
On the Efficacy of Call Graph-Level
Thread-Level Speculation

Arun Kejariwal§ Milind Girkar‡ Xinmin Tian‡ Hideki Saito‡

Alexandru Nicolau† Alexander V. Veidenbaum† Utpal Banerjee† Constantine D. Polychronopoulos¶
§Yahoo! Inc. ‡Intel Corporation †University of California at Irvine ¶University of Illinois at Urbana-Champaign

ABSTRACT
Thread-level speculation (TLS) has been proposed as a means
to parallelize difficult-to-analyze sequential codes. In this pa-
per, we present a realistic measure of the performance po-
tential of call-graph level TLS, using the SPEC 1 CPU2006
benchmark suite and the IntelR©CoreTM2 Duo processor.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems – Mea-
surement techniques
General Terms: Performance, Measurement
Keywords: Thread-level speculation, performance

1. INTRODUCTION
The ever increasing performance requirements coupled with
the power constraints has led to the emergence of multi-core
systems. Efficient use of such systems is critically depen-
dent on the availability of concurrent software. TLS has
been proposed as a means to parallelize difficult-to-analyze
(potentially parallel) program regions (see [1] for a detailed
listing of prior work in TLS). Although there has been a
study on the efficacy of TLS at the innermost loop-level [2],
an evaluation of the performance potential of TLS, in mod-
ern applications, at call graph-level has not been done so
far. To this end, we present an evaluation of the efficacy of
TLS at the call graph-level. In particular,

a) Assuming an oracle TLS mechanism, i.e., perfect specu-
lation and zero threading overhead, we evaluate an upper
bound on the speedup achievable by applying TLS at the
call graph-level.

b) We describe the factors, viz., I/O and recursion (or pres-
ence of cycles in the call graph) which limit the applica-
bility of TLS at the call graph-level. We illustrate this
with the help of code snippets from SPEC CPU2006 [3].

To the best of our knowledge, this is the first limit study
of call graph-level TLS using the SPEC CPU2006 bench-
mark suite. The suite is widely used and considered to be
representative of ordinary programs.

2. CALL GRAPH-LEVEL TLS
To extract higher degree of parallelism, call graph-level TLS
has been proposed [4] As an example, let us consider the
call graph of the function precompute arguments shown in
Figure 1 (taken from 403.gcc:calls.c:1482).

From the figure, we see that precompute arguments calls
six functions. Under call graph-level TLS, precompute arg-

-uments would spawn speculative threads to execute its callees.

1Other names and brands may be claimed as the property
of others.

Copyright is held by the author/owner(s).
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
ACM 978-1-60558-563-5/10/01.

Figure 1: Illustrating TLS at the call graph-level

The function expand expr would then spawn speculative
threads to execute its callees, subject to support for nested
TLS. In case the callees are embedded in a loop, then differ-
ent invocations of the same callee are executed by different
speculative threads.

2.1 Ideal Case
In this subsection we present an upper bound on the speedup
achievable by applying TLS at the call graph level in the
ideal case, i.e., assuming zero threading overhead and perfect
speculation. We obtained the function coverage – defined as
the percentage of the total execution time spent in a given
function – profiles, akin to the innermost loop coverage pro-
files presented in [2]. The benchmarks were compiled using
the Intel Fortran/C++ compiler and run on the Intel Core
2 Duo processor (see Table 1 for the system configuration),
using the reference data sets.
Analysis of the pro- Processor IntelR©CoreTM2 Duo Processor (E6600) , 2.4 GHz

Memory 2 GB, DDR 800, dual-channel, non-ECC

L1 D-Cache 32 KB

L1 I-Cache 32 KB

L2 Cache 4 MB

Bus Speed 1066 MHz

Compiler Flags -O3 -Qansi alias -Qprof gen -Qprof use -QxP -Qipo -Fa

MicrosoftR©Windows XP Professional Version 2002 (Service pack 2)

Table 1: Experimental Setup

files highlight that the
maximum coverage
of a single function
is small for bench-
marks such as 403.gcc
and 445.gobmk. Thus, in the ideal case, TLS at the call
graph-level can potentially yield large speedups – achieved
via overlapping the coverage of the different functions in a
given call graph (recall that this subject to perfect specula-
tion). For example, in the case of 403.gcc, it would reduce
the execution time to 4% of the total execution time.

However, in practice, the performance gain achievable via
call graph-level TLS is limited by a variety of factors such as
(but not limited to) presence of I/O and presence of cycles
in the call graph level (or recursion). In the rest of this
subsection, we discuss these two in detail.

2.2 I/O
One of the factors limiting the applicability of TLS at the
call graph-level is the presence of I/O in the candidate func-
tion. This stems from the fact that, for example, user input
cannot be speculated. Moreover, user input is inherently
asynchronous in nature – a user may pause multiple times
while providing the input. Likewise, program regions con-
taining read and write file operations are not suitable for
TLS. Consequently, functions containing I/O should be ex-
cluded from the set of candidate program regions for TLS.

247



Figure 2: Call graph of Copy Media containing a cycle
with multiple nodes
2.3 Recursion
Several hardware mechanisms have been proposed to exploit
speculative thread-level parallelism (sTLP). These propos-
als use a speculative buffer (e.g., see [5, 6]) to store spec-
ulative data, track data dependences and correct incorrect
execution during roll back. There may exist multiple ver-
sions of any given variable. This stems from the fact that
concurrently executing speculative threads may produce dif-
ferent versions of the same variable. These versions must
be buffered separately. If the speculation is correct, the
hardware commits the corresponding data in the specula-
tive buffer to the (non-speculative) memory. The selection
of the size of the buffer involves the following trade-off:

a) Typically, the buffers are small memory structures so as
to achieve fast access. The need for fast access stems
from the following:

i) Loads and stores account for more than 40% of the
total instruction count on an average.

ii) Every load and store of a speculative thread must
be tracked to check for a potential dependence with
the non-speculative threads(s).

However, the small size of the buffer results in buffer
overflow whenever the size of speculative state exceeds
the buffer capacity. This is common in the case of large
speculative threads such as threads executing large func-
tions speculatively.

b) On the other hand, a large speculative buffer helps to un-
cover higher degree of sTLP by reducing buffer overflow.
However, the downside of large buffers is that they have
large access times which adversely affects performance.
Also, a large buffer has cost implications.

In [7], Garzarán et al. analyzed the trade-offs between the
various approaches for buffering memory state in the con-
text of TLS. Recently, Kim et al. proposed a mechanism
based on exploiting reference idempotency to reduce buffer
overflow [8]. However, they used the train data set which
are significantly smaller than the reference data sets. This
has a direct implication on the size of the speculative buffer.

The presence of cycles in the call graph relates to specu-
lative buffer size in the following way: unrestricted out-of-
order (OOO) spawning of speculative threads may require
an infinitely large buffer. Such a scenario might arise when
the non-speculative thread incurs a long pipeline bubble and
the execution of a speculative thread is “locked” along a cy-
cle in the call graph. For example, let us consider the call
graph shown in Figure 2. The function Copy Media is part
of the 453.povray benchmark. From Figure 2 we note that
there exist multiple cycles in the call graph – the functions
Copy Media, Copy Pigment, Copy TPat Fields, Copy Object

and Copy Interior form a cycle.

Benchmark Has
Recursion

Example

Integer Benchmarks
400.perlbench 4 store → store blessed → store hook → store

401.bzip2 7

403.gcc 4 simplify and const int → force to mode → simplify shift const → expand compound operation → simplify and const int

429.mcf 7

445.gobmk 4 simple ladder attack → simple ladder defend → simple ladder attack

456.hmmer 4 reg → regbranch → regpiece → regatom → reg

458.sjeng 4 develop node → pn2 eval → develop node

462.libquantum 4 quantum sigma x → quantum sigma x ft → quantum sigma x

464.h264avc 4 error → flush dpb → remove unused frame from dpb → remove frame from dpb → error

471.omnetpp 7

473.astar 7

483.xalancbmk 4 ElemTemplate::execute → ElemTemplate::executeChildren → ElemTemplateElement::executeChildren → ElemTemplate::execute

Floating Point Benchmarks
444.namd 7

447.dealII 4 MappingCartesian::fill fe values → MappingCartesian::compute fill → MappingCartesian::fill fe values

450.soplex 4 soplex::SPxDefaultRT::selectEnter → soplex::SPxDefaultRT::selectEnter → soplex::SPxDefaultRT::selectEnter

453.povray 4 Copy Textures → Copy Tnormal → Copy TPat Fields → Copy Object → Copy Textures

482.sphinx3 4 mdef free recursive lc → mdef free recursive lc

Table 2: Benchmarks in SPEC CINT2006 and
(C/C++ based) CFP2006 which have recursive code

For a practical assessment of the performance potential
of TLS at the call graph-level, functions which are part of
a cycle in the call graph should be excluded from the set of
candidate functions for TLS. In addition, all the callers of
such functions should also be excluded from the set! Limit-
ing the speculation depth can potentially be of help in this
regard. However, determining the depth at run time is non-
trivial.

Table 2 lists all the benchmarks CINT2006 and C/C++
CFP2006 benchmarks which have at least one cycle in their
call graphs. An example cycle in such benchmarks is also
given. From the table we see that majority of the bench-
marks contain recursive code.

2.4 Upper Bounds
Table 3 reports the cov- Integer Benchmarks

Benchmark Coverage Benchmark Coverage

400.perlbench 11.63 403.gcc 8.08

445.gobmk 6.88 456.hmmer ≈ 1

458.sjeng 10.65 462.libquantum 8.68

464.h264ref 50.41 483.xalancbmk 5.21

Floating Point Benchmarks
Benchmark Coverage Benchmark Coverage

447.dealII 17.48 450.soplex 9.96

453.povray 17.75 482.sphinx 14.03

Table 3: Performance poten-

tial of call graph level-TLS

erage of the top 5 hot func-
tions which are not part of
a cycle in the call graph and
none of their callees and the
functions in their respective
call graphs are part of a cy-
cle (in other words, there
should not exist a path be-
tween the given function and
a cycle in the call graph). For example, in Figure 2, the
function Create Pigment is not a part of a cycle and nei-
ther are its callees. In addition, the candidate function or
its callees should not contain library calls. Further, based
on the discussion presented in subsection 2.2, we excluded
the functions which contain I/O. The coverage reported in
the table serves as an upper bound on the applicability of
TLS at the call graph level, assuming no conflict between
the different speculative threads and a zero threading over-
head. Obtaining tighter bounds based on static analysis
and/or run time profiling of dependences between different
functions and accounting for the impact of threading over-
head on the efficacy of call graph-level TLS is a subject of
future work.

3. REFERENCES
[1] A. Kejariwal and A. Nicolau. Reading list of performance analysis,

speculative execution.
http://www.ics.uci.edu/∼akejariw/SpeculativeExecutionReadingList.pdf.

[2] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, H. Saito,
U. Banerjee, A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos.
Tight analysis of the performance potential of thread speculation using
SPEC CPU2006. In PPoPP, 2007.

[3] SPEC CPU2006. http://www.spec.org/cpu2006.
[4] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in

single-threaded Java programs. In PACT, 1998.
[5] M. Franklin. Multi-version caches for multiscalar processors. In Proceedings

of 1st International Conference on High Performance Computing, 1995.
[6] S. Gopal, T. N. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning

cache. In HPCA, 1998.
[7] M. J. Garzarán, M. Prvulovic, M. Llabeŕıa J, V. Viñals, L. Rauchwerger,

and J. Torrellas. Tradeoffs in buffering speculative memory state for
thread-level speculation in multiprocessors. ACM TACO, 2(3):247–279,
2005.

[8] S. W. Kim, C.-L. Ooi, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar.
Exploiting reference idempotency to reduce speculative storage overflow.
ACM TOPLAS, 28(5):942–965, 2006.

248

http://www.ics.uci.edu/~akejariw/SpeculativeExecutionReadingList.pdf
http://www.spec.org/cpu2006

	1 Introduction
	2 Call graph-level TLS
	2.1 Ideal Case
	2.2 I/O
	2.3 Recursion
	2.4 Upper Bounds

	3 References



