SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics

Min Li,, Jian Tan, Yandong Wang, Li Zhang, Valentina Salapura, Alan Bivens

IBM TJ Watson Research Center
SparkBench Overview*

- A Spark benchmarking suite charactering in memory data analysis to provide guidance of Spark system design and performance optimization
 - A data generator automatically generates input data sets with various sizes
 - Diverse and representative workloads (extensible to new workloads)
 - Machine learning: Logistic regression, support vector machine, matrix factorization
 - Graph processing: pagerank, svdplusplus, triangle count
 - Streaming: twitter, pageview
 - SQL query applications: hive, RDDRelation
 - Explore different parameter configurations easily
 - Reported Metrics:
 - supported: job execution time, input data size, data process rate
 - under development: shuffle data, RDD size, resource consumption, integration with monitoring tool
 - Workload characterization and study of parameter impacts
 - Diverse and representative date sets: Wikipedia, Google web graph, Amazon movie review
 - Charactering workloads in terms of resource consumption, data access patterns and time information, job execution time, shuffle data
 - Studying the impact of Spark configuration parameters

* A paper currently under submission: “SPARKBENCH: a Spark Benchmarking Suite Characterizing Large-scale in Memory Data Analysis”
What SparkBench is designed for?

- Provide quantitative comparison for different platforms and hardware cluster setups
 - e.g. the comparison between IBM Power system VS Intel System. IBM cloud VS Amazon cloud
- Provide quantitative comparison for Spark system optimization
- Enable in-depth study of performance implication of Spark system in various aspects
 - workload characterization, parameter impact, scalability, fault tolerance
- Provide insights and guidance for cluster sizing and provisioning
 - If a user aims to provision a spark cluster for usage, what will the performance look like?
 - Help identify resource bottleneck
Workloads and Data Sets

<table>
<thead>
<tr>
<th>Application Type</th>
<th>Workload</th>
<th>Input Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
<td>Logistic Regression</td>
<td>Wikipedia</td>
</tr>
<tr>
<td></td>
<td>Matrix factorization</td>
<td>Amazon Movie Review</td>
</tr>
<tr>
<td>Graph Computation</td>
<td>PageRank</td>
<td>Google Web Graph</td>
</tr>
<tr>
<td></td>
<td>SVD++</td>
<td>Amazon Movie Review</td>
</tr>
<tr>
<td></td>
<td>TriangleCount</td>
<td>Amazon Movie Review</td>
</tr>
<tr>
<td>SQL engine</td>
<td>Hive</td>
<td>E-commerce</td>
</tr>
<tr>
<td></td>
<td>RDD Relation</td>
<td>E-commerce</td>
</tr>
<tr>
<td>Streaming Application</td>
<td>Twitter</td>
<td>Twitter</td>
</tr>
<tr>
<td></td>
<td>Page review</td>
<td>PageView DataGen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikipedia</td>
<td>6,938,018 Articles</td>
</tr>
<tr>
<td>Google Web Graph</td>
<td>875713 nodes, 5105039 edges</td>
</tr>
<tr>
<td>Amazon Movie</td>
<td>7,911,684 reviews</td>
</tr>
<tr>
<td>Review</td>
<td>889,176 movies, 253,059 users</td>
</tr>
<tr>
<td>E-commerce</td>
<td>Orders: 38275 entries, 8 columns</td>
</tr>
<tr>
<td>Transactions</td>
<td>Items: 240332 entries, 7 columns</td>
</tr>
</tbody>
</table>

Table 1: SparkBench Workloads

Table 2: Data sets used by SPARKBENCH.
Agenda

- Workload Characterization
- Impact of Parameter Configuration
- An End-to-end Example of Running SparkBench
Application Characterization
Machine learning – large data sets

Figure 3: Resource Consumption of LogisticRegression.

Figure 4: Resource Consumption of SVM.

Figure 5: Resource Consumption of MFAmazonMovie.
Machine learning

• bottlenecked resources: CPU
• OS cache has been used extensively
• few disk IO and network IO
• cpu and memory usage are relatively stable
Graph computation – large data sets

Figure 6: Resource Consumption of PageRank.

Figure 7: Resource Consumption of SVDPlusPlusAmazonMovie.

Figure 8: Resource Consumption of TriangleCount.
Graph Computation

- PageRank and triangle count
 - bottlenecked resources: memory
 - CPU and network usage has peaks
- SVD plusplus and shortest path look alike
 - increased memory usage
 - few network IO
 - bursty disk IO
SQL-like queries – large data sets

Figure 9: Resource Consumption of HiveSQL.

Figure 10: Resource Consumption of RDDRelation.
SQL-like Queries

- Less resource intensive
- suggest to co-run multiple queries to improve system resource utilization
Streaming applications – large data sets

Figure 11: Resource Consumption of TwitterStreaming.

Figure 12: Resource Consumption of PageViewStreaming.
Streaming Applications

- bimodal pattern of CPU utilization
- increased use of memory
- few disk and network IO
Workload shuffling VS regular tasks

Average Job Execution Time (Sec)

![Graph showing workload shuffling versus regular tasks]
Workload pattern

<table>
<thead>
<tr>
<th>Workload</th>
<th>Execution Time(Sec)</th>
<th>Input H/M/D/N</th>
<th>Shuffle R/W</th>
<th>Stages/Tasks</th>
<th>Bottlenecked resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogRes</td>
<td>453</td>
<td>162G/23G/0/0.62G</td>
<td>4G/4G</td>
<td>10/2062</td>
<td>CPU</td>
</tr>
<tr>
<td>SVM</td>
<td>6151</td>
<td>223G/7G/0/8M</td>
<td>27 G/28 G</td>
<td>23/4410</td>
<td>CPU</td>
</tr>
<tr>
<td>MF</td>
<td>4667</td>
<td>45G/23G/370G/21.4G</td>
<td>524 G/502 G</td>
<td>87/19K</td>
<td>Shuffle</td>
</tr>
<tr>
<td>PageRank</td>
<td>1177</td>
<td>71M/7G/0/88M</td>
<td>708M/713M</td>
<td>42/17K</td>
<td>Memory</td>
</tr>
<tr>
<td>SVD++</td>
<td>2553</td>
<td>198M/26G/1.6G/185M</td>
<td>310 G/23 G</td>
<td>22/9111</td>
<td>CPU</td>
</tr>
<tr>
<td>TriangleCount</td>
<td>2059</td>
<td>5G/4G/14G/10.6G</td>
<td>13 G/568 G</td>
<td>8/4814</td>
<td>Shuffle</td>
</tr>
<tr>
<td>Hive</td>
<td>688</td>
<td>39G/291M/29G/0.08G</td>
<td>51G/56G</td>
<td>12/9805</td>
<td>Shuffle</td>
</tr>
<tr>
<td>RDDRelation</td>
<td>472</td>
<td>39G/0/99.7G/0</td>
<td>10.6G/11.8G</td>
<td>12/9805</td>
<td>CPU, Shuffle</td>
</tr>
<tr>
<td>Twitter</td>
<td>1800</td>
<td>0/0/0/0</td>
<td>14M/12M</td>
<td>11K/23K</td>
<td>Memory</td>
</tr>
<tr>
<td>PageView</td>
<td>1862</td>
<td>0/0/0/0</td>
<td>233 M/242 M</td>
<td>1223/61K</td>
<td>Memory</td>
</tr>
</tbody>
</table>
Impact of Spark Configuration
Impact of RDD cache size
Impact of task parallelism
Impact of executor configuration
Impact of memory
Overall Observation

- Memory is intensively used across all workloads
 - ShuffleMapTasks use OS cache to store intermediate data
- Machining learning workloads are CPU intensive
- Demand of graph computation workloads varies from different workloads, generally resource intensive
- SQL can be resource demanding
- Streaming workloads demand light resources yet is memory hungry
- While memory usage is stable, other resource usage can be bursty.
- Parameter configuration impact the performance significantly
Example
Example(1/4): Using SparkBench to Study the Impact of Parameter Configuration

- Download the package:
 - git clone https://bitbucket.org/lm0926/sparkbench
- Setup spark cluster, optionally Ganglia
- configure bin/config.sh file to point to the Spark master
- To run each workload individually,
 - cd to the workload directory
 - mvn package/ sbt package
 - bin/gen_data.sh
 - bin/run.sh
Example(2/4): Using SparkBench to Study the Impact of Parameter Configuration

- configuration of SparkBench
 - bin/config.sh,
 - change memoryFraction to zero or different values
 - [workload]/bin/config.sh
 - specify the workload parameters such as number of iterations, the number of points generated in the input dataset.
- to view result in the bench.report
 - reports the job execution time, the data process rate, the input data set size
Example (3/4) : A Screenshot

```
$ ls -d */
common/  DecisionTree/  kmeans_java/  LinearRegression/  MatrixFactorization/  num/  PregelOperati
on/  sql/  StronglyConnectedComponent/  SVM/  bin/  ConnectedComponent/  kmeans/  LabelPropagation/  Logi
sticRegression/  PageRank/  ShortestPaths/  streaming/  SVDPlusPlus/  TriangleCount/

$ bin/gen_data.sh;
========== preparing LogisticRegression data ==========
Deleted /Bench/LogisticRegression/Input
Spark assembly has been built with Hive, including Datanucleus jars on classpath
15/03/17 12:49:09 INFO Slf4jLogger: Slf4jLogger started
15/03/17 12:49:09 INFO Remoting: Starting remoting
15/03/17 12:49:09 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@minill1.sl.cloud9.ibm.co
m:39579]
15/03/17 12:49:09 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote
transports.

$ bin/run.sh
========== running LogisticRegression bench ==========
rm: `/Bench/LogisticRegression/Output': No such file or directory
Spark assembly has been built with Hive, including Datanucleus jars on classpath
15/03/17 13:05:08 INFO Slf4jLogger: Slf4jLogger started
15/03/17 13:05:08 INFO Remoting: Starting remoting
15/03/17 13:05:08 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@minill1.sl.cloud9.ibm.co
m:60481]
15/03/17 13:05:13 INFO FileInputFormat: Total input paths to process : 720
training Mean Squared Error = 0.036943336666666764
15/03/17 13:07:22 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote
transports.

$ cat bench.report
LogisticRegression-gendata 2015-03-17-12:49:35 114.771000 32822.729247 285.984519
LogisticRegressionConfig nexample 400000000 nCluster 4 EPS 0.5 npar 720 ProbOne 0.2 niter 3 memoryFraction 0.79
LogisticRegression 2015-03-17-13:05:33 137.848000 24912.460407 180.724133
LogisticRegressionConfig nexample 400000000 nCluster 4 EPS 0.5 npar 720 ProbOne 0.2 niter 3 memoryFraction 0.79
```
Example (4/4): Visualizing the Impact of RDD Cache Size on Job Execution Time
Conclusion

• SparkBench is a comprehensive Spark-specific benchmarking suite
 • easy to use
 • can be used for various scenarios: performance comparison, cluster provisioning, in-depth study of Spark

Available for download:
https://bitbucket.org/lm0926/sparkbench