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Introduction

Our Contributions

1 Empirical evaluation of systems focusing on linear algebra (LA) based
machine learning

2 Articulate a new set of LA workloads stress testing different data
access and communication patterns

3 Extensive empirical comparison of several popular LA systems on real
and synthetic data

4 Analysis and discussion of system strengths and weaknesses

Under submission to VLDB 2019
https://adalabucsd.github.io/slab.html
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Background

What is linear algebra?
I Formal mathematical language for describing transformations to

matrices
I Characterizes systems of linear equations (in a vector space)
I Example: Ax = b ⇒ x = A

−1
b

Why should we care?
I Most common statistics algorithms can be expressed as transformations

to matrices
I Elegant language of abstraction for programming statistical algorithms
I Algorithms can be expressed in “near math” syntax
I Loosely analogous to SQL and relational algebra
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Numerical Linear Algebra (Classical)

LAPACK (C/FORTRAN) R Language (C) Eigen (C++)
1979/1992 1993 2009

Mostly low level libraries and wrappers

Some work towards scalability (ScaLAPACK)
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Yet Another Linear Algebra Benchmark?

Linear Algebra has been extensively studied, but...
I Focus mostly on single-node in-memory setting
I Target low level libraries (BLAS, Eigen, etc...)
I Goal is to optimize primitive linear algebra operations

Source: http://eigen.tuxfamily.org/index.php?title=Benchmark
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What’s new in Systems for Scalable Linear Algebra?

Scaling beyond main memory:
I RDBMS based systems: Apache MADlib, SimSQL, RIOT
I Map-reduce/Spark: Spark ML/MLlib, Apache SystemML, Mahout

Samsara
I Something new: TensorFlow

Moving towards declarative programming style:
I Less painful (not painless) implementation of distributed programs
I Decoupling physical implementation from program design
I Hollistic inter-operator program optimization
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Example: Apache SystemML

Aims to bring SQL style ”declarative programming” to machine
learning

Compiles programs written in a custom R-like language (DML) into
batch jobs run on Spark.

Sophisticated program optimization:
I Physical operator selection (e.g. GMM implementation)
I Optimization based on LA semantics
I Automatic choice of dense/sparse matrices, local/distributed

computation
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Experimental Evaluation

Performance evaluation targeted at the “typical data science user”

Focus on bulk LA operations - not mini-batch SGD and neural
networks

Two scale factors controlling data complexity:
1 Number of rows
2 Data sparsity (% cells which are 0)

And two scale factors controlling the computational environment:
1 Number of CPU cores
2 Number of cluster nodes (implcitly scales RAM)
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Task Categories

Primitive Matrix Operators

Aggregation Operators: Frobenius Norm, Matrix Vector Multiplication

Binary Block Operators: Matrix Addition

Multiplication: General matrix-matrix multiplication, transpose-self
multiplication

Pipelines and Decompositions

Multiplication chains:

p
N×1

= u
N×1
· v
1×N
· w
N×1

Singular Value Decomposition:

SVD(M)
N×K

→ U
N×K

· Σ
K×K

· V T

K×K
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Task Categories - ML Algorithms

OLS Regression solved via normal equations:

Input: X - data, y - outcomes
Result: β = solve(XTX ,XTy)

Logistic Regression solved via gradient descent:

Input: X - data, y - outcomes
β = rand(K , 1)
while not converged do

β = β + XT (y − 1
1+exp(−Xβ))

end
Result: β
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Task Categories - ML Algorithms
Non-Negative Matrix Factorization solved via multiplicative updates:

Input: X - data matrix, r - rank
W = rand(N, r)
H = rand(r ,K )
while not converged do

W = W · XH
T

WHH
T

H = H · W
T
X

W
T
WH

end
Result: (H ,H)

Heteroscedasticity Robust Standard Errors solved by White’s
Method

Input: X - data, ε - OLS Residuals
V =

(XTX )−1XTdiag(ε2)X (XTX )−1

Result: V
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Technical Details

Systems Compared (Distributed Context)
I Spark MLLib - Spark based
I Apache SystemML - Spark based
I SciDB - Custom Array DBMS
I Apache MADLib - RDBMS (Greenplum/Postgres) based
I “Programming with Big Data in R” (pbdR) DMAT - MPI/ScaLAPACK

based

Measurements performed on CloudLab “Clemson” site
I 200 GB RAM, 24 CPU, 800GB per node
I Most experiments (and intermediates) fit in distributed RAM

Each test is run 5 times
I First measurement is discarded
I Median, min and max a reported

Data loading time is not included

Disk spills are allowed
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Results!

Figure 1: Distributed Dense Matrix Ops - Vary Rows

Cluster size: 8 nodes, Matrix fixed axis: 100, CPUs: 24
What’s going on with SystemML?
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Figure 2: Distributed Sparse Matrix Ops - Vary Sparsity

Cluster size: 8 nodes, CPUs: 24, Logical Matrix Size: 100GB
What happened to MADlib for MVM?
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Figure 3: Distributed Pipelines and Decompositions
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Figure 4: Distributed Dense LA Algorithms - Vary Rows

Implemented by us...
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Figure 5: Distributed Dense Algorithms - Criteo Adclick Data

Implemented by us and them...
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Comparing LA Abstractions - Example I

Apache SystemML Spark MLLib
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Comparing LA Abstractions - Example II

pbdR SciDB
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Some Commentary

Challenges Remain...

Physical data independence is often poor - need to decide a priori on
dense vs sparse, distributed vs. local, which data type to use etc...

Tuning remains a “significant challenge”:
1 Often requires substantial systems knowledge (GC tuning, caching and

buffer pools)
2 Poor tuning can kill performance
3 Often labor intensive - especially for RDBMS type systems
4 Too many tunable parameters - leads to “tuning fatigue”
5 Tuning parameters may be workload specific

More nodes does not always lead to better performance!
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Key Takeaways

Transparently switching between distributed and local execution
improves performance and improves usability

Automatically detecting LA optimizations (diagonal matrix multiply,
multiplication chain order) improves performance and improves
usability

Intermediate results should not be needlessly materialized and
computations should be pipelined whenever possible

Strong physical data independence and LA based abstractions are key
to an enjoyable programming experience
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