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Motivation 

- Hadoop MapReduce inherently ineffecient at executing iterative 

computations 

- second generation systems (Spark, Flink, GraphLab …) address this 

shortcomming  

- distributed data flow systems are poular choices to train machine learning 

models at scale 

- existing benchmarks use non-representative workloads and fail to 

address scalability aspects of machine learning models   

2 



Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017 
  

3 



Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017 
  

Problem  

existing (big data) benmcharks: 

- use non-representative workloads  

(word count, sort …) 

- fail to address all dimensions of scalability 

- use existing libraries for experiments 
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„[…] Spark obtains the best results for K-Means 

thanks to the optimized MLlib library, although it is 

expected that the support of K-Means in Flink-ML 

can bridge this performance gap. […]” 
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Example: Click-Through Rate Prediction 

- Goal: predict whether a user will click an ad 

- a crucial building block in the multi-billion dollar online advertising industry 

- logistic regression models still a „major workhorse“ 

- Prediction models are trained on  

- >100 TB data 

- billions of training samples 

- up to 100 billion unique features* 

 
* https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf 
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https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf
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Dimensions of Scalability 

Problem: existing (big data) bencharks fail to address all dimensions of 

scalability 

 

- Scaling the data (number of training samples) 

- Scaling the model (dimensions) 

- Scaling the number of models (ensembles, hyperparameter tuning, …) 
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Goal 

- Introduce a representative workloads and experiments to evaluate the 

Performance of distributed data flow systems for machine learning 

- Implemented mathematically equivalent workloads on different systems and 

assess their scalability w.r.t. Machine Learning  

Systems: 

 

 

Apache Flink  Apache Spark           Single Thread 
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Scalability you say … 
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Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?.  

In Proceedings of the 15th USENIX conference on Hot Topics in Operating Systems (HOTOS'15) 
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COST  
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- hardware configuration required before the platform outperforms a 

competent single-threaded implementation. 
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Experiments 

 

Production Scaling:  maximum number of nodes, varying data size 

Strong Scaling:   varying number of nodes, fixed data size 

Model Scaling:   varying number of nodes and dimensionality   

   fixed number of data points 

COST:    varying number of nodes and dimensions compared  

   against single threaded implementation 
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Background: Spark and Flink 

Spark:  

- data-parallel transformations on Resilient Distributed Datasets (RDDs) 

- can be cached and recomputed in case of node failures 

 

Flink:  

- distributed streaming data flow engine supporting batch- and streaming 

workloads 

- native operator for iterative computations 

- jobs are compiled and optimized by a cost-based optimizer 
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Data Sets  

Unsupervised Learning: generated 100 dimensional data sampled from k 

Gaussians and added uniform random noise (similar to HiBench) 

Supervised Learning: used part of the Criteo Click log data set (1 bn data 

points) with feature hashing to convert to desired dimensionality for experiments – 

(e.g. 530 GB for 1000 dim) 
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Cluster Setup 

• Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU (4 cores, 8 hyperthreads)  

• 16 GB RAM 

• 3x1TB hard disks (linux software RAID0)  

• 1 GBit Ethernet NIC 

• Flink Version: 1.0.3 

• Spark Version: 1.6.2 

• LibLinear Version 
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Parameter Tuning 

• parallelism 

• caching 

• buffers 

• serialization 
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Workloads 
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Machine Learning Pipelines 
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Supervised Learning  

 

Objective: 

 

 

Batch Gradient Descent: 

 

 

 

 

 Different parametrizations of loss and regularization function yield a variety of ML methods  

 A good workload proxy for more sophisticated solvers that share a similar computational footprint 
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𝑤 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑤 
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Map-Reduce Implementation 

Map1 Map2 MapN compute gradient per data point 

Reduce sum up partial gradients 

… 
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Map-Partition Implementation 

MapPartition1 
compute gradient per data point (per partition) 

Reduce 

locally sum up partial gradients (in udf) 

MapPartitionN … 
pre-

aggregate 
pre-

aggregate 

aggregate pre-aggregated partial sums 
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Tree-Aggregate (Spark) 

Executor Executor Executor Executor 

Executor Executor 

driver 
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Experimental Results 
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Production Scaling: Implementation Strategies 
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• choice of implementation 

stategy matters! 

 

• all implementation scale 

gracefully out-of-core 

 
 

• Spark‘s MapPartition 

slightly faster than 

TreeAgregate, but not 

robust 

 

• unfortunate kryo 

serialization bug 

penalizing Flink‘s 

MapReduce 

implementation 

 

5 Iterations of BGD training 
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Strong Scaling Experiments  

K-Means Clustering   Batch Gradient Descent    
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5 Iterations 5 Iterations 
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Batch Gradient Descent on 4 Nodes 

Apache Flink                               Apache Spark 
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Batch Gradient Descent on 25 Nodes 

Apache Flink                                        Apache Spark 
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Dimensionality Scaling (log-log) 
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two data sets: 

 

• 0.2 = size of combined 

main memory 

 

• 0.8 = bigger than 

combined main memory 

 

• Spark performance 

comparable or better than 

flink for small dimensions 

5 Iterations of BGD training 
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Dimensionality Scaling 
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• spark fails to tain models 

beyond 6m dimensions on 

0.8 data set 

 

• spark fails to tain models 

beyond 8m dimensions on 

0.2 data set 

 

• flink robustly scales to 

10m dimensions for both 

data sets 

 

• flink fails to train models 

greater than 10m 

dimensions 
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BGD – 0.8 Data Set - 6 Million Dimensions 

Apache Flink                                   Apache Spark 
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COST: vs. Single Threaded Implementation 
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• 4GB subsample of criteo 

data set 

 

• 2 machines (8 cores) 

sufficient to outperform 

single threaded impl. 

 

• both Flink and Spark fail to 

train with 100m 

dimensions or beyond 

 

10 iterations of BGD training 
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Summary 

• Proposed, implemented and evaluate a set of representative workloads and experiments to 

evaluate systems for machine learing 

• Both systems scale robustly with growing data-set sizes 

• Choice of implementation strategy has a noticeable impact on performance  

• Spark fails to train high dimensionsal models (beyond 6 million dimensions) 

• Both systems did not manage to train a model with 100 million dimensions even on a small data set  

• Two nodes (8 cores) are a sufficient hardware configuration to outperform a competent single-

threaded implementation 
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contact: christoph.boden@tu-berlin.de 
 
[soon] code:   https://github.com/bodenc/ml-benchmark 
 
 
 


