An Evaluation of Systems for Scalable Linear
Algebra

Anthony Thomas

UC San Diego

July 2, 2018

Anthony Thomas (UC San Diego) July 2, 2018 1/21

Introduction

Our Contributions

© Empirical evaluation of systems focusing on linear algebra (LA) based
machine learning
Articulate a new set of LA workloads stress testing different data
access and communication patterns

(2]

© Extensive empirical comparison of several popular LA systems on real
and synthetic data

o

Analysis and discussion of system strengths and weaknesses

Under submission to VLDB 2019
https://adalabucsd.github.io/slab.html

Anthony Thomas (UC San Diego) July 2, 2018 2/21

Background

@ What is linear algebra?
» Formal mathematical language for describing transformations to
matrices
» Characterizes systems of linear equations (in a vector space)
» Example: Ax=b=x=A"'b
@ Why should we care?
» Most common statistics algorithms can be expressed as transformations
to matrices
» Elegant language of abstraction for programming statistical algorithms
» Algorithms can be expressed in “near math” syntax
» Loosely analogous to SQL and relational algebra

Anthony Thomas (UC San Diego) July 2, 2018 3/21

Numerical Linear Algebra (Classical)

L AP A CK
L -A P -A C -K
L AP A -C-K
L -A P -A -CK
L A -P-AC K
L -A-P A C -K
LAPACK (C/FORTRAN) R Language (C) Eigen (C++)
1979/1992 1993 2009

@ Mostly low level libraries and wrappers

@ Some work towards scalability (ScaLAPACK)

Anthony Thomas (UC San Diego) July 2, 2018 4/21

Yet Another Linear Algebra Benchmark?

@ Linear Algebra has been extensively studied, but...

» Focus mostly on single-node in-memory setting
» Target low level libraries (BLAS, Eigen, etc...)
» Goal is to optimize primitive linear algebra operations

matrix matrix product Cholesky decomposition

Mms

Source: http://eigen.tuxfamily.org/index.php?title=Benchmark

Anthony Thomas (UC San Diego) July 2, 2018 5/21

What’s new in Systems for Scalable Linear Algebra?

@ Scaling beyond main memory:

» RDBMS based systems: Apache MADIib, SimSQL, RIOT

» Map-reduce/Spark: Spark ML/MLIib, Apache SystemML, Mahout
Samsara

» Something new: TensorFlow

“ SpQFI’(\Z EE“h Ten:oE‘

Anthony Thomas (UC San Diego) July 2, 2018 6 /21

What’s new in Systems for Scalable Linear Algebra?

@ Scaling beyond main memory:
» RDBMS based systems: Apache MADIib, SimSQL, RIOT
» Map-reduce/Spark: Spark ML/MLIib, Apache SystemML, Mahout
Samsara
» Something new: TensorFlow
@ Moving towards declarative programming style:

» Less painful (not painless) implementation of distributed programs
» Decoupling physical implementation from program design
» Hollistic inter-operator program optimization

“ SpQFI’(\Z EE“h Ten:o?r‘

Anthony Thomas (UC San Diego) July 2, 2018 6 /21

Example: Apache SystemML

@ Aims to bring SQL style "declarative programming” to machine
learning

@ Compiles programs written in a custom R-like language (DML) into
batch jobs run on Spark.
@ Sophisticated program optimization:

> Physical operator selection (e.g. GMM implementation)

» Optimization based on LA semantics

» Automatic choice of dense/sparse matrices, local/distributed
computation

Anthony Thomas (UC San Diego) July 2, 2018 7/21

Experimental Evaluation

@ Performance evaluation targeted at the “typical data science user”

@ Focus on bulk LA operations - not mini-batch SGD and neural
networks

Anthony Thomas (UC San Diego) July 2, 2018 8/21

Experimental Evaluation

1

@ Performance evaluation targeted at the “typical data science user’

@ Focus on bulk LA operations - not mini-batch SGD and neural
networks

@ Two scale factors controlling data complexity:

@ Number of rows
© Data sparsity (% cells which are 0)

Anthony Thomas (UC San Diego) July 2, 2018 8/21

Experimental Evaluation

@ Performance evaluation targeted at the “typical data science user”

@ Focus on bulk LA operations - not mini-batch SGD and neural
networks

@ Two scale factors controlling data complexity:

@ Number of rows
@ Data sparsity (% cells which are 0)

@ And two scale factors controlling the computational environment:

@ Number of CPU cores
© Number of cluster nodes (implcitly scales RAM)

Anthony Thomas (UC San Diego) July 2, 2018 8/21

Task Categories

Primitive Matrix Operators
@ Aggregation Operators: Frobenius Norm, Matrix Vector Multiplication
@ Binary Block Operators: Matrix Addition

@ Multiplication: General matrix-matrix multiplication, transpose-self
multiplication

Pipelines and Decompositions

@ Multiplication chains:

p =u-v - w
Nx1 Nx1 1xN Nx1
@ Singular Value Decomposition:
SV\D(M) - U - £ -v'

Nx K NxK KxK KxK

Anthony Thomas (UC San Diego) July 2, 2018 9/21

Task Categories - ML Algorithms

OLS Regression solved via normal equations:

Input: X - data, y - outcomes
Result: 3 = solve(X' X, XTy)

Anthony Thomas (UC San Diego) July 2, 2018 10 / 21

Task Categories - ML Algorithms

OLS Regression solved via normal equations:

Input: X - data, y - outcomes
Result: 3 = solve(X' X, XTy)

Logistic Regression solved via gradient descent:

Input: X - data, y - outcomes

B = rand(K,1)

while not converged do

| B=B+X"(y ~ treptx7))
end

Result: 8

Anthony Thomas (UC San Diego) July 2, 2018 10 / 21

Task Categories - ML Algorithms

Non-Negative Matrix Factorization solved via multiplicative updates:

Input: X - data matrix, r - rank
W = rand(N,r)

H = rand(r, K)

while not converged do

_ . _XHT
w=w WHHT

g w'x
H=H wW'wH

end
Result: (H, H)

Anthony Thomas (UC San Diego) July 2, 2018 11 /21

Task Categories - ML Algorithms

Non-Negative Matrix Factorization solved via multiplicative updates:

Input: X - data matrix, r - rank
W = rand(N,r)

H = rand(r, K)

while not converged do

_ . _XHT
w=w WHHT

g w'x
H=H wW'wH

end
Result: (H, H)

Heteroscedasticity Robust Standard Errors solved by White’s
Method

Input: X - data, € - OLS Residuals
—

(XTX)"1XTdiag(e2)X(XTX)1
Result: V

Anthony Thomas (UC San Diego) July 2, 2018 1/21

Technical Details

o Systems Compared (Distributed Context)

» Spark MLLib - Spark based

» Apache SystemML - Spark based

» SciDB - Custom Array DBMS

» Apache MADLIib - RDBMS (Greenplum/Postgres) based

» “Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK
based

Anthony Thomas (UC San Diego) July 2, 2018 12 /21

Technical Details

o Systems Compared (Distributed Context)

Spark MLLib - Spark based

Apache SystemML - Spark based

SciDB - Custom Array DBMS

Apache MADLib - RDBMS (Greenplum/Postgres) based
“Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK
based

@ Measurements performed on CloudLab “Clemson” site

» 200 GB RAM, 24 CPU, 800GB per node
» Most experiments (and intermediates) fit in distributed RAM

v

vV vy VvYy

Anthony Thomas (UC San Diego) July 2, 2018 12 /21

Technical Details

o Systems Compared (Distributed Context)

Spark MLLib - Spark based

Apache SystemML - Spark based

SciDB - Custom Array DBMS

Apache MADLib - RDBMS (Greenplum/Postgres) based
“Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK
based

@ Measurements performed on CloudLab “Clemson” site

» 200 GB RAM, 24 CPU, 800GB per node
» Most experiments (and intermediates) fit in distributed RAM

@ Each test is run b times

» First measurement is discarded
» Median, min and max a reported

v

vV vy VvYy

Data loading time is not included

Disk spills are allowed

Anthony Thomas (UC San Diego) July 2, 2018 12 /21

Results!

Figure 1: Distributed Dense Matrix Ops - Vary Rows

e pbdR A~ MaDLib ~§- MLib Y- scioe i} SystemML

e phiR A- MADLD - MiLb F- scie Al SystemML

A) NORM) B) MVM A
(RINORM - i 102 (B) -
10!
3 10t
<
8 0
@ 10 10°
]
10-1 1071 %--
2.5 5.0 10.0 20.0 2.5 5.0 10.0 20.0
Million Rows Million Rows
e phdR A- MADLD 4~ MLLb F- sciop A SystemML e pbdR A MADLD - b F- scios Al SystemML
102 (C) ADD 10° (D)GMM - A
10t 102
100 - 10!
10°

2.5 5.0 10.0 20.0
Million Rows

Cluster size: 8 nodes, Matrix fixed axis: 100, CPUs: 24

What'’s going on with SystemML?

10.0 20.0
Mllllon Columns

Anthony Thomas (UC San Diego)

July 2, 2018

13/21

Figure 2: Distributed Sparse Matrix Ops - Vary Sparsity

A- maoLib - miib Y- scios lF systemmL

4 mub ¥-scos A systemmi

2
10 (A) NORM A a0 (B) MVM v
-
-7 4
- -
n 1 i -
0 -
£ :
E _/,f_f:‘ 10 woimm o
o Hid
2 10° _4_—-'_; Lot
I et S 100 g
1071 m-
1072 107? 10° 10 1072 107? 10° 10!
Percentage nonzero values Percentage nonzero values
A woub 4 b - scios A systemmi A mob 4 b Y- scios A SystemmL
10° (C) ADD 103 (D) GMM-¥
R v-- s
102 - e
- MBSt .-
10! PEEEESEE -« P
_.a
10° ?., """
107t Pt .
=
102 107t 10° 10! 1072 107t 10° 10t

Percentage nonzero values

Percentage nonzero values

Cluster size: 8 nodes, CPUs: 24, Logical Matrix Size: 100GB
What happened to MADIib for MVM?

Anthony Thomas (UC San Diego)

July 2, 2018

14/21

Seconds

Anthony Thomas (UC San Diego)

103

Figure 3: Distributed Pipelines and Decompositions

% pbdR -A- MADLIb - MLLib “H pbdr 4 miib i} SystemmL
(A),S_V_D‘-A 102 (B) I}'I’MC—Q
Y ids w o 4T
- T 10°) 4 . ---
‘_,/ P g o .
kT 10° T
e N 5 PR
- 107! .
8.2 ¥
_____ 4 ----——%| J1072 [S
_______ - USSR bl * =
- 1073 | m~
2.5 5.0 10.0 20.0 0.001 0.01 0.1 1.0
Million Rows Million Rows
July 2, 2018

15/ 21

Figure 4: Distributed Dense LA Algorithms - Vary Rows

e pbdR A MADLD 4 Ml ¥- sciop Al SystemML e phdR A- MADLD - MLLb F- scios A SystemML

(A) oLs
-

5.0 0.0 20.0 2.5 5.0 0.0 20.0
Million Rows Million Rows

e pbdR A~ MADLIb ~§- MiLib - scios i} SystemmL e pbdR A~ MabLib §- miib - scios i} systemmL

(D)HRSE -~ A

R

2.5 5.0 10.0 20.0 2.5 5.0 10.0 20.0
Million Rows Million Rows

Implemented by us...

Anthony Thomas (UC San Diego) July 2, 2018 16 / 21

Figure 5: Distributed Dense Algorithms - Criteo Adclick Data

103

"
T

5

(%) 2

910

]

1.0 2.0 4.0 8.0
Nodes
-®- MADLIib (LA) -a- MADLIb (Native) - MLLib (LA) ~4#- MLLib (Native) —-+- SystemML (Hybrid Native) -m- SystemML (LA) -e- SystemML (Spark Native)

Implemented by us and them...

17/21

Anthony Thomas (UC San Diego) July 2, 2018

Comparing LA Abstractions - Example |

Apache SystemML Spark MLLib

wMatrix, d ix,
sc: | : Matrix = {

numRows . toInt

numCols.toInt

atrices.rand(K, 1, Random())

X.toBlockMatrix(1624,X.numCols.toInt).transpose
XT.persist (MEMORY_AND_D: ER)
(matr:

(iteration < max_iter) {

println(s"Iteration => ${iteration}")
val xb = X.multiply(w)
val gg IndexedRowMatr

nrow(.
w = matri.
iteration

stepsize xb. rows .map(rc In Row(

row.index, from_breeze(
bNum. signoid(as_breeze(row.vector))))

(iteration < iteration:

xb

delta - 1/(1l+exp(-x

stepSize - stepSize

w =w - ((stepSize * t(X) delta)/N)

))

val eps - elem_subtract(gg, y).toBlockMatrix(XT.colsPerBlock,1)
val XT.multiply(eps, 500).tolLocalMatrix

val w_update - (step_size/N.toDouble)*as_breeze(XTe)

w - from_breeze(as_breeze(w) :- w_update)

step_size /= 2.0

iteration = iteration:1 iteration += 1

July 2, 2018 18 /21

Comparing LA Abstractions - Example Il

pbdR SciDB

store(gemm(X, X, Z, transa:true), XTX)
store(gemm(project(
apply(cross_join(
transpose(gesvd(XTX, 'VT')) v,
project(apply(
o) { gesvd(XTX, 'S'), sigma_inv,

solve(t(X) X, t(X) POW(sigma,-1)), sigma_inv)
(b) SINV, V.1, i),
vsinv, v*sigma_inv), vsinv),
transpose(gesvd(XTX, 'U')), Z), XTX_INV)
[gemm (XTX_INV, gemm(X, y, Z, transa:true), Z)

Anthony Thomas (UC San Diego) July 2, 2018 19 /21

Some Commentary

Challenges Remain...

@ Physical data independence is often poor - need to decide a priori on
dense vs sparse, distributed vs. local, which data type to use etc...

@ Tuning remains a “significant challenge”:
@ Often requires substantial systems knowledge (GC tuning, caching and
buffer pools)
@ Poor tuning can kill performance
© Often labor intensive - especially for RDBMS type systems
© Too many tunable parameters - leads to “tuning fatigue”
@ Tuning parameters may be workload specific

@ More nodes does not always lead to better performance!

Anthony Thomas (UC San Diego) July 2, 2018 20 /21

Key Takeaways

@ Transparently switching between distributed and local execution
improves performance and improves usability

o Automatically detecting LA optimizations (diagonal matrix multiply,
multiplication chain order) improves performance and improves
usability

@ Intermediate results should not be needlessly materialized and
computations should be pipelined whenever possible

@ Strong physical data independence and LA based abstractions are key
to an enjoyable programming experience

Anthony Thomas (UC San Diego) July 2, 2018 21 /21

