IBM Big SQL 3.0: An Introduction

October 29, 2014

John Poelman
BigInsights performance team, IBM Silicon Valley Lab (San Jose)
poelman@us.ibm.com
Special thanks to…

- Cindy Saracco
- Scott Gray
- Hebert Pereyra
- Bert Van der Linden
- Adriana Zubiri
- Simon Harris
- Klaus Roder
Please note

- This presentation is provided as-is.
- The content is accurate on a “best effort” basis.
- IBM’s plans can change at any time.
- Do not make decisions or rely on forward looking information stated or implied in this presentation. (Example: BigInsights beta content listed on slide 7).
Agenda

- Why SQL access for Hadoop?
- Overview of
 - IBM BigInsights
 - IBM Big SQL 3.0
Why SQL Access for Hadoop?

- SQL opens the data to a much wider audience
- Familiar, widely known syntax
- Lower cost data warehouse
- We see many open source and proprietary offerings in this space
What is BigInsights?

- IBM’s Hadoop distribution
- Builds on open source Hadoop capabilities for enterprise class deployments

Enterprise Capabilities

- Visualization & Exploration
- Development Tools
- Advanced Engines
- Connectors
- Workload Optimization
- Administration & Security

Open source

- Open source
- Hadoop components
BigInsights Overview

Value-Added Capabilities, Optionally Deployable

<table>
<thead>
<tr>
<th>SQL on Hadoop</th>
<th>Application Tooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big SQL – optimized ANSI compliant SQL</td>
<td>Toolkits and accelerators</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search</th>
<th>Data Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigIndex and Data Explorer</td>
<td>BigSheets “schema-on-read”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictive Modeling</th>
<th>Text Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big R – scalable data mining</td>
<td>Advanced text processing with AQL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real-time Analytics</th>
<th>Data Governance and Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfoSphere Streams</td>
<td>Data Click, LDAP, Secure cluster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage Integration</th>
<th>Enterprise Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPFS - POSIX Distributed Filesystem</td>
<td>Adaptive MapReduce, Recoverable jobs</td>
</tr>
</tbody>
</table>

100% Standard Apache Open-Source Components

- Oozie
- Jaql
- Zookeeper
- Hive
- HCatalog
- HDFS
- MapReduce
- HBase
- Flume
- Sqoop
- YARN*
- Spark*
- Avro
- Pig
- Solr/Lucene

* In current BigInsights beta
What is Big SQL 3.0?

- SQL engine included with BigInsights
- Rich, ANSI compliant SQL support
- High performance access to Hadoop data
 - Various storage formats supported (no IBM proprietary format required)
- Integrates with RDBMSs via LOAD, query federation
- Big SQL 3.0 co-exists with older Big SQL 1.0
 - Big SQL 1.0 is based on MapReduce
Big SQL 3.0 – Architecture

- **Big SQL head node**
 - Listens to the JDBC/ODBC connections
 - Compiles and optimizes the query
 - Coordinates the execution of the query Analogous to Job Tracker for Big SQL

- **Big SQL worker process resides on one or more compute nodes**

- **Compute nodes stream data between each other as needed**

- **Compute nodes can spill large data sets to local disk if needed**
 - Allows Big SQL to work with data sets larger than available memory
Architecture notes

- **Big SQL 3.0 does not own the data**
 - The traditional RDBMs storage layer has been replaced with data residing on HDFS
 - Therefore, no data caching (except temporary data) and no indexes
 - Data can be in many different formats and accessible by other Hadoop components

- **Big SQL still gains many great features from the RDBMs world including the query optimizer, self tuning memory, and advanced workload management**
Big SQL 3.0 Query Optimizer

- Big SQL query performance depends heavily on efficient plan selection by the query optimizer
 - Statistics and heuristics driven query optimization
 - Up to date runtime statistics critical for the query optimizer to choose good plans
 - Use ANALYZE TABLE … to collect statistics
 - Leverages additional metadata such as PK-FK constraints, primary key constraints, and column nullability
 - Exhaustive query rewrite capabilities

- Tools and metrics
 - Highly detailed explain plans and query diagnostic tools
Big SQL 3.0 Query Processing Pushdown

- Pushdown is important because it reduces the volume of data flowing from HDFS into Big SQL
- Pushdown moves processing down as close to the data as possible
 - Projection pushdown – retrieve only necessary columns
 - Selection pushdown – push search criteria
- Big SQL understands the capabilities of HDFS readers and storage formats involved
 - As much as possible is pushed down
 - Residual processing done in the server
 - Optimizer costs queries based upon how much can be pushed down
- Parquet format provides a good combination of efficient storage format and pushdown for Big SQL
Big SQL 3.0 Query Federation

- Data rarely lives in isolation

- Big SQL transparently queries heterogeneous systems
 - Join Hadoop to other relational databases
 - Query optimizer understands capabilities of external system
 - Including available statistics
 - As much work as possible is pushed to each system to process

<table>
<thead>
<tr>
<th>Data source</th>
<th>Supported versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB2 LUW</td>
<td>9.7, 9.8, 10.1, 10.5</td>
</tr>
<tr>
<td>Oracle</td>
<td>11g, 11gR1, 11gR2</td>
</tr>
<tr>
<td>Teradata</td>
<td>12, 13</td>
</tr>
<tr>
<td>Netezza</td>
<td>4.6, 5.0, 6.0, 7.2</td>
</tr>
</tbody>
</table>
Hadoop cluster resource management

- Big SQL 3.0 doesn't run in isolation

- Nodes tend to be shared with a variety of Hadoop services
 - JobTracker, TaskTracker, and MapReduce tasks
 - HDFS Namenode and Data nodes
 - HBase region servers
 - etc…

- Big SQL can be constrained to limit its footprint on the cluster
 - % of CPU utilization
 - % of memory utilization
Get started with Big SQL: External resources

- Hadoop Dev: links to videos, white paper, lab,
 https://developer.ibm.com/hadoop/
Questions?

John Poelman
BigInsights performance team, IBM Silicon Valley Lab (San Jose)
poelman@us.ibm.com