
www.bsc.es

Data sharing in the Big Data era

Anna Queralt and Toni Cortes
Storage System Research Group

Introduction

What ignited our research

– Different data models: persistent vs. non persistent

– New storage devices: byte addressable

– Sharing is what really matters

Why sharing data is important?

Cooperation is the way to success

Key information comes from

combining data from different sources

Data sources: public and open or private (not shared)

How is data shared today?

Real sharing: all actors have full access
to infrastructure
Huge trust alliances or irrelevant data
Very flexible

Data copies: owner decides what can be copied
Unnecessary data movement

Stale data
Owner loses control over data

Flexible

Data services: owner decides what and how data is shared
Very restrictive

Changes imply data provider involvement
Owner keeps full control

Our vision

Enable all actors to

“Share” an infrastructure

Merge all data in a “single” data set

Upload computations to be shared

See different “views” of the data

Key idea: self-contained objects and

enrichment by 3rd parties

Key technology: self-contained objects

Self-contained objects

Data

Code

Behavior policies

But …

… this looks much like a data service

Push the idea of data services to the limit

Self-contained objects

Data

Client App Client App

Data Data

Data

Functions

Security, Integrity, …

Data

Security, ...

Functions

Data service

Data store

Data store

3rd-party enrichment

By enrichment we understand:

Adding new information to existing datasets

Adding new code to existing datasets

This enrichment should

Be possible during the life of data

Not be limited to the data owner

Enable different views of the data to different users/clients

Several enrichments should be available concurrently

Data can be enriched both with data and code, in provider infrastructure

Code can be executed in the provider infrastructure

Then…

Enrichment

Client App

Data provider infrastructure

Data integration in a single infrastructure?

Using a “single” infrastructure

may become a bottleneck

Security and privacy policies should be part of the data

Thus, data could be offloaded to other infrastructures

Without breaking the data policies

Efficient usage of resources

Data and code can be offloaded to resources not accessible by the data provider

Then…

Data

Security, ...

Functions

Data provider infrastructure

Client Infrastructure

Cloud

“NEW” PROGRAMMING MODEL

Data selection

The platform enables accessing persistent data as if in

memory

In memory:

Data “never” queried

Data linked according to needs of program

Next data item found by following a link, not a query

Persistent data should behave in a similar

way

Following a link is faster than a query over a dataset

Programs do not need to make any differences

between persistent and volatile data

Enrichments enable data to be linked in different

ways

THE PLATFORM

15

dataClay: Storage platform based on objects

– Currently a prototype for Java applications (and Python soon)

Main features in the current version:

– Transparent persistence

• Store objects directly as seen by applications no transformations

– Remote execution of methods

• Execute methods in the resource where data is stored

– Enrichment of existing classes

• With new methods

• With new fields

PRELIMINARY MEASURES

Experiment

Goal

– See how dataClay performs compared to other data management

systems that are used today

• Use this information to optimize performance (dataClay is still under

development)

We have chosen a popular representative for each of the

following kinds of data stores:

– Key/value: Cassandra

– Object-oriented database: db4o

– Graph database: Neo4j

– RDBMS: PostgreSQL

Application

Find the maximum value in a list of 1000 elements

2 alternative settings for each element in the list:
I. A single integer

II. An array of 1000 integers, the average of which has to be calculated

Implementation on top of
– Cassandra and PostgreSQL:

• A single table containing all the elements in the list

• All the elements are retrieved at once by means of a SELECT *

– Neo4j:
• Each element is represented by a node with an edge to the next node

• All the elements are retrieved at once by means of a SELECT *

– dataClay and db4o:
• Each object in the list has a reference to the next object

• Objects are accessed one by one

– PostgreSQL using stored procedures

– Neo4j using server plugins

Results (I)

Each element contains a single integer

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

Not cached Cached

M
ic

ro
s

1000 elems

Cassandra

DB4O

Neo4j

PostgreSQL

DataClay

PSQLStored

Neo4jStored

– PostgreSQL is much

faster than the rest,

especially with stored

procedures

– Db4o, Neo4j and

dataClay do not perform

well when each element

is accessed once, but

when elements are

cached dataClay is

much close to stored

procedures than the rest

Results (II)

Each element contains an array of 1000 integers, its average

is calculated before calculating the maximum

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

Not cached Cached

M
ic

ro
s

1000 elems

Cassandra

DB4O

Neo4j

PostgreSQL

DataClay

PSQLStored

Neo4jStored

– PostgreSQL does not

behave so well with arrays,

either with or without

caching, and with or

without stored procedures

– dataClay with cached

objects outperforms the

rest of solutions up to 2

orders of magnitude

CONCLUSIONS

dataClay

Storage platform that provides flexible big data sharing

Today

– Store and retrieve objects

– Execution of methods in the platform

– Basic enrichment functionality

– Reasonable performance

Near future

– Higher performance and scalability

– Fault-tolerance

– Security

Benchmarking

Performance is essential in a big data platform

– … But how can we choose between two different solutions with similar

features and performance?

Is it possible to measure other thinks like…?
• Usability

– e.g, easiness of building a new application on top

• Flexibility

– e.g., easiness of using the same data in different ways without affecting

performance

• Energy efficiency

– e.g., energy consumed in the execution of an application

THANK YOU

