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Quick Computer Benchmark History

Benchmark Metric When
Gibson Instruction Mix MIPS: Million Instructions Per Second 1970
(Frequency of instructions)
Whetstone, Dhrystone Whetstones, Dhrystones per second 1976,1984
(Synthetic programs)
Puzzle, Quicksort MIPS 1981
(Toy programs)
Linpack, Livermore Loops MFLOPS: Million Floating-Point Operations Per 1976,1986

(Kernels)

Second
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SPEC: System Performance Evaluation Cooperative

Benchmark name by SPEC generation

e Application level benchmarking
(enable via high-level languages
and portability of UNIX OS)

e Cross-platform benchmarking and
evaluation

e Industry and academia to join at
reasonable cost

e Standard in marketplace, papers,
and textbooks

SPEC2017 SPEC2006 SPEC2000 SPEC95 SPEC92 SPEC89

GNU C compiler gce
Perl interpreter perl ] espresso
Route planning mcf li
General data compression XZ bzip2 compress eqntott
Discrete Event simulation - computer network omnetpp vortex go SC
XML to HTML conversion via XSLT xalancbmk gzip iipeg
Video compression X264 h264ref eon m88ksim
Artificial Intelligence: alpha-beta tree search (Chess) deepsjeng sjeng twolf
Artificial Intelligence: Monte Carlo tree search (Go) leela gobmk vortex
Artificial Intelligence: recursive solution generator (Sudoku) exchange2 astar vpr

hmmer crafty

libquantum parser
Explosion modeling ~<«————— bwaves foppp
Physics: relativity < cactuBSSN tomcatv
Molecular dynamics namd doduc
Ray tracing povray nasa7
Fluid dynamics lbm spice
Weather forecasting wrf swim matrix300

lical imaging: optical with finite elements parest gamess apsi hydro2d

3D rendering and animation blender mgrid su2cor
Atmosphere modeling caméd milc wupwise applu wave5
Image manipulation imagick zeusmp apply turb3d
Molecular dynamics nab gromacs galgel
Computational Electromagnetics fotonik3d leslie3d mesa
Regional ocean modeling roms dealll art

soplex equake

caleulix facerec

GemsFDTD | ammp

tonto lucas

sphinx3 S

sixtrack

Fig 1.17,
Computer Architecture
Edition, 2018

;A Quantitative Approach, 6th
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Goals for MLPerf

1. Accelerate progress in ML via fair and useful measurement

2. Encourage innovation across state-of-the-art ML systems

3. Serve both industrial and research communities

4. Enforce replicability to ensure reliable results

5. Keep benchmark effort affordable so all can play

7! MLPerf



Difficulties of ML Benchmarking

1. Diversity in deep learning models used

a. Problem domain
b. Models

c. Datasets
2. Pace of field

a. State-of-the-art models evolve every few months
3. Lack of evaluation metric

a. Accuracy

b. Time to train, latency of inference
4. Multi-disciplinary field oo
a.. Algorithms, SystemsHardware B e TS 70 MLPerf



Outline

e Model diversity

e Agile benchmark development
e FEvaluation metrics

e Open and closed divisions

e Contributing to MLPerf
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Fathom suite showed breadth in ML benchmarking

Seqg2Seq
e Collection of 8 diverse learning models
MemNet
Speech e C(lear, tested implementations in TensorFlow
Autoenc e Training and inference modes provided
Residual : ,
e Provided broad view and coverage
VGG
e Models have drastically changed and greatly
AlexNet :
advanced since 2015
DeepQ
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Benchmarks Considered for MLPerf

Area Vision Language Audio Commerce Action / RL Other
Speech Recognition Rating
Image Classification Text-to-Speech Recommendations
Object Detection / . Question Answering Sentiment Analysis Games
) Translation . .
Segmentation Laneuage Model Keyword Spotting Next-action Go
Problem Face ID Worgd & Language Modeling Healthcare (EHR) Robotics
HealthCare (Radiology) Embeddin Chatbots Fraud detection Health Care
Video Detection & Speaker ID Anomaly detection Bioinformatics
Self-Driving Graph embeddings Time series prediction GANSs
Content ID Large scale regression 3D point
o . Atari clouds
[ WMT LibriSpeech MovielLens-20M Go Word
Datasets COCOo English-German SQUAD Amazon Chess i
g LM-Benchmark IMDB . embeddings
Grasping
ResNgt-SO . Transformer Deep Speech 2 Neurgl Collaborative DQN
Models TF Object Detection OpenNMT SQUAD Explorer Filtering PPO
Detectron P P CNNs
Accuracy COCO mAP WER I Prediction
" - BLEU . Prediction accuracy accuracy
Metrics Prediction accuracy Perplexity Win/Loss
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MLPerf benchmarks (version 0.5)

Area Benchmark Dataset Model Reference.
Implementation
Image classification ImageNet ResNet TensorFlow
Vision
Object detection coco Mask R-CNN Caffe 2
Translation WMT Eng-Germ Transformer TensorFlow
Language/
Audio " _
Speech recognition LibriSpeech Deep Speech 2 PyTorch
Recommendation MovielLens-20M NCF PyTorch
Commerce
Sentiment Analysis IMDB Seg-CNN PaddlePaddle
Action Reinforcement Learning Go Mini-go TensorFlow

e Balance benchmarks that represent
o Industry workloads
o Coverage of different areas and characteristics
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Outline

e Model diversity

e Agile benchmark development
e FEvaluation metrics

e Open and closed divisions

e Contributing to MLPerf
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field

AlexNet (2012) VGG16 (2014) ResNet (2015)
Size:56 3x3 colnv. 256
3x3 co:v, 256

3x3 conv, 256
T
pool2
v
3x3 conv, 512
-
3x3 conv, 512

3x3 conv, 512
T
pool/2
v
Sizes14 | 3x3 conv, 512
+
3x3 conv, 512
v
3x3 conv, 512

pool2
¥

Size:7 fc 4096
4

fc 4096
4

fc 4096
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
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From Samy Bengio’s opening remarks at NIPS 2017
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field

3500
3000

2500

NIPS 2017 had 3240 submissions

NIPS 2018 had ~4900 submissions 1500 I I I I I I | |
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2000

number of submissions

From Samy Bengio's opening remarks at NIPS 2017
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
o Scale problems to match faster hardware
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
o Scale problems to match faster hardware

10,000

e AlphaGo Zero
1,000

e AlphaZero
100 o Neural Machine Translation
© e Neural Architecture Search
=
-
c 10
A 300,000x Increase in Compute =
. E
since 2012 =
iy VGG
‘CIJ e DeepSpeech2
£ 1 ®Seq2Seq eResNets
Q
o
[ 5i e GoogleNet
@© :
= o AlexNet ® Visualizing and Understanding Conv Nets
& e Dropout
.001
...... 0001
eDQN
.00001
2013 2014 2015 2016 2017 2018 2019

From OpenAl Blog “Al and Compute”



Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
o Scale problems to match faster hardware
o Correct inevitable mistakes in the formulation
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
o Scale problems to match faster hardware
o Correct inevitable mistakes in the formulation
e Atleastinitially, revise annually? MLPerf18, MLPerf19, ...
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Agile Benchmark Development

e Rapidly iterate the benchmark suite:
o Remain relevant in the very fast moving ML field
o Scale problems to match faster hardware
o Correct inevitable mistakes in the formulation
e Atleastinitially, revise annually? MLPerf18, MLPerf19, ...
e Like SPEC, have quarterly deadlines and then publish results for that
quarter via searchable database
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Outline

e Model diversity

e Agile benchmark development
e Evaluation metrics

e Open and closed divisions

e Contributing to MLPerf
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Metrics Should Capture Performance and Quality

e Performance: how fast is a model for training, inference?
o Focus of benchmarks like DeepBench, Fathom

e Quality: how good are a model's predictions?
o Focus of benchmarks like ImageNet, MS COCO
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Performance and Quality aren’t always correlated

Throughput Accuracy
2500 1 94 -

2000 -

< 93
2 8
8 15001 T
@ S 5
B 3
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- g1

0- 90 -

[ Batch size = 32 [0 Batch size = 256 " Batch size = 2048

End-to-end training of a ResNet56 CIFAR10 model on a Nvidia P100 machine with 512 GB of memory
and 28 CPU cores, using TensorFlow 1.2 compiled from source with CUDA 8.0 and CuDNN 5.1.
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Metrics Should Capture Performance and Quality

e Performance: how fast is a model for training, inference?
e Quality: how good are a model’s predictions?

Important for benchmark to capture
both performance and quality

st MLPerf



2017-18: Stanford DAWNBench http://dawn.cs.stanford.edu/benchmark/

Measures Performance (Time, Cost) to Fixed Quality Target

.|||?/?{III' DAWNBenc h

An End-to-End Deep Learning Benchmark and Competition
Training Time &

Objective: Time taken to train an image classification model to a top-5 validation accuracy of 93% or greater on

ImageNet.
Time to
Rank 93% Model Hardware Framework
Accuracy
& e TensorFlow
Apr 0:30:43 Google Half of a TPUv2 Pod
2018 1.8.0-rcl

source

st MLPerf



MLPerf metric: Training time to reach quality target
+ cost or power

e Quality target is specific for each benchmark and close to state-of-the-art
o Updated w/ each release to keep up with the state-of-the-art
o Median of 5 runs

e Time includes preprocessing and validation

e Reference implementations that achieve quality target

In addition, either:
e (ost of public cloud resources (no spot/preemptible instances)
e Power utilization for on-pre__mj__,fs._}.ve_ hardware
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Summary result combines benchmark metrics
Why?

e Provide a concise indicator of “general purpose ML" performance
e Encourage the field to move in a common direction, ultimately leading to
greater performance across the board

How? For participants that submit to each benchmark category:

e For each benchmark task, normalize the time result to the reference
implementation on baseline hardware
e Summary score computed via geometric mean of results

st MLPerf



Outline

e Model diversity

e Agile benchmark development
e FEvaluation metrics

e Open and closed divisions

e Contributing to MLPerf
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Goal: Encourage Innovation and fair comparison
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Goal: Encourage Innovation and fair comparison

e ML algorithms are under active development

exponent fraction
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Goal: Encourage Innovation and fair comparison

e ML algorithms are under active development
e Many models with different trade-offs
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Goal: Encourage Innovation and fair comparison

e ML algorithms are under active development
e Many models with different trade-offs
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Goal: Encourage Innovation and fair comparison

Innovative algorithm
or overfitting
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Open/Closed Divisions + Replication

e Closed division requires using the specified model
o Limits overfitting
o Enables apples-to-apples comparison
o Simplifies work for HW groups

e Open division allows using any model
o Encourages innovation
o Ensures closed division does not stagnate



Outline

e Model diversity

e Agile benchmark development
e FEvaluation metrics

e Open and closed divisions

e Contributing to MLPerf
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Plan: move fast, become independent standard

e Start as small cooperative to quickly publish good benchmark suite soon

e Invite every like-minded group who shares the goals of MLPerf:

o Big companies
o Startups

o Universities

e Currentversion “0.5". For 1.0, transfer to independent org.
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Ways to support and be involved

e Github: reference code

e Submissions: data points

e Google group: discussion of the benchmark and changes

e Meetings: community building and focused discussion towards action

e Working groups: targeted groups to flesh out specific areas
o Inference
o Reinforcement learning
o Summary score

o Measuring power and cost ..
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More at MLPerf.org, or contact info@mliperf.org

User Guide Code Submissions Forum
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Abroad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ML cloud platforms.

Submission Deadline

2018 Q2: July 31st, 2017

Overview

The MLPerf effort aims to build a common set of benchmarks that enables the machine
learning (ML) field to measure system performance for both training and inference from
mobile devices to cloud services. We believe that a widely accepted benchmark suite will




