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Motivation

L]

- Hadoop MapReduce inherently ineffecient at executing iterative
computations

- second generation systems (Spark, Flink, GraphLab ...) address this
shortcomming

- distributed data flow systems are poular choices to train machine learning
models at scale

- existing benchmarks use non-representative workloads and fail to
address scalability aspects of machine learning models
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Abstract—Big Data analytics has recently gained increasing
popularity as a tool to process large amounts of data on-demand.
Spark and Flink are two Apache-hosted data analytics frame-
works that facilitate the development of multi-step data pipelines
using directly acyclic graph patterns. Making the most out
of these frameworks is challenging because efficient executions
strongly rely on complex parameter configurations and on an
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attempt to unify the landscape of Big Data processing. Spark
[4] introduced Resilient Distributed Datasets (RDDs) [5], a
set of in-memory data structures able to cache intermediate
data across a set of nodes, in order to efficiently support
irerarive algorithms. With the same goal, Flink [6] proposed
more recently native closed-loop iteration operators [7] and



Problem

existing (big data) benmcharks:

- use non-representative workloads
(word count, sort ...)

- fail to address all dimensions of scalability

- use existing libraries for experiments

.l---] Spark obtains the best results for K-Means
thanks to the optimized MLIib library, although it is
expected that the support of K-Means in Flink-ML

can bridge this performance gap. [...]”




Example: Click-Through Rate Prediction
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a crucial building block in the multi-billion dollar online advertising industry

Goal: predict whether a user will click an ad

logistic regression models still a ,major workhorse*

Prediction models are trained on

- >100 TB data
- billions of training samples

- up to 100 billion unique features*

* https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf 5
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Dimensions of Scalability

L]

Problem: existing (big data) bencharks fail to address all dimensions of
scalability

- Scaling the data (number of training samples)

- Scaling the model (dimensions)

- Scaling the number of models (ensembles, hyperparameter tuning, ...)
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Goal
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- Introduce a representative workloads and experiments to evaluate the
Performance of distributed data flow systems for machine learning

- Implemented mathematically equivalent workloads on different systems and
assess their scalability w.r.t. Machine Learning

Flink .S’pcw‘ll(\'z -

Apache Flink Apache Spark Single Thread

Systems:
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Scalability you say ...
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Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?.
In Proceedings of the 15th USENIX conference on Hot Topics in Operating Systems (HOTOS'15)



COST
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- hardware configuration required before the platform outperforms a
competent single-threaded implementation.

name

twitter_rv [11]

uk-2007-05 [4]

scalable system cores | twitter | uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 12335s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s

nodes
edges
size

41,652,230
1,468,365,182
5.76GB

105,896,555
3,738,733,648
14.72GB




Experiments

Production Scaling:

Strong Scaling:

Model Scaling:

COST:

L]

maximum number of nodes, varying data size
varying number of nodes, fixed data size

varying number of nodes and dimensionality
fixed number of data points

varying number of nodes and dimensions compared
against single threaded implementation

10
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Background: Spark and Flink

Spark:
- data-parallel transformations on Resilient Distributed Datasets (RDDs)
- can be cached and recomputed in case of node failures

Flink:

- distributed streaming data flow engine supporting batch- and streaming
workloads

- native operator for iterative computations
- jobs are compiled and optimized by a cost-based optimizer

11
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Data Sets
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Unsupervised Learning: generated 100 dimensional data sampled from k
Gaussians and added uniform random noise (similar to HiBench)

Supervised Learning: used part of the Criteo Click log data set (1 bn data
points) with feature hashing to convert to desired dimensionality for experiments —
(e.g. 530 GB for 1000 dim)

criteo part num data points raw size in GB

day0 105,841,083 16.35
day1 199,563,535 47.22
day?2 196,792,019 46.56
day3 181,115,208 42.79
day5 172,548,507 40.71
day6 204,846,845 48.50
total 1,150,708,007 272.14
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Cluster Setup
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* Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU (4 cores, 8 hyperthreads)

16 GB RAM

« 3x1TB hard disks (linux software RAIDO)
« 1 GBit Ethernet NIC

* Flink Version: 1.0.3

« Spark Version: 1.6.2

* LibLinear Version

13
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Parameter Tuning

« parallelism
« caching
* Dbuffers

* serialization

14



Workloads
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Machine Learning Pipelines

(Hyper-) parameter tuning

Model Selection

Validation
Data

raw training E feature

model > model > Model
data

training evaluation performance

extraction

model

Feature Selection
Feature Engineering
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Supervised Learning

L]

Objective: w= argmin, [A2w)+ > 1(fulx),y)
(z,y)e(X,Y)

- Different parametrizations of loss and regularization function yield a variety of ML methods

/ 0 0
Batch Gradient Descent: ' =%~ (Aawﬂ('w) + D allfe (w)jy))

(zy)e(X,Y)

- A good workload proxy for more sophisticated solvers that share a similar computational footprint

17
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Map-Reduce Implementation

, o o
w =w — (/\awﬂ(w)—l— Z %l(ﬁw (ﬂ:),y))

(zy)e(X,Y)

compute gradient per data point

sum up partial gradients

18
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Map-Partition Implementation

L]

(zy)e(X,Y)

RS ia(fw(m),y))

MapPartition, compute gradient per data point (per partition)

pre-
aggregate

MapPartition

pre-
aggregate

locally sum up partial gradients (in udf)

Reduce aggregate pre-aggregated partial sums
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Tree-Aggregate (Spark)

Executor Executor

Executor Executor Executor Executor

20
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Experimental Results
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Runtime in Minutes

Production Scaling: Implementation Strategies 15
|

200

180

160

140

120

100

80

60

40

20

=o—Spark MapPartition
== Spark MapReduce
Spark TreeAggregate
=>=Flink MapPartition
=#=Flink MapReduce

A

5 Iterations of BGD training

1,5 2 2,5
Data Set Size (linear scaling factor)

3

3,5

4

choice of implementation
stategy matters!

all implementation scale
gracefully out-of-core

Spark’s MapPartition
slightly faster than
TreeAgregate, but not
robust

unfortunate kryo
serialization bug
penalizing Flink's
MapReduce
implementation
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Strong Scaling Experiments
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Batch Gradient Descent on 4 Nodes
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Batch Gradient Descent on 25 Nodes
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Di

runtime in minutes

mensionality Scaling (log-log)
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two data sets:

* 0.2 =size of combined
main memory

« 0.8 = bigger than
combined main memory

* Spark performance

comparable or better than
flink for small dimensions
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Dimensionality Scaling
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spark fails to tain models
beyond 6m dimensions on
0.8 data set

spark fails to tain models
beyond 8m dimensions on
0.2 data set

flink robustly scales to
10m dimensions for both
data sets

flink fails to train models

greater than 10m
dimensions
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BGD — 0.8 Data Set - 6 Million Dimensions 1
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COST: vs. Single Threaded Implementation
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8
e=pmm| ibLinear (Single Thread) « 4GB subsample of criteo
7 == Spark 1 Node (4 Cores) data set
Flink 1 Node (4 Cores)
6 =>e=Spark 2 Nodes (8 Cores) .
==Flink 2 Nodes (8 Cores) < 2 m_a(.:hlneS (8 cores)
o sufficient to outperform
'%5 single threaded impl.
[
= * both Flink and Spark fail to
E train with 100m
3 dimensions or beyond
2
/N
1
10 iterations of BGD training
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Proposed, implemented and evaluate a set of representative workloads and experiments to

Summary

evaluate systems for machine learing
* Both systems scale robustly with growing data-set sizes
« Choice of implementation strategy has a noticeable impact on performance
* Spark fails to train high dimensionsal models (beyond 6 million dimensions)
* Both systems did not manage to train a model with 100 million dimensions even on a small data set
« Two nodes (8 cores) are a sufficient hardware configuration to outperform a competent single-

threaded implementation

contact: christoph.boden@tu-berlin.de

[ soon] code:O https://github.com/bodenc/ml-benchmark 0



