
An Evaluation of Systems for Scalable Linear
Algebra

Anthony Thomas

UC San Diego

July 2, 2018

Anthony Thomas (UC San Diego) July 2, 2018 1 / 21



Introduction

Our Contributions

1 Empirical evaluation of systems focusing on linear algebra (LA) based
machine learning

2 Articulate a new set of LA workloads stress testing different data
access and communication patterns

3 Extensive empirical comparison of several popular LA systems on real
and synthetic data

4 Analysis and discussion of system strengths and weaknesses

Under submission to VLDB 2019
https://adalabucsd.github.io/slab.html

Anthony Thomas (UC San Diego) July 2, 2018 2 / 21



Background

What is linear algebra?
I Formal mathematical language for describing transformations to

matrices
I Characterizes systems of linear equations (in a vector space)
I Example: Ax = b ⇒ x = A

−1
b

Why should we care?
I Most common statistics algorithms can be expressed as transformations

to matrices
I Elegant language of abstraction for programming statistical algorithms
I Algorithms can be expressed in “near math” syntax
I Loosely analogous to SQL and relational algebra

Anthony Thomas (UC San Diego) July 2, 2018 3 / 21



Numerical Linear Algebra (Classical)

LAPACK (C/FORTRAN) R Language (C) Eigen (C++)
1979/1992 1993 2009

Mostly low level libraries and wrappers

Some work towards scalability (ScaLAPACK)

Anthony Thomas (UC San Diego) July 2, 2018 4 / 21



Yet Another Linear Algebra Benchmark?

Linear Algebra has been extensively studied, but...
I Focus mostly on single-node in-memory setting
I Target low level libraries (BLAS, Eigen, etc...)
I Goal is to optimize primitive linear algebra operations

Source: http://eigen.tuxfamily.org/index.php?title=Benchmark

Anthony Thomas (UC San Diego) July 2, 2018 5 / 21



What’s new in Systems for Scalable Linear Algebra?

Scaling beyond main memory:
I RDBMS based systems: Apache MADlib, SimSQL, RIOT
I Map-reduce/Spark: Spark ML/MLlib, Apache SystemML, Mahout

Samsara
I Something new: TensorFlow

Moving towards declarative programming style:
I Less painful (not painless) implementation of distributed programs
I Decoupling physical implementation from program design
I Hollistic inter-operator program optimization

Anthony Thomas (UC San Diego) July 2, 2018 6 / 21



What’s new in Systems for Scalable Linear Algebra?

Scaling beyond main memory:
I RDBMS based systems: Apache MADlib, SimSQL, RIOT
I Map-reduce/Spark: Spark ML/MLlib, Apache SystemML, Mahout

Samsara
I Something new: TensorFlow

Moving towards declarative programming style:
I Less painful (not painless) implementation of distributed programs
I Decoupling physical implementation from program design
I Hollistic inter-operator program optimization

Anthony Thomas (UC San Diego) July 2, 2018 6 / 21



Example: Apache SystemML

Aims to bring SQL style ”declarative programming” to machine
learning

Compiles programs written in a custom R-like language (DML) into
batch jobs run on Spark.

Sophisticated program optimization:
I Physical operator selection (e.g. GMM implementation)
I Optimization based on LA semantics
I Automatic choice of dense/sparse matrices, local/distributed

computation

Anthony Thomas (UC San Diego) July 2, 2018 7 / 21



Experimental Evaluation

Performance evaluation targeted at the “typical data science user”

Focus on bulk LA operations - not mini-batch SGD and neural
networks

Two scale factors controlling data complexity:
1 Number of rows
2 Data sparsity (% cells which are 0)

And two scale factors controlling the computational environment:
1 Number of CPU cores
2 Number of cluster nodes (implcitly scales RAM)

Anthony Thomas (UC San Diego) July 2, 2018 8 / 21



Experimental Evaluation

Performance evaluation targeted at the “typical data science user”

Focus on bulk LA operations - not mini-batch SGD and neural
networks

Two scale factors controlling data complexity:
1 Number of rows
2 Data sparsity (% cells which are 0)

And two scale factors controlling the computational environment:
1 Number of CPU cores
2 Number of cluster nodes (implcitly scales RAM)

Anthony Thomas (UC San Diego) July 2, 2018 8 / 21



Experimental Evaluation

Performance evaluation targeted at the “typical data science user”

Focus on bulk LA operations - not mini-batch SGD and neural
networks

Two scale factors controlling data complexity:
1 Number of rows
2 Data sparsity (% cells which are 0)

And two scale factors controlling the computational environment:
1 Number of CPU cores
2 Number of cluster nodes (implcitly scales RAM)

Anthony Thomas (UC San Diego) July 2, 2018 8 / 21



Task Categories

Primitive Matrix Operators

Aggregation Operators: Frobenius Norm, Matrix Vector Multiplication

Binary Block Operators: Matrix Addition

Multiplication: General matrix-matrix multiplication, transpose-self
multiplication

Pipelines and Decompositions

Multiplication chains:

p
N×1

= u
N×1
· v
1×N
· w
N×1

Singular Value Decomposition:

SVD(M)
N×K

→ U
N×K

· Σ
K×K

· V T

K×K

Anthony Thomas (UC San Diego) July 2, 2018 9 / 21



Task Categories - ML Algorithms

OLS Regression solved via normal equations:

Input: X - data, y - outcomes
Result: β = solve(XTX ,XTy)

Logistic Regression solved via gradient descent:

Input: X - data, y - outcomes
β = rand(K , 1)
while not converged do

β = β + XT (y − 1
1+exp(−Xβ))

end
Result: β

Anthony Thomas (UC San Diego) July 2, 2018 10 / 21



Task Categories - ML Algorithms

OLS Regression solved via normal equations:

Input: X - data, y - outcomes
Result: β = solve(XTX ,XTy)

Logistic Regression solved via gradient descent:

Input: X - data, y - outcomes
β = rand(K , 1)
while not converged do

β = β + XT (y − 1
1+exp(−Xβ))

end
Result: β

Anthony Thomas (UC San Diego) July 2, 2018 10 / 21



Task Categories - ML Algorithms
Non-Negative Matrix Factorization solved via multiplicative updates:

Input: X - data matrix, r - rank
W = rand(N, r)
H = rand(r ,K )
while not converged do

W = W · XH
T

WHH
T

H = H · W
T
X

W
T
WH

end
Result: (H ,H)

Heteroscedasticity Robust Standard Errors solved by White’s
Method

Input: X - data, ε - OLS Residuals
V =

(XTX )−1XTdiag(ε2)X (XTX )−1

Result: V
Anthony Thomas (UC San Diego) July 2, 2018 11 / 21



Task Categories - ML Algorithms
Non-Negative Matrix Factorization solved via multiplicative updates:

Input: X - data matrix, r - rank
W = rand(N, r)
H = rand(r ,K )
while not converged do

W = W · XH
T

WHH
T

H = H · W
T
X

W
T
WH

end
Result: (H ,H)

Heteroscedasticity Robust Standard Errors solved by White’s
Method

Input: X - data, ε - OLS Residuals
V =

(XTX )−1XTdiag(ε2)X (XTX )−1

Result: V
Anthony Thomas (UC San Diego) July 2, 2018 11 / 21



Technical Details

Systems Compared (Distributed Context)
I Spark MLLib - Spark based
I Apache SystemML - Spark based
I SciDB - Custom Array DBMS
I Apache MADLib - RDBMS (Greenplum/Postgres) based
I “Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK

based

Measurements performed on CloudLab “Clemson” site
I 200 GB RAM, 24 CPU, 800GB per node
I Most experiments (and intermediates) fit in distributed RAM

Each test is run 5 times
I First measurement is discarded
I Median, min and max a reported

Data loading time is not included

Disk spills are allowed

Anthony Thomas (UC San Diego) July 2, 2018 12 / 21



Technical Details

Systems Compared (Distributed Context)
I Spark MLLib - Spark based
I Apache SystemML - Spark based
I SciDB - Custom Array DBMS
I Apache MADLib - RDBMS (Greenplum/Postgres) based
I “Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK

based

Measurements performed on CloudLab “Clemson” site
I 200 GB RAM, 24 CPU, 800GB per node
I Most experiments (and intermediates) fit in distributed RAM

Each test is run 5 times
I First measurement is discarded
I Median, min and max a reported

Data loading time is not included

Disk spills are allowed

Anthony Thomas (UC San Diego) July 2, 2018 12 / 21



Technical Details

Systems Compared (Distributed Context)
I Spark MLLib - Spark based
I Apache SystemML - Spark based
I SciDB - Custom Array DBMS
I Apache MADLib - RDBMS (Greenplum/Postgres) based
I “Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK

based

Measurements performed on CloudLab “Clemson” site
I 200 GB RAM, 24 CPU, 800GB per node
I Most experiments (and intermediates) fit in distributed RAM

Each test is run 5 times
I First measurement is discarded
I Median, min and max a reported

Data loading time is not included

Disk spills are allowed

Anthony Thomas (UC San Diego) July 2, 2018 12 / 21



Results!

Figure 1: Distributed Dense Matrix Ops - Vary Rows

Cluster size: 8 nodes, Matrix fixed axis: 100, CPUs: 24
What’s going on with SystemML?
Anthony Thomas (UC San Diego) July 2, 2018 13 / 21



Figure 2: Distributed Sparse Matrix Ops - Vary Sparsity

Cluster size: 8 nodes, CPUs: 24, Logical Matrix Size: 100GB
What happened to MADlib for MVM?

Anthony Thomas (UC San Diego) July 2, 2018 14 / 21



Figure 3: Distributed Pipelines and Decompositions

Anthony Thomas (UC San Diego) July 2, 2018 15 / 21



Figure 4: Distributed Dense LA Algorithms - Vary Rows

Implemented by us...

Anthony Thomas (UC San Diego) July 2, 2018 16 / 21



Figure 5: Distributed Dense Algorithms - Criteo Adclick Data

Implemented by us and them...

Anthony Thomas (UC San Diego) July 2, 2018 17 / 21



Comparing LA Abstractions - Example I

Apache SystemML Spark MLLib

Anthony Thomas (UC San Diego) July 2, 2018 18 / 21



Comparing LA Abstractions - Example II

pbdR SciDB

Anthony Thomas (UC San Diego) July 2, 2018 19 / 21



Some Commentary

Challenges Remain...

Physical data independence is often poor - need to decide a priori on
dense vs sparse, distributed vs. local, which data type to use etc...

Tuning remains a “significant challenge”:
1 Often requires substantial systems knowledge (GC tuning, caching and

buffer pools)
2 Poor tuning can kill performance
3 Often labor intensive - especially for RDBMS type systems
4 Too many tunable parameters - leads to “tuning fatigue”
5 Tuning parameters may be workload specific

More nodes does not always lead to better performance!

Anthony Thomas (UC San Diego) July 2, 2018 20 / 21



Key Takeaways

Transparently switching between distributed and local execution
improves performance and improves usability

Automatically detecting LA optimizations (diagonal matrix multiply,
multiplication chain order) improves performance and improves
usability

Intermediate results should not be needlessly materialized and
computations should be pipelined whenever possible

Strong physical data independence and LA based abstractions are key
to an enjoyable programming experience

Anthony Thomas (UC San Diego) July 2, 2018 21 / 21


