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ABSTRACT
The object-based Unified Modeling Language (UML) is a popu-
lar medium for effective design of most systems. PEPA nets are a
performance modelling technique which offers capabilities for cap-
turing notions such as location, synchronisation and message pass-
ing, and are thus suited for performance modelling of mobile and
distributed software. In this paper, we provide a new constructive
approach that links both models by deriving a PEPA net which re-
alises the same language (legal set of traces) as a given Interaction
Overview Diagram (IOD) in UML2. We prove that the languages
are strongly consistent (equivalent) by establishing the one-to-one
correspondence between the traces of the models.

Categories and Subject Descriptors: D.2.2 [Design Tools and
Techniques]: object-oriented design methods. I.6.5 [Model Devel-
opment]: Modeling methodologies.

General Terms: Design, Languages, Performance

Keywords: UML 2 Interaction Diagrams, PEPA nets, Formal
Transformation, Mobility, Performance Analysis

1. INTRODUCTION
The increasing complexity of mobile and distributed software

systems requires a more careful and sophisticated design approach
for successful implementation. The object-based Unified Model-
ing Language (UML) can describe the structural and behavioural
aspects of these systems and is a popular medium for effective de-
sign. We are interested in performance modelling and analysis of
mobile distributed software systems, and thus in the combination
of UML-based design and formal modelling techniques for perfor-
mance analysis of these systems. PEPA nets are our performance
modelling technique of choice, combining the stochastic process
algebra PEPA with coloured Petri nets. PEPA nets [4] have capa-
bilities for capturing notions such as location, synchronisation and
message passing, and are thus ideally suited for performance anal-
ysis of mobile and distributed software. Furthermore, there is an
extensive suite of tools available for the process algebra PEPA. The
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combination of UML with PEPA nets should, however, be com-
pletely seamless and transparent to software developers. In other
words, a software designer models a system using UML2, and is
able to analyse the models with no knowledge of the underlying
performance technique.

There are several performance modelling approaches using UML
and an underlying formal model for performance analysis including
[9, 5, 3] among others. Some of the work using UML for perfor-
mance analysis has different motivation than ours. In this context
[9] uses activity diagrams to refine do activities in state machines
and then obtain predictive performance measures from the perfor-
mance model obtained from these diagrams. Activity diagrams are
annotated with rates and durations according to the UML profile
for performance, schedulability and time. In [5] the authors intro-
duce a mobility profile for the performance analysis domain, but do
not focus on new notations available in UML2. Similarly, in [3] the
authors report on a toolset for modelling systems with performance
information using UML but do not consider mobility and assume
an underlying translation of mainly UML1.x notation into the pro-
cess algebra PEPA. We use recent and new UML2 notation with
PEPA nets as an underlying model, and are concerned with both
mobility and performance information.

In [12] the authors propose a translation of UML1.x specifica-
tions made up of sequence and state diagrams into π−calculus pro-
cesses. In [1], the authors extend UML activity diagrams to capture
mobile systems. However, activity diagrams are not adequate to
capture at the same time the structure of the system (locations), how
objects move between locations, and how objects behave/interact
within locations. By contrast, this is possible in our approach us-
ing performance annotated IODs and we obtain a rich language for
capturing mobile distributed systems for performance analysis.

Our approach describes a mobile system at two levels. At the
high level we describe the locations of the system and how objects
move between locations (IOD). At the lower level we describe how
objects behave and interact locally (sequence diagrams). Both lev-
els are enriched with performance related information (activities)
as described in [8]. This approach does in particular allow us to
define an automatic transformation of IODs into PEPA nets.

The main contribution of this paper is a constructive approach
to synthesise a PEPA net which realises the same language as a
given UML2 IOD. We prove the equivalence of both languages
by showing that the corresponding models are strongly consistent,
that is by establishing the correspondence between the traces of
the languages. Our result guarantees the absence of so-called im-
plied scenarios at the PEPA net level. Implied scenarios are ad-
ditional scenarios or behaviour that was not specified or intended.
Other synthesis approaches, e.g. [13], often have this problem as
the models used are very different in nature and essentially cap-
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ture different views of the system. Transforming a model with a
global system view into a model based on individual and local ob-
ject views makes it impossible to prevent implied scenarios from
existing. Such approaches then have to focus on mechanisms to
detect such unwanted and unacceptable additional behaviours.

Structure of this paper: In the next section, we present the UML2
interaction diagrams. In Section 3, we describe PEPA nets. In
Section 4, we give the formal model for IODs. Section 5 describes
the languages associated with both models. Section 6 describes the
synthesis algorithm and gives a proof for the equivalence of the
languages. Finally, Section 7 concludes the paper.

2. INTERACTION DIAGRAMS IN UML2.0
To model interactions UML2 offers various diagrams. We con-

sider sequence diagrams and interaction overview diagrams.
Sequence diagrams are the more commonly used diagrams for

capturing inter-object behaviour. In UML2, sequence diagrams are
more expressive and interactions can be structured using so-called
interaction fragments such as alt (alternative behaviour), par (par-
allel behaviour) and loop. The semantics of all operators is de-
scribed informally in the UML2 superstructure specification [11].

IODs constitute a high-level structuring mechanism that is used
to compose scenarios through sequence, iteration, concurrency or
choice. IODs are similar to Hierarchical Message Sequence Charts
(HMSCs), also known as Message Sequence Graphs (MSGs), which
provide a structuring mechanism for MSCs [10]. In UML2, IODs
are a special and restricted kind of activity diagrams (ADs) where
nodes are interactions and edges indicate the flow or order in which
these interactions occur [11]. Semantically, however, IODs and
ADs are given different interpretations. IODs follow a trace se-
mantics whereas ADs in UML2 are understood as Petri nets.

The notation used for IODs incorporates notation from sequence
diagrams (the nodes) with forks, joins, decision and merge nodes
from ADs. Branching and joining of branches in an IOD must be
properly nested. IOD edges denote control flow only and according
to the UML specification [11] object flow cannot be represented.

Object flow in an AD uses the notion of a pin. After an AD node
has been completed a token of a certain type is placed in the output
pin of the node. As soon as the edge fires the token moves to the
input pin of another AD node. A node can have more than one
object as in/output. In this case, there are several edges between
the underlying nodes, one for each type of token, and the edges can
be fired independently. However, whichever token reaches a target
pin first will have to wait for the others before the final target node
can be initiated. Unless otherwise indicated, all pins are required
as input values before a node can be executed.

By default the number of tokens that are carried along an edge
is one, but an input or output pin can collect several tokens of the
same type. It is also possible that a pin can only accept a certain
number of tokens. We write {upperBound = 50} next to a pin
to indicate that the maximum number of tokens that can be stored
in that pin is 50. If the current number of tokens collected at the
pin is 50 and the pin is an input pin, then no edge leading to that
pin is allowed to fire. We assume that by default the value of the
upperBound is one unless otherwise indicated. Finally, in an AD a
node can only start execution if all its input pins contain tokens as
required, and after execution tokens are placed in all output pins.

Even though IODs only describe control flow the notion of ob-
ject flow is implicitly present. A node in an IOD is a sequence di-
agram containing objects that can progress to a further interaction
according to the edges at the IOD level.

We are primarily interested in explicitly modelling the mobility
of objects, and we borrow the notation of object flow and pins from

ADs as shown in Figure 1. In other words, we do not allow simple
edges between nodes and we always have to indicate pins on edges.

o1 o2 o3 o4

m2

m1

sd 1

intover 3

sd 2
o1 o2

m3

{initBound=1}

o1 o2 o3 o4

o3 o4o1 o2
{initBound=1} {initBound=1}{initBound=1}

o1 o2

Figure 1: Object mobility in an IOD.

We consider that all objects that want to progress from one in-
teraction to another have an output pin with the name and type of
the object, and an input pin with the same name and type in the
following interaction. As soon as an object completes its behaviour
as described in the first interaction, a token is placed in the corre-
sponding output pin and the edge can fire provided the target pin
has enough space. Whether or not the following interaction can ex-
ecute depends on how many input tokens are required. In Figure 1,
interaction sd2 can only start executing once both tokens (one of
type o1 and one of type o2) are available in the respective input
pins. Here, the edges for objects o1 and o2 cannot fire indepen-
dently and are synchronised with the edges for objects o3 and o4.
Only when all tokens are available on the fork can execution pro-
ceed, with objects o1 and o2 moving to node sd2 and objects o3
and o4 returning to node sd1. In other words, a fork is used to
synchronise the objects associated with the edges it cuts accross.
Independent progression can be modelled without the fork.

The tagged value {initBound = n} given next to a pin indi-
cates the initial number of tokens n associated with that pin. If
this tag is not given next to a pin then we are implicitly assum-
ing {initBound = 0}. Using the tag initBound simplifies our
model as we do not have to indicate the initial node of the IOD.
This gives the initial marking of the IOD.

In [8] we have shown how to use IODs and sequence diagrams
for modelling mobility and performance information. In particu-
lar, we extended both diagrams to be able to add the performance
information to the models. We add the explicit activity (an action
type with its corresponding rate) to an IOD edge that corresponds
to the movement of an object from one node or location to another.
We can indicate this additional activity at the source pin of an IOD
edge. A pin has a name and type (one or the other may be omitted).
We assume here that a source pin of an edge carries the information
on the associated activity by giving the corresponding action type
and rate.

As shown in Figure 2, the textual label of a source pin is given
by: pin_type;action_type/rate.

Similarly, the messages inside an IOD node (sequence diagram)
are activities and represented by an action type and one rate (denot-
ing an individual object activity) or two rates (indicating a shared
activity between objects).
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Input pin

pin_type;action_type/rate

node 1

Output pin

{upperBound=value}

node 2

Figure 2: Input and output pins.

3. PEPA NETS
PEPA nets [4] combine the process algebra PEPA (Performance

Evaluation Process Algebra) with stochastic coloured Petri nets.
This hybrid formalism can be regarded as using the algebra PEPA
as the inscription language for labelled stochastic Petri nets. Viewed
in another way, the net is used to provide a structure for combin-
ing related PEPA systems. In either view the combined modelling
language naturally represents applications such as mobile code sys-
tems where the PEPA terms are used to model the program code
which moves between network hosts (the places in the net).

In PEPA a system is described as an interaction of components
which engage, either singly or multiply, in activities. These ac-
tivities represent changes of state within a system. PEPA nets are
motivated by the observation that in many systems we can identify
two distinct types of change of state, as changes within the system
may take place on different scales. Therefore there are two types
of change of state in a PEPA net. We refer to these as firings of
the net and as transitions of PEPA components. Firings of the net
will typically be used to model macro-step (or global) changes of
state such as context switches, breakdowns and repairs, one thread
yielding to another, or a mobile software agent moving from one
network host to another. Transitions of PEPA components will typ-
ically be used to model small-scale (or local) changes of state as
components undertake activities.

In PEPA net, each activity has an action type and its duration is
represented by a parameter of the associated exponential distribu-
tion: activity rate. This parameter may be any positive real num-
ber, or the distinguished symbol � (read as unspecified). Thus each
activity, a, is a pair (α, r) consisting of the action type and the ac-
tivity rate respectively. We assume a countable set of components,
denoted C, and a countable set, Y , of all possible action types. We
denote by Act ⊆ Y ×R

+, the set of activities, where R
+ is the set

of positive real numbers together with the symbol �.
As the firings, on one hand, and the transitions, on the other

hand, are special cases of PEPA activities, we differentiate the ac-
tion types associated with each of these. We denote by Yf the set
of action types at the net level and by Yt the set of action types
inside the places such that Y = Yf ∪ Yt. Similarly, we denote by
Act t ⊆ Yt×R

+ the set of activities undertaken by the components
inside the places and by Actf ⊆ Yf × R

+ the set of activities at
the net level such that Act = Actf ∪ Act t.

A PEPA net is made up of PEPA contexts, one at each place
in the net. A context consists of a number of static components
(possibly zero) and a number of cells (at least one). Like a memory
location in an imperative program, a cell is a storage area to be
filled by a datum of a particular type. In particular in a PEPA net,
a cell is a storage area dedicated to storing a PEPA component of
the specified type. The components which fill cells are the mobile
components and can circulate as the tokens of the net. In contrast,
the static components cannot move.

The mobile components or tokens of a PEPA net are terms of
the PEPA stochastic process algebra which define the behaviour of
components via the activities they undertake and the interactions
between them. Thus each token has a type given by its definition.

This type determines the transitions and firings which a token can
engage in; it also restricts the places in which it may be, since it
may only enter a cell of the corresponding type.

We assume a countable set (possibly empty) of static compo-
nents CS and a countable set of mobile components or tokens CM

such that CS ∪ CM = C.

DEFINITION 3.1. A PEPA net V is a tuple V = (P , T , I,O, �,
π,FP , K, M0) such that

• P is a finite set of places;

• T is a finite set of net transitions;

• I : T → P is the input function;

• O : T → P is the output function;

• � : T → (Yf , R+ ∪ {�}) is the labelling function, which
assigns a PEPA activity ((type, rate) pair) to each transi-
tion. The rate determines the negative exponential distribu-
tion governing the delay associated with the transition;

• π : Yf → N is the priority function which assigns priorities
(represented by natural numbers) to firing action types;

• FP : P → P is the place definition function which assigns
a PEPA context, containing at least one cell, to each place;

• K is the set of token component definitions;

• M0 is the initial marking of the net.

The syntax of PEPA nets is given in Figure 3. In the grammar S

N ::= K+M (net)
(definitions and marking)

M ::= (MP, . . .) (marking)

MP ::= P[X, . . .] (place marking)

(marking vectors)

K ::= I
def
= S (component defn)

| P[X]
def
= P [X] (place defn)

| P[X, . . .]
def
= P [X] ��

L
P (place defn)

(identifier declarations)

S ::= (α, r).S (prefix)

| S + S (choice)

| I (identifier)

(sequential components)

P ::= P ��
L

P (cooperation)

| P/L (hiding)

| P [X] (cell)

| I (identifier)

(concurrent components)

X ::= ‘_’ (empty)

| S (full)

(cell term expressions)

Figure 3: The syntax of PEPA nets

denotes a sequential component and P denotes a concurrent com-
ponent which executes in parallel. I stands for a constant which
denotes either a sequential or a concurrent component, as bound by
definition.
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PEPA net behaviour is governed by structured operational se-
mantic rules. These consist of the original rules for PEPA and some
additional rules capturing the meaning of a cell, as well as the en-
abling and firing rules of the net level structure [4]. The states of the
model are the marking vectors, which have one entry for each place
of the PEPA net. The semantic rules govern the possible evolution
of a state, giving rise to a labelled transition system or derivation
graph. The nodes of the graph are the marking vectors and the ac-
tivities (individual, shared or firing activities) give the arcs of the
graph. This graph gives rise to a CTMC which can be solved to ob-
tain a steady-state probability distribution from which performance
measures can be derived.

4. A FORMAL IOD MODEL
First we describe IODs and IOD nodes formally. The formal

model is then used in the next section to define an IOD language.

DEFINITION 4.1. D = (N ,S ,T ,P ,Act,LO,LI ,F , C,B) is
an IOD where

• N is a finite set of nodes;

• S is a finite set of fork nodes;

• T is a finite set of transitions;

• P is a set of pin types such that P = PI∪PO and PI∩PO =
∅, where PI is the set of input pin types and PO is the set of
output pin types in D;

• Act is a set of activities such that Act = Actn∪Actp where
Actn is the set of activities in the nodes and Actp is the
set of activities at the IOD level. Each activity in Act is a
pair (a, r) consisting of an action type a and a rate r ∈
R

+ ∪ {�};

• LO: T → {PO,Actp} is a total labelling function which
assigns an output pin type and an activity to the source pin
of a transition;

• LI : T → {PI , N
+} is a total labelling function which as-

signs an input pin type and an upper bound to the target pin
of a transition;

• F: T → N ×N is a total function which assigns a pair of
nodes (a source node and a target node) to a transition;

• C: S → 2T is a total function which assigns a set of transi-
tions to a fork node;

• B : P → N is the initial marking of the IOD.

An IOD D is described by a set of nodes N and edges T , here
called transitions, between the nodes. In general, IODs can have
forks (to split the control flow and indicate parallelism), joins (to
join the control flow), and decision points (to indicate guarded
choice). We can model the behaviour of joins and decision points
with our transitions (we omit details here), and they are thus not
included in the definition. We only consider a set of fork nodes S .

In order to capture object mobility, a transition in an IOD is as-
sociated with a unique object and indicates how it moves from one
node to another. To indicate which object is associated with a tran-
sition we use a set of pin types P distinguishing between input
pin types PI and output pin types PO. We use a set of activities
Actp to indicate the action and rate associated with the object move
and thus to a transition. All transitions are associated with two pin
types: one output pin type (the source pin of the transition) and one
input pin type (the target pin of the transition). We use functions
LO and LI to associate the specific pins to a transition. The source

of the transition also carries the activity associated with the object
move. The target of the transition also has a natural number indi-
cating the number of tokens allowed in the target pin. If the target
pin has reached its maximum number of tokens the transition is not
enabled. A fork node in S , which acts as a synchronisation bar, cuts
across several transitions to synchronise the objects associated with
the transitions. The set of transitions affected by a fork is given by
the function C. Finally, the initial marking B of the IOD defines
how many tokens are available at pin types. When a transition fires
one token from the source pin type of the transition is removed and
placed at the associated target pin type.

Take the example IOD of Figure 1. Formally, the IOD is given by
the set of nodes N = {sd1, sd2}, one fork node S = {s1}, transi-
tions T = {t1, t2, t3, t4}, input pins PI = {o1isd1, o2isd1, o3isd1,
o4isd1, o1isd2, o2isd2}, output pins PO = {o1osd1, o2osd1, o3osd1,
o4osd1}, set of activities Act (not given as the example does not
show activities), and for instance LO(t1) = (o1osd1, acto1), LI(t1)
= (o1isd2, 1), F(t1) = (sd1, sd2), C(s1) = T , B(o1isd1) = 1,
B(o1osd1) = 0, and so on. We encode in the pin information
whether it is an input pin, the object associated and which node
it belongs to (e.g., o1isd1 is the input pin for o1 in sd1).

The IOD defines the overall behaviour of the system whereas
each individual node (sequence diagram) in the IOD describes the
behaviour of a location in the system. A node is defined as follows.

DEFINITION 4.2. A node A for an IOD D where A ∈ N is a
tuple A = (O, E ,<,MA, TA,PA, μA, IA,UA) such that

• O is a finite set of object types such that O = OM

S

OS

where OM is the set of mobile object types and OS is the set
of static object types;

• E is a set of events such that E = ES

S

ER where ES is the
set of send events and ER is the set of receive events, and
E =

S

o∈O Eo such that for any o1, o2 ∈ O, if o1 
= o2 then
Eo1

T

Eo2 = ∅,

• < is a set of partial orders <o ⊆ Eo × Eo with o ∈ O;

• MA is a finite set of local labels (messages). Each label
m ∈ MA is defined as m = a/r1; r2 where (a, r1) ∈ Actn

and (a, r2) ∈ Actn.

• TA is the set of local transitions TA ⊆ ES ×MA × ER;

• PA is the set of pin types of A such that PA ⊆ P;

• μA : PA → OM is a total function which associates a mo-
bile object type with a pin type;

• IA is the set of inputs to A such that each input I ∈ IA is
a set of pairs {(p, n)/p ∈ PIA , n ∈ N

+} where PIA is the
set of input pin types to A and n is a number of tokens.

• UA is the set of ouputs from A such that each output U ∈ UA
is a set of pairs {(p, n)/p ∈ POA , n ∈ N

+} where POA is
the set of output pin types of A and n is a number of tokens.

A node A in an IOD is a sequence diagram describing an inter-
action between objects in O. Some of the objects enter/leave the
node through input/output pins and are the mobile objects given by
the set OM (the exact mapping of pin types to object types is given
by the total function μA). Additional objects involved in the in-
teraction described by the diagram are static and given by the set
OS . Static objects reside in an IOD node and do not participate in
any other interaction (node) elsewhere in the IOD. The behaviour
of the node is described by a set of events E corresponding to the
sending and receiving of messages (ES and ER respectively). Each
event is associated with one unique object. A partial order < is
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defined over the set of events and based on the local partial orders,
i.e., the partial orders defined over the events of an object. Given a
set of events and message labels, transitions in the node correspond
to triples of the form (e1, m, e2) whereby e1 is an event associated
with the sending of message m and e2 corresponds to the receipt
of the same message.

Each message m consists of an action type a, and two rates r1

and r2. If one of the rate is unspecified, that is r1 = � or r2 = �,
then the rate is omitted leading to a message of the form m = a/r
where r = r1 or r = r2. Here the rate is associated with the object
sending the message. Note that, at least one rate must be specified
giving the frequency at which the activity is to be performed.

An IOD node A has a set of pin types PA which is a subset of
the pin types of the IOD, and as such consists of a disjoint set of
input and output pin types.

For a node to execute, it needs to have a set of tokens available
at its input pins. This is given by IA. In particular, a node can have
alternative inputs and IA is a family of sets of inputs to the node.
For example, IA = {{(p1, 1), (p2, 2)}, {(p3, 1)}} indicates that
node A has three input pin types p1, p2 and p3, but p1, p2 are an
alternative input to p3. Further, for the node to execute, we need
one token of type p1 and two tokens of type p2 or alternatively one
token of type p3. Similarly, once a node has executed, it generates a
set of tokens at its output pins. The outputs correspond to a family
of sets of output pins UA.

We can describe a variety of behaviour in a node using interac-
tion fragments for parallelism, alternatives and loops. To capture
this behaviour we use a notion of region (subset of events). For
space reasons we omit details and refer the interested reader to [2].

5. LANGUAGES

5.1 The language of an IOD
Given the formal model of an IOD as given above, we now define

its associated language. We define L(D) as the legal set of traces
of IOD D. The traces are defined by the ordering of the events in
the IOD nodes and respecting the ordering given by the transitions
at the IOD level.

DEFINITION 5.1. A trace of IOD node A = (O, E ,<,MA, TA,
PA, IA,UA) is a (possibly infinite) word w = c1.c2 . . . over the
alphabet MA iff there is a sequence of local transitions t1.t2 . . .
over TA, such that t1 � t2 � . . ., ti = (esi, ai/ri1; ri2, eri) and
ci = (ai, min(ri1, ri2)) for 0 < i ≤ |w|, esi ∈ ES and eri ∈ ER.

We define L1 as the IOD alphabet such that L1 = Actp ∪Actt.

DEFINITION 5.2. A trace of IOD D = (N ,S , T ,P , Act,LO,
LI ,F , C,B) is a (possibly infinite) word W = w1.c1.w2.c2 . . .
over the alphabet L1 iff there is a sequence of transitions t1.t2 . . .
over T such that, for 0 < i ≤ |W |, wi is a trace of IOD node
Ai; LO(ti) = (pi, ci) where pi ∈ PO and ci = (ai, ri) ∈ Actp;
F(ti) = (Ai,Ai+1) where Ai,Ai+1 ∈ N ; and t1 ∈ TB where
TB is the set of possible initial transitions obtained from the inital
marking B.

Now we define the language of an IOD D, noted L1(D).

DEFINITION 5.3. Let a maximal trace be a trace which is not a
proper prefix of any other trace. The language of IOD D is the set
L1(D) of words over the alphabet L1 where L1(D) = {W | W is
a maximal trace of D}.

5.2 The language of a PEPA net
Let V be the labelled transition system or derivation graph of a

place P ∈ P and let TV be the set of all transitions in that graph.
We define h as the labelling function which assigns a PEPA activity
to each transition in TV .

DEFINITION 5.4. Let t1, t2 ∈ TV . t1 preceedes t2 in the set
of transitions (written t1 � t2) iff there is a sequence of activ-
ities h(t1).h(t2) where h(t1) = (a1, r1) and h(t2) = (a2, r2),
r1, r2 ∈ R

+ ∪ {�}.

In order to define the language of a PEPA net V , we first define
the trace of a PEPA net place P ∈ P as follows.

DEFINITION 5.5. A trace of a PEPA net place P is a (possibly
infinite) word w = c1.c2. . . . over the alphabet Actt iff there is a
sequence of transitions t1, t2, . . . over TV such that, for 0 < i ≤
|w|, t1 � t2 � . . . and ci = h(ti) = (ai, ri) where ci is either
an individual activity, or a shared activity between two components
C1 and C2 with rate ri = min(ri1, ri2) where ri1 and ri2 are the
rates of the activity in components C1 and C2 respectively.

We define L2 as the PEPA net alphabet such that L2 = Actt ∪
Actf . Using the definition of the trace wi of each place Pi ∈ P in
the net, the trace of a PEPA net V is defined as follows.

DEFINITION 5.6. A trace of a PEPA net V = (P ,T , I,O, �, π,
C, K, M0) is a (possibly infinite) word W = w1.c1.w2.c2 . . . over
the alphabet L2 iff there is a sequence of transitions t1.t2 . . . over
Tf such that, for 0 < i ≤ |W |,

• wi is a trace of the PEPA net place Pi ∈ P ,

• O(ti) = Pi,

• I(ti) = P ′
i where P ′

i ∈ P ,

• ci = l(ti) = (ai, ri) where ci ∈ Actf , and

• t1 ∈ TM0 where TM0 is the set of possible initial transitions
obtained from the inital marking M0.

Now, we define the language of a PEPA net V , noted L2(V).

DEFINITION 5.7. Let a maximal trace be a trace which is not a
proper prefix of any other trace. The language of the PEPA net V
is the set L2(V) of words over the alphabet L2 such that L2(V) =
{W | W is a maximal trace of V}.

6. THE TRANSFORMATION
We describe the algorithm behind the IOD-to-PEPA net model

transformation and prove that the algorithm is correct by proving
the equivalence between the corresponding languages.

6.1 The Algorithm
We can build a direct correspondence between the IOD nodes

and the objects in the UML model, with, respectively, the places
and the components in the PEPA net model. An IOD can be viewed
as a PEPA net model where each IOD node corresponds to a place
in the PEPA net. A transition between IOD nodes is transformed
into a firing transition between places in the net with the same label.
Table 6.1 describes the correspondence between the elements of an
IOD and those of a PEPA net, in accordance with our definitions.

A static object inside an IOD node (O ∈ OS) corresponds to a
static PEPA component (C ∈ CS). In UML, an object is defined
by its name and its type with the following syntax: name:type
where the name of an object is optional. Both in the formal IOD
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IODs PEPA nets
IOD D (def. 4.1) PEPA net V (def. 3.1)
IOD node A ∈ N Place P ∈ P
IOD transition t ∈ T Firing transition t ∈ Tf

IOD activity c ∈ Actp Firing activity c ∈ Actf

IOD node local transition t ∈ TA Transition t ∈ Tt

Static object O ∈ OS Static component C ∈ CS

Mobile object, token O′ ∈ OM PEPA net token C′ ∈ CM

IOD node activity c ∈ Actn PEPA activity c ∈ Actt

Set of inputs to IOD node A Number of cells n in place P
(p, n) ∈ IA for corresponding token

IOD fork node s ∈ S PEPA component synchro-
nisation in the source place

Table 1: Translation of IOD elements into PEPA net elements

model and the PEPA net model we only consider the type of the ob-
ject. Inside a node, the behaviour of a static object is described by a
sequence diagram. From this diagram, we can derive the complete
behaviour of the corresponding PEPA static component.

A mobile object or UML token O′ ∈ OM is translated into a
PEPA net token C′ ∈ CM . The behaviour of the mobile component
C′ can be derived from both the sequence diagram inside each IOD
node object O′ visits and the information on the pins of these IOD
nodes. The information on a pin is translated in the PEPA net model
as the activity (action_type, rate) of the firing transition between
the places representing the nodes. Moreover, this activity is added
to component C′ behaviour as (action_type,�) showing that the
rate of this activity will be specified when the net transition with
label (action_type, rate) is fired.

The local activity (a, r) to a PEPA component is the translation
of a message a/r on the sequence diagram which the object sends
to itself. A cooperation activity between two PEPA components C1

and C2 in a place P ∈ P is the translation of a message that an ob-
ject of type O1 sends to an object of type O2. This message, noted
b/r1; r2, consists of the action type b, and two rates r1 and r2.
This action type will be the one on which both PEPA components
C1 and C2 will have to cooperate with rates r1 and r2 respectively.

We can distinguish between an active and a passive component
by considering which associated object sends the message. If an
object O1 sends a message of the form b/r1 to another object O2,
then this message is equivalent to b/r1;� and that means that, in
the context of the PEPA net, C1 is an active component for ac-
tion type b whereas C2 is a passive one. Similarly if an object O1

receives a message of the form b/r2 from an object O2, then O1

should be translated as a passive component regarding action type
b. Indeed this form of message is equivalent to b/�; r2 (see [7]).

6.2 Equivalence of the languages
With the algorithm described previously, we can prove that the

languages are equivalent, also known as strongly consistent.

THEOREM 6.1. Let D be an IOD and V the PEPA net derived
from D. If L1(D) is the set of words over the alphabet L1 of D
and L2(V) is the set of words over the alphabet L2 of V then 1)
L1 = L2 and 2) L1(D) = L2(V).

The proof is straightforward and can be found in [2].
Another notion commonly available in synthesis methods is the

notion of weak consistency, where the language of the target model
contains the language of the source model and more. When only
a result of weak consistency between languages can be guaranteed

then we have a case of implied (unspecified or unacceptable) be-
haviour in the synthesised models. If this is the case, further meth-
ods have to be used to detect such additional behaviours.

7. CONCLUSION
In this paper, we have shown how to formalise performance an-

notated IODs. For details on IOD nodes taking into account com-
plex behaviour within a node determined by several and possibly
nested interaction fragments see [2]. We defined the languages as-
sociated with IODs and PEPA nets, and presented an algorithm
to synthesise a PEPA net model from an IOD model. We fur-
ther showed how the algorithm guarantees that the languages are
strongly consistent. In other words, the set of legal traces of an
IOD have a one-to-one correspondence to the set of legal traces
of the underlying PEPA net model. This is a crucial advantage as
it guarantees the absence of implied (unspecified or unacceptable)
behaviours that can be observed in the synthesised model. The ab-
sence of implied scenarios in our approach facilitates an accurate
performance analysis on the given UML design models.

8. REFERENCES
[1] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing.

Extending activity diagrams to model mobile systems. In
Proc. of NetObjectDays 2002, LNCS 2591, pages 278–293.
Springer, 2003.

[2] J. Bowles and L. Kloul. Strongly Consistent Languages for
Modelling Mobility, Technical Report, hal-00419934,
http://hal.archives-ouvertes.fr/hal-00419934, 2009.

[3] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and
P. Stevens. Performance modelling with UML and stochastic
process algebras. IEE Proceedings: Computers and Digital
Techniques, 150(2):107–120, March 2003.

[4] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA
nets: a structured performance modelling formalism.
Performance Evaluation, 54(2):79–104, 2003.

[5] V. Grassi, R. Mirandola, and A. Sabetta. UML based
modeling and performance analysis of mobile systems. In
Proc. of ACM MSWIM 2004, pages 95–104. ACM, 2004.

[6] J. Hillston. A compositional approach to performance
modelling. Cambridge University Press, 1996.

[7] L. Kloul. Blending UML2.0 and PEPA nets. Technical
Report n.2006/102, PRiSM, Université de Versailles,
http://wwwex.prism.uvsq.fr/recherche/rapports, 2006.

[8] L. Kloul and J. Küster-Filipe. Modelling Mobility with
UML 2.0 and PEPA Nets. In ACSD 2006, pages 153–162.
IEEE Computer Society, 2006.

[9] J. López-Grao, J. Merseguer, and J. Campos. From UML
Activity Diagrams to Stochastic Petri Nets: Application to
Software Performance Engineering. In WOSP’04, pages
25–36. ACM Press, 2004.

[10] ITU-TS Recommendation Z.120 (11/99): MSC 2000.
ITU-TS, Geneva, 1999.

[11] OMG. UML Superstructure Specification. OMG document
ptc/09-02-02, available from www.uml.org, February 2009.

[12] K. Pokozy-Korenblat and C. Priami. Towards extracting
π−calculus from UML sequence and state diagrams.
ENTCS, 101:51–72, 2004.

[13] S. Uchitel, J. Kramer, and J. Magee. Detecting implied
scenarios in message sequence chart specifications. In
ESEC/FSE 2001, pages 74–82, 2001.

200




