Brief overview of Machine Learning towards Benchmarking

Josep Ll. Berral-García
Researcher & Data Scientist
Machine Learning Algorithms and Methods for Big Data

1. A very brief course on Machine Learning
2. Some algorithms by kind
3. Performance concerns for ML
5. Code examples and Cases of Use
A VERY BRIEF COURSE ON MACHINE LEARNING
What is Machine Learning

- Machine Learning:
 - Data mining science and methods...
 - ...In charge of learn a system (modeling) automatically...
 - ...From some of its observations

Modeling and Prediction

- Usually the model learns “f(inputs) → labels”
- “f(inputs)” explains the observed system
Usual methodology

1. Collect samples from the system
 - Label them a-posteriori (if possible)

2. Select which data features are used

3. Split the data for training and testing
 - Split the data-set in training, validation and testing sets
 - Alternatively, use “cross-validation”, in case of few data available
 - Never test your model with the training data!
What machine learning can do:

- Find the function or rules that define labels in data
- Estimate values (regression) or classes/categories (classification)
- Estimate unseen inputs for a given model
- Find labels from unlabeled data, and label the training and test data
- Recommend actions from past seen action results
- Show how a system works by printing its learned function

What machine learning can not do (but can help):

- Solve GI, NP or harder problems
- Make decisions
Methodology

- Most part of the process falls into Data Preparation:
 - Slice data, Sample data, Aggregate data, Discard data, Flatten data

- Most of learning processes just read data once, then perform an aggregate operation or iterate over data until converging

- Most of prediction processes are just
 - Computing the new input into the model (easy)
 - Compare the input with the model (hard)

- Most predictions require Data to be Post-Processed into readable information

```r
# Machine Learning Typical Program

data <- read.data(source);                      # Obtain Data
proc.data <- treat.data(data);                  # Pre-process data
model <- learning.process(proc.data);          # Here learning occurs

new.proc.data <- treat.data(new.data);          # Pre-process new data
predicted.values <- prediction(model, new.proc.data); # Here prediction occurs
displayable.data <- preprint.data(predicted.values, new.proc.data); # Post-process data
show.data(displayable.data);                   # ...to be displayed
```
ML Programmatically (Part 1)

Languages and Libraries

- R-cran
 - R → Functional/Imperative Programming Language
 - Community libraries for lots of algorithms
 - Parallelization of the “apply” operator (vectorization)
 - “parallel”, “snow” / “snowfall”, ...
 - RHadoop, SparkR + SparkSQL

- Python: Sci-Kit and SK-Learn
 - Machine Learning Library for Python
 - Compatibility towards parallelism on CPUs, GPUs and Clusters
 - Theano, Caffe, Lassagne ...

- Java: Weka and MOA
 - Java libraries with ML and Stream Learning algorithms
 - Documented in “I.Witten, E.Frank, M.A.Hall, Data Mining 3rd Ed. 2011”
Tools and Frameworks

- Google’s TensorFlow
 - Framework oriented towards Machine (Deep) Learning
 - Programmable in Python

- Visualization: ElasticSearch
 - Framework to store and visualize data, managed by JSON queries.
SOME ALGORITHMS BY KIND
Supervised learning: Classification and Regression

- Regression algorithms: Linear/polynomial/logistic regression
 - Learning requires to iterate over data to find weights for each input. Predict implies to perform parallel products and a sum.

- Decision trees: CART, Recursive Partition, ID3, C4.5, M5P
 - Learning requires recursive algorithms separating data, to find adequate partitions. Prediction implies navigate a tree.

- Spatial models: Nearest Neighbors
 - Learning puts sample data into memory. Prediction requires to compare inputs with all memorized data.

- Bayesian models: Naïve-Bayes, Bayesian Networks.
 - Learning implies counting every element from inputs. Prediction becomes to apply Bayes with some counters.

- Artificial Neural Networks: Neural Networks, Support Vector Machines
 - ANNs require an iterative intensive process over data. Prediction becomes a matrices multiplication.
Some algorithms by kind (II)

Unsupervised learning: Clustering or Knowledge Discovery
 – Clustering: k-Means, DBSCAN
 • Modeling through (unbounded) iterative processes.
 – Neural Networks: Deep-belief Neural Networks, Boltzmann Machines
 • DBNs require heavy iterative learning processes.

Reinforcement learning: Model updates from Feedback
 – Look-up tables, Neuro-dynamics
 • Learning through execution → Trial/Error (State-Action counting). Usually requires memory, and undefined amount of retries to learn. ANNs are used to reduce memory.

Data-Streams: Model learns continuously
 – Stream sketches
 • IO-bound process. Data is treated once (or none). Learning consists in keeping a limited number of counters or samples in memory.
Some algorithms by kind (III)

Data Mining: Finding patterns and relations
- Collaborative Filtering
 - Memorizing inputs to determine values missing elements by comparison
- Association Rules
 - A-priori algorithms
 - Counting elements from all inputs, and their combinations
- Knowledge Discovery
 - Find relevant patterns, using some of the previous techniques, often in an exhaustive way.

Reunion of algorithms
- Bagging, Boosting, joining freely different algorithms…
PERFORMANCE CONCERNS
Performance Concerns (I)

Algorithm Precision/Recall/Accuracy...
- Measures of “how good the algorithm learns and predicts”

Resource usage:
1. Time and memory for learning process
 - Relation P/R/A against time spent and memory used
2. Time and memory for predicting new data
 - How much memory requires a model
 - How much time takes to compute a single prediction
3. Reusing the model
 - Have I to retrain the model each time
 - How much storage takes my model
4. Visiting the data
 - How many times the data must be visited to create a model
Examples:

1. Time and memory for learning process
 - k-NN dumps data to memory (↑ memory, ↓ time)
 - N-Nets iterate over data until converge on a matrix (↓ memory, ↑ time)
 - Accuracy on N-Nets depend on iterations [user decides] (time ~ accuracy)

2. Time and memory for predicting new data
 - LinReg predicts through a multiplication and a sum (↓ time)
 - k-NN must check the input against all memorized data (↑ time)

3. Reusing the model
 - k-NN updates by memorizing new data (↓ time)
 - Decision Trees require rebuilding them for new data (restart the process)

4. Visiting the data
 - Naïve-Bayes visits each element in data once
 - N-Nets visit each element K times or more (K ~ thousands or more)
ML Scenarios (I)

Details:

- ML is not (usually) a real time process by itself
 - Except Stream Learning, so it is very resource-bounded

- The same ML process, with same parameters and different resources available, should produce the same result but in different times
 - Some ML processes have stochastic functions inside, so not the same exact, but similar

- Once a model is learned, it may be used for processing lots of data
 1. We want to know how to classify/predict, and new examples come slowly
 - We focus on learning time. All attention comes to learning with accuracy
 2. We want an acceptable model to process lots of data
 - We focus on prediction performance. All attention comes to processing new data
The kind of input data affects the ML process:

- Numeric input:
 - Algorithms can operate numbers easily
- String inputs:
 - Strings must be parsed to operate and compare
 - This brings slowness to the data processing
- Label inputs:
 - We have known limited strings, that can be numbered, so they become easy to treat

Sometimes data must be all in memory:

- For some algorithms, data must be upload all or partially to memory
 - E.g. N-Nets use batches of data, repeatedly uploaded and used
CURRENT TRENDS AND STATE OF THE ART
On top of the hype

- Deep Learning and Neural Networks
 - Google’s TensorFlow, Theano (GPUs), …

- Spark platforms
 - Mlib (in brief SparkML), SparkR, SparkSQL, …

- SQL + R
 - In-Database Analytics:
 - User Defined Functions
 - Embedded R procedures into SQL execution trees.
 - Current commercial providers:
 - MS SQLServer 2016, IBM PDA, Cisco Parstream…
Consolidated methods

- In Academy:
 - Tools
 - R libraries (with parallelism packages)
 - Python SciKit-Learn
 - Scala and Julia
 - Classical learning and ANNs
 - Python+Theano, TensorFlow

- In Industry:
 - Recommendation modules → Association Rules, ANNs, Collaborative Filtering …
 - User modeling → ANNs, Bayesian Methods, Clustering, …
 - Information retrieval → Data Archeology (Data Mining + Knowledge Discovery), …
 - Fraud Detection → ANNs and Collab. Filtering, …
Scenarios for Modeling and Prediction

Static scenarios
- We collect all the data in one place
- We train a model
- We use the model

Distributed Scenarios
- Each place collects its data
- Each place trains its model
- Each place uses its model

Map-Reduce Scenarios
- Data is distributed on places
- Each place trains part of the model
- The complete model is collected and used

Lots of other scenarios
CODE EXAMPLES AND CASES OF USE
Anomaly Detection

- Model-based detection procedure
- Pass executions through the model
- Executions not fitting the model are considered “out of the system”

Anomaly detection procedure:

Testing ALOJA Data-set:
Guided Benchmarking:
- Best subset of configurations for modeling Hadoop deployments
- Clustering to reduce the realized executions into the significant ones
- Recommend for future usage the reduced set of executions

![Diagram of guided benchmarking process]

recommended configurations vs Error vs Execution Costs

“ALOJA-ML: A Framework for Automating Characterization and Knowledge Discovery in Hadoop Deployments. KDD 2015
ALOJA-ML – Discrimination and Representation of Features

- Tools for treating and visualizing data, observed and predicted
- Find best expected executions
 - Use models to predict search sub-spaces
- Discrimination of Features
 - Create a ranking of features, find ways to display them...
 - Possible discrimination by information gain, ordered splits, or other relevant indicators

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Net</th>
<th>Disk</th>
<th>Maps</th>
<th>IO.FBuf</th>
<th>Cluster</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>16</td>
<td>32768</td>
<td>Cl21</td>
<td>822.467000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>24</td>
<td>32768</td>
<td>Cl21</td>
<td>909.923000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>7</td>
<td>32768</td>
<td>Cl21</td>
<td>724.079000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>12</td>
<td>32768</td>
<td>Cl21</td>
<td>778.739000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>32</td>
<td>65536</td>
<td>Cl21</td>
<td>997.379000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>16</td>
<td>65536</td>
<td>Cl21</td>
<td>822.467000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>24</td>
<td>65536</td>
<td>Cl21</td>
<td>909.923000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>7</td>
<td>65536</td>
<td>Cl21</td>
<td>724.079000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>12</td>
<td>65536</td>
<td>Cl21</td>
<td>778.739000</td>
</tr>
<tr>
<td>terasort</td>
<td>ETH</td>
<td>HDD</td>
<td>32</td>
<td>65536</td>
<td>Cl21</td>
<td>997.379000</td>
</tr>
</tbody>
</table>

\[... \]
Apache Spark Examples

The classical Word-Count

```scala
val conf = new SparkConf()
val sc = new SparkContext(conf)

val data = sc.textFile("file")
val tokens = data.flatMap(_.split(" ")) // Get file in HDFS to parse
val wordFreq = tokens.map((_, 1)).reduceByKey(_ +_ ) // Split content by spaces
    // Map each word, then add count when reducing

wordFreq.sortBy(s => -s._2).map(x => (x._2, x._1)).top(10) // Distributed sort, get top 10
```

A MLlib example

```scala
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors

val data = sc.textFile("data/mllib/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)

clusters.save(sc, "myModelPath")
```

* Examples from Wikipedia and the Apache Spark web-site
SparkR + SQL – Examples

SparkR + SparkSQL

Sys.setenv(SPARK_HOME='\usr/hdp/2.4.2.0-258/spark');
.libPaths(c(file.path(Sys.getenv('SPARK_HOME'), 'R', 'lib'), .libPaths()));
library(SparkR);

sc <- sparkR.init();
sqlContext <- sparkRSQl.init(sc);

Example 1
housing_sub <- read.parquet(sqlContext, "hvalp1000.parquet");
aggreg <- SparkR::.lapply(housing_sub, function(x) paste(as.character(x$ST),"AAA",sep="_"))
take(aggreg,10);

Example 2
df <- read.df(sqlContext, ".\iris.data");
training <- filter(df, df$Species != "setosa");
model <- glm(Species ~ Sepal_Lengeth + Sepal_Width, data = training, family = "binomial");
Python – SK-Learn + Theano: GPUs

```python
from sklearn_theano.datasets import fetch_asirra
from sklearn_theano.feature_extraction import OverfeatTransformer
from sklearn_theano.utils import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.metrics import classification_report, accuracy_score

asirra = fetch_asirra(image_count=20)
X = asirra.images.astype('float32')
y = asirra.target
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=.6, random_state=1999)
tf = OverfeatTransformer(output_layers=[-3])
clf = LogisticRegression()

pipe = make_pipeline(tf, clf)
pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_test)

print(classification_report(y_test, y_pred))
print()
print("Accuracy score")
print("="*20)
print(accuracy_score(y_test, y_pred))
```

* Example from scikit-learn.org : sklearn-theano
Weka and Moa – Examples

Weka & MOA (Using RMOA)

```r
## HoeffdingTree example
require(RMOA);
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver");

## Define a stream - e.g. a stream based on a data.frame
data(iris);
iris <- factorise(iris);
irisdataset <- dataset_dataframe(data=iris);

## Train the HoeffdingTree on the iris dataset
mymodel <- trainMOA(model = hdt, formula = Species ~ Sepal.Length + Sepal.Width + Petal.Length, data = irisdataset);

## Predict using the HoeffdingTree on the iris dataset
scores <- predict(mymodel, newdata=iris, type="response")
scores <- predict(mymodel, newdata=iris, type="votes")
```

The classic MNIST (handwritten number recognition)

```python
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
```

* Example from tensorflow.org
ElasticSearch Example

ElasticSearch queries

// Get documents with “mill” OR “lane” in address
{"query":{"match":{"address":"mill lane"}}}

// Get documents with “mill lane” in address
{"query":{"match_phrase":{"address":"mill lane"}}}

// Get documents with “mill” AND “lane” in address
{"query":{"bool":{
 "must":[
 {"match":{"address":"mill"}},
 {"match":{"address":"lane"}}
]
}}}

// Requirement “must” (AND, ALL) can also be “should” (OR, AT LEAST ONE) or “must not” (NOR)

// Queries can be a composition
{"query":{"bool":{
 "must":[{"match":{"age":"40"}}],
 "must_not":[{"match":{"state":"ID"}}]}
}}

– Results are ranked according to the matching

* Examples from elastic.co : https://www.elastic.co/guide
SQL + R – Examples

SQL + R: User Defined Functions

- R code (analytics, machine learning, etc...) as SQL procedures
 - The code is executed as a Procedure the SQL Execution Tree
 - Inputs are considered DataFrames.
 - Outputs are considered Relations

Example:

```r
## R code
PREDICTION <- function (x1,x2) { x1 * 10 + x2; }
```

```sql
-- SQL code
SELECT t.id AS ID, PREDICTION(t.a,t.b) AS Prediction
FROM table AS t
WHERE t.c > 10;
```
CONCLUSIONS AND REMARKS
Conclusions / Remarks

When benchmarking a system towards ML:
- Several kinds of methods must be tested:
 - Spatial (e.g. k-NN), counting (e.g. Naïve Bayes), iterative (N-Nets)…
- Different scenarios contemplated:
 - “Learning + slow new arrivals”, “Fast Learning + Heavy new data”, …
- Methods can have different kind of inputs:
 - Numerical (easy to compute), Strings (hard to parse), Labels (easy to treat)
- Preprocessing algorithms are also part of the ML process
 - If data requires binarization, string treatment to labels, etc… this phase is part of the ML process

The same way a DB benchmark includes different queries, a DB-ML benchmark should:
- Include different algorithms
- Pointing towards different kinds of data
- Focusing on learning, then on processing a high amount of data
- Include the preprocessing as another algorithm
Thanks for Your Attention

josep.berral@bsc.es
AUXILIAR SLIDES – ML EXAMPLES
Learning the Iris Data-Set*

- Measures of flowers and its classification
 1. x_1: sepal length in cm
 2. x_2: sepal width in cm
 3. x_3: petal length in cm
 4. x_4: petal width in cm
 5. class: [Iris Setosa, Iris Versicolor, Iris Virginica]

- We have labeled samples:
 - 5.1, 3.5, 1.4, 0.2, Iris-setosa
 - 7.0, 3.2, 4.7, 1.4, Iris-versicolor
 - 5.8, 2.7, 5.1, 1.9, Iris-virginica
 - ...

- Given any flower, we want to know to which class it belongs

- We want to find a function: $f(x_1, x_2, x_3, x_4) \rightarrow$ class

Quick example (part 2)

Learning the Iris Data-Set*

- Learning it on a decision tree (C4.5)
 1. Decide the splits: 200 instances = 50% training, 25% validation, 25% test
 2. Decide algorithm parameters (minimal samples per branch = 2, ...)
 3. Train the model and test against validation

<table>
<thead>
<tr>
<th>Correctly Classified Instances</th>
<th>49</th>
<th>96.0784 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrectly Classified Instances</td>
<td>2</td>
<td>3.9216 %</td>
</tr>
</tbody>
</table>

```markdown

--- Confusion Matrix ---

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>a = Iris-setosa</td>
</tr>
<tr>
<td>0</td>
<td>19</td>
<td>0</td>
<td>b = Iris-versicolor</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>15</td>
<td>c = Iris-virginica</td>
</tr>
</tbody>
</table>
```

4. Iterate 2-3 changing parameters until the model satisfies us
5. Apply the test data-set and get final evaluation for our model

Learning the CPU Data-Set*

- Properties of a CPU and its relative performance
 1. x_1: vendor name: 30 (adviser, amdahl, apollo, basf, bti, burroughs, …)
 2. x_2: Model Name: many unique symbols
 3. x_3: MYCT: machine cycle time in nanoseconds (integer)
 4. x_4: MMIN: minimum main memory in kilobytes (integer)
 5. x_5: MMAX: maximum main memory in kilobytes (integer)
 6. x_6: CACH: cache memory in kilobytes (integer)
 7. x_7: CHMIN: minimum channels in units (integer)
 8. x_8: CHMAX: maximum channels in units (integer)
 9. x_9: PRP: published relative performance (integer)
 10. x_{10}: ERP: estimated relative performance from measures (integer)

- We have labeled samples:
 - 125, 256, 6000, 256, 16, 128, 198
 - 29, 8000, 32000, 32, 8, 32, 269
 - 29, 8000, 32000, 32, 8, 32, 220
 - …

- Given any CPU, we want to know its estimated performance

- We want to find a function: $f(x_1, x_2, \ldots, x_9) \rightarrow \text{value}$

* P.Ein-Dor and J. Feldmesser Source: https://archive.ics.uci.edu/ml/datasets/Computer+Hardware
Learning the CPU Data-Set*

- Learning it on a Linear Regression

1. Decide the splits: 200 instances = 50% training, 25% validation, 25% test

2. Decide algorithm parameters (ridge = $1e10^{-8}$, ...)

3. Train the model and test against validation

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>0.9158</td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>38.1617</td>
</tr>
<tr>
<td>Root mean squared error</td>
<td>48.9672</td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>45.5102 %</td>
</tr>
<tr>
<td>Root relative squared error</td>
<td>46.332 %</td>
</tr>
<tr>
<td>Total Number of Instances</td>
<td>71</td>
</tr>
</tbody>
</table>

4. Iterate 2-3 changing parameters until the model satisfies us

5. Apply the test data-set and get final evaluation for our model

* P.Ein-Dor and J. Feldmesser Source: https://archive.ics.uci.edu/ml/datasets/Computer+Hardware