A Page Fault Equation for Dynamic Heap Sizing

Y.C. Tay
National University of Singapore
tay@acm.org

X.R. Zong
Duke University
xrx@cs.duke.edu

ABSTRACT
For garbage-collected applications, dynamically-allocated objects are contained in a heap. Programmer productivity improves significantly if there is a garbage collector to automatically de-allocate objects that are no longer needed by the applications. However, there is a run-time performance overhead in garbage collection, and this cost is sensitive to the applications. Many languages therefore relieve programmers of this task by having a garbage collector do the deallocation on their behalf. Several such languages are now widely used, e.g. Java, C#, Python and Ruby.

Garbage collection is restricted to the heap, i.e. the part of user memory where the dynamically created objects are located. The application, also called the mutator, therefore shares access to the heap with the garbage collector.

1. INTRODUCTION
Most nontrivial programs require some dynamic memory allocation for objects. If a program is long-running or its objects are large, such allocation can significantly increase the memory footprint and degrade its performance. This can be avoided by deallocating memory occupied by objects that are no longer needed, so the space can be reused.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Categories and Subject Descriptors

General Terms
Performance, Languages

Keywords
garbage collection, heap size, page faults, dynamic tuning

1.1 The Problem
The heap size H can have a significant effect on mutator performance. Garbage collection is usually prompted by a shortage of heap space, so a smaller H triggers more frequent runs of the garbage collector. These runs interrupt mutator execution, and can seriously dilate execution time.

Furthermore, garbage collection pollutes hardware caches, causing cache misses for the mutator when it resumes execution; it also disrupts the mutator’s reference pattern, possibly undermining the effectiveness of the page replacement policy used by virtual memory management [7, 10].

While a larger heap size can reduce garbage collection and its negative impact, H cannot be arbitrarily large either. A process will only get some fraction of main memory allocated to it. If H exceeds the memory allocation M, part of the heap will have to reside on disk. This will likely result in page faults, if not caused by a mutator reference to the heap, then by the garbage collector. (In this paper, page fault always refers to a major fault that requires a read from disk.) In fact, it has been observed that garbage collection can cause more page faults than mutator execution when the heap extends beyond main memory [20].

Fig. 1 presents measurements from running mutator pmd (from the DaCapo benchmark suite [5]) with JikesRVM [1], using GenMS in its MMTk toolkit as the garbage collector. It illustrates the impact of H on how page faults vary with M.

In the worst case, $H>M$ can cause page thrashing. Even if the situation is not so dire, page faults are costly — reading from disk is several orders of magnitude slower than from main memory — and should be avoided. It is thus clear that performance tuning for garbage-collected applications requires a careful choice of heap size.

Consider the case $H = 140$MBytes in Fig. 1. If $M = 50$MBytes, then shrinking the heap to $H = 60$MBytes would trigger more garbage collection and double the number of page faults. If $M = 110$MBytes, however, setting $H = 60$MBytes would reduce the faults to just cold misses, and
1.1 Our Contribution

The first contribution in this paper is an equation that relates the number of page faults to memory allocation and heap size. This equation has several parameters that encapsulate properties of the mutator, garbage collector, and operating system. It is a refinement of the Page Fault Equation (for generic, possibly non-garbage-collected workloads) in previous work [16].

The second contribution is the following Heap Sizing Rule:

\[H = \begin{cases} \frac{M-b}{a} & \text{for } aH_{\min} + b < M < aH_{\max} + b \\ H_{\max} & \text{otherwise} \end{cases} \]

(1)

This rule, illustrated in Fig. 2, reflects any change in workload through changes in the values of the parameters \(a\), \(b\), \(H_{\min}\), and \(H_{\max}\).

1.2 Our Contribution

The first contribution in this paper is an equation that relates the number of page faults \(n\) to memory allocation \(M\) and heap size \(H\). This equation has several parameters that encapsulate properties of the mutator, garbage collector, and operating system. It is a refinement of the Page Fault Equation (for generic, possibly non-garbage-collected workloads) in previous work [16].

Our second contribution is the following Heap Sizing Rule:

\[H = \begin{cases} \frac{M-b}{a} & \text{for } aH_{\min} + b < M < aH_{\max} + b \\ H_{\max} & \text{otherwise} \end{cases} \]

(1)

This rule, illustrated in Fig. 2, reflects any change in workload through changes in the values of the parameters \(a\), \(b\), \(H_{\min}\), and \(H_{\max}\).

1.3 An overview

We begin in Section 2 by introducing the Page Fault Equation. We validate it for some garbage-collected workloads, then refine it to derive the heap-aware version.

Section 3 derives the Heap Sizing Rule (1), and presents experiments to show its effectiveness for static \(M\) and dynamic \(M\). We conclude with a summary in Section 4.

Due to space constraints, we omit some details (experimental setup, parameter calibration, etc.) but they can be found in the full paper [15].

2. HEAP-AWARE PAGE FAULT EQUATION

We first recall Tay and Zou’s parameterized Page Fault Equation in Section 2.1, and Section 2.2 verifies that it works for garbage-collected workloads. Section 2.3 then derives from it the heap-aware version.

2.1 Page Fault Equation

Suppose an application gets main memory allocation \(M\) (in pages or MBytes), and consequently incurs \(n\) page faults during its execution. The Page Fault Equation says

\[n = \begin{cases} n^\ast + \frac{1}{2}(K + \sqrt{K^2 - 4})(n^\ast + n_0) - n_0 & \text{for } M \geq M^\ast \\ \frac{1}{2}(K + \sqrt{K^2 - 4})n^\ast & \text{for } M < M^\ast \end{cases} \]

where \(K = 1 + \frac{M^\ast + M^\ast}{M + M^\ast}. \)

(2)
The parameters n^*, M^*, M^o and n_0 have values that depend on the application, its input, the operating system, hardware configuration, etc. Having these four parameters is minimal, in the following sense:

- n^* is the number of cold misses (i.e. first reference to a page on disk). It is an inherent property of every reference pattern, and any equation for n must account for it.
- When n is plotted against M, we generally get a decreasing curve. Previous equations for n models this decrease as continuing forever [3]. This cannot be; there must be some $M = M^*$ at which n reaches its minimum n^*. Identifying this M^* is critical to our use of the equation for heap sizing.
- The interpretation for M^0 varies with the context [16, 17]. For the Linux experiments in this paper, we cannot precisely control M, so M^0 is a correction term for our estimation of M. M^0 can be positive or negative.
- Like M^0, n_0 is a correction term for n that aggregates various effects of the reference pattern and memory management. For example, dynamic memory allocation increases n_0, and prefetching may decrease n_0 [16]. Again, n_0 can be positive or negative; geometrically, it controls the convexity of the page fault curve.

2.2 Universality: experimental validation

The Page Fault Equation was derived with minimal assumptions about the reference pattern and memory management, and experiments have shown that it fits workloads with different applications (e.g. processor-intensive, IO-intensive, memory-intensive, interactive), different replacement algorithms and different operating systems [16]; in this sense, the equation is universal.

Garbage-collected applications are particularly challenging because the heap size affects garbage collection frequency, and thus the reference pattern and page fault behavior. This is illustrated in Fig. 1, which shows how heap size affects the number of page faults. Details on the set-up for this and subsequent experiments are given in the full paper [15].

Classical page fault analysis is bottom-up: it starts with a model of reference pattern and an idealized page replacement policy, then analyzes their interaction. We have not found any bottom-up model that incorporates the impact of heap size on reference behavior.

In contrast, for Eqn. (2) to fit the result of a change in H, one simply changes the parametric values. Fig. 3(i) illustrates this for the workload of Fig. 1: it shows that the equation gives a good fit of the page fault data for two very different heap sizes. The goodness of fit is measured with the widely-used coefficient of determination R^2 (the closer to 1, the better the fit). Details on how we use regression to fit Eqn. (2) to the data are in the full paper [15].

A universal equation should still work if we change the mutator itself. Fig. 3(ii) illustrates this for pmd and xalan, using the MarkSweep garbage collector and $H = 130$MB.

Universality also means the equation should fit data from different garbage collectors. Fig. 3(iii) illustrates this for pmd run with MarkSweep and with another garbage collector, SemiSpace, using $H = 90$MB.

2.3 Top-down refinement

The Page Fault Equation fits the various data sets by changing the numerical values of n^*, M^*, M^o and n_0 when the workload is changed. In the context of heap sizing, how does heap size H affect these parameters?

The cold misses n^* is a property of the mutator, so it is not affected by H. Although the workload has estimated memory allocation M, it may use more or less than that, and M^o measures the difference. Our experiments show that, for a given workload, M^o varies somewhat randomly when heap size is changed, with no discernible trend. Henceforth, we consider M^o constant with respect to H.

Garbage collectors like MarkSweep access the entire heap when they go about collecting garbage; their memory footprint thus grows with heap size, so we expect M^* to increase with H. Our experiments show that, in fact, M^* varies linearly with H for all our workloads, i.e.

$$M^* = aH + b$$ \hspace{1cm} (3)

Yang et al. defined a metric R that is the minimum real memory required to run an application without substantial paging [20], and found that R is approximately linear in H. Their R is approximately our M^*, so Eqn. (3) agrees with their observation.
As for \(n_0 \), Fig. 4 shows that \(n_0 \) decreases linearly with \(H \), then flattens out, i.e.

\[
n_0 = \begin{cases}
 cH + d & \text{for } H < H_{\text{max}} \\
 cH_{\text{max}} + d & \text{for } H \geq H_{\text{max}}
\end{cases}
\]

(4)

for some constants \(c, d \) and \(H_{\text{max}} \). Furthermore, a heap cannot be arbitrarily small; there is a smallest heap size such that, for any smaller \(H \), the workload will run out of memory before completion [14]. There is therefore a bound

\[
 H_{\text{min}} \leq H \quad \text{for all } H.
\]

(5)

Eqns. (2), (3), (4) and (5) together give the following:

Heap-Aware Page Fault Equation

\[
n = \begin{cases}
 n^* + \frac{1}{4}(K + \sqrt{K^2 - 4})(n^* + n_0) - n_0 & \text{for } M \geq M^* \\
 \frac{1}{4}(K + \sqrt{K^2 - 4})n_0 & \text{for } M < M^*
\end{cases}
\]

where

\[
 K = 1 + \frac{M^* + M^0}{M + M^0}, \quad M^* = aH + b,
\]

and

\[
 n_0 = \begin{cases}
 cH + d & \text{for } H_{\text{min}} \leq H < H_{\text{max}} \\
 cH_{\text{max}} + d & \text{for } H \geq H_{\text{max}}
\end{cases}
\]

(6)

Note that, rather than a bottom-up derivation, we have used a top-down refinement of the Page Fault Equation to derive the heap-aware version.

Besides, \(H_{\text{min}} \), the refinement introduces new parameters \(a, b, c, d \) and \(H_{\text{max}} \); what do they mean? We agree with Yang et al. that the gradient \(a \) is a property of the the collection algorithm. As for the intercept \(b \), it is a measure of space overhead that is independent of \(H \).

As \(H \) increases, there is less garbage collection and \(n_0 \) decreases; in fact, our experiments show that \(n_0 \) varies linearly with the number of garbage collection. The gradient \(c \) is a measure of the memory taken from the freelist during garbage collection, \(H_{\text{max}} \) is the smallest \(H \) that suffices to contain all objects created by the workload, and \(d \) is implicitly determined by \(c \) and the kink in Fig. 4. The full paper [15] describes these interpretations in greater detail; it also identifies a lower bound \(\mu \) for \(M^* \), indicated in Fig. 2.

3. HEAP SIZING

How large should a heap be? A larger heap would reduce the number of garbage collections, which would in turn reduce the application execution time, unless the heap is so large as to exceed (main) memory allocation and incur page faults. Heap sizing therefore consists in determining an appropriate heap size \(H \) for any given memory allocation \(M \).

The results in Section 2 suggest two guidelines for heap sizing, which we combine into one in Section 3.1. For static \(M \), Section 3.2 compares this Rule to that used by JikesRVM’s default heap size manager. In Section 3.3, we do another comparison, but with \(M \) changing dynamically.

3.1 Heap Sizing Rule

The Heap-Aware Page Fault Equation says that, for a given \(H \) (so \(M^* \) and \(n_0 \) are constant parameters), the number of page faults decreases with \(M \) for \(M < M^* \), and remains constant as cold misses for \(M \geq M^* \). Since \(M^* = aH + b \), the boundary \(M = M^* \) is \(H = \frac{b-M^0}{a} \). We thus get one guideline for heap sizing, as illustrated in Fig. 5(i).

Recall that the workload cannot run with a heap size smaller than \(H_{\text{min}} \). For \(H > H_{\text{min}} \), a bigger heap would require less garbage collection. Since garbage collection varies linearly with \(n_0 \), and Fig. 4 shows that \(n_0 \) stops decreasing when \(H > H_{\text{max}} \), the heap should not grow beyond \(H_{\text{max}} \); the benefit to the mutator is marginal, but more work is created for the garbage collector. We thus get another guideline for heap sizing, as illustrated in Fig. 5(ii).

The two guidelines combine to give the Heap Sizing Rule (1) that is illustrated in Fig. 2.

3.2 Experiments with static \(M \)

We first test the Heap Sizing Rule for a static \(M \) that is held fixed throughout the run of the workload. We wanted to compare the effectiveness of the Rule against previous work on heap sizing [7, 8, 19, 21]. However, we have no access to their implementation, some of which require significant changes to the kernel or mutator.

We therefore compare the Rule to JikesRVM’s heap sizing policy, which dynamically adjusts the heap size according to heap utilization during execution. This adjustment is done even if \(M \) is fixed, since an execution typically goes through phases, and its need for memory varies accordingly.

Fig. 6(i) shows that, for \(\text{pmd} \) run with MarkSweep, JikesRVM’s automatic heap sizing indeed results in fewer faults than if \(H \) is fixed at 60MBytes or at 140MBytes for small \(M \); for large \(M \) (≥ 80MBytes), however, its dynamic adjustments fail to reduce the number of faults below that for \(H = 60 \text{MBytes} \).

It is hence unsurprising that, although our Rule fixes \(H \) for a static \(M \), it consistently yields less faults than JikesRVM, i.e. it suffices to choose an appropriate \(H \) for \(M \), rather than adjust \(H \) dynamically according to JikesRVM’s policy.
Figure 6: Comparison of the Heap Sizing Rule to JikesRVM’s dynamic heap sizing policy. M is fixed for each run. The steep drop for the Rule’s data reflects the discontinuity in Fig. 2.

(i) Page faults (MarkSweep and pmd) (ii) Execution time (MarkSweep and pmd) (iii) Execution time (SemiSpace and pmd)

Figure 5: Guideline for heap sizing from (i) the Heap-Aware Page Fault Equation (6) and (ii) Fig. 4.

Notice that, around \(M = 80 \text{MBytes} \), page faults under the Rule drop sharply to just cold misses. This corresponds to the discontinuity in Fig. 2 at \(M = aH_{\text{min}} + b \).

Since disks are much slower than processors, one expects page faults to dominate execution time. Fig. 6(ii) bears this out: the relative performance in execution time between the two policies is similar to that in Fig. 6(i). The cold miss segments in the two plots illustrate how, by trading less page faults for more garbage collection, the Rule effectively reduces execution time. Fig. 6(iii) shows similar results for pmd run with SemiSpace.

3.3 Experiments with dynamic M

We next test the Heap Sizing Rule in experiments where M is changing dynamically.

To do so, we modify the garbage collectors so that, after each collection, they estimate M by adding Resident Set Size RSS in /proc/pid/stat and free memory space MemFree in /proc/meminfo (the experiments are run on Linux). H is then adjusted according to the Rule.

To change M dynamically, we run a background process that first mlock enough memory to start putting pressure on the workload, then executes a loop that repeatedly locks 30MBytes (in 10MByte increments) and unlocks them. To prolong the execution time, we run the mutator 5 times in succession.

Fig. 7 shows how H responds to such changes for three of the workloads in our experiments. Since we do not modify the operating system to inform the garbage collector about every change in \(M \), adjustments in H occur less frequently (only when there is garbage collection). Consequently, there are periods during which \(H \) is different from that specified by the Rule for the prevailing \(M \).

Even so, Table 1 shows that page faults under the Rule is an order of magnitude less than those under JikesRVM’s automatic sizing. The gap for execution time is similar. These indicate the Rule’s effectiveness for dynamic heap sizing.

4. CONCLUSION

Garbage collection increases programmer productivity but degrades application performance. This run-time effect is the result of interaction between garbage collection and virtual memory. The interaction is sensitive to heap size \(H \), which should therefore be adjusted to suit dynamic changes in main memory allocation \(M \).

We present a Heap Sizing Rule (Fig. 2) for how \(H \) should vary with \(M \). It aims to first minimize page faults (Fig. 5(i)), then garbage collection (Fig. 5(ii)), as disk retrievals impose a punishing penalty on execution time. Comparisons with JikesRVM’s automatic heap sizing policy shows that the Rule is effective for both static \(M \) (Fig. 6) and dynamic \(M \) (Table 1). This Rule can thus add a run-time advantage to garbage-collected languages: execution time can be improved by exchanging less page faults for more garbage collection (Fig. 6(i) and Fig. 6(ii)).

The Rule is based on a Heap-Aware Page Fault Equation (6) that models the number of faults as a parameterized function of \(H \) and \(M \). The Equation fits experimental measurements with a variety of garbage collectors and mutators (Fig. 3), thus demonstrating its universality. Its parameters have interpretations that relate to the garbage collection algorithm and the mutators’ memory requirements (Section 2.3).
6. REFERENCES

Figure 7: How the Heap Sizing Rule adjusts H at each garbage collection when M varies dynamically. (To plot the points for M, we run a background process that measures M every 3 seconds.)

<table>
<thead>
<tr>
<th>Page</th>
<th>MarkSweep pmd</th>
<th>SemiSpace pmd</th>
<th>MarkSweep xalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>faults</td>
<td>RVM 42528</td>
<td>680575</td>
<td>352338</td>
</tr>
<tr>
<td>execution time (sec)</td>
<td>Rule 36228</td>
<td>36470</td>
<td>64580</td>
</tr>
<tr>
<td></td>
<td>MarkSweep</td>
<td>SemiSpace</td>
<td>MarkSweep xalan</td>
</tr>
<tr>
<td>page</td>
<td>pmd</td>
<td>pmd</td>
<td>xalan</td>
</tr>
<tr>
<td>faults</td>
<td>RVM 4762</td>
<td>8362</td>
<td>4202</td>
</tr>
<tr>
<td>execution time (sec)</td>
<td>Rule 419</td>
<td>404</td>
<td>761</td>
</tr>
</tbody>
</table>