
1Copyright © 2011 Tata Consultancy Services

Limited

Spark Job Performance Analysis and

Prediction Tool

Rekha Singhal

2

Problem Motivation

Development/Testing Environment Production Environment

Deployment

Application
Execution Time : 10 sec

Application
Execution Time : 200 sec

SLA : 60 sec

After X years of deployment

3

Problem Solution

Development/Testing Environment

Production Environment
Cluster size, Data size, Platform configuration

Application

SLA : 60 sec

Performance

Prediction

Model

Application Estimated Execution Time

4

Spark Architecture

source:https://intellipaat.com/tutorial/spark-tutorial/spark-architecture/

5

Assumptions

 Development/Testing environment has at least one instance for

each type of node in production environment

 Application representative small size data sets are available.

 Focus on 3 parameters - #executors, #cores per executor,

ExecutorMemorySize

 Good network connectivity in the cluster

6

Approach

 Set up small size Spark cluster with one instance of each node

type in production

 Execute the application in development environment with given

small data size.

 Collect Spark logs created during application execution

 Parse the log and collect parameters used in the model

 Build the prediction model using the collected measurements

 Apply to model for give production environment – data size,

Spark parameters and cluster size.

7

Application

Job1 JobN…

.. ..SiS1 SM

E1 EK K=Number of Executors

T1 TL
L=Number of cores per executor

…

…

Application Execution on Spark

8

Prediction of Application Execution Time






Ni

i
pJobi

0

‘i’th Job Estimated Execution Time

in production environment

i

SNj

j

j

iii JobCleanuppStageJobStartpJob
i

 


0

Job startup

overheads
Job cleanup

overheads

Estimated Execution time of ‘j’th stage of job ‘i

in production

9

STAGE EXECUTION SIMULATOR for ESTIMATIONS !!

10

Task

Execution

Time

Core1

Core2

Core3

Core4

S0

S1

SN

..

Si

...

Spark Job Stages Execution of tasks in an executor in stage Si

Stage Execution Behaviour

11

First Wave

Tasks

Rest Wave

Tasks

Task

Execution

Time

Core1

Core2

Core3

Core4

S0

S1

SN

..

Si

...

Spark Job Stages Execution of tasks in an executor in stage Si

Stage Execution Behaviour

12

Task Execution Time Components

Scheduler delay

Serialization & de-serialization

JVM Time

Shuffle Time

Computation Time

13

Task Execution Time Components

Scheduler delay - # Tasks, Task launch wave

Serialization & de-serialization - Block size

JVM Time - Processing type, Cores per executor, #executors per node

Shuffle Time- Data size per executor, Executor Memory

Computation Time - computation type, block size, data skew, heterogeneity

14

Task Computation Time Variability

Bkt1 Bktm

15

Performance Summary of Stage

 First Wave Average Scheduler Delay

 Rest Wave Average Scheduler Delay

 Number of tasks in each Bucket ‘p’

 Average computation time (duration) of each Bucket ‘p’

16

(a) Wordcount Application (b) Terasort Application

Task JVM Time Prediction

17

Task Scheduler Delay Estimation

First Wave Scheduler delay increases linear to total number of tasks

Rest Wave Scheduler delay is same

18

Task Shuffle Time Estimation

eadsSpillOverhksxecutorTasEstimatedEfleTimeAvgTskShufuffleTimeExecutorSh  *

Data Size per Task remains Same since Block Size same

Spilloverheads estimated by generating Spurious spills in constrained

Development environment

19

Task Execution Time Estimation

Scheduler delay - prediction model

Serialization & de-serialization - from measurements

JVM Time - using prediction model based on measurements

Shuffle Time- prediction model

Computation Time - linear estimation of number of tasks in each bucket.

Each bucket duration is average of tasks’ execution time in the bucket

20

First Wave

Tasks

Rest Wave

Tasks

Task Execution

Time

Core1

Core2

Corem

CoreP

bkt1

bkt2

bktm

bkt1

bkt2

bkt1 bktmbkt2

Stage Execution Time Estimation

j
i

eTasksonCor

onallcores
j

i
j

i upStageCleanionTimeTaskExecutMaxStageStartpStage  

21

Experimental Setup for Validation

Configuration Parameter Values

Number of Executors 2,4,6

Number of cores per

Executor

2,4,6

Executor Memory 4 GB

Data Size 10 GB, 20 GB

Cluster Size 2, 4

SQL1 Average on ‘lineitem’

column

SQL 2 Join of ‘lineitem’ and ‘order’

22

Model Validation : Wordcount

23

Model Validation: Terasort

24

Model Validation: K-Means

25

Model Validation: SQL1 & SQL 2

26

Cost Model Accuracy

Average Prediction Error < 15%

27

Accuracy: ML Model vs Cost Model

28

OptimizationModule(Input: DataSize, ClusterSize)

{

Optimal_time = 9999;

For Numexecutor = 1 to max cores in the Cluster do

For Numcore_Executor = 1 to max cores on node do

For Executormemory = Min Size to RAM size on node do

If ValidConfiguration(cluster size, numexecutor, numcoreExecutor, Executormemory)

{

Time = PredictTimeModel(DataSize, ClusterSize, Numexecutor, NumcoreExecutor, Executormemory)

if Time < optimal_time

{

optimal_Numexecutor = Numexecutor

optimal_NumcoreExecutor = NumcoreExecutor

optimal_Executormemory = Executormemory

optimal_time = Time;

}

}

Done

Done

Done

Return (optimal_Numexecutor, optimal_NumcoreExecutor, optimal_Executormemory)

}

Auto Tuning Algorithm

29

rekha.singhal@tcs.com

