PERFORMANCE ASSURANCE FOR BIG DATA APPLICATIONS

Boris Zibitsker, PhD
www.beznext.com
bzibitsker@beznext.com

SPEC Presentation
Scope

• Development of performance assurance technology, including performance engineering and capacity management and providing performance assurance services

• Incorporation of advanced analytics including descriptive, diagnostic, predictive and prescriptive analytics during data collection, workload characterization, performance evaluation, performance management, workload management and capacity planning during application, system and data life cycle

• Development Recommender, taking into consideration responsiveness, availability and cost requirements

• Incorporation of Big Data capabilities for development enterprise performance assurance platform
PROBLEM
Problem from the Business Prospective

- **Business needs**
 - To make effective business decisions fast
 - To increase profitability and reduce IT cost

- **Business requirements to IT**
 - Activity of group of business users, customers and vendors using applications of the line of business is a workload
 - Applications should:
 - Provide Information necessary to support line of business decisions
 - Answer specific What If business questions
 - Generate prescriptions for how to make effective business decisions
 - Each Workload has Service Level Goal (SLG)
 - Responsiveness
 - Demand for resources
 - Data
 - Each Line of Business has:
 - Different budget limitations
 - Different plan of development and implementation of new applications and modification of the existing applications
 - Different plans of growth and increase in volume of data and number of users
Problem from IT Prospective

• How to design and develop Big Data applications satisfying functional and performance requirements (SLGs) of each line of business

• How to plan and cost-effectively manage Big Data infrastructure to meet SLGs of each line of business

• How to set realistic expectations

• How to continuously and cost-effectively meet Service Level Goals for each line of business
Why Rate of Deployment of Big Data Applications is Slower than Expected

Interest in Big Data is high, so why is the rate of Big Data applications deployment slower than expected?

• Complex Technology
 • Difficult to manage
 • Security and privacy

• Applications
 • Use of advanced analytics
 • Workload growth and new applications like IoT increase demand and contention for resources

• People
 • Difficult to hire experts

• Uncertainty and Risk of Surprises
 • New applications
 • New releases of software
 • Workload management, performance management and capacity planning
SOLUTIONS
Use of Advanced Analytics

- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics

Process

- Data Collection
- Workload Characterization
- Workload Forecasting
- Workload Management
- Performance Management
- Capacity Planning
- Verification
- Control
Hadoop/YARN Data Operating System for Big Data Workloads

- Hadoop 2.x supports concurrent real time, interactive and batch workloads
- Complex multi-tier, distributed, virtualized, parallel processing, interdependent architecture
- YARN rules control cluster resource allocation, and mix workload management
Big Data Real Time Architecture

- Multi-tier
- Distributed
- Virtualized
- Parallel processing
- Mix workloads
- Cloud

Input: Kafka
- Distributed scalable publish/subscribe system for Big Data

Process, Analyze, Visualize: Storm/Spark
- A distributed platform for doing analysis on stream of measurement data in real time

Store: HDFS / HBase Cassandra - Open Source distributed DBMS
- Data Lake – HDFS / HBASE

www.beznext.com BEZNext All Rights Reserved
Performance Assurance During Application, Data and System Life Cycle Affect
Value of Application Performance Assurance

- Optimization of design and development during application, data and systems life cycle
- Optimization of performance management and workload management
- Optimization of Big Data infrastructure
- Set realistic expectations
- Enables verification
- Business process optimization
- Predictive and prescriptive analytics enables automatic proactive performance assurance process focusing on continuously meeting SLGs
- Reduce uncertainty and risk of performance surprises
- Enables collaborative capacity management process providing better alignment between business and IT
Advanced Analytics
Decision Optimization During Application and Data Lifecycle

- **Descriptive analytics** to identify significant changes in applications performance, resource utilization and data usage profiles

- **Diagnostic analytics** to identify current problems and the root causes of those problems

- **Predictive analytics** to answer What If questions and to predict the outcome of anticipated changes and identify potential problems

- **Prescriptive analytics** to evaluate different options, provide proactive recommendations and generate automated advice in order to set realistic expectations

- **Control analytics** compares the actual results with expected in order to develop corrective actions and feed results into a continuous management process
DATA COLLECTION
Goals

• Organize continuous data collection from different systems
• Transform and aggregate data into workloads representing line of business with ability to drill down to users, applications, and so on
• For each workload, build performance, resource utilization and data usage profiles, and calibrate profiles to make data collected from different sources correspond to each other
Business Data Collection Stages

- Business Plan
- New Applications
- Applications Modification
- Volume of Data
- Number of Users
- Budget for IT
- Performance Requirements

- Identification of Line of Business
- Applications and Users
- Gathering Information
- SLG Requirements
- Defining Options
- Verification against Measurement Data
- Data Transformation
- Workload Aggregation
- Negotiation of SLGs with IT
- New Applications Requirements
- Collaboration with IT in Managing Application's Performance

Performance Data Warehouse

Data Lake
IT Data Collection Stages

Big Data Clusters
- Teradata, Teradata, Oracle, DB2 EDW
- Other IT Platforms

Agent Manager
Agents
Data Transformation
Workload Aggregation

Performance Data Warehouse

Performance Engineering
Capacity Management

www.beznext.com BEZNex All Rights Reserved
BEZNext Data Collection Components

- Auto Discovery Agent
- Linux Agent
- Kafka Agent
- Spark Agent
- Storm Agent
- Cassandra Agent
- YARN Agent
- Tez Agent
- Teradata Agent
- Oracle Agent
- Other Agents

- Data Lake
- Performance Data Warehouse

- Workload Characterization
- Descriptive Analytics
- Diagnostic Analytics
- Workload Forecasting
- Predictive Analytics
- Workload Management
- Prescriptive Analytics
- Performance Management
- Control Analytics
- Capacity Planning
- Verification & Control

Big Data Clusters: Teradata, Teradata, Oracle, DB2 EDW

Other IT Platforms: Teradata, Oracle, DB2 EDW, Other IT Platforms
Sources of Data

• Configuration
 • Customer
 • Ganglia / Ambari / Hadoop Hadoop and subsystems / YARN / Zookeeper
 • Linux

• Resource Consumption
 • Operating Systems
 • Linux /proc directory (CPU, memory, IO and network traffic for each host as a whole and individual processes)
 • Windows, and so on
 • HDFS NameNode (disk space)

• Performance
 • Subsystems like YARN, Kafka, Spark, Storm, Cassandra, Hbase through API and JMX
 • Teradata, Oracle, DB2, SQL Server
 • Operating system
BEZNext Agents

- Operating System
 - Remote connection to the monitored server
 - Data retrieval from existing 3rd party source
- Oracle
 - JDBC connection to one of the instances associated with the monitored database. Retrieval of data from GV$ tables
- Teradata
 - JDBC connection to the monitored Teradata system. Retrieval of data from Resusage, DBQL and TDWM
- Big Data
 - Retrieval of metric sets from API or JMX interfaces to each specific technology installed on the cluster (that is, YARN, Cassandra, Spark, Kafka, and so on)
BEZNext Collectors / Agents

Configuration -> Overview Level -> Detailed Activity
Sampling Example

Default Properties for Oracle Collection

<table>
<thead>
<tr>
<th>Collector</th>
<th>Sleep Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>1 min</td>
</tr>
<tr>
<td>Node</td>
<td>5 min</td>
</tr>
<tr>
<td>Device (I/O)</td>
<td>5 min</td>
</tr>
<tr>
<td>Instance</td>
<td>15 min</td>
</tr>
<tr>
<td>Session</td>
<td>2 min</td>
</tr>
<tr>
<td>Request</td>
<td>10 sec</td>
</tr>
<tr>
<td>Response Time</td>
<td>15 min</td>
</tr>
</tbody>
</table>
BEZVision Parameters

Product Settings

- **Global Properties**: Value is overridden at the global level.

![Image of Product Settings table]

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Default</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACHE_OBJECTS_TIMEOUT_MS</td>
<td>3600000</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTION_NOTIFICATION_TIMEOUT</td>
<td>2</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_MAX_THREAD_POOL_SIZE</td>
<td>-1</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_MIN_THREAD_POOL_SIZE</td>
<td>2</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_RECONNECT_ATTEMPT_SLEEP_INTERVAL</td>
<td>900000</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_RECONNECT_ATTEMPTS_COUNT</td>
<td>672</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_RECONNECT_ATTEMPTS_DO_LOG_STACK_TRACE</td>
<td>false</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>COLLECTOR_THREAD_POOL_KEEP_ALIVE_TIME</td>
<td>300000</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>DO_PERSIST_DATA</td>
<td>true</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>EVENT_HANDLER_TIMEOUT_PADDING</td>
<td>30</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>MAX_RETRY_ATTEMPTS</td>
<td>3</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>PROCESS_BOOTSTRAP_RETRY_INTERVAL</td>
<td>60000</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>RETRY_GAP</td>
<td>5000</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>TRANSFORMATION_NOTIFICATION_TIMEOUT</td>
<td>2</td>
<td></td>
<td>Agent Manager</td>
</tr>
<tr>
<td>TRANSFORMATOR_MAX_THREAD_POOL_SIZE</td>
<td>-1</td>
<td></td>
<td>Agent Manager</td>
</tr>
</tbody>
</table>
Transformation / Profile Creation
Hourly Profiles Building Steps

Data retrieval for the 1PM to 2PM activity takes place.

Data is aggregated in hourly summary views.

Workload assignment rules are applied using the default rule set and individual workload profiles are created.

Workload profiles are calibrated, the “automatic” profile is created and the 1PM – 2PM data is made available in the product.
Performance, Resource and Data Usage Profiles for Each Workload

- Workload Aggregation Rules are used to aggregate measurement data into workload
- Each workload has performance, resource utilization and data usage hourly profiles
 - Line of Business (Marketing, Finance, and so on)
 - Type of Activity Near Real Time, Batch, and so on

Workload Aggregation Rules
Username='salesops' and Program='finapp.exe'

Performance
Average Response Time Throughput Etc..

Resource Utilization
CPU Usage I/O Rate Memory Usage Network

Data Usage
Read/Write Frequency of Data Accesses Parallelism Join / Sorts Operations Etc..
Level of Detail

- Depends on the problem you need to solve and available sources of data
- Options:
 - By System or Node
 - By Subsystem
 - By Workload / Application / User
Frequency of Data Collection

- Frequency of sampling depends on data variability and overhead of data collection
- Options
 - Continuous data collection of basic performance and resource consumption data
 - Variable rate of collection
 - Collection of detail data only when anomaly is detected or predicted
Data Transformation for Big Data

- Group individual data samples (like every minute) into modeling intervals (like every hour)
- Summarize resources consumed by child processes up to the parent process
- Map Linux processes to users, applications and Hadoop subsystems
- Match Linux processes with subsystems’ applications to create both performance and resource usage profiles
- Fill in information (“workload elements”) allowing grouping individual units of work into business workloads
- Prepare configuration and workload information to import into BEZVision
What Data is Stored in Performance Data Warehouse?

• Aggregated data representing hourly workloads’ performance, resource utilization and data usage profiles

• Results of auto-discovery characterizing configuration

• By streaming measurement data using Kafka, and by doing in-memory data aggregation and calculation of hourly average, STD, 95 percentile and implementing diagnostic analysis with Storm or Spark, you can reduce overhead, implement near real time capacity management and reduce the volume of data stored
Service Level Goal (SLGs)

- Performance
 - Response time, throughput

- Resource Utilization
 - CPU, memory, SSD, HDD, network

- Data usage profile
 - Read/write, parallelism, and so on

- Disk Space Usage
 - Total, allocated, used

- Availability
 - % of time when devices are available

- Reliability
 - Frequency of errors and outages, including CPU, memory, SSD, HDD, network, software and applications

- Power usage
 - Correlation between power consumption and utilization of hardware
Implementation for Big Data

- Shell scripts / Python scripts / C executables to collect Linux data on each host
- Python scripts on the remote control node to collect the whole cluster and subsystem level data and to organize continuous data collection process on changeable cluster configuration
- Java applications in scalable Kafka and Spark environment to pick data from the cluster hosts and transform
- Additional module in BEZVision to import transformed data and create performance and storage profiles
Data Collection Summary

• BEZNext Agents incorporate Big Data capability to achieve scalable solutions supporting continuous 24 X 7 data collection from distributed, multi-tier, parallelized systems, data transformation and processing

• BEZNext Agents incorporate advanced analytics to clean data and reconstruct missing data
Data Collection URL Links

- **Linux**

- **YARN**

- **Kafka**
 - JMX: http://kafka.apache.org/documentation.html#monitoring

- **Spark**
 - http://spark.apache.org/docs/latest/monitoring.html

- **Storm**

- **Cassandra**
 - https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_monitoring_c.html

- **Hbase**
 - JMX: https://hbase.apache.org/metrics.html

- **HDFS**
 - JMX: http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/ch07.html
WORKLOAD CHARACTERIZATION
Workload Aggregation and Characterization Process

• Create Workload Aggregation rules
• Build Workload profiles
 – Performance, resource utilization and data usage profiles for each workload
• Results of Workload Characterization are used for
 – Diagnostic and root cause analysis
 – Determining seasonal peaks and workload forecasting
 – Workload management
 – Performance Management
 – Capacity planning
 – Generating prescriptions
What is a Workload?

- A workload represents aggregated activity of a group of users or applications supporting a specific line of business, business function or department.
- Workloads characterization provides an integrated view of the business demand for IT Resources and Data on one hand and level of service or performance provided by IT in servicing the workload.
- Each Workload has unique performance, resource utilization and data usage profiles:
 - Performance profile – the average response time and throughput
 - Resource utilization profile – average CPU utilization, I/O rate, Memory and disk utilization, level of concurrency, level of parallelism and network utilization
 - The data usage profile includes the frequency and type of data access.
- Increase in number of users, volume of data, implementation of new applications and modification of existing applications changes workloads’ profiles.
Workload Characterization Process

Aggregate Data into Workloads
Each workload represents a line of business, business process, department or group of users

Metrix
Total CPU Seconds Consumed
Total I/O Operations
Total number of Requests - Throughput (requests/second)
Parallel Sessions (concurrent connections)
Delay Time (seconds)

Performance Profile
Response time
Throughput

Resource Utilization Profile
CPU
I/O
Memory
Internode communication

Data Access Profile
Read/Write
Level of parallelism

Big Data Clusters
Teradata, Teradata, Oracle, DB2 EDW
Other IT Platforms

Big Data
Agent Manager
Agents
Data Transformation
Workload Aggregation
Workload Characterization

Performance Data Warehouse
Data Lake
Performance Engineering
Capacity Management
Workload Aggregation Rules

Hourly Profiles

• Input for workload aggregation: transformed measurement data and Workload Aggregation Rules (WAG)

• WAG use:
 – Users’ names, application/program names or other common parameters
 – Cluster analysis results based on performance and usage of resources

• WAG aggregate detail measurement data into business workloads
Workload Aggregation (WAG)
Workload Aggregation Challenges

• End effect
• Distribute delta between OS and subsystem measurement data between workloads or create a separate workload for OS own activity, or unrecognized activity (misc workloads in BV)
• Coordination of workloads between tiers, clusters
Performance, Resource and Data Usage Profiles for Each Workload

- Workload aggregation rules are used to aggregate measurement data into Workload
- Each workload has performance, resource utilization and data usage hourly profiles
 - Line of business (Marketing, Finance, etc.)
 - Type of activity (near real time, batch, etc.)
Output of the Workload Characterization

- Workload characterization is performed continuously 24 X 7
- Performance, resource utilization and data usage profiles are created hourly for each workload.
- Performance profile includes workload average response time, user think time and throughput during different representative time intervals; for example, prime shift during holiday season, prime shift end of month processing and typical week day
- Workload’s resource usage profile of each workload includes average number of active users, average priority of requests within the workload, average CPU utilization by application, inter-node utilization, I/O rate to disks, read/write ratio, average level of parallelism
- Workload’s sata usage profile includes the list of files, databases and tables accessed by applications
- Disk space usage is determined periodically
- Advanced analytics identify the trends and significant changes in performance, usage of resources and data, enable root cause analysis and focus performance tuning on the most critical problems affecting performance of the most critical workloads
Demo

• Examples of workload characterization results
• Examples of rules for data aggregation
Workloads Profiles
Scatter Plot Matrix Grouped / binned into hexagonal tiles
CPU Utilization by Business Workloads

ETL Sales and ETL Marketing Use Almost 40% of Resources
Determining Anomalies - Statistical Process Control
In this example, using a Random Forest model yielded a model with similar fits, but different insights into the data.

We can see which variables the model found to be important.

Random Forest models use an ensemble of trees to make predictions.
Root Cause Analysis – Decision Tree

Leaf page and branches identify the cause
Workload Characterization

- **Data Aggregation**
- **Building workloads’ profiles**
 - Performance
 - Resource utilization
 - Data usage
- **Results are used as input for:**
 - Workload forecasting
 - Performance management
 - Workload management
 - Capacity planning
PERFORMANCE MANAGEMENT
Performance Management

- Descriptive Analytics
 - Current and past performance
- Diagnostic Analytics
 - Anomalies detection
 - Root cause Analysis
- Predictive Analytics
 - Discover future bottlenecks

Diagnostic analytics identifies significant changes in performance and resource utilization of the individual workloads.
Performance Analysis

Long Time to Load Data and Inconsistent Response Time

Trends over Time

Workload Contention

Workload Chargeback

Performance Changes

Tactical Performance Management Options
- Software configuration
- Database tuning
- Application tuning
- Balancing workloads between systems

Example of Root Cause Analysis
The largest component of the Load Response Time is Disk Wait Time
Anomaly Detection

- Diagnostic analytics identifies anomalies
 - Determining significant Changes with RT, throughput and resource utilization diagnostic analytics

Comparison to Baseline allows a check of current measured data against the historical “normal” values for each workload.

Period to Period comparison allows two time periods to be measured against one another to quantify the performance differences.
Root Cause Analysis

- Determine causes of performance degradation
 - Decision trees and
 - Logistic regression analysis
- Predict future bottlenecks
 - Predictive Analytics

Decision Tree - Leaf page and branches identify the root cause
WORKLOAD MANAGEMENT

Concurrency

Priority

Resource Allocation
Example of Workload Management by Queues

- By Organization 100%
 - Marketing 33%
 - Finance 33%
 - Sales 33%

- By Type of Workload 100%
 - Near Real Time 70%
 - Batch 30%

- Hybrid 100%
 - Marketing 20%
 - Batch 15%
 - Real-Time 5%
 - Finance – 40%
 - Real-Time 10%
 - Batch 30%
 - Sales – Batch 40%
Resource Manager Schedulers

- **FIFO Scheduler**
 - Processing jobs in order

- **Capacity Scheduler (Default)**
 - Queue shares as percentage of clusters
 - FIFO scheduling within each queue
 - Supporting preemption

- **Fair Scheduler**
 - Fair to all users
YARN Capacity Scheduler

Set limits on capacity:
- Minimum capacity for the queue
- Maximum capacity (% of cluster resources) for a queue
- Resource elasticity when not being used by other queues
- Minimum user limits – user sharing for a given queue
- User limit factor – maximum queue capacity that one user can take up
- Application limit – maximum # of applications submitted to one queue
Example of Predicting Workload Concurrency Change Impact

Concurrency Tradeoffs:
Reduction in Contention for Resources vs Increase of Delay Time

ERP and Marketing Throttling Will Elongate Their Response Time but Improve It for All Other Workloads
Example of Predicting Workload Priority Change Impact

Increasing Priority for Sales Will Reduce CPU Wait Time and Improve Response Time
CAPACITY PLANNING
Performance Prediction and Prescription

Workloads
- Performance
- Resource Utilization
- Data Usage

Hardware
- Number of Nodes
- Type of Nodes

Software
- Linux
- YARN Settings
- Kafka, Spark, Storm, Cassandra, etc

SLGs
- Hardware
- Software
- Applications

Options
- SLGs
- Workload Forecasting
 - Workload Growth
 - Volume of Data Growth

Prescription
- New Applications
 - Profiles
 - Number of Users
 - Volume of Data

Prediction
- Predicted Throughput
- Predicted Response Time

Prescriptions
Collecting Data and Modeling in Test Environment

- New Business Processes
- New Applications and Data
- Testing and Modeling
- Hadoop Clusters
- Data Warehouses and Data Marts
Predicting How New Applications will Perform in Production Environment

New Applications

- New Business Processes
- New Applications and Data
- Testing and Modeling

Existing Applications

- Hadoop Clusters
- Modeling
- Data Warehouses and Data Marts
- Data Collection

www.beznext.com

BEZNext All Rights Reserved
Dynamic Capacity Management

YARN Settings:
- Scheduler Type
- Queue Structure
 - Priority
 - Resource Limits
 - Concurrency
- Container setting

Cluster Nodes
- Container 1 (Kafka)
- Container 2 (Spark)
- Container 3 (Spark)
- Container n (Cassandra)

Subsystems:
- Input Kafka
- Process, Analyze, Visualize Storm/Spark
- Store HDFS / HBase Cassandra

YARN Queue SLS
- YARN Queue R&D
- YARN Queue MKT
- YARN Queue FIN
- YARN Queue HR

Workloads:
- R&D
- MKT
- Sales
- Finance
- HR

Prescription
Prediction
Capacity Planning

• Long Term Planning
 • Apply Predictive Analytics to determine number of Nodes in Cluster required to support expected workload and volume of data growth
 • Predict how new application will perform on production system

• Dynamic – Real Time Capacity Planning
 • Apply Prescriptive Analytics to evaluate options and determine how to dynamically change YARN Settings, including Containers, Queues and Scheduler to meet individual workloads SLGs

• Set realistic expectations
• Verify results

Predict the impact of workload and volume of data growth
Determine when workloads SLGs will not be met

Predict how new application will affect performance of existing applications

Predict the impact of proposed changes
Predicting New Application Implementation Impact

Test

- Data Collection
- Workload Characterization
- Workload Forecasting
- Modeling Test and Production Systems
- Predicting new Application Implementation Impact
- Recommendations
- Verification

YARN Settings:
- Containers
- Queues
- Scheduler

New Application

More Data

More Users

Long Term Capacity Planning

Dynamic Capacity Planning

Production

Current Sales, Mkt, HR, etc

YARN Settings:
- Containers
- Queues
- Scheduler
VERIFICATION AND AUTOMATION
Verification – Actual vs Expected (A2E)

The Root Cause analysis shows that increase in complexity of workload caused increase in CPU utilization and difference in RT A2E.
SUMMARY
Value of Application Performance Assurance

- Set Realistic Expectations
- Enables Verification
- Automation
 - Predictive and Prescriptive analytics enables automatic proactive Performance Assurance process focusing on continuous meeting SLGs
- Reduce uncertainty and risk of performance surprises
- Collaboration
 - Better alignment between business and IT
References

- B. Zibitsker, Big Data Advanced Analytics, Minsk 2016, Key Note Presentation on Big Data Analytics
- B. Zibitsker, CMG 2016, Performance Assurance for Real Time Applications
- B. Zibitsker, CMG 2016, Enterprise Performance Assurance Platform
- B. Zibitsker, IEEE Conference, Delth Netherlands, March 2016, Big Data Performance Assurance
- B. Zibitsker, Big Data Predictive Analytics Conference, Minsk 2015, Key note presentation “Role of Big Data Predictive Analytics”
- B. Zibitsker, Teradata Partners 2008, “Proactive Performance Management of Data Warehouses with Mixed Workloads”
Boris Zibitsker, PhD

- **Founder and CEO of BEZNext**, 2011 - present
 - Current focus of research is on applying predictive and prescriptive analytics for optimization of business and IT decisions during applications and data life cycle
 - Manage development of the Performance Assurance technology incorporating advanced analytics for optimization of Big Data and Data Warehouse applications in complex multi-tier, distributed, virtualized, parallel processing environment
 - Consulted many of Fortune 500 companies
- **CTO of Modeling and Optimization at Compuware** (2010-2014)
 - Participated in development of Application Performance Management software incorporating Machine Learning algorithms for performance and availability problems detection, and root cause analysis determination for web applications
- **Founder, President and Chairman of BEZ Systems** (1983 - 2010), acquired by Compuware in 2010
 - Managed development of BEZVision Performance Prediction and Capacity Management software for Teradata, Oracle, DB2 and SQL Servers
- **Performance Analyst:**
 - Started out as engineer at Computer Systems Research Institute working on modeling and performance evaluation of large computer systems and applying modeling results for optimization of jobs scheduling and storage performance management
 - Worked in capacity management departments at FNBC and CNA Insurance company in Chicago
- **Adjunct Associate Professor, DePaul University in Chicago** (1983 – 1990)
 - Taught graduate courses on Modeling of Computer Systems, Queueing Theory with Computer Applications, Computer Communication Systems Design and Analysis
 - Taught seminars at Northwestern University, University of Chicago and Relational Institute - North and South America, Europe, Asia, and Africa
 - Author of papers on applying modeling and optimization for performance evaluation, performance assurance, performance management, workload management and capacity planning for Big Data and Data Warehouse environments
- **Education:** MS and PhD research at BSUIR and NIIEVM
ARE THERE ANY QUESTIONS?

Boris Zibitsker, PhD
bzibitsker@beznext.com