&8DC

BERLIN BIG
DATA CENTER

Benchmarking Data Flow Systems

for Scalable Machine Learning
Christoph Boden, Andrea Spina, Tilmann Rabl, Volker Markl

SPEC Research Big Data Group call, 19.6.2017

Technische l
Universitat

Berlin

GEFORDERT VOM

% Bundesministerium
fiir Bildung

und Forschung

Motivation

L]

- Hadoop MapReduce inherently ineffecient at executing iterative
computations

- second generation systems (Spark, Flink, GraphLab ...) address this
shortcomming

- distributed data flow systems are poular choices to train machine learning
models at scale

- existing benchmarks use non-representative workloads and fail to
address scalability aspects of machine learning models

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics

Jorge Veig

{

Abstract—The increasing
has led to a high demand f¢
to manage and process larg
frameworks such as Hadoop
ones like Spark or Flink, whie
APIs and performance. Hol
on comparing these framew
issue by performing a com
Spark and Flink wsing repres
considering factors like perfor
the behavior of these framey
modifying some of the main g
as HDFS block size, input di
thread configuration. The ana
replacing Hadoop with Spark
in execution times by 77% al
for non-sort benchmarks.

Keywords-Big Data; MapR

1. INTR

In the last decade, Big 1
adopted by many organizati
tion from the large dataset
caused by the appearance ol
powerful functionalities to tl
the transformations to be pe
on the parallelization of the

One of these technologi
open-source implementation
The success of Hadoop is ©
abstraction, fault-tolerance ¢
supports both distributed sl
datasets. However, the perfi
limited by redundant mem
that it performs when pro

v T~ L "

Clash of the Titans: MapReduce vs. Spark for Large Scale

Juwei Shi#, Yunjie Qiuf, Umar Farooq Minhas®, Limei Jiaof, Chen Wang¢, Berthold

i

ABSTRAC]

MapReduce and
computing frame
works hide the ¢
by exposing a si
we evaluate the n
Spark framework
by using a set of
tailed analysis, y
late the task exey
MapReduce and
We provide a br¢
analysis. Throug
mance difference
we attribute thesg
which are archite
ther expose the s
a set of micro-bg
show that Spark
for Word Count,
causes of these sf
oation componer

Data Analytics

Daimainlds and Catmma Awanns

Spark versus Flink: Understanding Performance in
Big Data Analytics Frameworks

Ovidiu-Cristian Marcu Alexandru Costan

Inria Rennes - Bretagne Atlantique IRISA / INSA Rennes Inria Rennes - Bretagne Atlantique

ovidiu-cristian.marcu @ inria.fr alexandru.costan @irisa. fr

Abstract—Big Data analytics has recently gained increasing
popularity as a tool to process large amounts of data on-demand.
Spark and Flink are two Apache-hosted data analytics frame-
works that facilitate the development of multi-step data pipelines
using directly acyclic graph patterns. Making the most out
of these frameworks is challenging because efficient executions
strongly rely on complex parameter configurations and on an

Maria S. Pérez-Hernandez
Ontology Engineering Group
Universidad Politecnica de Madrid
mperez @fi.upm.es

Gabriel Antoniu

gabriel.antoniu@inria.fr

attempt to unify the landscape of Big Data processing. Spark
[4] introduced Resilient Distributed Datasets (RDDs) [5], a
set of in-memory data structures able to cache intermediate
data across a set of nodes, in order to efficiently support
irerarive algorithms. With the same goal, Flink [6] proposed
more recently native closed-loop iteration operators [7] and

Problem

existing (big data) benmcharks:

- use non-representative workloads
(word count, sort ...)

- fail to address all dimensions of scalability

- use existing libraries for experiments

.l---] Spark obtains the best results for K-Means
thanks to the optimized MLIib library, although it is
expected that the support of K-Means in Flink-ML

can bridge this performance gap. [...]”

Example: Click-Through Rate Prediction

L]

a crucial building block in the multi-billion dollar online advertising industry

Goal: predict whether a user will click an ad

logistic regression models still a ,major workhorse*

Prediction models are trained on

- >100 TB data
- billions of training samples

- up to 100 billion unique features*

* https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf 5

https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf
https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf

Dimensions of Scalability

L]

Problem: existing (big data) bencharks fail to address all dimensions of
scalability

- Scaling the data (number of training samples)

- Scaling the model (dimensions)

- Scaling the number of models (ensembles, hyperparameter tuning, ...)

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Goal

L]

- Introduce a representative workloads and experiments to evaluate the
Performance of distributed data flow systems for machine learning

- Implemented mathematically equivalent workloads on different systems and
assess their scalability w.r.t. Machine Learning

Flink .S’pcw‘ll(\'z -

Apache Flink Apache Spark Single Thread

Systems:

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Scalability you say ...

1 T E SRS T PY B
1 10 100 300

cores

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?.
In Proceedings of the 15th USENIX conference on Hot Topics in Operating Systems (HOTOS'15)

COST

L]

- hardware configuration required before the platform outperforms a
competent single-threaded implementation.

name

twitter_rv [11]

uk-2007-05 [4]

scalable system cores | twitter | uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 12335s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s

nodes
edges
size

41,652,230
1,468,365,182
5.76GB

105,896,555
3,738,733,648
14.72GB

Experiments

Production Scaling:

Strong Scaling:

Model Scaling:

COST:

L]

maximum number of nodes, varying data size
varying number of nodes, fixed data size

varying number of nodes and dimensionality
fixed number of data points

varying number of nodes and dimensions compared
against single threaded implementation

10

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

L]

Background: Spark and Flink

Spark:
- data-parallel transformations on Resilient Distributed Datasets (RDDs)
- can be cached and recomputed in case of node failures

Flink:

- distributed streaming data flow engine supporting batch- and streaming
workloads

- native operator for iterative computations
- jobs are compiled and optimized by a cost-based optimizer

11

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Data Sets

L]

Unsupervised Learning: generated 100 dimensional data sampled from k
Gaussians and added uniform random noise (similar to HiBench)

Supervised Learning: used part of the Criteo Click log data set (1 bn data
points) with feature hashing to convert to desired dimensionality for experiments —
(e.g. 530 GB for 1000 dim)

criteo part num data points raw size in GB

day0 105,841,083 16.35
day1 199,563,535 47.22
day?2 196,792,019 46.56
day3 181,115,208 42.79
day5 172,548,507 40.71
day6 204,846,845 48.50
total 1,150,708,007 272.14

12

Cluster Setup

L]

* Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU (4 cores, 8 hyperthreads)

16 GB RAM

« 3x1TB hard disks (linux software RAIDO)
« 1 GBit Ethernet NIC

* Flink Version: 1.0.3

« Spark Version: 1.6.2

* LibLinear Version

13

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Parameter Tuning

« parallelism
« caching
* Dbuffers

* serialization

14

Workloads

15

Machine Learning Pipelines

(Hyper-) parameter tuning

Model Selection

Validation
Data

raw training E feature

model > model > Model
data

training evaluation performance

extraction

model

Feature Selection
Feature Engineering

16

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Supervised Learning

L]

Objective: w= argmin, [A2w)+ > 1(fulx),y)
(z,y)e(X,Y)

- Different parametrizations of loss and regularization function yield a variety of ML methods

/ 0 0
Batch Gradient Descent: ' =%~ (Aawﬂ('w) + D allfe (w)jy))

(zy)e(X,Y)

- A good workload proxy for more sophisticated solvers that share a similar computational footprint

17

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Map-Reduce Implementation

, o o
w =w — (/\awﬂ(w)—l— Z %l(ﬁw (ﬂ:),y))

(zy)e(X,Y)

compute gradient per data point

sum up partial gradients

18

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Map-Partition Implementation

L]

(zy)e(X,Y)

RS ia(fw(m),y))

MapPartition, compute gradient per data point (per partition)

pre-
aggregate

MapPartition

pre-
aggregate

locally sum up partial gradients (in udf)

Reduce aggregate pre-aggregated partial sums

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

19

Tree-Aggregate (Spark)

Executor Executor

Executor Executor Executor Executor

20

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Experimental Results

21

Runtime in Minutes

Production Scaling: Implementation Strategies 15
|

200

180

160

140

120

100

80

60

40

20

=o—Spark MapPartition
== Spark MapReduce
Spark TreeAggregate
=>=Flink MapPartition
=#=Flink MapReduce

A

5 Iterations of BGD training

1,5 2 2,5
Data Set Size (linear scaling factor)

3

3,5

4

choice of implementation
stategy matters!

all implementation scale
gracefully out-of-core

Spark’s MapPartition
slightly faster than
TreeAgregate, but not
robust

unfortunate kryo
serialization bug
penalizing Flink's
MapReduce
implementation

22

Strong Scaling Experiments

30

x 5 lterations

25

20
==9=Apache Spark

== Apache Flink

15

Runtime in Minutes

10

O T T T T T T 1
0 5 10 15 20 25 30 35
Number of Nodes

K-Means Clustering

Runtime in Minutes

I
o

120

100

[0}
o

D
o

20

5 lterations

=—&— Apache Spark

=— Apache Flink

5 10 15 20 25

Number of Nodes

Batch Gradient Descent 23

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Batch Gradient Descent on 4 Nodes

CPU usage [%]

HNWAUIIN00
OOOOOOOOOO

@ 250.00 MB

1500 2000
runtime [sec]

2500

3500

=200.00 MB
£ 150.00 MB
2100.00 MB
50.00 MB|}
0.00 MB

B

3

== Total |

Disk Vi

0

1500 2000
runtime [sec]

2500

3000

- Total
=D send

Network [MBps]

i

500 1000 1500 2000
runtime [sec]

1.
2500

3000

3500

e

oON-bG\CDONA

Memory [GB]

1500 2000
runtime [sec]

Apache Flink

2500

CPU

DSK

NET

MMR

D
NBNCOON B0

Disk Volume [MB]

Memory [GB]

CPU usage [%]

=ENWasUON
OOOOOOOOO

ZZIZZIZZZIZZTT

1000

2000 3000 4000
runtime [sec]

2000
runtime [sec]

= Total
|3 send

1l “ JI

I
2000 3000 4000

runtime [sec]

P

4
2
0
8
6
4
2
%

2000
runtime [sec]

Apache Spark

24

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Batch Gradient Descent on 25 Nodes

100 200

300
runtime [sec]

400

500

200

runtime [sec]

Network [MBps]
HENWAUIOW

OOOOOOOOCO

100 200

300
runtime [sec]

‘400

=

ODN&O\OQOMP

Memory [GB]

100 200

Apache Flink

300
runtime [sec]

400

500

CPU

DSK

NET

MMR

I

Disk Volume [MB]
N ECIDON SO
000000000

CPU usage [%]
HRWAUIO-I0O

0 50 100 150 200 250 300 350 400
runtime [sec]
00 M e 1 —
= E a2 4 |
60 M8 R L AR
i AARE
00 MB . —— - ‘I lll ‘.. i‘l[‘ly’_ I‘ﬁ i‘I % &Q
88 ME : Gl BT e e Y o, e AR ; .,"l\J. A \‘,. "d‘l 1 m:\ |
0 50 100 150 200 250 300 350 400 450
runtime [sec]
’_II\‘ 6 . Total
g5
=4
x 3
o2
Z1 ;
29 Ak a i LA A
0 50 100 150 200 250 300 350 400 450

runtime [sec]

[

Memory [GB]

6
4
2
0
8
6
4
8
0

200 250
runtime [sec]

Apache Spark
25

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

Di

runtime in minutes

mensionality Scaling (log-log)

00

=
o

=@=Flink small data set (0.2)

== Flink large data set (0.8)
Spark small data set (0.2)

=>4=Spark large data set (0.8)

&
g

5 Iterations of BGD training

10 100 1000 10000 100000 1000000 10000000

Dimensionality of the Model

1/

two data sets:

* 0.2 =size of combined
main memory

« 0.8 = bigger than
combined main memory

* Spark performance

comparable or better than
flink for small dimensions

26

Dimensionality Scaling

100

90

80

70

60

50

40

runtime in minutes

/)< —&— Flink small data set (0.2)
== Flink large data set (0.8) —

/ Spark small data set (0.2)

/ =>4=Spark large data set (0.8)

2000000 4000000 6000000 8000000 10000000 12000000
Dimensionality of the Model

1/

spark fails to tain models
beyond 6m dimensions on
0.8 data set

spark fails to tain models
beyond 8m dimensions on
0.2 data set

flink robustly scales to
10m dimensions for both
data sets

flink fails to train models

greater than 10m
dimensions

27

BGD — 0.8 Data Set - 6 Million Dimensions 1
1]

=
(=]
o

9 =] 8 g
= 80 ° 7
& 60 glg
2 40 g %
S 20 =1
5] 05 o]
1000 1200 1400 1600 0 1000 2000 3000 4000 5000
runtlme [sec] runtime [sec]
‘ - ol ’0 OO MB
| = =])0.00 MB
‘ ‘1 . 10.00 MB
\ 70.00 MB

+0.00 MB R

ISYSY:
ook
IS1S)
==
BE0

[slslelelelelels
[=lslelalaleles

\\ﬂ

600

400

200 800 1000 1200 1400 0
runtima learl Lt F__ -1
_ % 120
g == 100 =5
= = 80
v % 60
3 2 10 i
Z 20 . I . &
1] 8 M M . g oL 14 || I ‘l N)‘LI | \H . " L ‘
= % 800 1000 1200 1400 1600 0 1000 2000 3000 000 5000
16 runtime [sec]
o 14 (== e = 14
o1z O 12
=10 2’8
S 6 S 6
E 3 £ 4
s 2 23
0 0

[=)

600 800 1000 1200 1400 1600

0

2000 3000

runtime [sec]

Apache Spark

runtime [sec]

Apache Flink

28

Christoph Boden :. Benchmarking Data Flow Systems for Scalable Machine Learning; SPEC Research Big Data Group call, June 19 2017

COST: vs. Single Threaded Implementation

L]

8
e=pmm| ibLinear (Single Thread) « 4GB subsample of criteo
7 == Spark 1 Node (4 Cores) data set
Flink 1 Node (4 Cores)
6 =>e=Spark 2 Nodes (8 Cores) .
==Flink 2 Nodes (8 Cores) < 2 m_a(.:hlneS (8 cores)
o sufficient to outperform
'%5 single threaded impl.
[
= * both Flink and Spark fail to
E train with 100m
3 dimensions or beyond
2
/N
1
10 iterations of BGD training
0 T T T T T T T 1
10 100 1000 10000 100000 1000000 10000000100000000 1E+09

Dimensionality of Model
Y 29

L]

Proposed, implemented and evaluate a set of representative workloads and experiments to

Summary

evaluate systems for machine learing
* Both systems scale robustly with growing data-set sizes
« Choice of implementation strategy has a noticeable impact on performance
* Spark fails to train high dimensionsal models (beyond 6 million dimensions)
* Both systems did not manage to train a model with 100 million dimensions even on a small data set
« Two nodes (8 cores) are a sufficient hardware configuration to outperform a competent single-

threaded implementation

contact: christoph.boden@tu-berlin.de

[soon] code:O https://github.com/bodenc/ml-benchmark 0

