
A Markovian Futures Market for Computing Power

Fernando Martínez Ortuño, Uli Harder and Peter G. Harrison
Department of Computing
Imperial College London

Huxley Building
180 Queens Gate

London SW7 2RH, UK

ABSTRACT

In this paper we describe aspects of a market model for Grid
computing. In particular we concentrate on Grid comput-
ing provided by a peer-to-peer network architecture. In this
network nodes can either buy or sell computing power in
exchange for money. Building on previous publications we
develop a mathematical market model using Markov chains.
The behaviour of each agent in the market is described by
a Markov chain of decisions on buying, selling or holding.
Considering the contributions of all agents, we calculate the
global Markov chain of the market state as a whole, by mak-
ing use of a concept of market pressure that reduces the state
space of the entire market model. We show that the Mar-
kov chain model describes the market behaviour seen in a
simulation extremely well. In a similar way to other per-
ishable commodity markets like fish and electricity, we also
provide a model for trading future contracts on the purchase
and sale of computing power in this market. Using Markov
Decision Processes we derive an optimal trading strategy.
This work introduces a pioneer mathematical model for fu-
ture global peer-to-peer Grid computing architectures like
MaGoG (Middleware for activating the Global open Grid),
where we have derived a global transition probability matrix
that determines the behaviour of the market by summing up
the contributions of different kinds of market participants.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability,
and serviceability; Modeling techniques

General Terms

Performance

Keywords

Grid, Performance, Markov Decision Process, Market, Fu-
tures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

1. INTRODUCTION
In the past there have been many papers on using eco-

nomic ideas to provide fair access to computing resources
or profit-making. In 1966 Greenberger [8] reasoned to add
cost to queueing systems. Sutherland describes an auction
system used at Harvard to provide fair access to a PDP-1
[14]. In 1975 Cotton [5] mentions international computing
markets are discussed but not in the context of commod-
ity markets. The advent of the Grid [7] brings the idea of
providing computing service as a commodity like electricity.
Due to the sheer size of the Grid the allocation and pricing
is more likely to happen on the basis of a market like a com-
modities market. There have been various studies in the past
discussing allocation strategies and market implementations
[3, 13, 15, 17]. The potential market is likely to consist of a
large number of providers and users, and end-users will not
be able to make completely rational decisions. In this paper,
we consider a global peer-to-peer market for Grid Comput-
ing, where consumers and providers freely trade computing
power without the need for a central server. The main rea-
son to use peer-to-peer (Catallaxy [2], MaGoG [4]) is that
centralised approaches (Tycoon [11]) are less likely to scale
as a very large system with a central node. In previous work
[9, 10], a simulation approach to a Grid Computing market
model was carried out. In this paper we present an integral
analytic approach by using Markov chains and Markov de-
cision processes. More generally speaking a market for CPU
cycles is going to be a market of a perishable commodity
as it is not possible to store unused CPU cycles. Here we
introduce future contracts on Grid computing and also in-
vestigate an optimal trading strategy using Markov decision
processes (MDPs) [12].

2. THE MARKET MODEL
We consider a peer-to-peer market for Grid computing,

where agents that buy and sell computing power send mes-
sages to each other, trying to look for an agreement without
the need for a central server. This scheme closely follows
that of the MaGoG system [4]. In this paper we simplify
the architecture by allowing each node to buy/sell only one
resource at a time as service, as in [9, 10]. Nodes hold on to
resources for a fixed length of time.

Previously, we presented an analytical approximation for
the price evolution in a simulation of such a system [10].
This approximation assumed that the network was fully con-
nected, and therefore that the system would behave as a
single global market place. The results showed that this is
actually a good approximation, and therefore we again make

177



this assumption for the present work. Initially, we describe
the behaviour of each agent by a Markov chain, approach
supported by the fact that most mathematical models for fi-
nancial markets consider the price follows a Markov process.
Other non-Markovian models for this system were presented
in [9, 10].

In this paper, for each individual, there are three possible
trading actions available: buy(+), sell(−) or hold(0); which
correspond to the three possible states of the Markov chain
of each agent {−, 0, +}. The Markov chain of agent i is
defined by its transition probability matrix Ti. This has el-
ements Ti(a, b) equal to the probability that agent i moves
from state a to state b in the next time slot by taking the
appropriate action, for a, b ∈ S = {−, 0, +}. Each agent i
takes decisions independently according to his particular Ti

and the market is formed by the collection of these agents
and hence characterised by the set of all the transition ma-
trices.

The evolution of the market as a whole is determined by
the actions of all agents. To model the market, we consider
the variation in price, rather than the price itself, in order
to avoid having an infinite number of states. For this pur-
pose, we introduce the concept of market pressure, which
determines the direction of the market price and is estab-
lished by supply and demand from the agents. An excess of
demand will push the price up, whereas an excess of supply
will force it down. If supply and demand equalize, the price
will remain the same.

We now define a new, discrete time Markov chain to model
the evolution of the whole market, taking into account the
contributions of the individual Markov chains of every agent.
If we were to define a global Markov chain whose possible
states were all possible combinations of the individual states
of the agents, the global chain that models the market would
have 3N states, where N is the number of agents in the
market, since every agent can be in any of his three possible
states {−, 0, +}.

To avoid this state space explosion we make use of the
concept of market pressure to reduce the number of possible
states in the market model. We define the market state to
be the sum of the states of the individual agents, so that a
buy action of one agent is cancelled out by a sell action of
another agent. With this consideration, the number of states
for the global Markov chain is reduced to 2N+1, namely −N
(where every agent is in sell-mode), −N + 1, . . . , N (where
all agents are in buy-mode).

2.1 The transition probability matrix of the
market

The new, reduced, global Markov chain that models the
market as described above has one-step transition probabil-
ity matrix:

M = (msd | −N ≤ s, d ≤ N), (1)

where each element msd is the probability of the market
going from state s to state d, among the 2N + 1 available
states.

In a heterogeneous market, let agent k’s Markov chain
be irreducible and have equilibrium probability state vector
πk = (πk−, πk0, πk+), with components corresponding to
local states {−, 0, +} respectively. Further, let the prob-
ability generating function (pgf) of the transition proba-
bilities out of state i ∈ {−1, 0, +1} at agent k have pgf

Ak(z; i) = Tk(i,−)z−1 + Tk(i, 0) + Tk(i, +)z. Now define

the N -component vector random variable ~Yn to be the joint
state of the agents just after the nth transition instant, with
~Y0 being the initial joint state. Similarly, let Xn = |~Yn|
be the corresponding global state just after the nth tran-
sition, where |~v | =

PN
k=1 vk is the sum of the elements of

a vector ~v. Then, msd = limn→∞ PP(Xn = d | Xn−1 = s)
where the limit exists provided the agent-chains are irre-
ducible. Hence msd is the coefficient of zd in the gener-
ating function G(z; s) = limn→∞ Gn(z; s) where the pgf
Gn(z; s) = EI [zXn | Xn−1 = s], which is what we now
determine.

Proposition 1.

G(z; s) =

P

~ℓ:|~ℓ|=s

QN
k=1 πkℓk

Ak(z; ℓk)
P

~ℓ:|~ℓ|=s

QN
k=1 πkℓk

Proof.

Gn(z; s) = EI [ EI [z| ~Yn| | Yn−1, Xn−1 = s] | Xn−1 = s]

= EI
h

N
Y

k=1

EI [zYnk | Yn−1, Xn−1 = s] | Xn−1 = s
i

= EI
h

N
Y

k=1

EI [zYnk | Yn−1,k] | Xn−1 = s
i

= EI
h

N
Y

k=1

Ak(z; Yn−1,k) | Xn−1 = s
i

=
X

~ℓ:|~ℓ|=s

PP(~Yn−1 = ~ℓ | |~ℓ| = s)
N

Y

k=1

Ak(z; ℓk)

using the agents’ independence and the Markov property.
The result now follows as n → ∞ ♦

When all the agents are identically specified, proposition 1
simplifies greatly as follows.

Corollary 1. If all the agents are identical with local

state u = −, 0, + row-transition pgf A(z; u) and equilibrium

probability vector π, for s ≥ 0,

G(z; s) =

⌊(N−s)/2⌋
P

n=0

N !
n!(N−s−2n)!(n+s)!

B−(z)nB0(z)N−s−2nB+(z)n+s

⌊(N−s)/2⌋
P

n=0

N !
n!(N−s−2n)!(n+s)!

πn
−πN−s−2n

0 πn+s
+

where Bu(z) = πuA(z; u) for u = −, 0, +. For s < 0,

G(z; s) =

⌊(N+s)/2⌋
P

n=0

N !
n!(N+s−2n)!(n−s)!

B+(z)nB0(z)N+s−2nB−(z)n−s

⌊(N+s)/2⌋
P

n=0

N !
n!(N+s−2n)!(n−s)!

πn
+πN+s−2n

0 πn−s
−

Proof.
Each term in the product in the numerator of the propo-

sition is πℓk
A(z; ℓk), where ℓk takes one of the three values

−, 0, +. Let there be n−, n0, n+ occurrences respectively,

178



where n− + n0 + n+ = N . Moreover, to have global state s,
we must have n+ − n− = s. The sum then simplifies to:

X

(n−, n0, n+) :
n+ − n− = s

n− + n0 + n+ = N

N !

n−!n0!n+!
B−(z)n−B0(z)n0B+(z)n+

For s ≥ 0, n+ must be at least s and n− = n+ − s so that
N = n0 + 2n+ − s. Since n0 ≥ 0, 2n+ ≤ N + s and so the
range of n+ is [s, ⌊(N + s)/2⌋ and for each n+, the values of
n0 and n− are fixed at n=n+ − s and n0 = N − 2n+ + s.
The result now follows by changing the summation variable
n+ to n = n+ − s. For s < 0, we must have n− ≥ −s and
the analogous result follows by interchanging the roles of n+

and n−. ♦ As already noted, the elements of M are
defined by the coefficients of G(z; s).

When all the agents are identical, the generating functions
G(z; s) are quick to compute by Corollary 1. At the other
extreme, if the agents are all different (completely heteroge-
neous case), then Proposition 1 must be used and requires,
for each of the 2N + 1 values of its second argument, sums
over state spaces of 3N elements. This is completely imprac-
tical for even moderate N . However, typically we will have
neither of these extremes but more likely a partition of a
small number of sets of identical agents.

Let the equilibrium probability vector for the 2ni + 1 ag-
gregate (sub)states of the ith agent-type be denoted φi, de-
fined by φiv =

P

~ℓ:|~ℓ|=v

Qni

j=1 πkjℓkj
for −ni ≤ v ≤ ni, where

the sequence numbers of the agents of type i are here de-
noted k1, . . . , kni . Again, this follows because the agents
are independent. Now let the transition probabilities out
of aggregate state v in type i have pgf Ci(z, v), computed
using Corollary 1 with s = v, applied to states numbered
k1, . . . , kni instead of 1, . . . , ni. Then we have the following
result.

Proposition 2. For a collection of agents partitioned into

r types, as defined above

G(z; s) =

P

~ℓ:|~ℓ|=s

Qr
k=1 φkℓk

Ck(z; ℓk)
P

~ℓ:|~ℓ|=s

Qr
k=1 φkℓk

where ℓk ranges over [−nk, nk] for 1 ≤ k ≤ r (as opposed to
[-1,1] for 1 ≤ k ≤ N in Proposition 1).

Proof.
The proof follows that of Proposition 1, but with the prob-

abilities φ replacing π, the products being taken over agent
types instead of individual agents, and the sums being over
vectors of aggregate type-states instead of individual agent-
states ♦

This is the proposition that we used in our experiments,
described in the next section, where we considered a market
with a small number of types of trader – just two in fact
– but large numbers of each type. In the next subsection
we give a simple illustrative example with two agents in
all, of different types, so that propositions 1 and 2 become
equivalent.

2.2 An example
As a small example of a market model such as the above,

we consider two participating market agents with matrices

T1 and T2

T1 =

0

@

0.3 0.4 0.3
0.3 0.4 0.3
0.3 0.4 0.3

1

A , T2 =

0

@

0.4 0.3 0.3
0.4 0.2 0.4
0.3 0.4 0.3

1

A (2)

where the first row contains the probabilities of going from
state {−} to, respectively and in order from left to right,
states {−, 0, +}. The second and third rows specify the cor-
responding transition probabilities from states {0} and {+}
respectively. The first is considered ‘neutral’,and the second
agent could be termed a ‘fearful seller’.

Using these local agent transition matrices in the equa-
tions of the previous section, we calculate the transition
probability matrix of the global market as:

M =

0

B

B

B

@

0.120000 0.250000 0.330000 0.210000 0.090000
0.120000 0.238533 0.326178 0.213822 0.101467
0.111000 0.236000 0.329333 0.222667 0.101000
0.102222 0.231852 0.331852 0.231852 0.102222
0.090000 0.240000 0.340000 0.240000 0.090000

1

C

C

C

A

(3)

3. SIMULATION MODEL
We have built a simulation program that models our peer-

to-peer market for Grid Computing. In this program, we
make use of a Barabási-Albert (BA) graph [1] to represent
the peer-to-peer network, which is formed by a number of
different nodes or market agents. BA graphs are an exam-
ple of small-world scale-free networks often found in social
networks [16]. The behaviour of each agent is determined
by a particular Markov chain on the decisions of sell, hold or
buy: {−, 0, +}. This is the only difference to our previous
simulation work [9, 10].

The total average of the local market states of all pubs at
every epoch gives the global market state of the network.

The objective of the simulation is to verify that the sim-
plification of the peer-to-peer market network as a single
central market place is appropriate. To this aim, we de-
fine a number of market participants with their respective
Markov chains. On the one hand, we calculate analytically
the equilibrium probabilities of the global market formed by
these agents as described in previous sections. On the other
hand, we implement these agents into the nodes of a peer-
to-peer network, which we use in our simulation program,
and find their results.

3.1 Simulation results
The mathematical analysis presented in section 2 derives

the transition probability matrix of the market as a whole
considering the individual transition matrices of all agents.
Despite being this global transition probability matrix the
essence of the market evolution, in this section we simplify
the comparison between the analytic model and the sim-
ulation results to the global steady state probabilities of
the market, i.e., the probability density function (pdf). We
make the comparison for two different kinds of networks: a
fully connected one (ideal simulation setup), and a random
network (BA), which might not be fully connected (non-ideal
simulation setup).

For a fully connected network, where the messages of all
agents are able to get together once per epoch, i.e., in a sim-
ulation that follows precisely the analytic model, the sim-
ulation results prove to be exactly the same as in the an-

179



alytic model. These results correspond to a market with
128 agents, all having a transition probability matrix Tn =
T1. We also have run simulations with the second, non-
ideal setup, where the network might not be completely
connected, or the agents might receive several copies of the
same message. For all these non-ideal setups, we have used
BA networks of 128, 512 and 1024 nodes, generated with
the software package igraph [6]. In this section we explain
the results that correspond to the random network of 128
nodes. The summary of the results for the other two graphs
are specified by Table 1.

In the 128-node network, each node has a pub or buffer
with a capacity for 128 messages, and the TTL of the mes-
sages is 7. We have run the simulations for 200,000 epochs,
and we have analysed three different non-ideal setups by
changing the agent types in the network.

The first non-ideal setup is formed by a network in which
the 128 nodes have the same transition probability matrix:
Tn. The pdfs of the global market state of the analytic and
the simulated results are identical within the margins of er-
rors of the simulation. Both are approximated well by a
normal distribution. For the not fully connected graph the
result has to be rescaled to fit the distribution of the analytic
result to compensate for the overhead in the communication.
The normal shape of the pdfs is explained by a Central Limit
Theorem reasoning. This justification is stronger when the
number of market participants increases. The average mar-
ket state in both the simulation and in the analytic model
is 0, as expected from the global neutral effect in a market
formed by agents with matrices given by Tn.

The second non-ideal simulation setup is formed by a net-
work of all 128 nodes having the transition probability ma-
trix:

Ts =

0

@

0.6 0.2 0.2
0.4 0.2 0.4
0.2 0.6 0.2

1

A , (4)

with a tendency to the sell action.
In this second setup, both the analytic and simulated re-

sults present again a normal shape, but with negative mean.
However, their means are slightly different, being the ana-
lytic one less negative than the simulated. This result is
explained by the fact that, when there is a non-zero mean
for the global market state, the simulated market state in
a non-fully connected network tends to increase in absolute
value. This is because nodes in the network might receive
replicated copies of the same message.

The third non-ideal simulation setup is formed by a net-
work with 64 agents that have the transition probability ma-
trix Tn and 64 agents whose transition probability matrix is
the one in 4. This setup causes an average market state be-
tween 0 and the negative mean value in the second setup. In
this final comparison, there is a small discrepancy between
the mean in the simulations and the mean provided by the
analytic model, being again due to the non-fully connected
network. Since the average market state is less negative than
in the second non-ideal simulation setup, this discrepancy is
smaller. We observe again normal shapes in the distribu-
tions of both the analytic and simulated results.

Table 1 provides the summary of the results of the scale
factors S for the three non-ideal simulation setups and the
three different-sized random networks of size N and an av-
erage number of hops h. We also show the mean µs ob-
tained in the simulation and the mean µa of the analytic

model and he variance σ2 of both the analytic model and
the scaled simulation results. As expected, the scale factor
increases with the average number of hops between nodes
in the network, and the mean in the simulations gets larger
in absolute value compared with the analytic mean when
the average market state is non-zero. The variance of the
results increases with the number of market participants, as
predicted by the Central Limit Theorem. As a whole, the

N h S µs µs σ2

First non-ideal simulation setup

128 4.4 1.49 0 0 76.8
512 6.6 2.65 0.04 0 307.2

1024 6.9 2.92 0.10 0 614.4
Second non-ideal simulation setup

128 4.4 1.44 -29.56 -22.26 85.17
512 6.6 2.53 -110.49 -89.04 340.69

1024 6.9 2.75 -213.69 -178.08 681.38
Third non-ideal simulation setup

128 4.4 1.48 -14.60 -11.12 80.99
512 6.6 2.60 -47.66 -44.52 323.94

1024 6.9 2.86 -96.69 -89.04 647.89

Table 1: Summary of simulation results.

ideal simulation setup has a perfect coincidence with the an-
alytic model, whereas the non-ideal simulation setup has a
very similar behaviour as well in so far as the distributions
are both normal. Let us emphasize that in this section we
have simplified the comparison between the analytic model
and the simulation results to the probability density function
of the market. This pdf is shown to be normal, as it can be
deduced by a Central Limit Theorem reasoning. However,
the analytic analysis presented in section 2 is still necessary
in order to obtain the global transition probability matrix
of the whole market, which is used in the next sections of
this paper to analyse the market behaviour and find optimal
trading strategies.

4. FUTURES TRADING OF COMPUTING

POWER
The inability to store a CPU cycle makes its trading physi-

cally impossible, and brings immediate similarities with elec-
tricity markets, where derivatives are traded. We expect
that a global futures market of computing power will emerge,
and this is analysed in the current section. Specifically, we
analyse the performance of a futures trader that operates
in such a market, and adapts his decisions according to the
optimization of a certain objective, with the expectancy of
finding a pattern in the behaviour of the market. We specify
this problem as a Markov Decision Process (MDP).

In our model, the set of decision epochs is discrete and
infinite: I ≡ N\{0}. The state of the MDP is formed by the
state of the market on the one hand, and by the state of the
trader on the other hand.

We assume that the decisions of a single individual can
not affect the evolution of prices. In particular, we consider
that the price evolution of the market is given by a certain
transition probability matrix, which has been generated as
described in section 2. In addition to the price evolution,
we include a second variable to model the state of the mar-

180



ket: the trading volume, which gives information about the
number of transactions.

Therefore the evolution of the market is given by a tran-
sition probability matrix like the one in expression 1. The
state (an integer between −N and N) indicates the variation
in price with respect to the previous deal price. The trading
volume is given by the absolute value of the price variation,
i.e., the volume will always be a natural number between 0
and N . This volume can be understood as the number of
units of future contracts available to be bought or sold at
the given price.

These two variables, price variation (i) and trading volume
(|i|), define the state of the market: Mi = (i, |i|), for i ∈
Z,−N ≤ i ≤ N which in turn determines the first two vari-
ables that define the state of the MDP.

The third and final variable that defines the state of the
MDP is the position of the futures trader. The trader can
buy, sell or hold at every time step. He can only buy or sell
1 futures contract at every time step, but over time he can
accumulate up to N contracts. His actions therefore imply
an integer number between −N and N , which is his open

position, i.e., the number of futures contracts he has (bought
or sold) and are pending liquidation. The open position of
the trader is Tpos = pos, for pos ∈ Z ∩ [−N, N ].

Consequently, taking into account both the market state
and the trader’s position, the state space of the MDP, S, is
formed by Si,pos = (i, |i|, pos), for i, pos ∈ Z ∩ [−N, N ]
where i is the market price variation given by 1, |i| is the
trading volume and pos is the open position of the trader.
Since the price variation can have 2N +1 values, the trading
volume is directly determined from the price variation and
the trader can be in 2N + 1 different positions, the total
number of states of the MDP is (2N + 1)2.

On the other hand, the actions the trader can take are:
Acs = {−1, 0, 1}, for s ∈ S with the condition of hav-
ing an absolute open position that is limited to be between
−N and N . Therefore the available actions for the trader
will depend on his current position, being limited to {0, 1}
when his open position is −N and to {−1, 0} when his open
position is N .

To complete the definition of the MDP, a reward for the
trader is established, which is conditioned by his actions.
The reward that the trader is given is divided in two parts.
The first part comes from the profit/loss in the operation
he is immersed in due to the market price variation and his
current open position. This reward is given as the multi-
plication of the trader’s open position at the next decision
epoch (which will depend on his current open position and
his action taken at the current decision epoch) by the market
price variation at the next decision epoch, which is uncertain
and depends on the transition probabilities in expression 1.
Consequently we will have to calculate its expected value in
the current state of the system. Taking this into account,
this first reward given to the trader when the system is in
state s and he chooses to do action a ∈ Acs, is:

r1(s, a) =
X

j∈S

r1(s, a, j)p(j|s, a), (5)

where r1(s, a, j) is the reward given to the trader when the
system is in state s, the trader chooses to do action a ∈ Acs

and the system evolves to state j at the next decision epoch.
Numerically, this reward is evaluated as r1(s, a, j) = ij ∗posj

being ij and posj the market price variation and the position

of the trader respectively when the system is in state j.
With regard to p(j|s, a), this is the probability of the system
going from state s to state j when the trader chooses to do
action a ∈ Acs. Since the open position of the trader at the
next decision epoch is immediately calculated at the current
decision epoch from his current open position plus his action
a ∈ Acs, this conditional probability is directly given by
expression 1, i.e., by the transition probability matrix of the
market.

The second part of the reward is determined by the avail-
ability to buy or sell the remaining future contracts that
the trader still has, which depends on the available trading
volume. This second reward is actually a penalty, and there-
fore it will be zero in the best case and negative in the other
cases. Since the available trading volume at the next deci-
sion epoch is unknown at the present decision epoch, this
reward also depends on the next state of the system (and
not only on the current state of the system and the trader’s
action), and therefore its expected value is given by:

r2(s, a) =
X

j∈S

r2(s, a, j)p(j|s, a), (6)

with the same interpretation as expression 5, except for the
fact that in this case r2(s, a, j) = −c ∗ max(|posj | − |i|j , 0)
where c ∈ R

+ is a penalty factor, and |posj | and |i|j are,
respectively, the absolute open position of the trader and
the available trading volume when the system is in state j.

The total reward the trader is given when the system is
in state s and he chooses to do action a ∈ Acs, is:

r(s, a) = r1(s, a) + r2(s, a) (7)

4.1 An optimal trading policy
We now approach the problem of finding an optimal trad-

ing strategy for a futures trader that operates in a market
as defined in section 4. In practice, this consists of finding
an optimal policy for the MDP.

We specify our problem to be an infinite-horizon Markov
decision process, and we apply the expected total discounted
reward optimality criterion [12]. This means that the MDP
continues in time until infinity, although we apply a discount
factor λ, with 0 ≤ λ < 1, which makes future rewards less
valuable.

With this setting, the expected total present value of the
income stream obtained by using a policy π, when the sys-
tem is in state s at the first decision epoch, is:

vπ
λ(s) = Eπ

s {
∞

X

t=1

λt−1r(Xt, Yt)}, (8)

where r(Xt, Yt) is the reward received when using action
Yt in state Xt, and t is the decision epoch (t ∈ I). Using
a discount factor, together with finite rewards, ensures the
convergence of the series [12]. The objective is to find the
policy π that maximizes expression 8.

We use linear programming to find an optimal policy. A
detailed explanation on how to transform a discounted Mar-
kov decision problem into a linear programming problem can
be found in [12]. Specifically, choosing α(j), j ∈ S (being
S the state space of the MDP) to be positive scalars with
P

j∈S

α(j) = 1, the primal linear program consists of mini-

mizing:
P

j∈S

α(j)v(j) subject to: v(s) −
P

j∈S

λp(j|s, a)v(j) ≥

181



r(s, a) for a ∈ Acs and s ∈ S, and v(s) unconstrained for
all s ∈ S. The dual linear program consists of maximizing
P

s∈S

P

a∈Acs

r(s, a)x(s, a) subject to
P

a∈Acj

x(j, a)−
P

s∈S

P

a∈Acs

λp(j|s, a)x(s, a) = α(j) and x(s, a) ≥

0 for a ∈ Acs and s ∈ S. By solving the dual formu-
lation of the problem, we find the values for the x(s, a).
We then obtain a decision rule for each state by choosing
the action that gives the highest probability as given by

P{dx(s) = a} = x(s,a)
P

a′∈Acs

x(s,a′)
The set of the decision rules

for each of the states of the MDP forms the policy.

4.1.1 Example

In this section we present an example of an MDP with
N = 2 agents and a transition probability given by expres-
sion 3. The market can be in one of 5 states. The trader can
be in one of his five positions and therefore the MDP has
25 states, which form the state space S, defined as the set
of states: Si,pos = (i, |i|, pos), for i, pos ∈ Z ∩ [−2, 2] being i
the value of the price variation, |i| the trading volume and
pos the position of the trader. The possible actions of the
trader are as before {−1, 0, 1} except for the states in which
the trader has a position of −2, where his possible actions
will only be {0, 1}, and for the states in which the trader
has a position of 2, where his possible actions will only be
{−1, 0}.

We apply rewards as indicated in expressions 5, 6 and 7,
with a penalty factor of c = 0.1, a discount factor λ = 0.95
and the same value for all the α(j). The dual is solved with
the GNU Linear Programming Kit. The solutions to the
65 variables of the dual problem are obtained by software.
Then, by applying the last expression from the previous sec-
tion, we obtain a decision rule for each state, and therefore a
policy, which in this case is optimal. The values are S0,−1 =
S0,0 = S0,1 = S0,2 = S1,−1 = S1,0 = S1,1 = S1,2 = S2,−1 =
S2,0 = S2,1 = S2,2 = S−2,−1 = S−2,2 = S−1,−1 = S−1,1 =
S−1,2 = −1 and S1,−2 = S2,−2 = S−2,1 = S−1,−2 = 0 and
finally S0,−2 = S−2,−2 = S−2,0 = S−1,0 = 1. The action −1
is predominant among the trader’s decisions, which makes
sense in a bear market as defined by expression 3.

5. CONCLUSION
This paper has approached the modelling of a future global

peer-to-peer market for Grid Computing by the use of Mar-
kov chains. A first mathematical model has been introduced,
in which each of the market agents is modelled by a Markov
chain that reflects its behaviour. We have also presented the
concept of market pressure, which has allowed us to obtain
a global Markov chain that models the market as a whole
by combining the individual contributions of all market par-
ticipants, and avoiding the problem of state explosion. The
simulation of such a system has proved to be accurate.

The impossibility of storing CPU cycles makes a futures
market for computing power a natural development, which
has been analysed, and an optimal trading policy has been
derived using MDPs.

Further work will consist of the transformation of the
agents’ behaviours into utility functions, which will then be
used to price options. On the other hand, an alternative
modelling approach from the global perspective of the mar-
ket will be presented with stochastic differential equations.

6. REFERENCES
[1] A.-L.Barabasi and R.Albert. Emergence of scaling in

random networks. Science, 286:173, 1999.

[2] O. Ardaiz, P. Artigas, T. Eymann, F. Freitag,
L. Navarro, and M. Reinicke. The catallaxy approach
for decentralized economic-based allocation in grid
resource and service markets. Applied Intelligence,
25(2):131–145, 2006.

[3] R. Buyya, D. Abramson, and S. Venugopal. The grid
economy. Proceedings of the IEEE, 93(3):698–714,
Mar. 2005.

[4] J. Cohen, C. Richardson, U. Harder, F. M. Ortuño,
and J. Darlington. Node-level Architecture Design and
Simulation of the MAGOG Grid Middleware. In
AusGrid 2009, volume 99, pages 57–66, January 2009.

[5] I. W. Cotton. Microeconomics and the Market for
Computer Services. Computing Surveys, 7(2):95–111,
1975.

[6] G. Csàrdi and T. Nepusz. The igraph software package
for complex network research. InterJournal Complex

Systems, page 1695, 2006.

[7] I. Foster and C. Kesselman. Computational Grids.
Chapter 2 of ”The Grid: Blueprint for a New

Computing Infrastructure”, Morgan-Kaufman, 1999.

[8] M. Greenberger. The priority problem and computer
time sharing. Management Science, 12(11):888–906,
1966.

[9] U. Harder and F. M. Ortuño. Simulation of a peer to
peer market for Grid Computing. In K. Al-Begain,
A. Heindl, and M. Telek, editors, ASMTA 2008,
volume 5055 of LNCS, pages 234–248. Springer,
Berlin/Heidelberg, 2008.

[10] U. Harder and F. M. Ortuño. A more realistic
Peer-to-Peer Grid Market Model. In J. T. Bradley,
editor, EPEW 2009, volume 5652 of LNCS, pages
149–154. Springer, Berlin/Heidelberg, 2009.

[11] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A.
Huberman. Tycoon: An implementation of a
distributed, market-based resource allocation system.
Multiagent Grid Syst., 1(3):169–182, 2005.

[12] M. L. Puterman. Markov Decision Processes. Discrete
Stochastic Dynamic Programming. In Markov

Decision Processes. Discrete Stochastic Dynamic

Programming. Wiley Inter Science, 1994.

[13] O. Regev and N. Nisan. The POPCORN Market an
Online Market for Computational Resources.
Proceedings of the first international conference on

Information and computation economies, pages 148 –
157, 1998.

[14] I. E. Sutherland. A futures market in computer time.
Commun. ACM, 11(6):449–451, 1968.

[15] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta. Spawn: A Distributed
Computational Economy. Software Engineering,
18(2):103–117, 1992.

[16] F. Wang, Y. Moreno, and Y. Sun. Structure of
peer-to-peer social networks. Physical Review E,
73:036123, 2006.

[17] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan.
Analyzing Market-based Resource Allocation
Strategies for the Computational Grid. The Int. J. of

HPC Applications, 15(3):258–281, 2001.

182




