitany
other MPI
computeICE+ / Nehalem-EP Altix / Montecito

Figure 14. LAMMPS fixed-size 256 CPU relative performance

on ICE/Nehalem and Altix/Montecito
Based on the Altix 4700 measurements, the MPInside model
indicates that a hypothetical future system with a Nehalem
processor and an interconnect that is twice as fast as the Altix
NUMAlink4 will run this unmodified LAMMPS test case with a
performance close to that of the perfect interconnect (Figure 15).

LAMMPS - 256 ranks - models

MPI ranks

el
ap

se
d

tim
e

allreduce
waitany
other MPI
compute

Altix interconnect 2 x Altix perfect

Figure 15. Expected performance on LAMMPS standard for

a hypothetical shared memory system

6. CONCLUSION
In this paper we have introduced MPInside and described its basic
features, the primary of which allow the impact of unaligned MPI
events to be measured without distortion.
Further development work, already in progress, allows:
• characterization of communication event dependencies,
• profiling for unaligned MPI events, and
• cross-referencing of MPI call stacks across ranks.
Together with its ease of use, low overhead, and modeling
capabilities, MPInside constitutes a powerful analysis and
diagnostic tool to meet the challenges of peta-scale MPI
application development.

7. REFERENCES
[1] MPI: a Message-Passing Standard
http://www.mpi-forum.org/docs/mpi-10.ps
[2] Perfcatch utility tool for SGI’s Message Passing Toolkit

http://www.sgi.com/products/software/mpt/

[3] Vetter, J.S. and M.O. McCracken, “Statistical
Scalability Analysis of Communication Operations in
Distributed Applications," Proc. ACM SIGPLAN
Symp. on Principles and Practice of Parallel
Programming (PPOPP), 2001

[4] Mucci, P. DynaProf
http://www.cs.utk.edu/~mucci/dynaprof/

[5] Intel® Trace Analyzer and Collector
http://software.intel.com/en-us/intel-trace-analyzer

[6] Nagel, W., Arnold, A., Weber, M., Hoppe, H.-C., and
Solchenbach, K. 1996. ”VAMPIR: Visualization and
Analysis of MPI Resources”. Supercomputer
12(1):69–80.

[7] Vampir - Performance Optimization
http://www.vampir.eu

[8] Scalasca (Scalable Performance Analysis of Large-
Scale Applications), http://www.fz-
juelich.de/jsc/scalasca/

[9] Tanasescu, C. “Scalability Considerations for Compute
Intensive Applications on Clusters”. LCI, 2003.
http://www.linuxclustersinstitute.org/conferences/archiv
e/2003/PDF/P02-Tanasescu_C.pdf

[10] SGI Altix 4700 servers
http://www.sgi.com/products/servers/altix/4000/

[11] SGI Altix ICE servers
http://www.sgi.com/products/servers/altix/ice/

[12] PAM-CRASH http://www.esi-
group.com/products/crash-impact-safety/pam-crash

[13] Paratec (PARAllel Total Energy Code
http://www.nersc.gov/projects/paratec/

[14] PerfSuite is a collection of tools, utilities, and libraries
for software performance analysis:
http://perfsuite.ncsa.uiuc.edu/

[15] MPT (Message Passing Toolkit)
http://www.sgi.com/products/software/mpt/

[16] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J.
Wasserman, M. Gittings, "Predictive Performance and
Scalability Modeling of a Large-Scale Application," sc,
pp.39, ACM/IEEE SC 2001 Conference (SC 2001),
2001

[17] PMaC: Performance Modeling and Characterization
http://www.sdsc.edu/pmac/index.html and
L. Carrington, A. Snavely, X.Gao, and N. Wolter. A
performance prediction framework for scientific
applications. In International Conference on
Computational Science Workshop on Performance
Modeling and Analysis (PMA03), pages 926–935, June
2003.

[18] MPICH2 a high-performance and widely portable
implementation of MPI
http://www.mcs.anl.gov/research/projects/mpich2/

[19] LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator.): http://lammps.sandia.gov/

86

