HiBench
the cross platforms micro-benchmark suite for big data

Lv, Qi (qi.lv@intel.com)
July 22, 2015
About US

- Closely partnered with large web sites and ISVs on better user experiences
 - Key contributions for better customer adoption. E.g.,
 - Usability, Scalability and Performance

- More utilities to improve the stability & scalability
 - HiMeter: the light-weight workflow based big data performance analysis tool
Agenda

WHY
- Why we need big data benchmarking systems?

WHAT
- What is HiBench?

HOW
- How to use HiBench?
Big data ecosystem is complex

Hadoop
- MR1
- MR2

Spark
- Scala
- Java
- Python

Deployment
- Standalone
- YARN

Application
- SQL
- MachineLearning
- Graphx
Frequent Questions from our Partners

- Which framework is better?
 - Hadoop MR1/MR2
 - Spark scala/java/python
 - Standalone/YARN
- How many resources needed?
 - CPU cores, memory, network bandwidth
- Is the cluster configured properly?
 - Executor number, partition number tuning
Meet HiBench

- Micro-bench oriented
 - Summarized from real application
 - Regression test
- Reputation
 - AMP lab
 - Yahoo
 - IBM
 - Pivotal
First Glance of HiBench

- Core: Sort, wordcount, terasort, Sleep
- MLLib: KMeans, Bayes
- Graphx: Pagerank
- SQL: Aggregation, Join, Scan
- Streaming: Identify, grep, wordcount, project...
HiBench RoadMap

- HiBench 1.0 (2012.6)
 - initial release
- HiBench 2.0 (2013.9)
 - CDH, hadoop2 support
- HiBench 3.0 (2014.10)
 - YARN support, Sparkbench
- HiBench 4.0 (2015.3)
 - Workload abstraction framework
- HiBench 5.0 (2015.8)
 - StreamingBench
Key Features

- Workload abstraction
 - Typical workloads in classic application domains
 - Micro-bench workloads oriented
- Comparison between frameworks & configurations
 - MR1 / MR2, standalone / YARN
 - sequence / text, compression options / disable
- Scalable configuration
 - Global configuration for different scales
 - Dedicated configuration for individual workloads
- Metrics
 - Durations
 - Throughputs, Throughput per nodes
Showcasing how to explore the answer

- **Cluster configuration**
 - E5-2697 @ 2.7G 24C48T
 - Memory: 192 GB
 - Disks: 8 SSDs
 - Network: 10 GbE
 - Node size: 4

- **Software stack**
 - Spark: master (1.3.0-SNAPSHOT)
 - Hadoop1.0.4(MR1) / CDH5.3 (MR2)
 - JDK: oracle-1.8.0_25
Comparison of language APIs (spark)
MR1 vs MR2 (CDH5.3)
Impact of Network bandwidth

Seconds of duration (Less is better)
Impact of Network bandwidth

Seconds of durations (Less is better)

Seconds

bayes @20.262G

kmeans @9.118G

aggregation @15.008G
Data volume scalability Spark/scala
Data volume scalability Spark/java
Data volume scalability Spark/python
Q & A

Available at:
https://github.com/intel-hadoop/HiBench
Backup
Data volume scalability – hadoop1
Report configuration example

- All configurations are classified accordingly
- Some configurations are auto probe & generated
Troubleshooting

- Configuration issue
 - Check configuration parsing sequence to confirm your configuration is parsed properly
Troubleshooting(2)

- Pay attention to highlighted yellow and red message:
 - Yellow: warning
 - Red: Error
- If you doubt it’s a configuration issue, please check report/<workload>/<language api>/conf/sparkbench/sparkbench.conf to double confirm that.
System utilization chart

- Chart
 - CPU chart
 - Sys/User/IOWait/
 - Others=nice+irq+softirq
 - Network chart
 - Recv, send bytes
 - Recv, send packets
 - Errors=send_err+recv_err+send_drop+recv_drop
System utilization chart (2)

- Chart
 - Disk chart
 - Read, write bytes
 - Read, write IOPS
 - Memory chart
 - Used, buffer/cache, free
 - System load chart
 - Load5/10/15
 - Running processes
 - All process numbers (with threads)