
http://kieker-monitoring.net

Kieker 1.11 User Guide∗

Kieker Project

April 2, 2015

Kiel University University of Stuttgart
Department of Computer Science Institute of Software Technology

Software Engineering Group Reliable Software Systems Group
Christian-Albrechts-Platz 4 Universitätsstraße 38

24118 Kiel, Germany 70569 Stuttgart, Germany

∗For guidelines on how to cite Kieker and this document, please see Section 1.4.

http://kieker-monitoring.net


Contents

1 Introduction 4
1.1 What is Kieker? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Framework Components and Extension Points . . . . . . . . . . . . . . . . . 5
1.3 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Citing Kieker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Kieker is Recommended by the SPEC Research Group . . . . . . . . . . . . . 7
1.6 Structure of this User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Quick Start Example 8
2.1 Download and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Bookstore Example Application . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Monitoring with Kieker.Monitoring . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Analysis with Kieker.Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Kieker.Monitoring Component 20
3.1 Monitoring Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Kieker.Monitoring Configuration . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Monitoring Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Monitoring Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Monitoring Writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Kieker.Analysis Component 32
4.1 Pipe-and-Filter Framework and Included Plugins . . . . . . . . . . . . . . . . 32
4.2 Developing Analysis Plugins and Repositories . . . . . . . . . . . . . . . . . 35

5 Kieker.TraceAnalysis Tool 42
5.1 Monitoring Trace Information . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Trace Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Example Kieker.TraceAnalysis Outputs . . . . . . . . . . . . . . . . . . . . . 51

Kieker 1.11 User Guide 2



Appendix 59

A Wrapper scripts 59

B Java EE Servlet Container Example 67

C Using the JMS Writer and Reader 70

D Sigar-Based Samplers for System-Level Monitoring 76

E Kieker.Monitoring Default Configuration 80

F Additional Source Code Listings 94

G Example Console Outputs 97

Bibliography 100

Kieker 1.11 User Guide 3



1 Introduction

Modern software applications are often complex and have to fulfill a large set of functional
and non-functional requirements. The internal behavior of such large systems cannot
easily be determined on the basis of the source code. Furthermore, existing applications
often lack sufficient documentation which makes it cumbersome to extend and change
them for future needs. A solution to these problems can be dynamic analysis based
on application-level monitoring, which allows to log the behavior of the application and
to discover, for example, application-internal control flows, calling dependencies, and
method response times.

Dynamic analysis can help in detecting performance problems and faulty behavior,
capacity planning, and many other areas. The Kieker framework provides the necessary
monitoring capabilities and comes with tools and libraries for the analysis of monitored
data. Kieker has been designed for continuous monitoring in production systems inducing
only a very low overhead. Further information on the overhead caused by Kieker is
provided at http://kieker-monitoring.net/overhead-evaluation/.

1.1 What is Kieker?

Kieker is a Java-based application performance monitoring and dynamic software analysis
framework [12]. Monitoring adapters for other platforms, such as Visual Basic 6 (VB6),
.NET, and COBOL, exist as well.1 Figure 1.1 shows the framework’s composition based
on the two main components Kieker.Monitoring and Kieker.Analysis.

Figure 1.1: Overview of the framework components

1Contact us directly if you are interested in Kieker support for other platforms

Kieker 1.11 User Guide 4

http://kieker-monitoring.net/overhead-evaluation/
http://kieker-monitoring.net/support/


The Kieker.Monitoring component is responsible for program instrumentation, data col-
lection, and logging. Its core is the MonitoringController. The component Kieker.-
Analysis is responsible for reading, analyzing, and visualizing the monitoring data. Its
core is the AnalysisController which manages the life-cycle of the pipe-and-filter ar-
chitecture of analysis plugins, including monitoring readers and analysis filters.

The monitoring and analysis parts of the Kieker framework are composed of subcom-
ponents which represent the different functionalities of the monitoring and analysis tasks.
The important interaction pattern among the components is illustrated in Figure 1.2 but
will be explained furthermore throughout the course of this user guide.

Figure 1.2: Communication among Kieker framework components

The monitoring probes create the monitoring records containing the monitoring data
and deliver them to the monitoring controller. The monitoring controller employs the
monitoring writers to write these monitoring records to a monitoring log or stream.
For analyzing purposes, monitoring reader plugins read the records from the monitoring
log/stream. These records can then be further processed by a configuration of additional
filter and repository plugins, inter-connected via input and output ports.

1.2 Framework Components and Extension Points

Figure 1.3 depicts the possible extension points for custom components as well as the
components which are already included in the Kieker distribution and detailed below.

• Monitoring writers and corresponding readers for file systems and SQL
databases, for in-memory record streams (named pipes), as well writers and read-
ers employing Java Management Extensions (JMX) [6] and Java Messaging Ser-
vice (JMS) [5] technology. A special reader allows to replay existing persistent
monitoring logs, for example to emulate incoming monitoring data—also in real-
time.
• Time sources utilizing Java’s System.nanoTime() (default) or System.current-

TimeMillis() methods.

Kieker 1.11 User Guide 5



Figure 1.3: Kieker framework components and extension points for custom components

• Monitoring record types allowing to store monitoring data about operation
executions (including timing, control-flow, and session information), CPU and re-
source utilization, memory/swap usage, as well as a record type which can be used
to store the current time.
• Monitoring probes: A special feature of Kieker is the ability to monitor (dis-

tributed) traces of method executions and corresponding timing information. For
monitoring this data, Kieker includes monitoring probes employing AspectJ [10],
Java EE Servlet [7], Spring [8], and Apache CXF [9] technology. Additionally,
Kieker includes probes for (periodic) system-level resource monitoring employing
the Sigar library [1].
• Analysis/Visualization plugins can be assembled to pipe-and-filter architec-

tures based on input and output ports. The Kieker.TraceAnalysis tool is itself
implemented based on a re-usable set of Kieker.Analysis plugins allowing to re-
construct and visualize architectural models of the monitored systems, e.g., as
dependency graphs, sequence diagrams, and call trees.

1.3 Licensing

Kieker is licensed under the Apache License, Version 2.0. You may obtain a copy of the
license at http://www.apache.org/licenses/LICENSE-2.0.

The Kieker source and binary release archives include a number of third-party libraries.
The lib/ directory of the release archives contains a .LICENSE file for each third-party
library, pointing to the respective license text.

Kieker 1.11 User Guide 6

http://www.apache.org/licenses/LICENSE-2.0


1.4 Citing Kieker

When referencing Kieker resources in your publications, we would be happy if you re-
spected the following guidelines:

• When referencing the Kieker project, please cite our ICPE 2012 [12] paper and/or
our 2009 technical report [11]. Also, you might want to add a reference to our web
site (http://kieker-monitoring.net/) like [4].

• When referencing this user guide, e.g., when reprinting contents, please use a
citation like [3].

At http://kieker-monitoring.net/research/publications/ we provide entries for
BIBTEX and other bibliography systems.

1.5 Kieker is Recommended by the SPEC Research Group

In 2011, Kieker was reviewed and accepted for distribution as part of the SPEC Research
Group’s repository of peer-reviewed tools for quantitative system evaluation and analysis.
See http://research.spec.org/projects/tools.html for details.

1.6 Structure of this User Guide

Based on a simple example, Chapter 2 demonstrates how to manually instrument Java
programs with Kieker.Monitoring in order to monitor timing information of method ex-
ecutions, and how to use Kieker.Analysis to analyze the monitored data. Chapter 3
provides a more detailed description of Kieker.Monitoring and shows how to implement
and use custom monitoring records, monitoring probes, and monitoring writers. A more
detailed description of Kieker.Analysis and how to implement and use custom monitoring
readers, and analysis plugins follows in Chapter 4. Chapter 5 demonstrates how to use
Kieker.TraceAnalysis for monitoring, analyzing, and visualizing trace information. Addi-
tional resources are included in the Appendix, e.g., analyzing Java EE systems, using the
JMS writers and readers, as well as monitoring system-level measures (CPU, memory,
etc.) with Sigar.

R
The Java sources presented in this user guide, as well as pre-compiled
binaries, are included in the examples/userguide/ directory of the
Kieker distribution (see Section 2.1). Also, the example directories can
be imported as Eclipse projects.

Kieker 1.11 User Guide 7

http://kieker-monitoring.net/
http://kieker-monitoring.net/research/publications/
http://research.spec.org/projects/tools.html


2 Quick Start Example

This chapter provides a brief introduction to Kieker based on a simple Bookstore example
application. Section 2.1 explains how to download and install Kieker. The Bookstore
application itself is introduced in Section 2.2, while the following sections demonstrate
how to use Kieker for monitoring (Section 2.3) and analyzing (Section 2.4) the resulting
monitoring data.

2.1 Download and Installation

The Kieker download site1 provides archives of the binary and source distribution, the
Javadoc API, as well as additional examples. For this quick start guide, Kieker’s binary
distribution, e.g., kieker-1.11_binaries.zip, is required and must be downloaded.
After having extracted the archive, you’ll find the directory structure and contents shown
in Figure 2.1.

kieker-1.11/

bin/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Call scripts for Kieker tools

. . .

build/libs/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Kieker framework libraries

kieker-1.11.jar

. . .

doc/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kieker-1.11 userguide.pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PDF file of this document

examples/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example projects and configuration files

userguide/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source code of the examples in this document

. . .

kieker.monitoring.example.properties

lib/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Libraries required by Kieker

. . .

Figure 2.1: Directory structure and contents of Kieker’s binary distribution

1http://kieker-monitoring.net/download/

Kieker 1.11 User Guide 8

http://kieker-monitoring.net/download/


The Java sources presented in this user guide, as well as pre-compiled binaries, are
included in the examples/userguide/ directory. The file kieker-1.11.jar contains
the Kieker.Monitoring and Kieker.Analysis components, as well as the Kieker.TraceAnalysis
tool. The sample Kieker.Monitoring configuration file kieker.monitoring.example.pro-
perties will be detailed in Chapter 3. In addition to the kieker-1.11.jar file, the
build/libs/ directory includes variants of this .jar files with integrated third-party
libraries. Additional information on these .jar files and when to use them will follow
later in this document.

2.2 Bookstore Example Application

The Bookstore application is a small sample application resembling a simple bookstore
with a market-place facility where users can search for books in an online catalog, and
subsequently get offers from different book sellers. Figure 2.2 shows a class diagram de-
scribing the structure of the bookstore and a sequence diagram illustrating the dynamics
of the application.

(a)

crm:CRMcatalog:Catalogbookstore:BookstoreBookstoreStarter

searchBook

getOffers

main

getBook

getBook

(b)

Figure 2.2: UML class diagram (a) and sequence diagram (b) of the Bookstore application

Kieker 1.11 User Guide 9



The bookstore contains a catalog for books and a customer relationship management
system (CRM) for the book sellers. To provide this service, the different classes provide
operations to initialize the application, search for books, and get offers or searched books.
In this example, the methods implementing these operations are merely stubs. However,
for the illustration of Kieker they are sufficient and the inclined reader may extend the
application into a real bookstore.

The directory structure of the Bookstore example is shown in Figure 2.3 and comprises
four Java classes in its source directory src/.../ch2bookstore/, which are explained
in detail below.

examples/

userguide/

ch2–bookstore-application/

src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The directory for the source code files

.../ch2bookstore/

Bookstore.java

BookstoreStarter.java

Catalog.java

CRM.java

build.gradle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Optional build script for the application

gradlew

gradlew.bat

README.txt

Figure 2.3: The directory structure of the Bookstore application

R
The Java sources and a pre-compiled binary of the uninstrumented
Bookstore application can be found in the examples/userguide/ch2-

bookstore-application/ directory.

The class BookstoreStarter contains the application’s main method (shown in List-
ing 2.1), i.e., the program start routine. It initializes the Bookstore and issues five
search requests by calling the searchBook method of the bookstore object.

23 public static void main(final String[] args) {

24 final Bookstore bookstore = new Bookstore();

25 for (int i = 0; i < 5; i++) {

26 System.out.println("Bookstore.main: Starting request " + i);

27 bookstore.searchBook();

28 }

29 }

Listing 2.1: main method from BookstoreStarter.java

Kieker 1.11 User Guide 10



The Bookstore, shown in Listing 2.2, contains a catalog and a CRM object, representing
the catalog of the bookstore and a customer relationship management system which can
provide offers for books out of the catalog. The business method of the bookstore is
searchBook() which will first check the catalog for books and then check for offers.

In a real application these methods would pass objects to ensure the results of the
catalog search will be available to the offer collecting method. However, for our example
we omitted such code.

19 public class Bookstore {

20

21 private final Catalog catalog = new Catalog();

22 private final CRM crm = new CRM(this.catalog);

23

24 public void searchBook() {

25 this.catalog.getBook(false);

26 this.crm.getOffers();

27 }

28 }

Listing 2.2: Bookstore.java

The customer relationship management for this application is modeled in the CRM class
shown in Listing 2.3. It provides only a business method to collect offers by using the
catalog for some lookup. The additional catalog lookup is later used to illustrate different
traces in the application.

19 public class CRM {

20 private final Catalog catalog;

21

22 public CRM(final Catalog catalog) {

23 this.catalog = catalog;

24 }

25

26 public void getOffers() {

27 this.catalog.getBook(false);

28 }

29 }

Listing 2.3: CRM.java

Finally, the class Catalog is shown in Listing 2.4. It resembles the catalog component
in the application.

19 public class Catalog {

20

21 public void getBook(final boolean complexQuery) {

22 // nothing to do here

23 }

24 }

Listing 2.4: Catalog.java

Kieker 1.11 User Guide 11



After this brief introduction of the application and its implementation, the next step is to
see the example running. To compile and run the example, the commands in Listing 2.5
can be executed. This document assumes that the reader enters the commands in the
example directory. For this first example this is examples/userquide/ch2-bookstore-
application/.

R
Windows comes with two command-line interpreters called cmd.exe

and command.com. Only the first one is able to handle wildcards cor-
rectly. So we recommend using cmd.exe for these examples.

> mkdir build
> javac src/kieker/examples/userguide/ch2bookstore/∗.java −d build

> java −classpath build kieker.examples.userguide.ch2bookstore.BookstoreStarter

Listing 2.5: Commands to compile and run the Bookstore application

The first command compiles the application and places the resulting four class files in
the build/ directory. To verify the build process, the build/ directory can be inspected.
The second command loads the bookstore application and produces the output shown
in Listing 2.6.

Bookstore.main: Starting request 0
Bookstore.main: Starting request 1
Bookstore.main: Starting request 2
Bookstore.main: Starting request 3
Bookstore.main: Starting request 4

Listing 2.6: Example run of the Bookstore application

In this section, the Kieker example application was introduced and when everything went
well, the bookstore is a runnable program. Furthermore, the composition of the appli-
cation and its function should now be present. The next Section 2.3 will demonstrate
how to monitor this example application employing Kieker.Monitoring using manual in-
strumentation.

Kieker 1.11 User Guide 12



2.3 Monitoring with Kieker.Monitoring

In the previous Sections 2.1 and 2.2, the Kieker installation and the example application
have been introduced. In this section, the preparations for application monitoring, the
instrumentation of the application, and the actual monitoring are explained.

!
In this example, the instrumentation is done manually. This means
that the monitoring probe is implemented by mixing monitoring logic
with business logic, which is often not desired since the resulting code
is hardly maintainable. Kieker includes probes based on AOP (aspect-
oriented programming, [2]) technology, as covered by Chapter 5. How-
ever, to illustrate the instrumentation in detail, the quick start example
uses manual instrumentation.

The first step is to copy the Kieker jar-file kieker-1.11-emf.jar to the lib/ direc-
tory of the example directory (see Section 2.2). The file is located in the kieker-

1.11/build/libs/ directory of the extracted Kieker archive, as described in Section 2.1.
The final layout of the example directory is illustrated in Figure 2.4.

examples/

userguide/

ch2–manual-instrumentation/

build/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Directory for the Java class files

lib/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directory for the required libraries

kieker-1.11-emf.jar

src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The directory for the source code files

. . .

Figure 2.4: The directory structure of the Bookstore application with Kieker libraries

R
The Java sources and pre-compiled binaries of the manually instru-
mented Bookstore application described in this section can be found in
the examples/userguide/ch2-manual-instrumentation/ directory.

Kieker maintains monitoring data as so-called monitoring records. Section 3.3 describes
how to define and use custom monitoring record types. The monitoring record type
used in this example is an operation execution record which is included in the Kieker
distribution. Figure 2.5 shows the attributes which are relevant to this example. The
record type will be detailed in Chapter 5 .

Kieker 1.11 User Guide 13



OperationExecutionRecord
(from kieker::common::record::controlflow)

+ operationSignature : String
+ hostname : String
+ tin : long
+ tout : long
+ ...

AbstractMonitoringRecord
(from kieker::common::record)

«interface»
IMonitoringRecord

(from kieker::common::record)

Figure 2.5: The class diagram of the operation execution record

The attributes relevant to this part are operationSignature and hostname, as well as tin
and tout for the timestamps before and after the call of the instrumented method.

Listing 2.7 shows the instrumentation of the Bookstore class and its method search-
Book(). In the lines 25 and 26, the monitoring controller is instantiated. It provides the
monitoring service for the instrumentation.

25 private static final IMonitoringController MONITORING_CONTROLLER =

26 MonitoringController.getInstance();

27 private final Catalog catalog = new Catalog();

28 private final CRM crm = new CRM(this.catalog);

29

30 public void searchBook() {

31 // 1.) Call Catalog.getBook() and log its entry and exit timestamps.

32 final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();

33 this.catalog.getBook(false); // <-- the monitored execution

34 final long tout = MONITORING_CONTROLLER.getTimeSource().getTime();

35

36 final OperationExecutionRecord e = new OperationExecutionRecord(

37 "public void " + this.catalog.getClass().getName() + ".getBook(boolean

)",

38 OperationExecutionRecord.NO_SESSION_ID,

39 OperationExecutionRecord.NO_TRACE_ID,

40 tin, tout, "myHost",

41 OperationExecutionRecord.NO_EOI_ESS,

42 OperationExecutionRecord.NO_EOI_ESS);

43 MONITORING_CONTROLLER.newMonitoringRecord(e);

44

45 // 2.) Call the CRM catalog’s getOffers() method (without monitoring).

46 this.crm.getOffers();

47 }

48 }

Listing 2.7: Instrumentation of the getBook() call in Bookstore.java

Kieker 1.11 User Guide 14



The lines 32 and 34 are used to determine the current time in nanoseconds before and
after the getBook() call. In lines 36 to 42, a monitoring record for this measurement is
created and initialized, passing the method signature, the hostname, and the two time
values as arguments. Finally the record is handed over to the monitoring controller
(line 43) which calls a monitoring writer to persist the record. In this example, the
filesystem writer is used—Kieker uses this writer by default when no other writer is
specified, as detailed in Section 3.5.

In addition to the instrumentation in the Bookstore class, the getOffers() method of
the CRM class is instrumented as well. Similar to Listing 2.7, measurements are taken
before and after the call of the catalog’s getBook() method, as shown in lines 36 and 38
of Listing 2.8. Not shown in the listing is the instantiation of the monitoring controller.
However, it is done in the same way as illustrated in Listing 2.7. Finally, a record is
created (see lines 40–46) and stored by calling the monitoring controller (see line 47).

34 public void getOffers() {

35 // 1.) Call Catalog.getBook() and log its entry and exit timestamps.

36 final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();

37 this.catalog.getBook(false); // <-- the monitored execution

38 final long tout = MONITORING_CONTROLLER.getTimeSource().getTime();

39

40 final OperationExecutionRecord e = new OperationExecutionRecord(

41 "public void " + this.catalog.getClass().getName() + ".getBook(boolean

)",

42 OperationExecutionRecord.NO_SESSION_ID,

43 OperationExecutionRecord.NO_TRACE_ID,

44 tin, tout, "myHost",

45 OperationExecutionRecord.NO_EOI_ESS,

46 OperationExecutionRecord.NO_EOI_ESS);

47 MONITORING_CONTROLLER.newMonitoringRecord(e);

48 }

Listing 2.8: Instrumentation of the getBook() call in CRM.java

The next step after instrumenting the code is running the instrumented application.
Listing 2.9 shows the commands to compile and run the application under UNIX-like
systems. Listing 2.10 shows the same commands for Windows. The expected working
directory is the base directory of this example, i.e. examples/userguide/ch2-manual-

instrumentation/.

. mkdir build

. javac src/kieker/examples/userguide/ch2bookstore/manual/∗.java
−classpath lib/kieker-1.11-emf.jar −d build/

. java −classpath build/ :lib /kieker-1.11-emf.jar
kieker.examples.userguide.ch2bookstore.manual.BookstoreStarter

Listing 2.9: Commands to compile and run the instrumented Bookstore under UNIX-like
systems

Kieker 1.11 User Guide 15



!
Under Windows it is necessary to separate the classpath elements by a
semicolon instead of a colon. Also, we recommend to use the Windows
shell cmd.exe for this tutorial since problems have been reported for
the Windows PowerShell.

. mkdir build

. javac src\kieker\examples\userguide\ch2bookstore\manual\∗.java
−classpath lib\kieker-1.11-emf.jar −d build\

. java −classpath build\; lib \kieker-1.11-emf.jar
kieker.examples.userguide.ch2bookstore.manual.BookstoreStarter

Listing 2.10: Commands to compile and run the instrumented Bookstore under Windows

If everything worked correctly, a new directory for the monitoring data with a name sim-
ilar to kieker-20120402-163314855-UTC-myHost-KIEKER-SINGLETON/ is created (see
Figure 2.6). In Kieker’s default configuration, the log directory can be found in the de-
fault temporary directory: under UNIX-like systems, this is typically /tmp/; check the
environment variables $TMPDIR or %temp% for the location under Mac OS or Windows
respectively. The exact location of the created monitoring log is reported in Kieker’s
console output (see for example Appendix G.1). The monitoring directory contains two
types of files: .dat files containing text representations of the monitoring records and a
file named kieker.map which contains information on the types of monitoring records
used.

/tmp/

kieker-20130910-120352847-UTC-myHost-KIEKER-SINGLETON/

kieker.map

kieker-20120402-163314882-UTC–000-Thread-1.dat

Figure 2.6: Directory structure after a monitoring run

The Listings 2.11 and 2.12 show example file contents. The .dat-file is saved in CSV
format (Comma Separated Values)—in this case, the values of a monitoring record are
separated by semicolons. To understand the .dat-file structure the semantics have to
be explained. For this quick start example only some of the values are relevant. The
first value $1 indicates the record type. The fourth value indicates the class and method
which has been called. And the seventh and eighth value are the start and end time of
the execution of the called method.

$0;1378814632852912850;1.8−SNAPSHOT;KIEKER−SINGLETON;myHost;1;false;0;NANOSECONDS;1
$1;1378814632852360525;public void kieker.examples.userguide.ch2bookstore.manual.Catalog.getBook (

boolean);<no−session−id>;−1;1378814632849896821;1378814632852105483;myHost;−1;−1

Listing 2.11: kieker-20130910-120352862-UTC-000-Thread-1.dat (excerpt)

Kieker 1.11 User Guide 16



The second file is a simple mapping file referencing keys to monitoring record types. In
Listing 2.12 the key $1 is mapped to the type of operation execution records which were
used in the monitoring. The key value corresponds to the key values in the .dat-file.

$0=kieker.common.record.misc.KiekerMetadataRecord
$1=kieker.common.record.controlflow.OperationExecutionRecord

Listing 2.12: kieker.map

By the end of this section, two Java classes of the Bookstore application have been
manually instrumented using Kieker.Monitoring and at least one run of the instrumented
application has been performed. The resulting monitoring log, written to the .dat-file
in CSV format, could already be used for analysis or visualization by any spreadsheet
or statistical tool. The following Section 2.4 will show how to process this monitoring
data with Kieker.Analysis.

2.4 Analysis with Kieker.Analysis

In this section, the monitoring data recorded in the previous section is analyzed with
Kieker.Analysis. For this quick example guide, the analysis tool is very simple and does
not show the full potential of Kieker. For more detail, read Chapter 4 to learn which
plugins, i.e., readers and filters, are included in Kieker, how to use them, and how
to develop custom plugins. Chapter 5 presents the Kieker.TraceAnalysis tool, which is
also based on Kieker.Analysis. Kieker.Analysis has a dependency to the Eclipse Modeling
Framework (EMF).2 For this reason, we are using the kieker-1.11-emf.jar that is a
variant of the kieker-1.11.jar, additionally including the required EMF dependencies.
When using the kieker-1.11.jar, the org.eclipse.emf.*.jar files (to be found in
Kieker’s lib/ directory) need to be added to the classpath.

examples/

userguide/

ch2–manual-instrumentation/

build/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Directory for the Java class files

lib/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directory for the required libraries

kieker-1.11-emf.jar

src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The directory for the source code files

.../manual/

. . .

BookstoreAnalysisStarter.java

Figure 2.7: Directory layout of the example application with the analysis files highlighted

2http://www.eclipse.org/modeling/emf/

Kieker 1.11 User Guide 17

http://www.eclipse.org/modeling/emf/


The analysis application developed in this section comprises the file BookstoreAnaly-

sisStarter.java, as shown in Figure 2.7. This file can also be found in the directory
examples/userguide/ch2-manual-instrumentation/. The file sets up the basic pipe-
and-filter configuration depicted in Figure 2.8: Kieker’s file system reader (FSReader)
reads monitoring records from a file system monitoring log (as produced in the previ-
ous Section 2.3) and passes these to the TeeFilter plugin; the TeeFilter plugin reads
events of arbitrary type (i.e., Java Object), prints them to a configured output stream,
and also relays them to filters connected to the filter’s output port relayedEvents.

<<Reader>>
: FSReader

monitoringRecords

<<Filter>>
: TeeFilter

receivedEvents relayedEvents

Figure 2.8: Example pipe-and-filter configuration

Kieker.Analysis pipe-and-filter configurations can be created programmatically, i.e.,
by configuring, instantiating, and connecting the plugins in a Java program.3 For the
example, this is demonstrated in Listing 2.13, which shows an excerpt from the Book-

storeAnalysisStarter’s main method.

36 // Create Kieker.Analysis instance

37 final IAnalysisController analysisInstance = new AnalysisController();

38

39 // Set filesystem monitoring log input directory for our analysis

40 final Configuration fsReaderConfig = new Configuration();

41 fsReaderConfig.setProperty(FSReader.CONFIG_PROPERTY_NAME_INPUTDIRS, args

[0]);

42 final FSReader reader = new FSReader(fsReaderConfig, analysisInstance);

43

44 // Create and register a simple output writer.

45 final Configuration teeFilterConfig = new Configuration();

46 teeFilterConfig.setProperty(TeeFilter.CONFIG_PROPERTY_NAME_STREAM,

47 TeeFilter.CONFIG_PROPERTY_VALUE_STREAM_STDOUT);

48 final TeeFilter teeFilter = new TeeFilter(teeFilterConfig,

analysisInstance);

49

50 // Connect the output of the reader with the input of the filter.

51 analysisInstance.connect(reader, FSReader.OUTPUT_PORT_NAME_RECORDS,

52 teeFilter, TeeFilter.INPUT_PORT_NAME_EVENTS);

53

54 // Start the analysis

55 analysisInstance.run();

Listing 2.13: BookstoreAnalysisStarter.java (excerpt from main method)

3As an alternative, a web-based user interface is available for Kieker [4]

Kieker 1.11 User Guide 18



The BookstoreAnalysisStarter follows a simple scheme. Each analysis tool has to
create at least one AnalysisController which can be seen in Listing 2.13 in line 37.
Then, the plugins, which may be readers or filters, are configured, and instantiated.
The usage of the constructor ensures that the component is registered with the analysis
instance. Lines 40–42 configure, instantiate, and register the file system monitoring
log reader, which uses the command-line argument value as the input directory. The
application expects the output directory from the earlier monitoring run (see Section 2.3)
as the only argument value, which must be passed manually. Lines 45–48 configure,
instantiate, and register the TeeFilter, which outputs received events to the standard
output. Lines 51 and 52 connect the TeeFilter’s input port to the filesystem reader’s
output port. The analysis is started by calling its run method (line 55).

The Listings 2.14 and 2.15 describe how the analysis application can be compiled and
executed under UNIX-like systems and Windows.

. mkdir build

. javac src/kieker/examples/userguide/ch2bookstore/manual/∗.java
−classpath lib/kieker-1.11-emf.jar −d build/

. java −classpath build/ :lib /kieker-1.11-emf.jar
kieker.examples.userguide.ch2bookstore.manual.BookstoreAnalysisStarter

/tmp/kieker−20130910−120352847−UTC−myHost−KIEKER−SINGLETON

Listing 2.14: Commands to compile and run the analysis under UNIX-like systems

. mkdir build

. javac src\kieker\examples\userguide\ch2bookstore\manual\∗.java
−classpath lib\kieker-1.11-emf.jar −d build\

. java −classpath build\; lib \kieker-1.11-emf.jar
kieker.examples.userguide.ch2bookstore.manual.BookstoreAnalysisStarter

C:\Temp\kieker−20130910−120352847−UTC−myHost−KIEKER−SINGLETON

Listing 2.15: Commands to compile and run the analysis under Windows

You need to make sure that the application gets the correct path from the monitoring
run. The TeeFilter prints an output message for each record received. An example
output can be found in Appendix G.1.

Kieker 1.11 User Guide 19



3 Kieker.Monitoring Component

R
The Java sources of this chapter, as well as a pre-compiled binary, can
be found in the examples/userguide/ch3-4-custom-components/ di-
rectory of the binary release.

3.1 Monitoring Controller

The MonitoringController constructs and controls a Kieker.Monitoring instance.

MonitoringController
(from kieker::monitoring::core::controller)

+ getInstance ( ) : IMonitoringController
+ createInstance ( configuration : Configuration ) : IMonitoringController
+ getTimeSource ( ) : ITimeSource
+ newMonitoringRecord ( record : IMonitoringRecord ) : boolean
+ schedulePeriodicSampler ( sampler : ISampler, period : long, ... )
+ removeScheduledSampler ( sampler : ScheduledSamplerJob ) : boolean
+ disableMonitoring ( )
+ enableMonitoring ( )
+ terminateMonitoring ( )
+ isMonitoringEnabled ( ) : boolean
+ isMonitoringTerminated ( ) : boolean

«interface»
IMonitoringWriter

(from kieker::monitoring::writer)

«interface»
ITimeSource

(from kieker::monitoring::timer)

+ getTime ( ) : long

1 1

- writer

1 1

- timeSource

+ activateProbe ( pattern : String ) : boolean
+ deactivateProbe ( pattern : String ) : boolean
+ isProbeActivated ( pattern : String ) : boolean

Figure 3.1: Class diagram of the MonitoringController (including selected methods)

As depicted by the class diagram in Figure 3.1, it provides methods for

• Creating IMonitoringController instances (Section 3.1.1),
• Logging monitoring records with the configured monitoring writer (Section 3.1.2),
• Retrieving the current time via the configured time source (Section 3.1.3),
• Scheduling and removing period samplers (Section 3.1.4),
• Controlling the monitoring state (Section 3.1.5), and
• Activating and deactivating probes at runtime 3.1.6.

3.1.1 Creating MonitoringController Instances

The MonitoringController provides two different static methods for retrieving in-
stances of IMonitoringController:

1. The method MonitoringController.getInstance() returns a singleton instance. As
described in Section 3.2, the configuration is read from a properties file that has

Kieker 1.11 User Guide 20



been passed to the JVM, is located in the classpath, or conforms to the default
configuration (Appendix E).

2. The method MonitoringController.createInstance(Configuration config) can be uti-
lized to create an instance that is configured according to the passed Configura-

tion object, as described in Section 3.2.

3.1.2 Logging Monitoring Records

Monitoring records are sent to the configured monitoring writers by passing these records,
in form of IMonitoringRecord objects, to the MonitoringController’s newMonitor-
ingRecord method. Note, that this is not the case if monitoring is disabled or terminated
(Section 3.1.5).

3.1.3 Retrieving the Current Time and Using Custom Time Sources

The current time is maintained by a so-called time source. The MonitoringController’s
method getTimeSource returns an ITimeSource whose method getTime returns a times-
tamp in nanoseconds. Kieker’s default time source, SystemNanoTimer, returns the cur-
rent system time as the number of nanoseconds elapsed since 1 Jan 1970 00:00 UTC.
The easiest way to use a custom time source is to extend the AbstractTimeSource and
to implement the method getTime(). Custom time sources make sense, for example,
in simulations where not the current system time but the current simulation time is
relevant. The configuration needs to be adjusted to use a custom time source class.

3.1.4 Scheduling and Removing Periodic Samplers

For certain applications, it is required to monitor runtime data periodically, e.g., the
utilization of system resources such as CPUs. For this purpose, Kieker supports special
monitoring probes, called samplers. Samplers must implement the interface ISampler

which includes a single method sample(IMonitoringController monitoringController).
This method is called in periodic time steps, as specified by the MonitoringController’s
registration function schedulePeriodicSampler. Periodic samplers can be stopped by
calling the MonitoringController’s method removeScheduledSampler.

Listing 3.1 shows the sample method of the MemSwapUsageSampler which can be used
to monitor memory and swap usage employing the Sigar library [1]. Likewise to other
monitoring probes described in this user guide (see for example Sections 3.4 and 2.3),
it collects the data of interest (lines 61–62), creates a monitoring record (lines 63–66),
and passes this monitoring record to the monitoring controller (line 67). The available
Sigar-based samplers for monitoring system-level monitoring data, such as CPU and
memory usage, are discussed in Appendix D.

Kieker 1.11 User Guide 21



53 @Override

54 public void sample(final IMonitoringController monitoringCtr) throws

SigarException {

55 if (!monitoringCtr.isMonitoringEnabled()) {

56 return;

57 }

58 if (!monitoringCtr.isProbeActivated(SignatureFactory.

createMemSwapSignature())) {

59 return;

60 }

61

62 final Mem mem = this.sigar.getMem();

63 final Swap swap = this.sigar.getSwap();

64 final MemSwapUsageRecord r = new MemSwapUsageRecord(

65 monitoringCtr.getTimeSource().getTime(), monitoringCtr.getHostname(),

66 mem.getTotal(), mem.getActualUsed(), mem.getActualFree(),

67 swap.getTotal(), swap.getUsed(), swap.getFree());

68 monitoringCtr.newMonitoringRecord(r);

69 }

Listing 3.1: Method sample from MemSwapUsageSampler.java

3.1.5 Controlling the Monitoring State

The MonitoringController provides methods to temporarily enable or disable moni-
toring (enableMonitoring/disableMonitoring), as well as to terminate monitoring perma-
nently (terminateMonitoring). The current state can be requested by calling the meth-
ods isMonitoringEnabled and isMonitoringTerminated. If monitoring is not enabled (i.e.,
disabled or terminated), no monitoring records retrieved via the method newMonitor-
ingRecord are passed to the monitoring writer. Also, probes should be passive or return
immediately with respect to the return value of the method isMonitoringEnabled. Note,
that once the MonitoringController is terminated, it cannot be enabled later on.

3.1.6 Adaptive Monitoring

The MonitoringController provides an API to activate and deactivate probes at run-
time. By passing a method signature—e.g., "public void Bookstore.getBook()"—to
the method isProbeActivated, probes can check whether or not monitoring for the method
with the given signature is active. Monitoring can be (de)activated for single signature
patterns—e.g., "public void Bookstore.*(..)"— via the methods activateProbe and
deactivateProbe. The current list of (de)activated patterns can be obtained via the
method getProbePatternList. The entire list can be replaced using the method set-
ProbePatternList. Alternatively, a file with include and exclude patterns can be used.

Kieker 1.11 User Guide 22



This file can be polled in regular intervals. A default configuration file, including a de-
scription of the pattern syntax, is provided by the file kieker.monitoring.adaptiveMon-
itoring.example.conf in the examples/ directory of the binary release.

With the same mechanism arbitrary probes can be controlled. The syntax is also
included in the above file. For example, Kieker’s probes for CPU and memory make use
of this mechanism.

By default, Kieker’s adaptive monitoring feature is deactivated. It can be enabled by
setting the value of the configuration property kieker.monitoring.adaptiveMonitoring

.enabled in the kieker.monitoring.properties file to true. Additional properties to
configure the adaptive monitoring are included in the file kieker.monitoring.proper-

ties, e.g., the location of the afore-mentioned file with include/exclude patterns and the
polling interval for this file.

3.1.7 JMX MBean Access to MonitoringController

The MonitoringController’s interface methods (see Figure 3.1) can be accessed as
a JMX MBean. For example, this allows to control the monitoring state using the
methods described in the previous Section 3.1.5. As a JMX-compliant graphical client
that is included in the JDK, jconsole is probably the easiest way to get started. Just
keep in mind to add Kieker to the classpath when calling jconsole so that the MBean
works correctly. Figure 3.2 shows two screenshots of the MBean access using jconsole.

(a) Attributes (b) Operations

Figure 3.2: Screenshots of the jconsole JMX client accessing the MonitoringCon-

troller’s attributes and operations via the MBean interface.

In order to enable JMX MBean access to the MonitoringController, the corre-
sponding configuration properties must be set to true (listing below). The kieker.-

monitoring.properties includes additional JMX-related configuration properties.

Kieker 1.11 User Guide 23



## Whether any JMX functionality is available
kieker .monitoring.jmx=true
...

## Enable/Disable the MonitoringController MBean
kieker .monitoring.jmx. MonitoringController =true
...

For remote access to the server, set kieker.monitoring.jmx.remote=true. In this case it
is recommended to set com.sun.management.jmxremote.authenticate=true as well. More
information can be found on Oracle’s JMX Technology Home Page [6].

3.2 Kieker.Monitoring Configuration

Kieker.Monitoring instances can be configured by properties files, Configuration ob-
jects, and by passing property values as JVM arguments. If no configuration is speci-
fied, a default configuration is being used. Appendix E lists this default configuration
with a documentation of all available properties. The default configuration properties
file, which can be used as a template for custom configurations, is provided by the file
kieker.monitoring.example.properties in the directory kieker-1.11/examples/ of
the binary release (see Section 2.1).

Configurations for Singleton Instances

In order to use a custom configuration file, its location needs to be passed to the JVM
using the parameter kieker.monitoring.configuration as follows:

. java -Dkieker.monitoring.configuration=<ANY−DIR>/my.kieker.monitoring.properties [. . . ]

Alternatively, a file named kieker.monitoring.properties can be placed in a directory
called META-INF/ located in the classpath. The available configuration properties can
also be passed as JVM arguments, e.g., −Dkieker.monitoring.enabled=true.

Configurations for Non-Singleton Instances

The class Configuration provides factory methods to create Configuration objects
according to the default configuration or loaded from a specified properties file: creat-
eDefaultConfiguration, createConfigurationFromFile, and createSingletonConfiguration.
Note, that JVM parameters are only evaluated when using the factory method cre-
ateSingletonConfiguration. The returned Configuration objects can be adjusted by
setting single property values using the method setProperty.

Kieker 1.11 User Guide 24



3.3 Monitoring Records

Monitoring records are objects that contain the monitoring data, as mentioned in the
previous chapters. Typically, an instance of a monitoring record is constructed in a
monitoring probe (Section 3.4), passed to the monitoring controller (Section 3.1), seri-
alized and deserialized by a monitoring writer (Section 3.5) and a monitoring reader,
and provided to analysis filters (Section 4.1). Figure 1.2 illustrates this life cycle of a
monitoring record.

In Chapter 2, we’ve already introduced and used the monitoring record type Oper-

ationExecutionRecord. Kieker allows to use custom monitoring record types. Corre-
sponding classes must implement the interface IMonitoringRecord shown in Figure 3.3.
The methods initFromArray, toArray, getValueTypes are used for serialization and de-
serialization of the monitoring data contained in the record. Alternatively—in order
to support the definition of immutable record types—the marker interface IMonitor-

ingRecord.Factory needs to be implemented, requiring the implementation of (i) the
toArray method (as before), (ii) a constructor accepting a values array, and (iii) a pub-
lic static TYPES field. The method setLoggingTimestamp is used by the monitoring
controller to store the date and time when a record is received by the controller. The
method getLoggingTimestamp can be used during analysis to retrieve this value. Kieker.-
Monitoring provides the abstract class AbstractMonitoringRecord (Figure 3.3) which
already implements the methods to maintain the logging timestamp.

AbstractMonitoringRecord

<from3kieker::common::record?

{3setLoggingTimestamp3<3timestamp3:3long3?
{3getLoggingTimestamp3<3?3:3long

«interface»
IMonitoringRecord

<from3kieker::common::record?

{3setLoggingTimestamp3<3timestamp3:3long3?
{3getLoggingTimestamp3<3?3:3long
{3initFromArray3<3values3:3Object3[>]3?
{3toArray3<3?3:3Object3[>]
{3getValueTypes3<3?3:3Class3[>]

«interface»
IMonitoringRecordkFactory

<from3kieker::common::record?

MyResponseTimeRecord

{3className3:3String
{3methodName3:3String
{3responseTimeNanos3:3long

{3initFromArray3<3values3:3Object3[*]3?
{3toArray3<3?3:3Object3[*]
{3getValueTypes3<3?3:3Class3[*]

{3MyResponseTimeRecord3<3values3:3Object3[*]3?

{3TYPES3:3Class<?>[]3{kkk}

Figure 3.3: Class diagram with the IMonitoringRecord and IMonitoringRecord.Factory

interfaces, the abstract class AbstractMonitoringRecord, and a custom mon-
itoring record type MyResponseTimeRecord

In order to use the abstract class for implementing your own monitoring record type,
you need to:

1. Create a class that extends AbstractMonitoringRecord

2. and

Kieker 1.11 User Guide 25



a) Override the methods initFromArray, toArray, getValueTypes

b) For immutable record types: implement IMonitoringRecord.Factory, a con-
structor with a single Object[] argument, and a public static TYPES field.
In this case, initFromArray (which is not called by the framework then) should
throw an UnsupportedOperationException.

The class MyResponseTimeRecord, shown in the class diagram in Figure 3.3 and in
Listing 3.2, is an example of a custom monitoring record type that can be used to mon-
itor response times of method executions. Implementing IMonitoringRecord.Factory,
MyResponseTimeRecord is an immutable type, i.e., it includes only final fields.

27 public class MyResponseTimeRecord extends AbstractMonitoringRecord implements

IMonitoringRecord.Factory, IMonitoringRecord.BinaryFactory {

28 public static final int SIZE = (2 * TYPE_SIZE_STRING) + TYPE_SIZE_LONG;

29 public static final Class<?>[] TYPES = { String.class, String.class, long.

class, };

30

31 private static final long serialVersionUID = 7837873751833770201L;

32

33 // Attributes storing the actual monitoring data:

34 private final String className;

35 private final String methodName;

36 private final long responseTimeNanos;

37

38 public MyResponseTimeRecord(final String clazz, final String method, final

long rtNano) {

39 this.className = clazz;

40 this.methodName = method;

41 this.responseTimeNanos = rtNano;

42 }

43

44 public MyResponseTimeRecord(final Object[] values) {

45 AbstractMonitoringRecord.checkArray(values, MyResponseTimeRecord.TYPES);

46

47 this.className = (String) values[0];

48 this.methodName = (String) values[1];

49 this.responseTimeNanos = (Long) values[2];

50 }

51

52 public MyResponseTimeRecord(final ByteBuffer buffer, final IRegistry<String>

stringRegistry) throws BufferUnderflowException {

53 this.className = stringRegistry.get(buffer.getInt());

54 this.methodName = stringRegistry.get(buffer.getInt());

55 this.responseTimeNanos = buffer.getLong();

56 }

57

58 @Override

Kieker 1.11 User Guide 26



59 @Deprecated

60 // Will not be used because the record implements IMonitoringRecord.Factory

61 public final void initFromArray(final Object[] values) {

62 throw new UnsupportedOperationException();

63 }

64

65 @Override

66 @Deprecated

67 // Will not be used because the record implements IMonitoringRecord.

BinaryFactory

68 public final void initFromBytes(final ByteBuffer buffer, final IRegistry<

String> stringRegistry) throws BufferUnderflowException {

69 throw new UnsupportedOperationException();

70 }

71

72 @Override

73 public Object[] toArray() {

74 return new Object[] { this.getClassName(), this.getMethodName(), this.

getResponseTimeNanos(), };

75 }

76

77 @Override

78 public void writeBytes(final ByteBuffer buffer, final IRegistry<String>

stringRegistry) throws BufferOverflowException {

79 buffer.putInt(stringRegistry.get(this.getClassName()));

80 buffer.putInt(stringRegistry.get(this.getMethodName()));

81 buffer.putLong(this.getResponseTimeNanos());

82 }

83

84 @Override

85 public Class<?>[] getValueTypes() {

86 return MyResponseTimeRecord.TYPES;

87 }

88

89 @Override

90 public int getSize() {

91 return SIZE;

92 }

93

94 public final String getClassName() {

95 return this.className;

96 }

97

98 public final String getMethodName() {

99 return this.methodName;

100 }

Kieker 1.11 User Guide 27



101

102 public final long getResponseTimeNanos() {

103 return this.responseTimeNanos;

104 }

105 }

Listing 3.2: MyResponseTimeRecord.java

3.4 Monitoring Probes

The probes are responsible for collecting the monitoring data and passing it to the
monitoring controller. In Chapter 2.3, we have already demonstrated how to manually
instrument a Java application. Listing 3.3 shows a similar manual monitoring probe,
which uses the monitoring record type MyResponseTimeRecord defined in the previous
Section 3.3.

32 // 1. Invoke catalog.getBook() and monitor response time

33 final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();

34 this.catalog.getBook(false);

35 final long tout = MONITORING_CONTROLLER.getTimeSource().getTime();

36 // Create a new record and set values

37 final MyResponseTimeRecord e = new MyResponseTimeRecord(

38 "mySimpleKiekerExample.bookstoreTracing.Catalog", "getBook(..)", tout

- tin);

39 // Pass the record to the monitoring controller

40 MONITORING_CONTROLLER.newMonitoringRecord(e);

Listing 3.3: Excerpt from Bookstore.java

In order to avoid multiple calls to the getInstance method of the MonitoringController
class, singleton instances should be stored in a final static variable, as shown in List-
ing 3.4.

24 private static final IMonitoringController MONITORING_CONTROLLER =

25 MonitoringController.getInstance();

Listing 3.4: Singleton instance of the monitoring controller stored in a final static variable
(excerpt from Bookstore.java)

When manually instrumenting an application, the monitoring probe is implemented
by mixing monitoring logic with business logic, which is often not desired since the
resulting code is hardly maintainable. Many middleware technologies, such as Java EE
Servlet [7], Spring [8], and Apache CXF [9] provide interception/AOP [2] interfaces
which are well-suited to implement monitoring probes. AspectJ [10] allows to instrument
Java applications without source code modifications. Chapter 5 describes the Kieker
probes based on these technologies allowing to monitor trace information in distributed
applications.

Kieker 1.11 User Guide 28



3.5 Monitoring Writers

Monitoring writers serialize monitoring records to the monitoring log/stream and must
implement the interface IMonitoringWriter. The monitoring controller passes the re-
ceived records to the writer by calling the method newMonitoringRecord. Writers can
use the methods to serialize the record contents, as described in Section 3.3.

Figure 3.4 shows the monitoring writers already implemented in Kieker.Monitoring.
The available properties for the included writers are well-documented in the example
configuration file (see Appendix E).

Different writers can be used to store monitoring records to filesystems and databases
respectively (e.g., AsyncFsWriter, SyncFsWriter, AsyncDbWriter, and SyncDbWriter).
The variants with the prefix Async are implemented using asynchronous threads that
decouple the I/O operations from the control flow of the instrumented application. The
AsyncFsWriter is the default writer that has already been used in Section 2.3. Please
note that the database writers are currently in a prototype stage and that they should
be used with care. The PrintStreamWriter simply sends the String representation of
incoming records to the standard output or standard error streams, which can be helpful
for debugging purposes.

The AsyncJMSWriter and JMXWriter write records to a JMS (Java Messaging Ser-
vice [5]) queue and JMX (Java Management Extensions [6]) queue respectively. The
PipeWriter allows to pass records via in-memory record streams (named pipes). These
writers allow to implement on-the-fly analysis in distributed systems, i.e., analysis while
continuously receiving new monitoring data from an instrumented application potentially
running on another machine. A more detailed description of how to use the AsyncJM-

SWriter can be found in Appendix C.

«interface»
IMonitoringWriter

(from kieker::monitoring::writer)

+ terminate() : boolean

«interface»
IMonitoringRecordReceiver
(from kieker::monitoring::core)

+ newMonitoringRecord ( record : IMonitoringRecord ) : boolean

AsyncFsWriter

SyncFsWriter

AsyncDbWriter

SyncDbWriterAsyncJMSWriter

PipeWriterJMXWriter

AbstractMonitoringWriter
(from kieker::monitoring::writer)

+ init ( ) : boolean
+ toString ( ) : String

+ AbstractMonitoringWriter ( Configuration configuration )

PrintStreamWriter

AsyncBinaryFsWriter

AsyncBinaryZipWriter AsyncAsciiZipWriter

TCPWriter

Figure 3.4: Interface IMonitoringWriter and the implementing classes

Listing 3.5 shows a custom writer MyPipeWriter which uses a named pipe to write the
given records into a buffer located in the memory. The source code of the class MyPipe

is listed in Appendix F.1.

Kieker 1.11 User Guide 29



23 public class MyPipeWriter extends AbstractMonitoringWriter {

24

25 public static final String CONFIG_PROPERTY_NAME_PIPE_NAME =

26 MyPipeWriter.class.getName() + ".pipeName";

27

28 private volatile MyPipe pipe;

29 private final String pipeName;

30

31 public MyPipeWriter(final Configuration configuration) {

32 super(configuration);

33 this.pipeName =

34 configuration.getStringProperty(CONFIG_PROPERTY_NAME_PIPE_NAME);

35 }

36

37 @Override

38 public boolean newMonitoringRecord(final IMonitoringRecord record) {

39 try {

40 // Just write the content of the record into the pipe.

41 this.pipe.put(new PipeData(record.getLoggingTimestamp(),

42 record.toArray(), record.getClass()));

43 } catch (final InterruptedException e) {

44 return false; // signal error

45 }

46 return true;

47 }

48

49 @Override

50 protected Configuration getDefaultConfiguration() {

51 final Configuration configuration = new Configuration(super.

getDefaultConfiguration());

52 configuration.setProperty(CONFIG_PROPERTY_NAME_PIPE_NAME, "kieker-pipe");

53 return configuration;

54 }

55

56 @Override

57 protected void init() throws Exception {

58 this.pipe = MyNamedPipeManager.getInstance().acquirePipe(this.pipeName);

59 }

60

61 @Override

62 public void terminate() {

63 // nothing to do

64 }

65 }

Listing 3.5: MyPipeWriter.java

Kieker 1.11 User Guide 30



The monitoring writer to be used is selected by the Kieker.Monitoring configuration prop-
erty (Section 3) kieker.monitoring.writer. Writer-specific configuration properties can
be provided by properties prefixed by the fully-qualified writer classname. Listing 3.6
demonstrates how to use the custom writer MyPipeWriter defined above. In this exam-
ple, the pipe name is passed as the property value pipeName.

kieker .monitoring. writer =kieker.examples.userguide .ch3and4bookstore.MyPipeWriter
kieker .examples.userguide .ch3and4bookstore.MyPipeWriter.pipeName=somePipe

Listing 3.6: Configuration of the custom writer MyPipeWriter

As the data structure of this kind of monitoring stream, we created a class PipeData

in order to demonstrate the use of the toArray and initFromArray (in Section 4.2.3)
methods. A PipeData object holds a logging timestamp and an Object array containing
the serialized record data. Appendix F.1 includes a source code listing of this class.
Alternatively, we could have used IMonitoringRecord as the data structure used by the
pipe. This is the way, Kieker’s PipeWriter works.

Kieker 1.11 User Guide 31



4 Kieker.Analysis Component

R
The Java sources of this chapter, as well as a pre-compiled binary, can
be found in the examples/userguide/ch3-4-custom-components/ di-
rectory of the binary release.

4.1 Pipe-and-Filter Framework and Included Plugins

Kieker.Analysis provides a framework to define and execute pipe-and-filter architectures
of analysis plugins, i.e., monitoring readers and analysis filters, as well as repositories.
This section describes how to use and develop readers, filters, and repositories. The
description is based on the example pipe-and-filter architecture shown in Figure 4.1. The
custom monitoring reader MyPipeReader, which corresponds to the writer developed
in Section 3.5, sends records to the connected custom filter MyResponseTimeFilter.
This filter accepts only events of the record type MyResponseTimeRecord, developed in
Section 3.3. The MyResponseTimeFilter classifies incoming MyResponseTimeRecords
based on whether they satisfy or exceed a configured threshold and passes them to the
respective output ports, validResponseTimes or invalidResponseTimes. Two instances
of a second custom filter, MyResponseTimeOutputPrinter, print the received records to
the standard output stream.
Figure 4.2 shows the class diagram with the important Kieker.Analysis classes and their
relationships. Note that only the most important methods are included. An analysis
with Kieker.Analysis is set up and executed employing the class AnalysisController.

<<Reader>>
: Pipe reader

outputPort

<<Filter>>
: Response time filter

newResponseTime

validResponseTimes

invalidResponseTimes

<<Filter>>
Print valid : Reponse time printer

newEvent

<<Filter>>
Print invalid : Reponse time printer

newEvent

Figure 4.1: Example pipe-and-filter configuration

Kieker 1.11 User Guide 32



- readers
1..*

«interface»
IReaderPlugin

(from kieker::analysis::plugin::reader)

+ read ( ) : boolean

«interface»
IFilterPlugin

(from kieker::analysis::plugin::filter)

«interface»
IRepository

(from kieker::analysis::repository)

+ name : String
+ repositoryName : String
+ repositoryDescription : String

AbstractPlugin
(from kieker::analysis::plugin)

+ AbstractPlugin ( configuration : Configuration, projectContext : IProjectContext )

AbstractRepository
(from kieker::analysis::repository)

+ AbstractRepository ( configuration : Configuration, projectContext : IProjectContext  )

AbstractReaderPlugin
(from kieker::analysis::plugin::reader)

+ AbstractReaderPlugin ( configuration : Configuration, projectContext : IProjectContext )

AbstractFilterPlugin
(from kieker::analysis::plugin::filter)

+ AbstractFilterPlugin ( configuration : Configuration, projectContext : IProjectContext )

AnalysisController
(from kieker::analysis)

- repositories
1..*

1..* - filters

«interface»
IProjectContext

(from kieker::analysis)

+ getProperty ( key : String ) : String

+ run ( )

+ connect ( plugin : AbstractPlugin, repositoryPort : String, repository : AbstractRepository )
+ connect ( srcPlugin : AbstractPlugin, outputPort : String, dstPlugin : AbstractPlugin, inputPort : String )

«interface»

(from kieker::analysis)

+ terminate ( )

IAnalysisController

«interface»
IPlugin

(from kieker::analysis::plugin)

+ name : String
+ pluginName : String
+ pluginDescription : String

+ terminate ( error : boolean )
+ init ( ) : boolean

AbstractAnalysisComponent
(from kieker::analysis::analysisComponent)

+ AbstractAnalysisComponent ( configuration : Configuration, projectContext : IProjectContext  )

«interface»

(from kieker::analysis::plugin)

+ getCurrentConfiguration ( ) : Configuration

IAnalysisComponent

Figure 4.2: Class diagram showing important Kieker.Analysis types and their relationship

Setting up and running an analysis with Kieker.Analysis requires the following steps to
be performed, as sketched in Section 2.4 already:

1. Creating an instance of the AnalysisController class
2. Creating monitoring readers, filters, and repositories.
3. Connecting plugins to other plugins and to repositories (connect)
4. Starting the analysis instance (run).

On invocation of the run method, the AnalysisController calls the init method of
all filter plugins allowing them to initialize. Then, it starts the configured monitoring
readers by calling its read method. Plugins send data via their output ports to con-
nected input ports of other plugins. Being the source in a pipe-and-filter architecture,
readers don’t have input ports. Plugins can be connected to repositories, which may
provide shared services, such as managed access to a common architectural model of
the analyzed system. As soon as all readers have returned from the execution of their
read methods, the method terminate of each registered plugin is called by the Anal-

ysisController. Kieker.Analysis configurations can be saved to a .kax file by calling
the AnalysisController’s saveToFile method. The AnalysisController provides a
constructor which accepts the file system location of a .kax file to load the configuration
from. See Appendix A.3 and A.4 for included tools/scripts which execute and visualize
.kax files. In order to support the asynchronous execution of the AnalysisController

instance, we provide the AnalysisControllerThread class.

Kieker 1.11 User Guide 33



4.1.1 Programmatic Creation of Pipe-and-Filter Architectures

To give a first impression of the programmatic instantiation, configuration, and con-
nection of plugins, Listing 4.1 demonstrates this procedure for the example, using MyP-

ipeReader and MyResponseTimeFilter, according to Figure 4.1.
The configuration for the MyPipeReader is created in lines 50–51. Using this configu-

ration, the reader is created in line 52. Similarly, lines 55–61 initialize the MyResponse-

TimeFilter. The reader’s output is connected to the filter’s input in line 62. The entire
programmatic creation of the pipe-and-filter architecture shown in Figure 4.1, can be
found in the example file Starter.java.

47 // Create a new analysis controller for our response time analysis.

48 final IAnalysisController analysisController = new AnalysisController();

49

50 // Configure and register the reader

51 final Configuration readerConfig = new Configuration();

52 readerConfig.setProperty(MyPipeReader.CONFIG_PROPERTY_NAME_PIPE_NAME, "

somePipe");

53 final MyPipeReader reader = new MyPipeReader(readerConfig,

analysisController);

54

55 // Configure, register, and connect the response time filter

56 final Configuration filterConfig = new Configuration();

57 final long rtThresholdNanos =

58 TimeUnit.NANOSECONDS.convert(1900, TimeUnit.MICROSECONDS);

59 filterConfig.setProperty( // configure threshold of 1.9 milliseconds:

60 MyResponseTimeFilter.CONFIG_PROPERTY_NAME_TS_NANOS,

61 Long.toString(rtThresholdNanos));

62 final MyResponseTimeFilter filter = new MyResponseTimeFilter(filterConfig,

analysisController);

Listing 4.1: Initializing and connecting the example reader and filter (Starter.java)

4.1.2 Monitoring Reader Plugins

The monitoring readers are the direct counterpart to the monitoring writers. While writ-
ers receive records and write them into files or other kinds of monitoring logs/streams,
readers deserialize monitoring data and provide it as IMonitoringRecord instances.
There are already some readers implemented in Kieker, as shown in the class diagram in
Figure 4.3. The FSReader has already been used in Section 2.4. A brief description of
how to use the JMSReader can be found in Appendix C. Please note that the database
reader (DBReader) is currently in a prototype stage and that it should be used with
care. Like each plugin, readers are configured via properties, as used in Section 4.1.1
and detailed in Section 4.2.1.

Kieker 1.11 User Guide 34



Figure 4.3: Monitoring reader plugins included with Kieker

4.1.3 Filter Plugins

Filter plugins receive events (Java objects) via input ports from other plugins and im-
plement analyses or visualizations based on these events. Kieker already includes some
basic filter plugins. For example, the CountingFilter and TeeFilter forward incoming
events to their output ports. The CountingFilter additionally provides the current
number of received records via a second output port. The TeeFilter additionally prints
incoming events to an output stream, which may be the standard output, standard er-
ror, a logger, or a file. A TimestampFilter and a TypeFilter filter incoming records
by timestamp and by type, respectively. A TraceIdFilter filters incoming trace events
(e.g., OperationExecutionRecords, see Section 2) by trace ID. Additional filters for
trace analysis, architecture reconstruction and visualization are included as part of the
Kieker.TraceAnalysis tool, presented in Chapter 5. Like each plugin, filters are configured
via properties, as used in Section 4.1.1 and detailed in Section 4.2.1.

4.1.4 Repositories

Currently, Kieker includes a single repository, SystemModelRepository, which is used
by the Kieker.TraceAnalysis filters to update and query a component-based system model
representing architectural entities and structures discovered while processing the incom-
ing monitoring data. The development and use of repositories is detailed in Section 4.2.5.

When using components of the Kieker.TraceAnalysis, make sure that write access to
the SystemModelRepository is only triggered by readers. Some filters are terminated
after the readers and expect the repository to be in a completed state.

4.2 Developing Analysis Plugins and Repositories

When implementing analysis plugins (i.e., readers or filters) and repositories, the classes
AbstractReaderPlugin, AbstractFilterPlugin, or, respectively, AbstractReposi-

tory need to be extended (Figure 4.2). Section 4.2.1 describes how plugins and repos-
itories can be configured via properties. Section 4.2.2 describes how to declare meta-
information for plugins using dedicated annotations. Specific information on the devel-
opment of custom filters, readers, and repositories are given in Sections 4.2.4–4.2.5.

Kieker 1.11 User Guide 35



4.2.1 Configuration

According to the configuration of the Kieker.Monitoring components (see Section 3.2),
plugins and repositories are configured via Configuration objects. Classes must provide
a public constructor, accepting a Configuration and an IProjectContext (normally
the IAnalysisController instance) object as its only arguments. It is important to
invoke the constructor of the super class. The configuration properties accepted by a
plugin or repository should be provided via public static constants with prefix CON-
FIG PROPERTY NAME in order to ease the programmatic initialization of plugins
(Section 4.1.1). For the example filter MyResponseTimeFilter, Listing 4.2 shows the
constructor, the configuration property, and the corresponding member value obtained
from the configuration.

44 public static final String CONFIG_PROPERTY_NAME_TS_NANOS = "thresholdNanos";

45

46 private final long rtThresholdNanos; // the configured threshold for this

filter instance

47

48 public MyResponseTimeFilter(final Configuration configuration, final

IProjectContext projectContext) {

49 super(configuration, projectContext);

50

51 this.rtThresholdNanos = configuration.getLongProperty(

CONFIG_PROPERTY_NAME_TS_NANOS);

52 }

Listing 4.2: Plugin constructor accepting a Configuration and an IProjectContext

object

Additionally, the current configuration must be provided via the method getCurrentCon-
figuration. Please note that the returned configuration should be sufficient to initialize
the plugin or repository via the mentioned constructor. The AnalysisController uses
the getCurrentConfiguration to save the pipe-and-filter configuration. Listing 4.3 shows
how the methods are implemented for the example filter MyResponseTimeFilter.

69 public Configuration getCurrentConfiguration() {

70 final Configuration configuration = new Configuration();

71 configuration.setProperty(CONFIG_PROPERTY_NAME_TS_NANOS,

72 Long.toString(this.rtThresholdNanos));

73 return configuration;

74 }

Listing 4.3: Plugin returning its current configuration

The declaration of the available properties and their default values within a plugin is
shown in section 4.2.2, as this is done with annotations.

Kieker 1.11 User Guide 36



4.2.2 @Plugin Annotation and Output Ports

The @Plugin class annotation is used to define a plugin name, a description, and the
lists of output ports and configuration properties with default values. Listing 4.4 shows
the @Plugin annotation for the example filter.

If the @Plugin annotation is not present for a plugin, the name defaults to the plugin’s
(simple) classname, the description defaults to the empty string, and the list of output
ports is empty. These default values are also used in case a respective attribute is
omitted. Note that the name is not required to be a unique among filters; it is simply
used for descriptive purposes, such as in Figure 4.1.

Output ports are specified using the nested @OutputPort annotation. In addition to a
name and a description for the output port, a list of event types can be specified. Note
that in this case, the name is mandatory and must be unique for a plugin, as it is used for
connecting input and output ports. The list of event types defaults to a list including only
Object.class. The output port names should be provided as a public static constant
with prefix OUTPUT PORT NAME , in order to ease the programmatic connection of
readers and filters, as described in Section 4.1.1. Repositories required by filters are also
specified as part of the @Plugin annotation. This is detailed in Section 4.2.5.

27 @Plugin(

28 name = "Response time filter",

29 description = "Filters incoming response times based on a threshold",

30 outputPorts = {

31 @OutputPort(name = MyResponseTimeFilter.OUTPUT_PORT_NAME_RT_VALID,

32 description = "Outputs response times satisfying the threshold",

33 eventTypes = { MyResponseTimeRecord.class }),

34 @OutputPort(name = MyResponseTimeFilter.OUTPUT_PORT_NAME_RT_EXCEED,

35 description = "Outputs response times exceeding the threshold",

36 eventTypes = { MyResponseTimeRecord.class }) },

37 configuration = {

38 @Property(name = MyResponseTimeFilter.CONFIG_PROPERTY_NAME_TS_NANOS,

defaultValue = "1000000")

39 })

40 public class MyResponseTimeFilter extends AbstractFilterPlugin {

Listing 4.4: @Plugin annotation for the example plugin MyResponseTimeFilter

Plugins can send events to their output ports by calling the deliver method provided
by the super class. The method expects the output port name and the event to be sent
as arguments. Listing 4.5 shows how the example filter plugin MyResponseTimeFilter

delivers records to its two output ports declared in the @Plugin annotation.

61 if (rtRecord.getResponseTimeNanos() > this.rtThresholdNanos) {

62 super.deliver(OUTPUT_PORT_NAME_RT_EXCEED, rtRecord);

63 } else {

64 super.deliver(OUTPUT_PORT_NAME_RT_VALID, rtRecord);

65 }

Listing 4.5: Plugin sending events to output ports

Kieker 1.11 User Guide 37



Listing 4.4 shows also how the properties are declared. Using the @Property annota-
tion, it is possible to declare the existing properties. Each property has a default value
which should be sufficient to initialize the plugin.

The @Plugin annotation (as well as the later introduced @Repository annotation)
contains furthermore the two fields dependencies and programmaticOnly. The first one
offers the possibility to give a description of the needed dependencies for a plugin (other
libraries e.g.). The latter marks whether the current plugin (or repository) is for pro-
grammatic purposes only, i.e., they are of little use in graphical analysis tools.

4.2.3 Developing Monitoring Reader Plugins

Custom readers must extend the class AbstractReaderPlugin (see Figure 4.2), and
implement the methods init, read, and terminate, which are called by the AnalysisCon-

troller to trigger the reader’s initialization, reading, and termination. Like each plugin
(Section 4.2.1), readers are configured via a constructor accepting a Configuration and
an IProjectContext object as its only arguments; they must provide the current con-
figuration via the implemented getCurrentConfiguration method. Readers start reading
on invocation of the read method, providing the obtained records to connected filters via
the output port(s) declared in the @Plugin annotation (Section 4.2.2). The read method
should be implemented synchronously, i.e., it should return after reading is finished or
has been aborted via an invocation of the terminate method.

28 @Plugin(

29 name = "Pipe reader",

30 description = "Reads records from a configured pipe",

31 outputPorts = { @OutputPort(

32 name = MyPipeReader.OUTPUT_PORT_NAME,

33 description = "Outputs any received record",

34 eventTypes = { IMonitoringRecord.class })

35 },

36 configuration = { @Property(

37 name = MyPipeReader.CONFIG_PROPERTY_NAME_PIPE_NAME,

38 defaultValue = "kieker-pipe")

39 })

40 public class MyPipeReader extends AbstractReaderPlugin {

Listing 4.6: @Plugin annotation for the example reader

Listing 4.6 shows the @Plugin annotation of the example reader MyPipeReader. Read-
ing monitoring records from the monitoring pipe introduced in the previous Chapter 3.5,
the reader provides received monitoring records via its output port.
Listing 4.7 shows an excerpt of the MyPipeReader’s constructor. In this case, the reader
reads the pipe name from the configuration and connects to the named pipe. Optionally,
the reader can override the init method.

Kieker 1.11 User Guide 38



51 this.pipeName = configuration.getStringProperty(MyPipeReader.

CONFIG_PROPERTY_NAME_PIPE_NAME);

52

53 try {

54 this.pipe = MyNamedPipeManager.getInstance().acquirePipe(this.pipeName);

55 } catch (final Exception ex) {

56 this.log.error("Failed to acquire pipe ’" + this.pipeName + "’", ex);

57 }

Listing 4.7: Example reader’s initialization in the constructor (excerpt)

Listing 4.8 shows the MyPipeReader’s read method. In this case, the reader polls the
pipe for new records and forwards these to its output port.

60 @Override

61 public boolean read() {

62 try {

63 // Wait max. 4 seconds for the next data.

64 PipeData data = this.pipe.poll(4);

65 while (data != null) {

66 // Create new record, init from received array ...

67 final IMonitoringRecord record = // throws MonitoringRecordException:

68 AbstractMonitoringRecord.createFromArray(data.getRecordType(),

69 data.getRecordData());

70 record.setLoggingTimestamp(data.getLoggingTimestamp());

71 // ...and delegate the task of delivering to the super class.

72 super.deliver(MyPipeReader.OUTPUT_PORT_NAME, record);

73 // next turn

74 data = this.pipe.poll(4);

75 }

76 } catch (final Exception e) {

77 return false; // signal error

78 }

79 return true;

80 }

Listing 4.8: Example reader’s read method

4.2.4 Developing Filter Plugins

Custom filters must extend the class AbstractFilterPlugin. In addition to providing
meta information, including output ports, via the @Plugin annotation (Section 4.2.2),
as well as implementing a constructor and the getter for handling the Configuration

(Section 4.2.1), filters may override the methods init and terminate, implementing ini-
tialization and cleanup tasks. The @Plugin annotation of the example filter MyRespon-
seTimeFilter was shown in Listing 4.4 already.

Kieker 1.11 User Guide 39



Filters receive events via methods marked with the @InputPort annotation. These
methods must accept a single argument, which has to be a super type of the set of
accepted event types declared in the respective @InputPort annotation’s eventTypes. In
addition to an optional description, each @InputPort must have a name, which is unique
for this filter. The input port names should be provided as a public static constants
with prefix INPUT PORT NAME , in order to ease the programmatic connection of
readers and filters, as described in Section 4.1.1. Listing 4.9 shows the declaration of the
input port provided by the example plugin MyResponseTimeFilter. The body of this
method was shown in Listing 4.5 already.

56 @InputPort(

57 name = MyResponseTimeFilter.INPUT_PORT_NAME_RESPONSE_TIMES,

58 description = "Filter the given record depending on the response time",

59 eventTypes = { MyResponseTimeRecord.class })

60 public void newResponseTime(final MyResponseTimeRecord rtRecord) {

Listing 4.9: @InputPort annotation for the example plugin’s input method

4.2.5 Developing and Accessing Required Repositories

Custom repositories must extend the class AbstractRepository. The @Repository

annotation is used to provide a name and a description for a repository type. Listing 4.10
shows the @Repository annotation of the SystemModelRepository, which is included
in Kieker as part of the Kieker.TraceAnalysis tool.

43 @Repository(

44 name = "System model repository",

45 description = "Model manager for Kieker’s component model ")

46 public class SystemModelRepository extends AbstractRepository {

Listing 4.10: @Repository annotation of Kieker’s SystemModelRepository

Plugins specify the list of required repositories in their @Plugin annotation. Reposito-
ries are connected to filter-provided repository ports. A plugin’s repository ports are
specified using the nested @RepositoryPort annotation, as depicted for a Kieker.Trace-
Analysis filter in Listing 4.11. Like for input and output port names, this name must
be unique for the plugin and should be provided as a public static constant with
prefix REPOSITORY PORT NAME , in order to ease the programmatic connection of
repositories to readers and filters.

40 @Plugin(repositoryPorts = { @RepositoryPort(name = AbstractTraceAnalysisFilter.

REPOSITORY_PORT_NAME_SYSTEM_MODEL, repositoryType = SystemModelRepository.

class) })

41 public abstract class AbstractTraceAnalysisFilter extends AbstractFilterPlugin

{

Listing 4.11: Declaration of required repositories in the @Repository annotation

Kieker 1.11 User Guide 40



Plugins can access their connected repositories via the getRepository method provided
by the super class, as shown in Listing 4.12.

161 this.systemEntityFactory = (SystemModelRepository)

162 this.getRepository(REPOSITORY_PORT_NAME_SYSTEM_MODEL);

Listing 4.12: Accessing a repository within a plugin

Kieker 1.11 User Guide 41



5 Kieker.TraceAnalysis Tool

Kieker.TraceAnalysis implements the special feature of Kieker allowing to monitor, ana-
lyze, and visualize (distributed) traces of method executions and corresponding timing
information. For this purpose, it includes monitoring probes employing AspectJ [10],
Java EE Servlet [7], Spring [8], and Apache CXF [9] technology. Moreover, it allows to
reconstruct and visualize architectural models of the monitored systems, e.g., as sequence
and dependency diagrams.

Section 2 already introduced parts of the monitoring record type OperationExecu-

tionRecord. Kieker.TraceAnalysis uses this record type to represent monitored executions
and associated trace and session information. Figure 5.1 shows a class diagram with all
attributes of the record type OperationExecutionRecord. The attributes className,
operationName, tin, and tout have been introduced before. The attributes traceId and
sessionId are used to store trace and session information; eoi and ess contain control-
flow information needed to reconstruct traces from monitoring data. For details on this,
please refer to our technical report [11].

OperationExecutionRecord
(from kieker::common::record::controlflow)

+ operationSignature : String
+ hostname : String
+ sessionId : String
+ traceId : long
+ tin : long
+ tout : long
+ eoi : int
+ ess : int

AbstractMonitoringRecord
(from kieker::common::record)

«interface»
IMonitoringRecord

(from kieker::common::record)

Figure 5.1: The class diagram of the operation execution record

Section 5.1 describes how to instrument Java applications for monitoring trace informa-
tion. It presents the technology-specific probes provided by Kieker for this purpose—with
a focus on AspectJ. Additional technology-specific probes can be implemented based on
the existing probes. Section 5.2 presents the tool which can be used to analyze and
visualize the recorded trace data. Examples for the available analysis and visualization
outputs provided by Kieker.TraceAnalysis are presented in Section 5.3.

Kieker 1.11 User Guide 42



5.1 Monitoring Trace Information

The following Sections describe how to use the monitoring probes based on AspectJ (Sec-
tion 5.1.1), the Java Servlet API (Section 5.1.2), the Spring Framework (Section 5.1.3),
and Apache CXF (Section 5.1.4) provided by Kieker.

5.1.1 AspectJ-Based Instrumentation

AspectJ [10] allows to weave code into the byte code of Java applications and libraries
without requiring manual modifications of the source code. Kieker includes the AspectJ-
based monitoring probes OperationExecutionAspectAnnotation, OperationExecu-

tionAspectAnnotationServlet, OperationExecutionAspectFull, and OperationEx-

ecutionAspectFullServlet which can be woven into Java applications at compile time
and load time. These probes monitor method executions and corresponding trace and
timing information. The probes with the postfix Servlet additionally store a session
identifier within the OperationExecutionRecord. When the probes with name element
Annotation are used, methods to be monitored must be annotated by the Kieker anno-
tation @OperationExecutionMonitoringProbe. This section demonstrates how to use
the AspectJ-based probes to monitor traces based on the Bookstore application from
Chapter 2.

R
The Java sources of the example presented in this section, as well as a
pre-compiled binary, can be found in the examples/userguide/ch5-

trace-monitoring-aspectj/ directory of the binary release.

Kieker 1.11 User Guide 43



examples/

userguide/

ch5–trace-monitoring-aspectj/

build/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Directory for the Java class files

libs/

BookstoreApplication.jar

gradle/

wrapper/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Directory for the gradle wrapper

. . .

lib/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directory for the needed libraries

kieker-1.11-aspectj.jar

src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directory for the source code files

../ch5bookstore/

Bookstore.java

BookstoreHostnameRewriter.java

BookstoreStarter.java

Catalog.java

CRM.java

src-resources/

META-INF/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Directory for the configuration files

aop.xml

aop-event.xml

aop-full.xml

kieker.monitoring.adaptiveMonitoring.conf

kieker.monitoring.properties

build.gradle

gradlew

gradlew.bat

README.txt

Figure 5.2: The new directory structure of the Bookstore application

Figure 5.2 shows the directory used by the example of this section. The jar-file
kieker-1.11-aspectj.jar already includes the AspectJ weaver, which is registered with
the JVM and weaves the monitoring instrumentation into the Java classes. It will be
configured based on the configuration file aop.xml, for which a working sample file is
provided in the example’s META-INF/ directory. Instead of registering the kieker-1.11-
aspectj.jar as an agent to the JVM, the aspectjweaver-1.8.2.jar can be used. In
this case, the kieker-1.11.jar needs to be added to the classpath.

Kieker 1.11 User Guide 44



Once the necessary files have been copied to the example directory, the source code
can be instrumented with the annotation OperationExecutionMonitoringProbe. List-
ing 5.1 shows how the annotation is used.

21 public class Bookstore {

22

23 private final Catalog catalog = new Catalog();

24 private final CRM crm = new CRM(this.catalog);

25

26 @OperationExecutionMonitoringProbe

27 public void searchBook() {

28 this.catalog.getBook(false);

29 this.crm.getOffers();

30 }

31 }

Listing 5.1: Bookstore.java

As a first example, each method of the Bookstore application will be annotated. The
annotation can be used to instrument all methods except for constructors.

The aop.xml file has to be modified to specify the classes to be considered for instru-
mentation by the AspectJ weaver. Listing 5.2 shows the modified configuration file.

1 <!DOCTYPE aspectj PUBLIC ”−//AspectJ//DTD//EN” ”http://www.aspectj.org/dtd/aspectj 1 5 0.dtd
”>

2

3 <aspectj>
4 <weaver options=””>
5 <include within=”kieker .examples.userguide .ch5bookstore..∗ ”/>
6 </weaver>
7

8 <aspects>
9 <aspect name=”kieker.monitoring.probe.aspectj . operationExecution .

OperationExecutionAspectAnnotation”/>
10 </aspects>
11 </aspectj>

Listing 5.2: aop.xml

Line 5 tells the AspectJ weaver to consider all classes inside the example package. As-
pectJ allows to use wild-cards for the definition of classes to include—e.g., <include within

=”bookstoreTracing.Bookstore∗”/> to weave all classes with the prefix Bookstore located in a
package bookstoreTracing.

Line 9 specifies the aspect to be woven into the classes. In this case, the Kieker probe
OperationExecutionAspectAnnotation is used. It requires that methods intended to
be instrumented are annotated by @OperationExecutionMonitoringProbe, as mentioned be-
fore.

Listings 5.3 and 5.4 show how to compile and run the annotated Bookstore applica-
tion. The aop.xml must be located in a META-INF/ directory in the classpath—in this
case the build/ directory. The AspectJ weaver has to be loaded as a so-called Java-
agent. It weaves the monitoring aspect into the byte code of the Bookstore application.

Kieker 1.11 User Guide 45



Additionally, a kieker.monitoring.properties is copied to the META-INF/ directory.
This configuration file may be adjusted as desired (see Section 3.2).

. mkdir build

. mkdir build/META−INF

. javac src/kieker/examples/userguide/ch5bookstore/∗.java \
−d build/ −classpath lib/kieker-1.11-aspectj.jar

. cp META−INF/aop.xml build/META−INF/

. cp META−INF/kieker.monitoring.properties build/META−INF/

. java −javaagent :lib/kieker-1.11-aspectj.jar \
−classpath build/ kieker.examples.userguide.ch5bookstore.BookstoreStarter

Listing 5.3: Commands to compile and run the Bookstore under UNIX-like systems

. mkdir build

. mkdir build\META−INF

. javac src\kieker\examples\userguide\ch5bookstore\∗.java
−d build −classpath lib\kieker-1.11-aspectj.jar

. copy META−INF\aop.xml build\META−INF\

. copy META−INF\kieker.monitoring.properties build\META−INF\

. java −javaagent :lib\kieker-1.11-aspectj.jar
−classpath build\ kieker.examples.userguide.ch5bookstore.BookstoreStarter

Listing 5.4: Commands to compile and run the annotated Bookstore under Windows

After a complete run of the application, the monitoring files should appear in the same
way as mentioned in Section 2.3 including the additional trace information. An example
log of a complete run can be found in Appendix G.2.

Instrumentation without annotations AspectJ-based instrumentation without using
annotations is quite simple. It is only necessary to modify the file aop.xml, as shown in
Listing 5.5.

Kieker 1.11 User Guide 46



1 <!DOCTYPE aspectj PUBLIC ”−//AspectJ//DTD//EN” ”http://www.aspectj.org/dtd/aspectj 1 5 0.
dtd”>

2

3 <aspectj>
4 <weaver options=””>
5 <include within=”kieker .examples.userguide .ch5bookstore..∗ ”/>
6 </weaver>
7

8 <aspects>
9 <aspect name=”kieker.monitoring.probe.aspectj . operationExecution .

OperationExecutionAspectFull”/>
10 </aspects>
11 </aspectj>

Listing 5.5: aop.xml

The alternative aspect OperationExecutionAspectFull is being activated in line 9. As
indicated by its name, this aspect makes sure that every method within the included
classes/packages will be instrumented and monitored. Listing 5.5 demonstrates how to
limit the instrumented methods to those of the class BookstoreStarter.

The commands shown in the Listings 5.3 and 5.4 can again be used to compile and
execute the example. Note that the annotations within the source code have no effect
when using this aspect.

!
When using a custom aspect, it can be necessary to specify its class-
name in the include directives of the aop.xml.

5.1.2 Servlet Filters

The Java Servlet API [7] includes the javax.servlet.Filter interface. It can be used
to implement interceptors for incoming HTTP requests. Kieker includes the probe Ses-

sionAndTraceRegistrationFilter which implements the javax.servlet.Filter in-
terface. It initializes the session and trace information for incoming requests. If desired,
it additionally creates an OperationExecutionRecord for each invocation of the filter
and passes it to the MonitoringController.

Listing 5.6 demonstrates how to integrate the SessionAndTraceRegistrationFilter
in the web.xml file of a web application.

The Java EE Servlet container example described in Appendix B employs the Ses-

sionAndTraceRegistrationFilter.

Kieker 1.11 User Guide 47



50 < filter >
51 < filter−name>sessionAndTraceRegistrationFilter</filter−name>
52 < filter−class>kieker.monitoring.probe. servlet . SessionAndTraceRegistrationFilter </ filter−class

>
53 <init−param>
54 <param−name>logFilterExecution</param−name>
55 <param−value>true</param−value>
56 </init−param>
57 </ filter >
58 < filter−mapping>
59 < filter−name>sessionAndTraceRegistrationFilter</filter−name>
60 <url−pattern>/∗</url−pattern>
61 </ filter−mapping>

Listing 5.6: SessionAndTraceRegistrationFilter in a web.xml file

5.1.3 Spring

The Spring framework [8] provides interfaces for intercepting Spring services and web
requests. Kieker includes the probes OperationExecutionMethodInvocationInter-

ceptor and OperationExecutionWebRequestRegistrationInterceptor. The Opera-

tionExecutionMethodInvocationInterceptor is similar to the AspectJ-based probes
described in the previous section and monitors method executions as well as corre-
sponding trace and session information. The OperationExecutionWebRequestRegis-

trationInterceptor intercepts incoming Web requests and initializes the trace and ses-
sion data for this trace. If you are not using the OperationExecutionWebRequestReg-

istrationInterceptor, you should use one of the previously described Servlet filters
to register session information for incoming requests (Section 5.1.2).

See the Spring documentation for instructions how to add the interceptors to the
server configuration.

5.1.4 CXF SOAP Interceptors

The Apache CXF framework [9] allows to implement interceptors for web service calls,
for example, based on the SOAP web service protocol. Kieker includes the probes Opera-
tionExecutionSOAPRequestOutInterceptor, OperationExecutionSOAPRequestInIn-
terceptor, OperationExecutionSOAPResponseOutInterceptor, and OperationExe-

cutionSOAPResponseInInterceptor which can be used to monitor SOAP-based web
service calls. Session and trace information is written to and read from the SOAP header
of service requests and responses allowing to monitor distributed traces. See the CXF
documentation for instructions how to add the interceptors to the server configuration.

Kieker 1.11 User Guide 48



5.2 Trace Analysis and Visualization

Monitoring data including trace information can be analyzed and visualized with the
Kieker.TraceAnalysis tool which is included in the Kieker binary as well.

!
In order to use this tool, it is necessary to install two third-party pro-
grams:

1. Graphviz A graph visualization software which can be down-
loaded from http://www.graphviz.org/.

2. GNU PlotUtils A set of tools for generating 2D plot
graphics which can be downloaded from http://www.gnu.org/

software/plotutils/ (for Linux) and from http://gnuwin32.

sourceforge.net/packages/plotutils.htm (for Windows).

3. ps2pdf The ps2pdf tool is used to convert ps files to pdf files.

Under Windows it is recommended to add the bin/ directories of both
tools to the “path” environment variable. It is also possible that the
GNU PlotUtils are unable to process sequence diagrams. In this case
it is recommended to use the Cygwin port of PlotUtils.

Once both programs have been installed, the Kieker.TraceAnalysis tool can be used. It
can be accessed via the wrapper-script trace-analysis.sh or trace-analysis.bat

(Windows) in the bin/ directory. Non-parameterized calls of the scripts print all possible
options on the screen, as listed in Appendix A.5.

The commands shown in Listings 5.7 and 5.8 generate a sequence diagram as well as
a call tree to an existing directory named out/. The monitoring data is assumed to be
located in the directory /tmp/kieker-20110428-142829399-UTC-Kaapstad-KIEKER/ or
%temp%\kieker-20100813-121041532-UTC-virus-KIEKER under Windows.

. ./trace-analysis.sh –inputdirs /tmp/kieker−20110428−142829399−UTC−Kaapstad−KIEKER
–outputdir out/
–plot-Deployment-Sequence-Diagrams
–plot-Call-Trees

Listing 5.7: Commands to produce the diagrams under UNIX-like systems

. trace-analysis.bat –inputdirs %temp%\kieker−20100813−121041532−UTC−virus−KIEKER
–outputdir out\
–plot-Deployment-Sequence-Diagrams
–plot-Call-Trees

Listing 5.8: Commands to produce the diagrams under Windows

!
The Windows .bat wrapper scripts (including trace-analysis.bat)
must be executed from within the bin/ directory.

Kieker 1.11 User Guide 49

http://www.graphviz.org/
http://www.gnu.org/software/plotutils/
http://www.gnu.org/software/plotutils/
http://gnuwin32.sourceforge.net/packages/plotutils.htm
http://gnuwin32.sourceforge.net/packages/plotutils.htm


The resulting contents of the out/ directory should be similar to the following tree:

out/

deploymentSequenceDiagram-6120391893596504065.pic

callTree-6120391893596504065.dot

system-entities.html

The .pic and .dot files can be converted into other formats, such as .pdf, by using the
Graphviz and PlotUtils tools dot and pic2plot. The following Listing 5.9 demonstrates
this.

. dot callTree−6120391893596504065.dot -Tpng -o callTree.png

. pic2plot deploymentSequenceDiagram−6120391893596504065.pic -Tpng > sequenceDiagram.png

Listing 5.9: Commands to convert the diagrams

R
The scripts dotPic-fileConverter.sh and dotPic-

fileConverter.bat convert all .pic and .dot in a specified
directory. See Appendix A.6 for details.

Examples of all available visualization are presented in the following Section 5.3.

Kieker 1.11 User Guide 50



5.3 Example Kieker.TraceAnalysis Outputs

The examples presented in this section were generated based on the monitoring data
which can be found in the directory examples/userguide/ch5-trace-monitoring-

aspectj/testdata/kieker-20100830-082225522-UTC/. It consists of 1635 traces of
the Bookstore application with AspectJ-based instrumentation, as described in Sec-
tion 5.1.1. In order to illustrate the visualization of distributed traces, the hostname
of the Catalog’s method getBook was probabilistically changed to a second hostname.
For a more detailed description of the underlying formalisms, we refer to our technical
report [11]. The output can be found in the directory examples/userguide/ch5-trace-

monitoring-aspectj/testdata/kieker-20100830-082225522-UTC-example-plots/.

5.3.1 Textual Trace and Equivalence Class Representations

Execution Traces

Textual execution trace representations of valid/invalid traces are written to an out-
put file using the command-line options - -print-Execution-Traces and - -print-

invalid-Execution-Traces. Listing 5.10 shows the execution trace representation for
the valid trace . . . 6129.

TraceId 6488138950668976129 (minTin=1283156498770302094 (Mon, 30 Aug 2010 08:21:38 +0000 (UTC));
maxTout=1283156498820012272 (Mon, 30 Aug 2010 08:21:38 +0000 (UTC)); maxEss=2):

<6488138950668976129[0,0] 1283156498770302094−1283156498820012272 SRV0::@3:bookstoreTracing.
Bookstore.searchBook N/A>

<6488138950668976129[1,1] 1283156498770900902−1283156498773404399 SRV1::@1:bookstoreTracing.Catalog.
getBook N/A>

<6488138950668976129[2,1] 1283156498817823953−1283156498820007367 SRV0::@2:bookstoreTracing.CRM.
getOffers N/A>

<6488138950668976129[3,2] 1283156498817855493−1283156498819999771 SRV1::@1:bookstoreTracing.Catalog.
getBook N/A>

Listing 5.10: Textual output of trace 6488138950668976129’s execution trace
representation

Message Traces

Textual message trace representations of valid traces are written to an output file using
the command-line option - -print-Message-Traces. Listing 5.11 shows the message
trace representation for the valid trace . . . 6129.

Trace 6488138950668976129:
<SYNC−CALL 1283156498770302094 ’Entry’ −−> 6488138950668976129[0,0]

1283156498770302094−1283156498820012272 SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>
<SYNC−CALL 1283156498770900902 6488138950668976129[0,0] 1283156498770302094−1283156498820012272

SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A −−> 6488138950668976129[1,1]
1283156498770900902−1283156498773404399 SRV1::@1:bookstoreTracing.Catalog.getBook N/A>

<SYNC−RPLY 1283156498773404399 6488138950668976129[1,1] 1283156498770900902−1283156498773404399
SRV1::@1:bookstoreTracing.Catalog.getBook N/A −−> 6488138950668976129[0,0]

1283156498770302094−1283156498820012272 SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

Kieker 1.11 User Guide 51



<SYNC−CALL 1283156498817823953 6488138950668976129[0,0] 1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A −−> 6488138950668976129[2,1]

1283156498817823953−1283156498820007367 SRV0::@2:bookstoreTracing.CRM.getOffers N/A>
<SYNC−CALL 1283156498817855493 6488138950668976129[2,1] 1283156498817823953−1283156498820007367

SRV0::@2:bookstoreTracing.CRM.getOffers N/A −−> 6488138950668976129[3,2]
1283156498817855493−1283156498819999771 SRV1::@1:bookstoreTracing.Catalog.getBook N/A>

<SYNC−RPLY 1283156498819999771 6488138950668976129[3,2] 1283156498817855493−1283156498819999771
SRV1::@1:bookstoreTracing.Catalog.getBook N/A −−> 6488138950668976129[2,1]

1283156498817823953−1283156498820007367 SRV0::@2:bookstoreTracing.CRM.getOffers N/A>
<SYNC−RPLY 1283156498820007367 6488138950668976129[2,1] 1283156498817823953−1283156498820007367

SRV0::@2:bookstoreTracing.CRM.getOffers N/A −−> 6488138950668976129[0,0]
1283156498770302094−1283156498820012272 SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

<SYNC−RPLY 1283156498820012272 6488138950668976129[0,0] 1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A −−> ’Entry’>

Listing 5.11: Textual output of trace 6488138950668976129’s message trace
representation

Trace Equivalence Classes

Deployment/assembly-level trace equivalence classes are computed and written to output
files using the command-line options - -print-Deployment-Equivalence-Classes and
- -print-Assembly-Equivalence-Classes. Listings 5.12 and 5.13 show the output
generated for the monitoring data used in this section.

Class 0 ; cardinality : 386; # executions: 4; representative : 6488138950668976130; max. stack depth: 2
Class 1 ; cardinality : 706; # executions: 4; representative : 6488138950668976129; max. stack depth: 2
Class 2 ; cardinality : 187; # executions: 4; representative : 6488138950668976141; max. stack depth: 2
Class 3 ; cardinality : 356; # executions: 4; representative : 6488138950668976131; max. stack depth: 2

Listing 5.12: Textual output of information on the deployment-level trace equivalence
classes

Class 0 ; cardinality : 1635; # executions: 4; representative : 6488138950668976129; max. stack depth: 2

Listing 5.13: Textual output of information on the assembly-level trace equivalence class

Kieker 1.11 User Guide 52



5.3.2 Sequence Diagrams

Deployment-Level Sequence Diagrams

Deployment-level sequence diagrams are generated using the command-line option - -

plot-Deployment-Sequence-Diagrams. Figures 5.3(a)–5.3(d) show these sequence di-
agrams for each deployment-level trace equivalence representative (Section 5.3.1).

SRV0::
@3:..Bookstore

SRV1::
@1:..Catalog

SRV0::
@2:..CRM

searchBook()
 

getBook(..)
 

 
getOffers()

 

getBook(..)
 

 

 

 

(a) Trace . . . 6129

SRV0::
@3:..Bookstore

SRV1::
@1:..Catalog

SRV0::
@2:..CRM

SRV0::
@1:..Catalog

searchBook()
 

getBook(..)
 

 
getOffers()

 

getBook(..)
 

 

 

 

(b) Trace . . . 6130

SRV0::
@3:..Bookstore

SRV0::
@1:..Catalog

SRV0::
@2:..CRM

SRV1::
@1:..Catalog

searchBook()
 

getBook(..)
 

 
getOffers()

 

getBook(..)
 

 

 

 

(c) Trace . . . 6131

SRV0::
@3:..Bookstore

SRV0::
@1:..Catalog

SRV0::
@2:..CRM

searchBook()
 

getBook(..)
 

 
getOffers()

 

getBook(..)
 

 

 

 

(d) Trace . . . 6141

Figure 5.3: Deployment-level sequence diagrams of the trace equivalence class representa-
tives (Listing 5.13)

Kieker 1.11 User Guide 53



Assembly-Level Sequence Diagrams

Assembly-level sequence diagrams are generated using the command-line option - -

plot-Assembly-Sequence-Diagrams. Figure 5.4 shows the sequence diagram for the
assembly-level trace equivalence representative (Section 5.3.1).

@3:..Bookstore @1:..Catalog @2:..CRM

searchBook()
 

getBook(..)
 

 
getOffers()

 

getBook(..)
 

 

 

 

Figure 5.4: Assembly-level sequence diagram of trace . . . 6129

5.3.3 Call Trees

Trace Call Trees

Trace call trees are generated using the command-line option - -plot-Call-Trees. Fig-
ures 5.5(a)–5.5(d) show these call trees for each deployment-level trace equivalence rep-
resentative (Section 5.3.1).

'Entry'

SRV0::
@3:..Bookstore
.searchBook()

1.

SRV1::
@1:..Catalog
.getBook(..)

2.

SRV0::
@2:..CRM
.getOffers()

3.

SRV1::
@1:..Catalog
.getBook(..)

4.

(a) Trace . . . 6129

'Entry'

SRV0::
@3:..Bookstore
.searchBook()

1.

SRV1::
@1:..Catalog
.getBook(..)

2.

SRV0::
@2:..CRM
.getOffers()

3.

SRV0::
@1:..Catalog
.getBook(..)

4.

(b) Trace . . . 6130

'Entry'

SRV0::
@3:..Bookstore
.searchBook()

1.

SRV0::
@1:..Catalog
.getBook(..)

2.

SRV0::
@2:..CRM
.getOffers()

3.

SRV1::
@1:..Catalog
.getBook(..)

4.

(c) Trace . . . 6131

'Entry'

SRV0::
@3:..Bookstore
.searchBook()

1.

SRV0::
@1:..Catalog
.getBook(..)

2.

SRV0::
@2:..CRM
.getOffers()

3.

SRV0::
@1:..Catalog
.getBook(..)

4.

(d) Trace . . . 6141

Figure 5.5: Calls trees of the trace equivalence class representatives (Listing 5.13)

Kieker 1.11 User Guide 54



Aggregated Call Trees

Aggregated deployment/assembly-level call trees are generated using the command-line
options - -plot-Aggregated-Deployment-Call-Tree and - -plot-Aggregated-Assembly-

Call-Tree. Figures 5.6(a) and 5.6(b) show these aggregated call trees for the traces
contained in the monitoring data used in this section.

'Entry'

SRV0::
@3:..Bookstore
.searchBook()

1635

SRV1::
@1:..Catalog
.getBook(..)

1092

SRV0::
@2:..CRM
.getOffers()

1635

SRV0::
@1:..Catalog
.getBook(..)

543

SRV1::
@1:..Catalog
.getBook(..)

1062

SRV0::
@1:..Catalog
.getBook(..)

573

(a) deployment-level

'Entry'

@3:..Bookstore
.searchBook()

1635

@1:..Catalog
.getBook(..)

1635

@2:..CRM
.getOffers()

1635

@1:..Catalog
.getBook(..)

1635

(b) assembly-
level

Figure 5.6: Aggregated call trees generated from the 1635 traces

Kieker 1.11 User Guide 55



5.3.4 Dependency Graphs

Container Dependency Graphs

A container dependency graph is generated using the command-line option - -plot-

Container-Dependency-Graph. Figure 5.7 shows the container dependency graph for
the monitoring data used in this section.

'Entry'
<<execution container>>

SRV0
1635 <<execution container>>

SRV1
2154

Figure 5.7: Container dependency graph

Component Dependency Graphs

Deployment/assembly-level component dependency graphs are generated using the command-
line options - -plot-Deployment-Component-Dependency-Graph and - -plot-Assembly-

Component-Dependency-Graph. Figures 5.8(a) and 5.8(b) show the component depen-
dency graphs for the monitoring data used in this section.

<<execution container>>
SRV0

<<execution container>>
SRV1

'Entry'
<<deployment component>>

@3:..Bookstore
1635

<<deployment component>>
@1:..Catalog

<<deployment component>>
@2:..CRM

573

<<deployment component>>
@1:..Catalog

1062

543

1635

1092

(a) deployment-level

'Entry'
<<assembly component>>

@3:..Bookstore
1635

<<assembly component>>
@2:..CRM

<<assembly component>>
@1:..Catalog

16351635

1635

(b) assembly-level

Figure 5.8: Component dependency graphs

Kieker 1.11 User Guide 56



Operation Dependency Graphs

Deployment/assembly-level operation dependency graphs are generated using the command-
line options - -plot-Deployment-Operation-Dependency-Graph and - -plot-Assembly-

Operation-Dependency-Graph. Figures 5.9(a) and 5.9(b) show the operation depen-
dency graphs for the monitoring data used in this section.

<<execution container>>
SRV0

<<deployment component>>
@1:..Catalog

<<deployment component>>
@2:..CRM

<<deployment component>>
@3:..Bookstore

<<execution container>>
SRV1

<<deployment component>>
@1:..Catalog

'Entry' searchBook()
1635 getBook(..)

getOffers() 573

getBook(..)

1062543

1635

1092

(a) deployment-level

<<assembly component>>
@2:..CRM <<assembly component>>

@1:..Catalog<<assembly component>>
@3:..Bookstore

'Entry' searchBook()
1635

getOffers()
getBook(..)

16351635

1635

(b) assembly-level

Figure 5.9: Operation dependency graphs

5.3.5 Response Times in Dependency Graphs

The afore-mentioned dependency graphs can also be decorated by the response times,
adding the minimum, the average, and the maximum response times of the components.
The decoration will be generated with one of the additional responseTimes command
line parameters behind the corresponding plot-command. An exemplaric graph with
response times is shown in Figure 5.10.

$
<<assembly component>>

@3:bookstoreTracing.Bookstore
min: 4ms, avg: 22,38ms, max: 381ms

1635

<<assembly component>>
@2:bookstoreTracing.CRM

min: 2ms, avg: 6,93ms, max: 378ms <<assembly component>>
@1:bookstoreTracing.Catalog

min: 2ms, avg: 3,58ms, max: 123ms

16351635

1635

Figure 5.10: Assembly component dependency graph with response times

Kieker 1.11 User Guide 57



5.3.6 HTML Output of the System Model

Kieker.TraceAnalysis writes an HTML representation of the system model reconstructed
from the trace data to a file system-entities.html. Figure 5.11 shows a screenshot of
this file rendered by a web browser.

Figure 5.11: HTML output of the system model reconstructed from the traces

Kieker 1.11 User Guide 58



A Wrapper scripts

The bin/ directory of Kieker’s binary release contains some .sh and .bat scripts to
invoke tools included in kieker-1.11.jar. The following sections give a short descrip-
tion of their functionality and list their usage outputs as printed to the standard output
stream when called without command-line parameters. In addition to the standard
output stream, the file kieker.log is used for logging output during execution.

!
The Windows .bat wrapper scripts must be executed from within the
bin/ directory.

A.1 Script convertLoggingTimestamp.sh|bat

The script converts Kieker.Monitoring logging timestamps, representing the number of
nanoseconds since 1 Jan 1970 00:00 UTC, to a human-readable textual representation
in the UTC and local timezones.

Main-class: kieker.tools.loggingTimestampConverter.LoggingTimestampConverterTool

Usage

usage:
kieker . tools . loggingTimestampConverter.LoggingTimestampConverterToo
l [−d] [−h] [−t <timestamp1 ... timestampN>] [−v]

−d,−−debug
prints additional debug information

−h,−−help
prints the usage information for the tool , including available
options

−t,−−timestamps <timestamp1 ... timestampN>
List of timestamps (UTC timezone) to convert

−v,−−verbose
verbosely prints additional information

Example
The following listing shows the command to convert two logging timestamps as well

as the resulting output.

Kieker 1.11 User Guide 59



. bin/convertLoggingTimestamp.sh - -timestamps 1283156545581511026 1283156546127117246
1283156545581511026: Mo, 30 Aug 2010 08:22:25 +0000 (UTC) (Mo, 30 Aug 2010 10:22:25 +0200 (local time))
1283156546127117246: Mo, 30 Aug 2010 08:22:26 +0000 (UTC) (Mo, 30 Aug 2010 10:22:26 +0200 (local time))

Listing A.1: Execution under UNIX-like systems

. convertLoggingTimestamp.bat - -timestamps 1283156545581511026 1283156546127117246
1283156545581511026: Mo, 30 Aug 2010 08:22:25 +0000 (UTC) (Mo, 30 Aug 2010 10:22:25 +0200 (local time))
1283156546127117246: Mo, 30 Aug 2010 08:22:26 +0000 (UTC) (Mo, 30 Aug 2010 10:22:26 +0200 (local time))

Listing A.2: Execution under Windows

A.2 Script logReplay.sh|bat

Replays filesystem monitoring logs created by Kieker.Monitoring. Example applications
are:
• Merging multiple directories containing monitoring data into a single output di-

rectory.
• Importing a filesystem monitoring log to another monitoring log, e.g., a database.

Therefore, an appropriate Kieker.Monitoring configuration file must be passed to
the script (see Section 3.2).
• Replaying a recorded filesystem monitoring log in real-time (or faster/slower) in or-

der to simulate incoming monitoring data from a running system, e.g., via JMS (see
also Appendix C).

Main-class: kieker.tools.logReplayer.FilesystemLogReplayerStarter

Usage

usage: kieker . tools . logReplayer . FilesystemLogReplayerStarter [−a <factor>]
[−c <\path\to\monitoring.properties>] [−d] [−h] [−i <dir1 ...
dirN>] [−−ignore−records−after−date <yyyyMMdd−HHmmss>]
[−−ignore−records−before−date <yyyyMMdd−HHmmss>] [−k <true|false>]
[−n <num>] [−r <true|false>] [−v]

−a,−−realtime−acceleration−factor <factor>
Factor by which to accelerate (>1.0) or slow down (<1.0) the
replay in realtime mode (defaults to 1.0, i .e ., no
acceleration /slow down).

−c,−−monitoring.configuration <\path\to\monitoring.properties>
Configuration to use for the Kieker monitoring instance

−d,−−debug
prints additional debug information

−h,−−help
prints the usage information for the tool , including available
options

Kieker 1.11 User Guide 60



−i,−−inputdirs <dir1 ... dirN>
Log directories to read data from

−−ignore−records−after−date <yyyyMMdd−HHmmss>
Records logged after this date (UTC timezone) are ignored
( disabled by default ) .

−−ignore−records−before−date <yyyyMMdd−HHmmss>
Records logged before this date (UTC timezone) are ignored
( disabled by default ) .

−k,−−keep−logging−timestamps <true|false>
Replay the original logging timestamps ( defaults to true)?

−n,−−realtime−worker−threads <num>
Number of worker threads used in realtime mode (defaults to 1).

−r,−−realtime <true|false>
Replay log data in realtime ?

−v,−−verbose
verbosely prints additional information

Example
The following command replays the monitoring testdata included in the binary release
to another directory:

. bin/logReplay.sh
- -inputdirs examples/userguide/ch5–trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC
- -keep-logging-timestamps true
- -realtime false

Listing A.3: Execution under UNIX-like systems

. logReplay.bat
- -inputdirs ..\examples\userguide\ch5–trace-monitoring-aspectj\testdata\kieker-20100830-082225522-UTC
- -keep-logging-timestamps true
- -realtime false

Listing A.4: Execution under Windows

A.3 Script kax-run.sh|bat

Executes a Kieker.Analysis pipe-and-filter configuration file (.kax file), described in Sec-
tion 4.1.
Main-class: kieker.tools.KaxRun

Usage

Kieker 1.11 User Guide 61



usage: kieker . tools .KaxRun [−d] [−h] −i <filename> [−v]
−d,−−debug

prints additional debug information

−h,−−help
prints the usage information for the tool , including available
options

−i,−−input <filename>
the analysis project file (.kax) loaded

−v,−−verbose
verbosely prints additional information

A.4 Script kax-viz.sh|bat

Visualizes a Kieker.Analysis pipe-and-filter configuration file (.kax file), described in Sec-
tion 4.1.
Main-class: kieker.tools.KaxViz

Usage

usage: kieker . tools .KaxViz [−d] [−h] −i <filename> [−svg <filename>] [−v]
−d,−−debug

prints additional debug information

−h,−−help
prints the usage information for the tool , including available
options

−i,−−input <filename>
the analysis project file (.kax) loaded

−svg <filename>
name of svg saved on close

−v,−−verbose
verbosely prints additional information

A.5 Script trace-analysis.sh|bat

Calls Kieker.TraceAnalysis to analyze and visualize monitored trace data, as described in
Chapter 5.

Main-class: kieker.tools.traceAnalysis.TraceAnalysisTool

Usage

usage: kieker . tools . traceAnalysis . TraceAnalysisTool [−i <dir1 ... dirN>]
[−o <dir>] [−p <prefix>] [−v] [−d]
[−−plot−Deployment−Sequence−Diagrams]
[−−plot−Assembly−Sequence−Diagrams]

Kieker 1.11 User Guide 62



[−−plot−Deployment−Component−Dependency−Graph <responseTimes−ns |
responseTimes−us | responseTimes−ms | responseTimes−s>
<responseTimeColoring threshold(ms)>]
[−−plot−Assembly−Component−Dependency−Graph <responseTimes−ns |
responseTimes−us | responseTimes−ms | responseTimes−s>
<responseTimeColoring threshold(ms)>]
[−−plot−Container−Dependency−Graph]
[−−plot−Deployment−Operation−Dependency−Graph <responseTimes−ns |
responseTimes−us | responseTimes−ms | responseTimes−s>
<responseTimeColoring threshold(ms)>]
[−−plot−Assembly−Operation−Dependency−Graph <responseTimes−ns |
responseTimes−us | responseTimes−ms | responseTimes−s>
<responseTimeColoring threshold(ms)>]
[−−plot−Aggregated−Deployment−Call−Tree]
[−−plot−Aggregated−Assembly−Call−Tree] [−−plot−Call−Trees]
[−−print−Message−Traces] [−−print−Execution−Traces]
[−−print−invalid−Execution−Traces] [−−print−System−Model]
[−−print−Deployment−Equivalence−Classes]
[−−print−Assembly−Equivalence−Classes] [−−select−traces <id0 ...
idn>] [−−filter−traces <id0 ... idn>] [−−ignore−invalid−traces]
[−−repair−event−based−traces] [−−max−trace−duration <duration in
ms>] [−−ignore−executions−before−date <yyyyMMdd−HHmmss |
timestamp>] [−−ignore−executions−after−date <yyyyMMdd−HHmmss |
timestamp>] [−−short−labels] [−−include−self−loops]
[−−ignore−assumed−calls] [−−traceColoring <color map file>]
[−−addDescriptions <descriptions file >] [−h]

−i,−−inputdirs <dir1 ... dirN>
Log directories to read data from

−o,−−outputdir <dir>
Directory for the generated file (s)

−p,−−output−filename−prefix <prefix>
Prefix for output filenames

−v,−−verbose
Verbosely list used parameters and processed traces

−d,−−debug
prints additional debug information

−−plot−Deployment−Sequence−Diagrams
Generate and store deployment−level sequence diagrams (. pic)

−−plot−Assembly−Sequence−Diagrams
Generate and store assembly−level sequence diagrams (. pic)

−−plot−Deployment−Component−Dependency−Graph <responseTimes−ns | responseTimes−us |
responseTimes−ms | responseTimes−s> <responseTimeColoring threshold(ms)>

Generate and store a deployment−level component dependency graph
(.dot)

−−plot−Assembly−Component−Dependency−Graph <responseTimes−ns | responseTimes−us |
responseTimes−ms | responseTimes−s> <responseTimeColoring threshold(ms)>

Generate and store an assembly−level component dependency graph
(.dot)

Kieker 1.11 User Guide 63



−−plot−Container−Dependency−Graph
Generate and store a container dependency graph (.dot file )

−−plot−Deployment−Operation−Dependency−Graph <responseTimes−ns | responseTimes−us |
responseTimes−ms | responseTimes−s> <responseTimeColoring threshold(ms)>

Generate and store a deployment−level operation dependency graph
(.dot)

−−plot−Assembly−Operation−Dependency−Graph <responseTimes−ns | responseTimes−us |
responseTimes−ms | responseTimes−s> <responseTimeColoring threshold(ms)>

Generate and store an assembly−level operation dependency graph
(.dot)

−−plot−Aggregated−Deployment−Call−Tree
Generate and store an aggregated deployment−level call tree (.dot)

−−plot−Aggregated−Assembly−Call−Tree
Generate and store an aggregated assembly−level call tree (.dot)

−−plot−Call−Trees
Generate and store call trees for the selected traces (.dot)

−−print−Message−Traces
Save message trace representations of valid traces (. txt)

−−print−Execution−Traces
Save execution trace representations of valid traces (. txt)

−−print−invalid−Execution−Traces
Save a execution trace representations of invalid trace artifacts
(. txt)

−−print−System−Model
Save a representation of the internal system model (.html)

−−print−Deployment−Equivalence−Classes
Output an overview about the deployment−level trace equivalence
classes

−−print−Assembly−Equivalence−Classes
Output an overview about the assembly−level trace equivalence
classes

−−select−traces <id0 ... idn>
Consider only the traces identified by the list of trace IDs.
Defaults to all traces .

−−filter−traces <id0 ... idn>
Consider only the traces not identified by the list of trace IDs.
Defaults to no traces .

−−ignore−invalid−traces
If selected , the execution aborts on the occurence of an invalid
trace .

−−repair−event−based−traces
If selected , BeforeEvents with missing AfterEvents e.g. because of
software crash will be repaired .

Kieker 1.11 User Guide 64



−−max−trace−duration <duration in ms>
Threshold ( in ms) after which incomplete traces become invalid .
Defaults to 600,000 ( i .e, 10 minutes).

−−ignore−executions−before−date <yyyyMMdd−HHmmss | timestamp>
Executions starting before this date (UTC timezone) or monitoring
timestamp are ignored .

−−ignore−executions−after−date <yyyyMMdd−HHmmss | timestamp>
Executions ending after this date (UTC timezone) or monitoring
timestamp are ignored .

−−short−labels
If selected , abbreviated labels (e.g ., package names) are used in
the visualizations .

−−include−self−loops
If selected , self−loops are included in the visualizations .

−−ignore−assumed−calls
If selected , assumed calls are visualized just as regular calls .

−−traceColoring <color map file>
Color traces according to the given color map given as a
properties file (key: trace ID, value : color in hex format, e.g .,
0xff0000 for red; use trace ID ’ default ’ to specify the default
color )

−−addDescriptions <descriptions file >
Adds descriptions to elements according to the given file as a
properties file (key: component ID, e.g., @1; value : description )

−h,−−help
prints the usage information for the tool , including available
options

Example
The following commands generate a deployment-level operation dependency graph and
convert it to pdf format:

. bin/trace-analysis.sh
- -inputdirs examples/userguide/ch5–trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC
- -outputdir .
- -plot-Deployment-Operation-Dependency-Graph

. dot -T pdf deploymentOperationDependencyGraph.dot > deploymentOperationDependencyGraph.pdf

Listing A.5: Execution under UNIX-like systems

. trace-analysis.bat
- -inputdirs ..\examples\userguide\ch5–trace-monitoring-aspectj\testdata\kieker-20100830-082225522-UTC
- -outputdir .
- -plot-Deployment-Operation-Dependency-Graph

. dot -T pdf deploymentOperationDependencyGraph.dot > deploymentOperationDependencyGraph.pdf

Listing A.6: Execution under Windows

Additional examples can be found in Chapter 5.

Kieker 1.11 User Guide 65



A.6 Script dotPic-fileConverter.sh|bat

Converts each .dot and .pic file, e.g., diagrams generated by Kieker.TraceAnalysis (Sec-
tion 5), located in a directory into desired graphic output formats. This scripts simply
calls the Graphviz and PlotUtils tools dot and pic2plot.

Usage

Example: dotPic−fileConverter .bat C:\Temp pdf png ps

Example
The following command converts each .dot and .pic file located in the directory out/

to files in .pdf and .png format:

. bin/dotPic-fileConverter.sh out/ pdf png

Listing A.7: Execution under UNIX-like systems

. dotPic-fileConverter.bat out\ pdf png

Listing A.8: Execution under Windows

Kieker 1.11 User Guide 66



B Java EE Servlet Container Example

Using the sample Java web application MyBatis JPetStore,1 this example demonstrates
how to employ Kieker.Monitoring for monitoring a Java application running in a Java EE
container—in this case Jetty.2 Monitoring probes based on the Java EE Servlet API,
Spring, and AspectJ are used to monitor execution, trace, and session data (see Sec-
tion 5). The directory examples/JavaEEServletContainerExample/ contains the pre-
pared Jetty server with the MyBatis JPetStore application and the Kieker-based demo
analysis application known from http://demo.kieker-monitoring.net/.

B.1 Setting

The subdirectory jetty/ includes the Jetty server with the JPetStore application al-
ready deployed to the server’s webapps/ directory. The example is prepared to use two
alternative types of Kieker probes: either the Kieker Spring interceptor (default) or the
Kieker AspectJ aspects. Both alternatives additionally use Kieker’s Servlet filter.

Required Libraries and Kieker.Monitoring Configuration Both settings require the
files aspectjweaver-1.8.2.jar and kieker-1.11.jar, which are already included in
the webapps’s WEB-INF/lib/ directory. Also, a Kieker configuration file is already in-
cluded in the Jetty’s root directory, where it is considered for configuration by Kieker.-
Monitoring in both modes.

Servlet Filter (Default) The file web.xml is located in the webapps’s WEB-INF/ direc-
tory. Kieker’s Servlet filters are already enabled:

< filter >
< filter−name>sessionAndTraceRegistrationFilter</filter−name>
< filter−class>kieker.monitoring.probe. servlet . SessionAndTraceRegistrationFilter </ filter−class

>
<init−param>
<param−name>logFilterExecution</param−name>
<param−value>true</param−value>

</init−param>
</ filter >

1http://www.mybatis.org/spring/sample.html
2http://www.eclipse.org/jetty/

Kieker 1.11 User Guide 67

http://demo.kieker-monitoring.net/
http://www.mybatis.org/spring/sample.html
http://www.eclipse.org/jetty/


< filter−mapping>
< filter−name>sessionAndTraceRegistrationFilter</filter−name>
<url−pattern>/∗</url−pattern>

</ filter−mapping>

Listing B.1: Enabling the Servlet filter in web.xml

This filter can be used with both the Spring-based and the AspectJ-based instrumenta-
tion mode.

Spring-based Instrumentation (Default) Kieker’s Spring interceptor are already en-
abled in the file applicationContext.xml, located in the webapps’s WEB-INF/ direc-
tory:

<bean id=”opEMII”
class =”kieker .monitoring.probe. spring . executions .

OperationExecutionMethodInvocationInterceptor” />
<aop:config>

<aop:advisor advice−ref=”opEMII”
pointcut=”execution(public ∗ org.mybatis. jpetstore ..∗.∗(..) )”/>

</aop:config>

Listing B.2: Enabling the Spring interceptor in applicationContext.xml

R
When using, for example, the @Autowired feature in your Spring beans,
it can be necessary to force the usage of CGLIB proxy objects with
<aop:aspectj-autoproxy proxy-target-class="true"/>.

AspectJ-based Instrumentation In order to use AspectJ-based instrumentation, the
following changes need to be performed. The file start.ini, located in Jetty’s root
directory, allows to pass various JVM arguments, JVM system properties, and other
options to the server on startup. When using AspectJ for instrumentation, the respective
JVM argument needs to be activated in this file.

The AspectJ configuration file aop.xml is already located in the webapps’s
WEB-INF/classes/META-INF/ directory and configured to instrument the JPetStore
classes with Kieker’s OperationExecutionAspectFull aspect (Section 5).

When using the AspectJ-based instrumentation, make sure to disable the Spring in-
terceptor in the file applicationContext.xml, mentioned above.

1. Start the Jetty server using the start.jar file. You should make sure that the
server started properly by taking a look at the console output that appears during
server startup.

2. Now, you can access the JPetStore application by opening the URL http://

localhost:8080/jpetstore/ (Figure B.1). Kieker initialization messages should
appear in the console output.

3. Browse through the application to generate some monitoring data.

Kieker 1.11 User Guide 68

http://localhost:8080/jpetstore/
http://localhost:8080/jpetstore/


Figure B.1: MyBatis JPetStore

4. In this example, Kieker is configured to write the monitoring data to JMX in
order to communicate with the Kieker-based demo analysis application, which is
accessible via localhost:8080/livedemo/.

5. In order to write the monitoring data to the file system, the JMX writer needs to
be disabled in the file kieker.monitoring.properties, which is located in the di-
rectory webapps/jpetstore/WEB-INF/classes/META-INF/. After a restart of the
Jetty server, the Kieker startup output includes the information where the moni-
toring data is written to (should be a kieker-<DATE-TIME>/ directory) located in
the default temporary directory. This data can be analyzed and visualized using
Kieker.TraceAnalysis, as described in Chapter 5.

Kieker 1.11 User Guide 69

localhost:8080/livedemo/


C Using the JMS Writer and Reader

This chapter gives a brief description on how to use the AsyncJMSWriter and JMSReader

classes. The directory examples/userguide/appendix-JMS/ contains the sources, gra-
dle scripts etc. used in this example. It is based on the Bookstore application with
manual instrumentation presented in Chapter 2.

The following sections provide step-by-step instructions for the JMS server imple-
mentations ActiveMQ (Section C.1), HornetQ (C.2), and OpenJMS (C.3). The general
procedure for each example is the following:

1. Download and prepare the respective JMS server implementation
2. Copy required libraries to the example directory
3. Start the JMS server
4. Start the analysis instance which receives records via JMS
5. Start the monitoring instance which sends records via JMS

! Due to a bug in some JMS servers, avoid paths including white spaces.

C.1 ActiveMQ

C.1.1 Download and Prepare ActiveMQ

Download an ActiveMQ archive from http://activemq.apache.org/download.html

and decompress it to the base directory of the example. Note, that there are two different
distributions, one for Unix/Linux/Cygwin and another one for Windows.

Under UNIX-like systems, you’ll need to set the executable-bit of the start script:

. chmod +x bin/activemq

Also under UNIX-like systems, make sure that the file bin/activemq includes UNIX
line endings (e.g., using your favorite editor or the dos2unix tool).

C.1.2 Copy ActiveMQ Libraries

Copy the following files from the ActiveMQ release to the lib/ directory of this example:

1. activemq-all-<version>.jar (from ActiveMQ’s base directory)
2. slf4j-log4j<version>.jar (from ActiveMQ’s lib/optional directory)
3. log4j-<version>.jar (from ActiveMQ’s lib/optional directory)

Kieker 1.11 User Guide 70

http://activemq.apache.org/download.html


C.1.3 Kieker Monitoring Configuration for ActiveMQ

The file src-resources/META-INF/kieker.monitoring.properties-activeMQ is al-
ready configured to use the AsyncJMSWriter via ActiveMQ. The important properties
are the definition of the provider URL and the context factory:

kieker .monitoring. writer .jms.AsyncJMSWriter.ProviderUrl=tcp://127.0.0.1:61616/

Listing C.1: Excerpt from kieker.monitoring.properties-activemq configuring the
provider URL of the JMS writer via ActiveMQ

kieker .monitoring. writer .jms.AsyncJMSWriter.ContextFactoryType=org.apache.activemq.jndi.
ActiveMQInitialContextFactory

Listing C.2: Excerpt from kieker.monitoring.properties-activemq configuring the
context factory of the JMS writer via ActiveMQ

C.1.4 Running the Example

The execution of the example is performed by the following three steps:

1. Start the JMS server (you may have to set your JAVA_HOME variable first):

. bin/activemq start

Listing C.3: Start of the JMS server under UNIX-like systems

. bin\activemq start

Listing C.4: Start of the JMS server under Windows

2. Start the analysis part (in a new terminal):

. ./gradlew runAnalysisActiveMQ

Listing C.5: Start the analysis part under UNIX-like systems

. gradlew.bat runAnalysisActiveMQ

Listing C.6: Start the analysis part under Windows

3. Start the instrumented Bookstore (in a new terminal):

. ./gradlew runMonitoringActiveMQ

Listing C.7: Start the analysis part under UNIX-like systems

. gradlew.bat runMonitoringActiveMQ

Listing C.8: Start the analysis part under Windows

Kieker 1.11 User Guide 71



C.2 HornetQ

C.2.1 Download and Prepare HornetQ

Download a HornetQ archive from http://www.jboss.org/hornetq/downloads.html

and decompress it to the root directory of the example.
You need to create a queue in the HornetQ configuration file config/stand-alone/non-
clustered/hornetq-jms.xml, as shown in Listing C.9.

<queue name=”queue1”>
<entry name=”/queue/queue1”/>

</queue>

Listing C.9: Queue definition to be added to the HornetQ configuration file

C.2.2 Copy HornetQ Libraries

Copy the following files from the HornetQ lib/ folder to the lib/ directory of this
example:

1. hornetq-jms-client.jar

2. hornetq-commons.jar (if available)
3. hornetq-core-client.jar

4. jboss-jms-api.jar

5. jnp-client.jar

6. netty.jar

C.2.3 Kieker Monitoring Configuration for HornetQ

The file src-resources/META-INF/kieker.monitoring.properties-hornetq is already
configured to use the AsyncJMSWriter via HornetQ. The important properties are the
definition of the provider URL, the context factory, and the queue:

kieker .monitoring. writer .jms.AsyncJMSWriter.ProviderUrl=jnp://localhost:1099/

Listing C.10: Excerpt from kieker.monitoring.properties-hornetq configuring the
provider URL of the JMS writer via HornetQ

kieker .monitoring. writer .jms.AsyncJMSWriter.ContextFactoryType=org.jnp.interfaces.
NamingContextFactory

Listing C.11: Excerpt from kieker.monitoring.properties-hornetq configuring the
context factory of the JMS writer via HornetQ

Kieker 1.11 User Guide 72

http://www.jboss.org/hornetq/downloads.html


C.2.4 Running the Example

The execution of the example is performed by the following three steps:

1. Start the JMS server:

. ./run.sh

Listing C.12: Start of the JMS server under UNIX-like systems

. run.bat

Listing C.13: Start of the JMS server under Windows

Note that the script must be called from within HornetQ’s bin/ directory.

2. Start the analysis part (in a new terminal):

. ./gradlew runAnalysisHornetQ

Listing C.14: Start the analysis part under UNIX-like systems

. gradlew.bat runAnalysisHornetQ

Listing C.15: Start the analysis part under Windows

3. Start the instrumented Bookstore (in a new terminal):

. ./gradlew runMonitoringHornetQ

Listing C.16: Start the analysis part under UNIX-like systems

. gradlew.bat runMonitoringHornetQ

Listing C.17: Start the analysis part under Windows

! Note that recent HornetQ versions require Java > 6.

C.3 OpenJMS

C.3.1 Download and Prepare OpenJMS

Download an OpenJMS install archive from http://openjms.sourceforge.net and
decompress it to the root directory of the example. Under UNIX-like systems, make
sure that the executable-bit of all scripts within the bin/ directory are set.

Kieker 1.11 User Guide 73

http://openjms.sourceforge.net


C.3.2 Copy OpenJMS Libraries

Copy the following files from the OpenJMS lib/ folder to the lib/ directory of this
example:

1. openjms-<version>.jar

2. openjms-common-<version>.jar

3. openjms-net-<version>.jar

4. jms-<version>.jar

5. concurrent-<version>.jar

6. spice-jndikit-<version>.jar

C.3.3 Kieker Monitoring Configuration for OpenJMS

The file src-resources/META-INF/kieker.monitoring.properties-openjms is already
configured to use the AsyncJMSWriter via OpenJMS. The important properties are the
definition of the provider URL and the context factory:

kieker .monitoring. writer .jms.AsyncJMSWriter.ProviderUrl=tcp://127.0.0.1:3035

Listing C.18: Excerpt from kieker.monitoring.properties-openjms configuring the
provider URL of the JMS writer via OpenJMS

kieker .monitoring. writer .jms.AsyncJMSWriter.ContextFactoryType=org.exolab.jms.jndi.
InitialContextFactory

Listing C.19: Excerpt from kieker.monitoring.properties-openjms configuring the
context factory of the JMS writer via OpenJMS

C.3.4 Running the Example

The execution of the example is performed by the following three steps:

1. Start the JMS server (you may have to set your JAVA_HOME and OPENJMS_HOME

variables first):

. openjms−<version>/bin/startup.sh

Listing C.20: Start of the JMS server under UNIX-like systems

. openjms−<version>\bin\startup.bat

Listing C.21: Start of the JMS server under Windows

2. Start the analysis part (in a new terminal):

. ./gradlew runAnalysisOpenJMS

Listing C.22: Start of the JMS server under UNIX-like systems

Kieker 1.11 User Guide 74



. gradlew.bat runAnalysisOpenJMS

Listing C.23: Start of the JMS server under Windows

3. Start the instrumented Bookstore (in a new terminal):

. ./gradlew runMonitoringOpenJMS

Listing C.24: Start of the JMS server under UNIX-like systems

. gradlew.bat runMonitoringOpenJMS

Listing C.25: Start of the JMS server under Windows

Kieker 1.11 User Guide 75



D Sigar-Based Samplers for System-Level
Monitoring

This chapter gives a brief description on how to use the included periodic samplers
(Section 3.1.4) for monitoring CPU utilization and memory/swap usage. The directory
examples/userguide/appendix-Sigar/ contains the sources, gradle scripts etc. used
in this example. These samplers employ the Sigar API [1].

D.1 Preparation

1. Copy the files kieker-1.11-emf.jar and sigar-1.6.4.jar from the binary dis-
tribution to the example’s lib/ directory.

2. Additionally, depending on the underlying system platform, corresponding Sigar
native libraries need to be placed in the example’s lib/ directory. Kieker’s lib/sigar-
native-libs/ folder already includes the right libraries for 32 and 64 bit Lin-
ux/Windows platforms. Native libraries for other platforms can be downloaded
from [1].

D.2 Using the Sigar-Based Samplers

!
Using a very short sampling period with Sigar (< 500 ms) can result
in monitoring log entries with NaN values.

The Sigar API [1] provides access to a number of system-level inventory and monitor-
ing data, e.g., regarding memory, swap, cpu, file system, and network devices. Kieker in-
cludes Sigar-based samplers for monitoring CPU utilization (CPUsDetailedPercSampler,
CPUsCombinedPercSampler) and memory/swap usage (MemSwapUsageSampler). When
registered as a periodic sampler (Section 3.1.4), these samplers collect the data of interest
employing the Sigar API, and write monitoring records of types CPUUtilizationRecord,
ResourceUtilizationRecord, and MemSwapUsageRecord respectively to the configured
monitoring log/stream.

Listing D.1 shows an excerpt from this example’s MonitoringStarter which creates
and registers two Sigar-based peridioc samplers. For reasons of performance and thread-

Kieker 1.11 User Guide 76



safety, the SigarSamplerFactory should be used to create instances of the Sigar-based
Samplers.

38 final ISigarSamplerFactory sigarFactory = SigarSamplerFactory.INSTANCE;

39

40 final CPUsDetailedPercSampler cpuSampler =

41 sigarFactory.createSensorCPUsDetailedPerc();

42 final MemSwapUsageSampler memSwapSampler =

43 sigarFactory.createSensorMemSwapUsage();

44

45 final long offset = 2; // start after 2 seconds

46 final long period = 5; // monitor every 5 seconds

47

48 monitoringController.schedulePeriodicSampler(

49 cpuSampler, offset, period, TimeUnit.SECONDS);

50 monitoringController.schedulePeriodicSampler(

51 memSwapSampler, offset, period, TimeUnit.SECONDS);

Listing D.1: Excerpt from MonitoringStarter.java

Based on the existing samplers, users can easily create custom Sigar-based samplers by
extending the class AbstractSigarSampler. For example, Listing 3.1 in Section 3.1.4
shows the MemSwapUsageSampler’s sample method. Typically, it is also required to define
a corresponding monitoring record type, as explained in Section 3.3. When implementing
custom Sigar-based samplers, the SigarSamplerFactory’s getSigar method should be
used to retrieve a Sigar instance.

This example uses a stand-alone Java application to set up a Sigar-based monitoring
process. When using servlet containers, users may consider implementing this routine
as a ServletContextListener, which are executed when the container is started and
shutdown. As an example, Kieker includes a CPUMemUsageServletContextListener.

D.3 Executing the Example

The execution of the example is performed by the following two steps:

1. Monitoring CPU utilization and memory usage for 30 seconds (class Monitor-

ingStarter):

. ./gradlew runMonitoring

Listing D.2: Start of the monitoring under UNIX-like systems

. gradlew.bat runMonitoring

Listing D.3: Start of the monitoring under Windows

Kieker’s console output lists the location of the directory containing the file system
monitoring log. The following listing shows an excerpt:

Kieker 1.11 User Guide 77



Writer: ’ kieker.monitoring.writer.filesystem.AsyncFsWriter ’
Configuration:

kieker.monitoring.writer.filesystem.AsyncFsWriter.QueueFullBehavior =’0’
kieker.monitoring.writer.filesystem.AsyncFsWriter.QueueSize =’10000’
kieker.monitoring.writer.filesystem.AsyncFsWriter.customStoragePath =’’
kieker.monitoring.writer.filesystem.AsyncFsWriter.storeInJavaIoTmpdir =’true’

Writer Threads (1):
Finished: ’ false ’; Writing to Directory: ’/tmp/

kieker−20110511−10095928−UTC−avanhoorn−thinkpad−KIEKER−SINGLETON’

A sample monitoring log can be found in the directory examples/userguide/appendix-

Sigar/testdata/kieker-20110511-10095928-UTC-avanhoorn-thinkpad-KIEKER-

SINGLETON/.
2. Analyzing the monitoring data (class AnalysisStarter):

. ./gradlew runAnalysis -Danalysis.directory=</path/to/monitoring/log/>

Listing D.4: Start of the monitoring data analysis under UNIX-like systems

. gradlew.bat runAnalysis -Danalysis.directory=</path/to/monitoring/log/>

Listing D.5: Start of the monitoring data analysis under Windows

You need to replace </path/to/monitoring/log/> by the location of the file sys-
tem monitoring log. You can also use the above-mentioned monitoring log included
in the example.
The AnalysisStarter produces a simple console output for each monitoring record,
as shown in the following excerpt:

Wed, 11 May 2011 10:10:01 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 0.00 %
Wed, 11 May 2011 10:10:01 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 0.00 %
Wed, 11 May 2011 10:10:01 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 722.0 MB ; swap

usage: 0.0 MB
Wed, 11 May 2011 10:10:06 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 5.35 %
Wed, 11 May 2011 10:10:06 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 1.31 %
Wed, 11 May 2011 10:10:06 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 721.0 MB ; swap

usage: 0.0 MB
Wed, 11 May 2011 10:10:11 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 1.80 %
Wed, 11 May 2011 10:10:11 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 0.20 %
Wed, 11 May 2011 10:10:11 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 721.0 MB ; swap

usage: 0.0 MB
Wed, 11 May 2011 10:10:16 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 1.40 %
Wed, 11 May 2011 10:10:16 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 0.79 %
Wed, 11 May 2011 10:10:16 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 721.0 MB ; swap

usage: 0.0 MB
Wed, 11 May 2011 10:10:21 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 1.80 %
Wed, 11 May 2011 10:10:21 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 0.79 %
Wed, 11 May 2011 10:10:21 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 721.0 MB ; swap

usage: 0.0 MB

Kieker 1.11 User Guide 78



Wed, 11 May 2011 10:10:26 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 0 ; utilization: 0.40 %
Wed, 11 May 2011 10:10:26 +0000 (UTC): [CPU] host: thinkpad ; cpu−id: 1 ; utilization: 0.59 %
Wed, 11 May 2011 10:10:26 +0000 (UTC): [Mem/Swap] host: thinkpad ; mem usage: 721.0 MB ; swap

usage: 0.0 MB

Kieker 1.11 User Guide 79



E Kieker.Monitoring Default Configuration

This is the file kieker.monitoring.example.properties from the binary release and
constitutes Kieker.Monitoring’s default configuration. Section 3.2 describes how to use a
custom configuration.

## In order to use a custom Kieker.Monitoring configuration, create a copy of
## this file and modify it according to your needs.
##
## The location of the file is passed to Kieker.Monitoring via the JVM parameter
## kieker.monitoring.configuration. For example, with a configuration file named
## my.kieker.monitoring.properties in the folder META−INF you would pass this location
## to the JVM when starting your application:
##
## java −Dkieker.monitoring.configuration=META−INF/my.kieker.monitoring.properties [...]
##
## If no configuration file is passed, Kieker tries to use a configuration file in
## META−INF/kieker.monitoring.properties
## If this also fails , a default configuration is being used according to the values in
## this default file .

## The name of the Kieker instance.
kieker .monitoring.name=KIEKER

## Whether a debug mode is activated.
## This changes a few internal id generation mechanisms to enable
## easier debugging. Additionally, it is possible to enable debug
## logging in the settings of the used logger .
## This setting should usually not be set to true.
kieker .monitoring.debug=false

## Enable/disable monitoring after startup (true| false ; default : true)
## If monitoring is disabled, the MonitoringController simply pauses.
## Furthermore, probes should stop collecting new data and monitoring
## writers stop should stop writing existing data.
kieker .monitoring.enabled=true

## The name of the VM running Kieker. If empty the name will be determined
## automatically, else it will be set to the given value.
kieker .monitoring.hostname=

## The initial ID associated with all experiments. (currently not used)
kieker .monitoring. initialExperimentId =1

Kieker 1.11 User Guide 80



## Automatically add a metadata record to the monitoring log when writing
## the first monitoring record. The metadata record contains infromation
## on the configuration of the monitoring controller .
kieker .monitoring.metadata=true

## Enables/disable the automatic assignment of each record’s logging timestamp.
## (true|false; default : true)
kieker .monitoring.setLoggingTimestamp=true

## Whether a shutdown hook should be registered.
## This ensures that necessary cleanup steps are finished and no
## information is lost due to asynchronous writers.
## This should usually not be set to false .
kieker .monitoring.useShutdownHook=true

## Whether any JMX functionality is available
kieker .monitoring.jmx=false
kieker .monitoring.jmx.domain=kieker.monitoring

## Enable/Disable the MonitoringController MBean
kieker .monitoring.jmx. MonitoringController =true
kieker .monitoring.jmx. MonitoringController .name=MonitoringController

## Controls JMX remote access
kieker .monitoring.jmx.remote=false
kieker .monitoring.jmx.remote.port=59999
kieker .monitoring.jmx.remote.name=JMXServer
## If the SUN−JMX Bootstrap class is not available, a fallback to the
## default implementation can be used. The fallback solution prevents
## the VM from terminating.
## A graceful shutdown is done by connecting to the JMXServer, there to
## kieker.monitoring.JMXServer and using the operation stop()
kieker .monitoring.jmx.remote. fallback =true
## These properties will be forwarded to configure the JMX server
com.sun.management.jmxremote.local.only=false
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

## The size of the thread pool used to execute registered periodic sensor jobs .
## The thread pool is also used to periodically read the config file for adaptive
## monitoring.
## Set to 0 to deactivate scheduling.
kieker .monitoring. periodicSensorsExecutorPoolSize =1

## Enable or disable adaptive monitoring.
kieker .monitoring.adaptiveMonitoring.enabled=false
#
## Default location of the adaptive monitoring configuration File
kieker .monitoring.adaptiveMonitoring. configFile =META−INF/kieker.monitoring.adaptiveMonitoring.conf

Kieker 1.11 User Guide 81



#
## Enable/disable the updating of the pattern file by activating or deactivating
## probes through the api.
kieker .monitoring.adaptiveMonitoring. updateConfigFile=false
#
## The delay in seconds in which the pattern file is checked for changes.
## Requires kieker.monitoring.periodicSensorsExecutorPoolSize > 0.
## Set to 0 to disable the observation.
kieker .monitoring.adaptiveMonitoring. readInterval =30
#
## The maximal size of the signature cache. This is a weak limit, as the cache can exceed this size
## slightly in practical application .
## Set to −1 for an unbounded cache.
kieker .monitoring.adaptiveMonitoring.maxCacheSize=−1
#
## The behaviour of the signature cache, if the maximal size is bounded.
## 0: The cache ignores entries once the maximal size is reached.
## 1: The cache removes a (semi)random entry from the cache once the maximal size is exceeded.
## 2: The cache is completely cleared once the maximal size is reached.
kieker .monitoring.adaptiveMonitoring.boundedCacheBehaviour=0

###########################
####### TIMER #######
###########################
## Selection of the timer used by Kieker (classname)
## The value must be a fully−qualified classname of a class implementing
## kieker.monitoring.timer.ITimeSource and providing a constructor that
## accepts a single Configuration.
kieker .monitoring. timer=kieker.monitoring. timer .SystemNanoTimer

####
#kieker.monitoring.timer=kieker.monitoring.timer.SystemMilliTimer
#
## A timer with millisecond precision.
#
## The offset of the timer. The time returned is since 1970−1−1
## minus this offset. If the offset is empty it is set to the current
## time.
## The offset must be specified in milliseconds .
kieker .monitoring. timer .SystemMilliTimer. offset =0
## The timeunit used to report the timestamp.
## Accepted values:
## 0 − nanoseconds
## 1 − microseconds
## 2 − milliseconds
## 3 − seconds
kieker .monitoring. timer .SystemMilliTimer.unit=0

####
#kieker.monitoring.timer=kieker.monitoring.timer.SystemNanoTimer

Kieker 1.11 User Guide 82



#
## A timer with nanosecond precision.
#
## The offset of the timer. The time returned is since 1970−1−1
## minus this offset. If the offset is empty it is set to the current
## time.
## The offset must be specified in milliseconds .
kieker .monitoring. timer .SystemNanoTimer.offset=0
## The timeunit used to report the timestamp.
## Accepted values:
## 0 − nanoseconds
## 1 − microseconds
## 2 − milliseconds
## 3 − seconds
kieker .monitoring. timer .SystemNanoTimer.unit=0

###########################
####### WRITER #######
###########################
## Selection of monitoring data writer (classname)
## The value must be a fully−qualified classname of a class implementing
## kieker.monitoring.writer.IMonitoringWriter and providing a constructor that
## accepts a single Configuration.
kieker .monitoring. writer =kieker.monitoring. writer . filesystem .AsyncFsWriter

#####
#kieker.monitoring.writer=kieker.monitoring.writer.DummyWriter
#
## Configuration Properties of the DummyWriter
kieker .monitoring. writer .DummyWriter.key=value

#####
#kieker.monitoring.writer=kieker.monitoring.writer.AsyncDummyWriter
#
## Configuration Properties of the AsyncDummyWriter
kieker .monitoring. writer .AsyncDummyWriter.key=value
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .AsyncDummyWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .AsyncDummyWriter.PrioritizedQueueSize=100
#
## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)

Kieker 1.11 User Guide 83



## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer .AsyncDummyWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer .AsyncDummyWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.PrintStreamWriter
#
## The PrintStream used to print the monitoring records.
## Either STDOUT or STDERR.
## Other values are used as a filenames for a target log file .
## You should use another writer instead of this writer for logging to files !
kieker .monitoring. writer .PrintStreamWriter.Stream=STDOUT

#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .SyncFsWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem .SyncFsWriter.customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem .SyncFsWriter. maxEntriesInFile =25000
#
## The maximal file size of the generated monitoring log. Older files will be
## deleted if this file size is exceeded. Given in MiB.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .SyncFsWriter.maxLogSize=−1
#
## The maximal number of log files generated. Older files will be
## deleted if this number is exceeded.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .SyncFsWriter.maxLogFiles=−1
#
## When flushing is disabled, it could require a lot of records before
## finally any writing is done.
kieker .monitoring. writer . filesystem .SyncFsWriter. flush =true
#
## When flushing is disabled, records are buffered in memory before written.

Kieker 1.11 User Guide 84



## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem .SyncFsWriter. bufferSize =8192

#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .AsyncFsWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem .AsyncFsWriter.customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxEntriesInFile =25000
#
## The maximal file size of the generated monitoring log. Older files will be
## deleted if this file size is exceeded. Given in MiB.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogSize=−1
#
## The maximal number of log files generated. Older files will be
## deleted if this number is exceeded.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogFiles=−1
#
## When flushing is disabled, it could require a lot of records before
## finally any writing is done.
kieker .monitoring. writer . filesystem .AsyncFsWriter. flush =true
#
## When flushing is disabled, records are buffered in memory before written.
## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem .AsyncFsWriter. bufferSize =8192
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncFsWriter. PrioritizedQueueSize =100

## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.

Kieker 1.11 User Guide 85



kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . filesystem .AsyncFsWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .AsyncBinaryFsWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter. maxEntriesInFile =25000
#
## The maximal file size of the generated monitoring log. Older files will be
## deleted if this file size is exceeded. Given in MiB.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.maxLogSize=−1
#
## The maximal number of log files generated. Older files will be
## deleted if this number is exceeded.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.maxLogFiles=−1
#
## Whether the generated log files are compressed before writing to disk .
## Supported values are: NONE, DEFLATE, GZIP, ZIP
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.compress=NONE
#
## Records are buffered in memory before written to disk.
## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter. bufferSize =8192
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter. PrioritizedQueueSize =100

## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available

Kieker 1.11 User Guide 86



## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . filesystem .AsyncBinaryFsWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .AsyncBinaryNFsWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.maxEntriesInFile=25000
#
## The maximal file size of the generated monitoring log. Older files will be
## deleted if this file size is exceeded. Given in MiB.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.maxLogSize=−1
#
## The maximal number of log files generated. Older files will be
## deleted if this number is exceeded.
## At least one file will always remain, regardless of size !
## Use −1 to ignore this functionality.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.maxLogFiles=−1
#
## Records are buffered in memory before written to disk.
## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.bufferSize=65535
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.PrioritizedQueueSize=100

## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available

Kieker 1.11 User Guide 87



## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . filesystem .AsyncBinaryNFsWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .AsyncAsciiZipWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter .customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter . maxEntriesInFile =25000
#
## Records are buffered in memory before written to disk.
## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter . bufferSize =8192
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter .QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter . PrioritizedQueueSize =100

## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter .QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter .MaxShutdownDelay=−1
#
## Sets the compression level. The only valid values are:
## −1: default compression
## 0: no compression
## 1−9: from best speed to best compression
kieker .monitoring. writer . filesystem . AsyncAsciiZipWriter .compressionLevel=−1

Kieker 1.11 User Guide 88



#####
#kieker.monitoring.writer=kieker.monitoring.writer.filesystem .AsyncBinaryZipWriter
#
## In order to use a custom directory, set customStoragePath as desired. Examples:
## /var/kieker or C:\\KiekerData (ensure the folder exists).
## Otherwise the default temporary directory will be used
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter.customStoragePath=
#
## The maximal number of entries (records) per created file.
## Must be greater than zero.
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter. maxEntriesInFile =25000
#
## Records are buffered in memory before written to disk.
## This setting configures the size of the used buffer in bytes .
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter. bufferSize =8192
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter. PrioritizedQueueSize =100

## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter.MaxShutdownDelay=−1
#
## Sets the compression level. The only valid values are:
## −1: default compression
## 0: no compression
## 1−9: from best speed to best compression
kieker .monitoring. writer . filesystem .AsyncBinaryZipWriter.compressionLevel=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.namedRecordPipe.PipeWriter
#
## The name of the pipe used (must not be empty).
kieker .monitoring. writer .namedRecordPipe.PipeWriter.pipeName=kieker−pipe

Kieker 1.11 User Guide 89



#####
#kieker.monitoring.writer=kieker.monitoring.writer.jms.AsyncJMSWriter
#
## The url of the jndi provider that knows the jms service
## − ActiveMQ: tcp://127.0.0.1:61616/
## − HornetQ: jnp://localhost:1099/
## − OpenJMS: tcp://127.0.0.1:3035/
kieker .monitoring. writer .jms.AsyncJMSWriter.ProviderUrl=tcp://127.0.0.1:61616/
#
## The topic at the jms server which is used in the publisher/subscribe communication.
kieker .monitoring. writer .jms.AsyncJMSWriter.Topic=queue1
#
## The type of the jms factory implementation, e.g.
## − ActiveMQ: org.apache.activemq.jndi.ActiveMQInitialContextFactory
## − HornetQ: org.jnp.interfaces.NamingContextFactory
## − OpenJMS: org.exolab.jms.jndi.InitialContextFactory
kieker .monitoring. writer .jms.AsyncJMSWriter.ContextFactoryType=org.apache.activemq.jndi.

ActiveMQInitialContextFactory
#
## The service name for the jms connection factory.
kieker .monitoring. writer .jms.AsyncJMSWriter.FactoryLookupName=ConnectionFactory
#
## The time that a jms message will be kept alive at the jms server before
## it is automatically deleted .
kieker .monitoring. writer .jms.AsyncJMSWriter.MessageTimeToLive=10000
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .jms.AsyncJMSWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .jms.AsyncJMSWriter.PrioritizedQueueSize=100

#
## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer .jms.AsyncJMSWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer .jms.AsyncJMSWriter.MaxShutdownDelay=−1

Kieker 1.11 User Guide 90



#####
#kieker.monitoring.writer=kieker.monitoring.writer.database.SyncDbWriter
#
## Database driver classname
## Examples:
## MySQL: com.mysql.jdbc.Driver
## DerbyDB: org.apache.derby.jdbc.EmbeddedDriver
kieker .monitoring. writer .database.SyncDbWriter.DriverClassname=org.apache.derby.jdbc.

EmbeddedDriver
#
## Connection string
## Examples:
## MySQL: jdbc :mysql://HOSTNAME/DBNAME?user=DBUSER&password=DBPASS
## DerbyDB: jdbc:derby:DBNAME;user=DBUSER;password=DBPASS
kieker .monitoring. writer .database.SyncDbWriter.ConnectionString=jdbc:derby:tmp/KIEKER;user=

DBUSER;password=DBPASS;create=true
#
## Prefix for the names of the database tables
kieker .monitoring. writer .database.SyncDbWriter.TablePrefix=kieker
#
## Drop already existing tables or terminate monitoring with an error.
kieker .monitoring. writer .database.SyncDbWriter.DropTables=false

#####
#kieker.monitoring.writer=kieker.monitoring.writer.database.AsyncDbWriter
#
## Database driver classname
## MySQL: com.mysql.jdbc.Driver
## DerbyDB: org.apache.derby.jdbc.EmbeddedDriver
kieker .monitoring. writer .database.AsyncDbWriter.DriverClassname=org.apache.derby.jdbc.

EmbeddedDriver
#
## Connection string
## Examples:
## MySQL: jdbc :mysql://HOSTNAME/DBNAME?user=DBUSER&password=DBPASS
## DerbyDB: jdbc:derby:DBNAME;user=DBUSER;password=DBPASS
kieker .monitoring. writer .database.AsyncDbWriter.ConnectionString=jdbc:derby:tmp/KIEKER;user=

DBUSER;password=DBPASS;create=true
#
## Prefix for the names of the database tables
kieker .monitoring. writer .database.AsyncDbWriter.TablePrefix=kieker
#
## Drop already existing tables or terminate monitoring with an error.
kieker .monitoring. writer .database.AsyncDbWriter.DropTables=false
#
## The number of concurrent Database connections.
kieker .monitoring. writer .database.AsyncDbWriter.numberOfConnections=4
#
## Asynchronous writers need to store monitoring records in an internal buffer.

Kieker 1.11 User Guide 91



## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .database.AsyncDbWriter.QueueSize=10000
#
## Asynchronous writers need to store specific monitoring records in a prioritized internal buffer .
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer .database.AsyncDbWriter.PrioritizedQueueSize=100
#
## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer .database.AsyncDbWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer .database.AsyncDbWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.jmx.JMXWriter
#
## The domain used to register the MonitoringLog. If empty, the value
## of ”kieker.monitoring.jmx.domain” will be used.
kieker .monitoring. writer .jmx.JMXWriter.domain=
#
## The name of the MonitoringLog in the domain.
kieker .monitoring. writer .jmx.JMXWriter.logname=MonitoringLog

#####
#kieker.monitoring.writer=kieker.monitoring.writer.tcp.TCPWriter
#
## The hostname the TCPWriter connects to.
kieker .monitoring. writer .tcp.TCPWriter.hostname=localhost
#
## The ports the TCPWriter connects to.
kieker .monitoring. writer .tcp.TCPWriter.port1=10133
kieker .monitoring. writer .tcp.TCPWriter.port2=10134
#
## The size of the buffer used by the TCPWriter in bytes.
## Should be large enough to fit at least single string records (> 1KiB).
kieker .monitoring. writer .tcp.TCPWriter.bufferSize=65535
#
## Should each record be immediately sent?
kieker .monitoring. writer .tcp.TCPWriter.flush=false
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.

Kieker 1.11 User Guide 92



kieker .monitoring. writer .tcp.TCPWriter.QueueSize=10000
kieker .monitoring. writer .tcp.TCPWriter.QueueSize=100
#
## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error (default)
## 1: writer blocks until queue capacity is available
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer .tcp.TCPWriter.QueueFullBehavior=0
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer .tcp.TCPWriter.MaxShutdownDelay=−1

#####
#kieker.monitoring.writer=kieker.monitoring.writer.explorviz .ExplorVizExportWriter
#
## The hostname the ExplorVizExportWriter connects to.
kieker .monitoring. writer . explorviz .ExplorVizExportWriter .hostname=localhost
#
## The ports the TCPWriter connects to.
kieker .monitoring. writer . explorviz .ExplorVizExportWriter . port=10133
#
## The size of the buffer used by the TCPWriter in bytes.
## Should be large enough to fit at least single string records (> 1KiB).
kieker .monitoring. writer . explorviz .ExplorVizExportWriter . bufferSize =65535
#
## Should each record be immediately sent?
kieker .monitoring. writer . explorviz .ExplorVizExportWriter . flush =false
#
## Asynchronous writers need to store monitoring records in an internal buffer.
## This parameter defines its capacity in terms of the number of records.
kieker .monitoring. writer . explorviz .ExplorVizExportWriter .QueueSize=1000000
kieker .monitoring. writer . explorviz .ExplorVizExportWriter .QueueSize=100
#
## Behavior of the asynchronous writer when the internal queue is full:
## 0: terminate Monitoring with an error
## 1: writer blocks until queue capacity is available ( default )
## 2: writer discards new records until space is available
## Be careful when using the value ’1’ since then, the asynchronous writer
## is no longer decoupled from the monitored application.
kieker .monitoring. writer . explorviz .ExplorVizExportWriter .QueueFullBehavior=1
#
## Maximum time to wait for the writer threads to finish (in milliseconds).
## A MaxShutdownDelay of −1 means infinite waiting.
kieker .monitoring. writer . explorviz .ExplorVizExportWriter .MaxShutdownDelay=−1

Listing E.1: kieker.monitoring.properties

Kieker 1.11 User Guide 93



F Additional Source Code Listings

F.1 MyNamedPipeManager and MyPipe

22 public class MyNamedPipeManager {

23

24 private static final MyNamedPipeManager PIPE_MGR_INSTANCE = new

MyNamedPipeManager();

25

26 // Not synchronized!

27 private final Map<String, MyPipe> pipeMap = new HashMap<String, MyPipe>();

28

29 public static MyNamedPipeManager getInstance() {

30 return MyNamedPipeManager.PIPE_MGR_INSTANCE;

31 }

32

33 public MyPipe acquirePipe(final String pipeName) throws

IllegalArgumentException {

34 if ((pipeName == null) || (pipeName.length() == 0)) {

35 throw new IllegalArgumentException("Invalid connection name: ’" + pipeName

+ "’");

36 }

37 MyPipe conn;

38 synchronized (this) {

39 conn = this.pipeMap.get(pipeName);

40 if (conn == null) {

41 conn = new MyPipe(pipeName);

42 this.pipeMap.put(pipeName, conn);

43 }

44 }

45 return conn;

46 }

47 }

Listing F.1: MyNamedPipeManager.java

Kieker 1.11 User Guide 94



22 public class MyPipe {

23

24 private final String pipeName;

25 private final LinkedBlockingQueue<PipeData> buffer =

26 new LinkedBlockingQueue<PipeData>();

27

28 public MyPipe(final String pipeName) {

29 this.pipeName = pipeName;

30 }

31

32 public String getPipeName() {

33 return this.pipeName;

34 }

35

36 public void put(final PipeData data) throws InterruptedException {

37 this.buffer.put(data);

38 }

39

40 public PipeData poll(final long timeout) throws InterruptedException {

41 return this.buffer.poll(timeout, TimeUnit.SECONDS);

42 }

43

44 }

Listing F.2: MyPipe.java

21 public class PipeData {

22

23 private final long loggingTimestamp;

24 private final Object[] recordData;

25 private final Class<? extends IMonitoringRecord> recordType;

26

27 public PipeData(final long loggingTimestamp, final Object[] recordData, final

Class<? extends IMonitoringRecord> recordType) {

28 this.loggingTimestamp = loggingTimestamp;

29 this.recordData = recordData; // in real settings we would clone

30 this.recordType = recordType;

31 }

32

33 public final long getLoggingTimestamp() {

34 return this.loggingTimestamp;

35 }

36

37 public final Object[] getRecordData() {

38 return this.recordData; // in real settings we would clone

39 }

40

Kieker 1.11 User Guide 95



41 public Class<? extends IMonitoringRecord> getRecordType() {

42 return this.recordType;

43 }

44 }

Listing F.3: PipeData.java

Kieker 1.11 User Guide 96



G Example Console Outputs

G.1 Quick Start Example (Chapter 2)

Apr 14, 2014 10:29:09 PM kieker.monitoring. core . configuration . ConfigurationFactory
createSingletonConfiguration

INFO: Loading properties from properties file in classpath : ’META−INF/kieker.monitoring.properties’
Apr 14, 2014 10:29:09 PM kieker.monitoring. core . configuration . ConfigurationFactory

loadConfigurationFromResource
WARNING: File ’META−INF/kieker.monitoring.properties’ not found in classpath
Apr 14, 2014 10:29:09 PM kieker.monitoring. core . controller . MonitoringController createInstance
INFO: Current State of kieker .monitoring (1.9) Status : ’enabled’

Name: ’KIEKER−SINGLETON’; Hostname: ’myHost’; experimentID: ’1’
JMXController: JMX disabled
RegistryController : 0 strings registered .

TimeSource: ’ kieker .monitoring. timer .SystemNanoTimer’
Time in nanoseconds (with nanoseconds precision ) since Thu Jan 01 01:00:00 CET 1970’

ProbeController : disabled
WriterController :

Number of Inserts : ’0’
Automatic assignment of logging timestamps: ’ true ’

Writer : ’ kieker .monitoring. writer . filesystem .AsyncFsWriter’
Configuration :

kieker .monitoring. writer . filesystem .AsyncFsWriter. flush =’true’
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogSize=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueFullBehavior=’0’
kieker .monitoring. writer . filesystem .AsyncFsWriter.MaxShutdownDelay=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter. maxEntriesInFile =’25000’
kieker .monitoring. writer . filesystem .AsyncFsWriter. bufferSize =’8192’
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogFiles=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter.customStoragePath=’’
kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueSize=’10000’

Records lost : 0
Writer Threads (1):

Finished : ’ false ’; Writing to Directory : ’/tmp/kieker−20140414−202909312−UTC−myHost
−KIEKER−SINGLETON’

Sampling Controller : Periodic Sensor available : Poolsize : ’0’; Scheduled Tasks: ’0’
Bookstore.main: Starting request 0
Bookstore.main: Starting request 1
Bookstore.main: Starting request 2
Bookstore.main: Starting request 3
Bookstore.main: Starting request 4
Apr 14, 2014 10:29:09 PM kieker.monitoring. core . controller . MonitoringController run
INFO: ShutdownHook notifies controller to initiate shutdown

Listing G.1: Execution of the manually instrumented Bookstore application (Section 2.3)

Kieker 1.11 User Guide 97



Apr 14, 2014 10:33:08 PM kieker. analysis . plugin . reader . filesystem .FSDirectoryReader run
INFO: < Loading /tmp/kieker−20140414−202909312−UTC−myHost−KIEKER−SINGLETON/kieker

−20140414−202909334−UTC−000−Thread−1.dat
Apr 14, 2014 10:33:08 PM kieker. analysis . AnalysisController handleKiekerMetadataRecord
INFO: Kieker metadata: version =’1.9’, controllerName=’KIEKER−SINGLETON’, hostname=’myHost’,

experimentId=’1’, debugMode=’false’, timeOffset=’0’, timeUnit=’NANOSECONDS’, numberOfRecords=’1’
TeeFilter−2(OperationExecutionRecord) 1397507349333612418;public void kieker.examples.userguide.

ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349331135863;1397507349333237208;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349336643445;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349334501352;1397507349336575189;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349338830403;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349336724513;1397507349338814261;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349340925965;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349338839217;1397507349340906276;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349343092031;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349340999396;1397507349343071939;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349345216288;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349343104120;1397507349345187386;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349347544442;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349345363211;1397507349347493714;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349349789220;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349347593226;1397507349349720521;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349352170480;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349350004459;1397507349352120991;myHost;−1;−1

TeeFilter−2(OperationExecutionRecord) 1397507349354413163;public void kieker.examples.userguide.
ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id
>;−1;1397507349352218753;1397507349354363380;myHost;−1;−1

Apr 14, 2014 10:33:08 PM kieker. analysis . AnalysisController terminate
INFO: Terminating analysis .
Apr 14, 2014 10:33:08 PM kieker. analysis .analysisComponent.AbstractAnalysisComponent.FSReader−1

terminate
INFO: Shutting down reader.

Listing G.2: Execution of the example analysis (Section 2.4)

Kieker 1.11 User Guide 98



G.2 Trace Monitoring, Analysis & Visualization (Chapter 5)

Bookstore.main: Starting request 0
Bookstore.main: Starting request 1
Bookstore.main: Starting request 2
Bookstore.main: Starting request 3
Bookstore.main: Starting request 4
Apr 14, 2014 10:35:04 PM kieker.monitoring. core . configuration . ConfigurationFactory

createSingletonConfiguration
INFO: Loading properties from properties file in classpath : ’META−INF/kieker.monitoring.properties’
Apr 14, 2014 10:35:04 PM kieker.monitoring. core . controller . MonitoringController createInstance
INFO: Current State of kieker .monitoring (1.9) Status : ’enabled’

Name: ’KIEKER’; Hostname: ’myHost’; experimentID: ’1’
JMXController: JMX disabled
RegistryController : 0 strings registered .

TimeSource: ’ kieker .monitoring. timer .SystemNanoTimer’
Time in nanoseconds (with nanoseconds precision ) since Thu Jan 01 01:00:00 CET 1970’

ProbeController : disabled
WriterController :

Number of Inserts : ’0’
Automatic assignment of logging timestamps: ’ true ’

Writer : ’ kieker .monitoring. writer . filesystem .AsyncFsWriter’
Configuration :

kieker .monitoring. writer . filesystem .AsyncFsWriter. flush =’true’
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogSize=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueFullBehavior=’0’
kieker .monitoring. writer . filesystem .AsyncFsWriter.MaxShutdownDelay=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter. maxEntriesInFile =’25000’
kieker .monitoring. writer . filesystem .AsyncFsWriter. bufferSize =’8192’
kieker .monitoring. writer . filesystem .AsyncFsWriter.maxLogFiles=’−1’
kieker .monitoring. writer . filesystem .AsyncFsWriter.customStoragePath=’’
kieker .monitoring. writer . filesystem .AsyncFsWriter.QueueSize=’10000’

Records lost : 0
Writer Threads (1):

Finished : ’ false ’; Writing to Directory : ’/tmp/kieker−20140414−203504785−UTC−myHost
−KIEKER’

Sampling Controller : Periodic Sensor available : Poolsize : ’0’; Scheduled Tasks: ’0’
Apr 14, 2014 10:35:04 PM kieker.monitoring. core . registry . ControlFlowRegistry < clinit>
INFO: First threadId will be 1063271724524503040

Listing G.3: Execution of the Bookstore with AspectJ trace instrumentation
(Section 5.1.1)

Kieker 1.11 User Guide 99



Bibliography

[1] Hyperic, Inc (2011). Hyperic SIGAR API. http://www.hyperic.com/products/

sigar.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin (1997). Aspect-oriented programming. In Proceedings of the 2007 European
Conference on Object-Oriented Programming (ECOOP ’97), volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Springer.

[3] Kieker Project (Apr. 2015). Kieker 1.11 User Guide. http://kieker-monitoring.
net/documentation/.

[4] Kieker Project (2015). Kieker web site. http://kieker-monitoring.net/.

[5] Oracle (2011). Java Messaging Service (JMS). http://www.oracle.com/

technetwork/java/jms/.

[6] OracleJava management extensions (jmx) technology. http://www.oracle.com/

technetwork/java/javase/tech/javamanagement-140525.html.

[7] Oracle (2011). Java Servlet Technology. http://www.oracle.com/technetwork/

java/index-jsp-135475.html.

[8] SpringSource (2011). Spring. http://www.springsource.org/.

[9] The Apache Foundation (2011). Apache CXF. http://cxf.apache.org/.

[10] The Eclipse Foundation (2011). The AspectJ Project. http://www.eclipse.org/

aspectj/.

[11] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and D. Kiesel-
horst (Nov. 2009). Continuous monitoring of software services: Design and appli-
cation of the Kieker framework. Technical Report TR-0921, Department of Com-
puter Science, University of Kiel, Germany. http://www.informatik.uni-kiel.

de/uploads/tx_publication/vanhoorn_tr0921.pdf.

[12] A. van Hoorn, J. Waller, and W. Hasselbring (Apr. 2012). Kieker: A framework
for application performance monitoring and dynamic software analysis. In Proceed-
ings of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE 2012), pages 247–248. ACM.

Kieker 1.11 User Guide 100

http://www.hyperic.com/products/sigar
http://www.hyperic.com/products/sigar
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/
http://www.oracle.com/technetwork/java/jms/
http://www.oracle.com/technetwork/java/jms/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.springsource.org/
http://cxf.apache.org/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.informatik.uni-kiel.de/uploads/tx_publication/vanhoorn_tr0921.pdf
http://www.informatik.uni-kiel.de/uploads/tx_publication/vanhoorn_tr0921.pdf

	Introduction
	Quick Start Example
	Kieker.Monitoring Component
	Kieker.Analysis Component
	Kieker.TraceAnalysis Tool
	Appendix
	Wrapper scripts
	Java EE Servlet Container Example
	Using the JMS Writer and Reader
	Sigar-Based Samplers for System-Level Monitoring
	Kieker.Monitoring Default Configuration
	Additional Source Code Listings
	Example Console Outputs
	Bibliography

