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Executive Summary

The serverless computing paradigm promises many desirable properties for cloud applications—
low-cost, fine-grained deployment, and management-free operation. Consequently, the paradigm
has underwent rapid growth: there currently exist tens of serverless platforms and all global cloud
providers host serverless operations. To help tune existing platforms, guide the design of new
serverless approaches, and overall contribute to understanding this paradigm, in this work we
present a long-term, comprehensive effort to identify, collect, and characterize serverless use
cases. We survey 89 use cases, sourced from white and grey literature, and from consultations
with experts in areas such as scientific computing. We study each use case using 24 character-
istics, including general aspects, but also workload, application, and requirements. When the
use cases employ workflows, we further analyze their characteristics. Overall, we hope our study
will be useful for both academia and industry, and encourage the community to further share
and communicate their use cases.
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serverless use cases, cloud computing, serverless computing, serverless applications, workflows,
requirements analysis, empirical research
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Section 1. Introduction

1 Introduction

Serverless computing is an emerging technology with increasing impact on our modern society,
and increasing adoption by both academia and industry [IDC18, RM17, HSH+16]. The key
promise of serverless computing is to make computing services more accessible, fine-grained,
and affordable [vTT+18, JSS+19] by managing operational concerns [CIMS19]. Major cloud
providers, such as Amazon, Microsoft, Google, and IBM already offer capable serverless plat-
forms. However, serverless computing, and its common Function-as-a-Service (FaaS) realization,
still raises many important challenges that may reduce adoption. These challenges have been
recognized and discussed in fields such as software engineering, distributed systems, performance
engineering [EIST17, VIA+18, HFG+19]. This work focuses on a first step to alleviate these chal-
lenges: understanding serverless applications through a variety of use cases.

Serverless computing enables developers to focus on implementing business logic, leaving the
operational concerns to cloud providers. In turn, the providers turn to automation, which they
achieve through capable serverless platforms, such as AWS Lambda, Azure Functions, or Google
Cloud Functions, and IBM Cloud Functions (based on Apache OpenWhisk). Serverless plat-
forms already support fine-grained function deployment, detailed resource allocation, and to
some extent also autoscaling [CIMS19]. However, more sophisticated operational features have
started to emerge such as: (a) complex function composition and even full workflows, (b) event-
ing and provider-managed messaging, (c) low-latency scheduling, (d) file storage and database
setup, (e) streaming and locality-aware deployment, and (f) versioning and logging solutions.
These features facilitate the serverless application lifecyle, and help further decreases the time-
to-market for serverless applications [LWSH19].

Researchers and industry practitioners have an urgent need for serverless use cases. The variety
of already existing platforms and support from the major cloud providers indicate the presence
of many serverless applications. However, relatively little is known about their characteristics
or behavior. For an emerging technology such as serverless computing, researchers, engineers,
and platform providers could use descriptions of use cases—which applications?, where and how
was this technology already successfully applied?, and what are the characteristics of these use
cases?—to guide their drive for discovery and improvement in the right direction. Researchers
can study different use cases related to the same application to extract meaningful patterns and
trigger new designs. They can also identify representative use cases, which can later be used for
the evaluation of novel approaches and in empirical studies. Engineers require descriptions in
which areas serverless computing was already successfully applied, which helps to decide whether
to adopt serverless computing for other projects. Additionally, existing solutions can serve as
blueprints for similar use cases. Platform providers require knowledge of how their products are
used, to optimize them and gaps in adoption can point out deficits in their current offerings.

There are only a few, and sometimes conflicting, reports addressing important questions such as
why developers build serverless applications, when serverless applications are well suited, or how
serverless applications are implemented in practice. For example, there are reports of significant
cost savings by switching to serverless applications [AC17, Lev20], but also articles suggesting
higher cost in some scenarios compared to traditional hosting [Eiv17]. There are also reports
of successfully serverless applications for data-intensive applications [WLJH19, CCAVPC19],
despite other articles claiming that serverless is not well suited for data-intensive applica-
tions [HFG+19]. Some people suggest that containers are superior to serverless for latency-
critical tasks [Cha18], but there are also reports of people successfully applying serverless for
latency-critical user-facing traffic [Orf]. Having concrete information on these topics would be

1



Section 2. Study Design

valuable for managers to guide decisions on whether a serverless application can be a suitable
solution for a specific use case.

However much needed, serverless use cases have not been studied systematically so far. For
serverless computing, existing research has focused on serverless platforms and their performance
properties [YBLW19]. Several studies currently exist about the features, architecture, and per-
formance properties of these platforms [vIG+19, BA18, FGZ+18, LSF18, LRC+18, WLZ+18].
Shahrad et al. [SFG+20] characterize the aggregated performance properties of the entire produc-
tion FaaS workload from Microsoft Azure Functions, but do not provide details on individual use
cases. A recent mixed-method empirical study investigates how developers use serverless comput-
ing, focusing on the issues (pain points) they experienced [LWSH19]. Another multivocal litera-
ture review discusses common patterns in the architecture of serverless applications [TEIPN20].
To the best of our knowledge, the only existing collection of serverless use cases is an article by
Castro et al. [CIMS19], which introduces ten use cases collected from non-peer-reviewed (grey)
literature.

In this technical report, we collect a total of 89 serverless use cases from four different sources.
32 use cases are from open-source projects, 23 from white literature, 28 from grey literature,
and 6 from the area of scientific computing. Each use case is reviewed by a pair of reviewers in
regard to 24 characteristics, such as execution pattern, workflow coordination, use of external
services, and motivation for adopting serverless. The full dataset containing all use cases and
their characteristics is publicly available as a persistent Zenodo repository [ESvE+20].

In the next section, we discuss our process for use-case collection and characterization. In
Section 3, we describe the 24 characteristics we reviewed for each use case and the results of
this review. Section 4 discusses threats to validity and mitigation strategies. Finally, Section 5
concludes this technical report, and discusses promising future research directions based on the
finding of this study.

2 Study Design

This section summarizes our overall study process, describes the data sources to identify primary
studies, the selection strategy with inclusion and exclusion criteria, the characteristics review
protocol, and the discussion and consolidation phase covering inter-reviewer agreement.

2.1 Process Overview

Figure 2.1 summarizes the use case analysis process. Firstly, we compiled an extensive list of
potentially relevant use cases from four different data sources (see Section 2.2), namely open
source projects, white literature, grey literature, and scientific computing. Secondly, we applied
our selection criteria (see Section 2.3) to classify and filter only relevant use cases in the context
of this study. This resulted in 83 use cases from publicly available sources and 6 scientific
use cases from internal sources, where we had access to domain experts. Thirdly, we defined
a list of interesting characteristics including potential values and perform reviews to extract
the actual values from available documentation (see Section 2.4). For all public sources, 2
randomly assigned researchers out of a pool of 7 available authors conducted two redundant
reviews for each use case. Each scientific use case was reviewed by a single domain expert.
Subsequently, we calculated the inter-reviewer agreements for all redundant reviews and resolved
any conflicting values during discussion and consolidation (see Section 2.5). This resulted in a
total of 89 analyzed use cases.

2
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Figure 2.1: Process overview for use case analysis.

2.2 Data Sources

Reports on use cases for serverless applications appear in many different forms ranging from peer-
reviewed academic papers, open-source projects, blog posts, podcasts, talks, provider-reported
success stories to direct exchange with application developers. Therefore, we collect use cases
from a variety of different sources. We also aim to not have a dominant source that contributes
the lions share of the use cases and therefore introduces a strong selection bias. Based on this,
we do not aim for an exhaustive collection of use cases, but collect use cases from the following
different sources with the goal of obtaining a large varied sample:

• Open-source projects: Many serverless open-source projects are currently available on
GitHub. As a starting point for the open-source projects, we used an existing data set
from [PAM19]. This data set was scraped from GitHub using GHTorrent [Gou13], an offline
mirror of the GitHub public event time line. It excludes unrelated or insignificant projects,
based on a keyword search1 and also excludes any projects that started prior to the launch
of AWS Lambda (the first major serverless platform). From this data set, we removed small
and inactive projects based on the number of files, commits, contributors, and watchers.
As this still left us with many projects that only mention one of the keywords (e.g., ”In the
future, we are looking to use AWS lambda for the image resizing.”), we manually filtered
the resulting data set to include only projects that are deployed as serverless applications.
This resulted in a total of 32 use cases from open-source projects.

• White literature: There is also a growing interest in serverless applications from academia,
which results in a number of scientific publications, i.e., journal papers, conference papers
and workshop papers describing serverless use cases. For white literature, we based our
search on an existing community-curated dataset on literature for serverless computing
consisting of over 180 articles from 2016 to 2019 [SAA19]. First, we filtered the articles
based on title and abstract. In a second iteration, we filtered out any articles that imple-
ment only a single function for evaluation purposes or do not include sufficient detail to
enable a review. As the authors were familiar with a few additional publications describing
serverless applications, we contributed these articles to the community-curated dataset and
included them in this study. This resulted in a total of 23 use cases from white literature.

1Keywords: aws, aws lambda, amazon lambda, lambda functions, azure, openwhisk, serverless, google cloud
functions, microsoft azure, azure functions, ibm blue mix, bluemix, oracle fn, oracle cloud fn, kubeless, ibm cloud
functions, fn project
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Section 2. Study Design

• Grey literature: In software engineering, the discourse in not limited to scientific articles
but extends to grey literature, such as blog posts, forum discussions and podcasts [GFM16,
BJMH15]. For serverless computing, there are a number of blog posts by companies or
individuals, talks at industry conferences and provider-reported success stories, as the
development of serverless computing was initially mostly industry driven. We filtered the
case studies reported by the major serverless providers (AWS2, Azure3, Google4 and IBM5)
and selected those that used mostly serverless solutions. We also included the ten use cases
reported in a recent article on the rise of serverless computing [CIMS19], which to the best
of our knowledge is the largest collection of grey literature on serverless use cases. We
further extended this collection with grey literature articles describing serverless use cases
that the authors were already familiar with. This process resulted in a total of 28 use cases
from grey literature.

• Scientific computing: There is also an increasing interest in serverless solutions from the
scientific computing community (e.g., by NASA [Wal19]). However, most of these use cases
are still at an early stage and therefore there is little public data available for them. One of
the authors of this paper is currently employed at the German Aerospace Center (DLR),
which allowed us to collect information about several projects at DLR that are either
currently moving to serverless solutions or are planning to do so. Additionally, a use case
from the German Electron Syncrotron (DESY) could be included. This resulted in a total
of 6 use cases from the area of scientific computing.

Some use cases are contained in multiple sources, e.g., a use case might have a GitHub repository
that matches our keywords and is also used in the evaluation of an academic paper. For these use
cases, we assign them only to a single source using the following ranking: open-source projects
> grey literature > white literature. For the scientific use cases, there are no overlaps with the
other use case sources.

2.3 Use Case Selection

We defined the following inclusion (I) and exclusion (E) criteria for our study:

I1 Concrete serverless use cases, as we are interested in real-world example applications.

I2 Use cases described in sufficient detail to conduct a meaningful review (i.e., excluding
vague high-level case studies mainly focusing on a specific serverless platform or solution,
but lacking technical detail).

E1 Serverless platforms (e.g., Apache OpenWhisk) and frameworks (e.g., Serverless Frame-
work6), as these are not concrete workloads.

E2 Boilerplate code and simple technology demonstrations as often found in official serverless
provider documentation, as these do not constitute full-fledged use cases.

E3 Academic papers on the same use case. For example, there are a number of academic
papers that discuss serverless neural networks serving [IMS18, BCK+19, TLL18]. In this
case we only include a single representative paper.

2https://aws.amazon.com/solutions/case-studies/
3https://azure.microsoft.com/en-in/case-studies/
4https://cloud.google.com/customers
5https://www.ibm.com/case-studies/
6https://www.serverless.com/
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Section 2. Study Design

2.4 Characteristics Review

We first determined and formalized the set of investigated characteristics. In an initial round,
all authors individually suggested characteristics they consider interesting. In a next round, we
merged similar characteristics and kept all characteristics that at least two authors considered rel-
evant. This process resulted in 24 characteristics, which can be divided into five groups: general
characteristics, workload characteristics, application characteristics, requirement characteristics,
and workflow characteristics. General characteristics aim to quantify the structure of our data
set and include characteristics such as “Is the use case open-source?”, “Is the use case currently
deployed in production?”, and “What domain is this use case from?”. Workload characteristics
aim to describe the traffic pattern and request properties of the use case, e.g., “Is the workload
bursty?”, “What is the data volume per request?”, and “Is the application workload triggered by
HTTP requests, cloud events, or regularly scheduled?”. Application characteristics describe the
structure and properties of the serverless application itself and focuses on characteristics such
as “How many functions does the application consist of?”, “What programming languages are
used?”, and “Which managed cloud services does the application use?”. Requirement charac-
teristics describe the requirements from the stakeholders, such as “Is latency relevant?”, “Does
the application have to run in a specific region, replicated in multiple regions or even on edge
devices?”, and “What is the reason for the adoption of serverless computing?”. Finally, workflow
characteristics describe the properties of workflows within the serverless applications, e.g., “Is
the use case a workflow?”, “How many functions does the workflow consist of?”, and “How is the
workflow execution coordinated?”.

Based on a group discussion, we defined an exhaustive set of potential values for each charac-
teristics. For example, for the characteristic “How are executions triggered?” we defined the
potential values “HTTP request”, “Cloud event’, “Scheduled” and “Manual”. Additionally, for
every characteristic we introduced the values “Unknown” and “Not applicable”. “Unknown” indi-
cates that the documentation of the use case does not contain enough information to determine
this characteristic. “Not applicable” is used when a characteristic does not make sense for a use
cases, for example all workflow characteristics are only applicable to use cases that contain a
workflow. For some characteristics, we were not able to define a set of potential values prior
to reviewing the use cases. For these characteristics, we used text fragments during the review.
Using thematic coding [CA96, GMN11], we extracted codes and treated those as the values for
these characteristics. For example, for the characteristic “What is the reason for the adoption
of serverless computing?” thematic coding resulted in the codes “NoOps”, “Scalability”, “Per-
formance”, “Maintainability” and “Simplify Development”. This process enabled us to extract
quantifiable results from the textual descriptions.

We randomly assigned each use case to 2 reviewers out of a pool of 7 available reviewers from
the authors. We manually adjusted a few reviewer assignments to minimize the number of
coinciding reviewer pairs (i.e., avoid that many use cases are reviewed by the same two reviewers).
Subsequently, each reviewer individually assigned values to all characteristics of its assigned use
cases.

2.5 Discussion and Consolidation

After completing the initial round of reviews, we calculate the fleiss kappa to quantify the
level of agreement between the reviewers [Gwe14]. Due to the nature of the fleiss kappa, we
excluded all characteristic assignments, where at least one reviewer assigned multiple values for
a characteristic (e.g., if a use case execution is triggered both via HTTP requests and cloud
events), the characteristics using thematic coding as well as the numeric characteristic “How

5



Section 3. Analysis Results: On the Characteristics of Serverless Use Cases

many functions does the application consist of?”. As characteristics have a different number of
possible values, we calculated an individual fleiss kappa value for each characteristic and then
the weighted average across these individual kappa fleiss values. This results in a kappa fleiss
value of 0.48, which can be interpreted as “moderate agreement” [LK77].
In the following discussion and consolidation phase, the reviewers compared their notes and tried
to reach a consensus for the characteristics with conflicting assignments. In a few cases, the two
reviewers had different interpretations of a characteristics. These conflicts were discussed among
all authors to ensure that characteristic interpretations were consistent. However for most con-
flicts, the consolidation was a quick process as the most frequent type of conflict was that one
reviewer found additional documentation that the other reviewer did not find. Following this
process, we were able to resolve all conflicts, resulting in a collection of 89 use cases described
by 24 characteristics.

For the scientific use cases, a different approach was necessary as many of them were not publicly
available yet. Therefore, these use cases are reviewed by a single domain expert, which is either
involved in the development of the use case or in direct contact with the development. For each
of the scientific use cases there is also a textual description (see Appendix Section 1).

3 Analysis Results: On the Characteristics of Serverless Use Cases

We describe in this section the results of our characterization and analysis of serverless use
cases. Overall, we cover a diverse set of characteristics, identifying the values commonly used in
practice and further analyzing their impact on serverless practice.

3.1 Main Findings

Our main findings are:

1. General Characteristics: We find AWS as the currently dominating for platform for server-
less applications (80%). The dominating application domain is web services (33%), with
40% of the analysed workloads being business-critical and at least 55% of them in produc-
tion already.

2. Application Characteristics: 82% of all use cases consist of applications that use five or
less different functions. Most (67%) of these functions are short-running, with running
times in the order of milliseconds or seconds. JavaScript and Python are the most used
programming languages for cloud functions (each used by 32% of the cases we studied).
These applications depend on a wide variety of cloud services, with the three most used
ones being cloud storage (used by 61% of the applications) and cloud database (47%);
cloud API gateway (18%) and cloud pub-sub (17%) are also widely used.

3. Requirements Characteristics: The reduced operation cost of serverless platforms (33%),
the reduced operation effort (24%), the scalability (24%), and performance gains (13%)
are the main drivers of serverless adoption. In comparison, cost savings seems to be a
stronger motivator than the performance benefits. At the same time, 58% of use cases
have latency requirements, 2% even have real-time demands, while only 36% are latency
insensitive. Locality requirements are only relevant for 21% of the total use cases.

4. Workload Characteristics: 81% of the analyzed use cases exhibit bursty workloads. This
highlights the overall trend of serverless workloads to feature unpredictable on-demand
workloads, typically triggered through lightweight (<1MB) HTTP requests.

6



Section 3. Analysis Results: On the Characteristics of Serverless Use Cases

5. Workflow Characteristics: Although the presence of workflows is already sizable (31%
of the use cases), most workflows are of simple structure, small, and short-lived. This is
likely to change, as demand follows natural trends and orchestration methods move toward
(cloud-native) workflow engines.

3.2 General Characteristics

In this section, we analyse general characteristics of serverless use cases: the supported plat-
form(s) and application types. Furthermore, we check if a serverless use case is in production
yet and its availability as open source. Last, we report on the distribution across application
domains for the analysed use cases.

3.2.1 Platform

Description. In November 2014, Amazon released the first commercial Function-as-a-Service
platform with AWS Lambda and started the serverless trend. Two years later in 2016, Microsoft
Azure, Google Cloud, and IBM Cloud released their own Function-as-a-Service platforms. There
are also a number of open-source Function-as-a-Service platforms, such as Knative, OpenWhisk
and OpenLambda. Selecting a deployment platform is a major decision for serverless applica-
tions, as there is a strong vendor lock-in that makes changing the deployment platform at a later
point in time difficult. In this study, we grouped the deployment platforms into AWS, Azure,
IBM Cloud, Google Cloud, and Private Cloud.

0 10 20 30 40 50 60 70 80 90 100
Proportion of use cases [%]

Unknown

Google Cloud

IBM Cloud

Private Cloud

Azure

AWS

0%

3%

7%

8%

10%

80%

Figure 3.1: Distribution of deployment platform among the surveyed use cases. Some use cases
support multiple deployment platforms.

Results. Among the use cases we surveyed, AWS is the clear choice-leader, with 80% of the use
cases choosing AWS as their deployment platform. The other cloud vendors are far behind, with
Azure at 10%, IBM at 7% and Google Cloud with 3%. 8% of the use cases use a private cloud,
with the majority of them being scientific use cases. A total of five use cases can be deployed
across multiple cloud platforms.

Discussion. That AWS is by far the most popular choice for serverless deployment among the
cases we surveyed can probably be attributed to AWS having a two year head-start with of-
fering this technology as a commercial service. A consequence of the earlier head-start is that
there was more time to develop and report about serverless applications using AWS serverless

7



Section 3. Analysis Results: On the Characteristics of Serverless Use Cases

technology. Additionally, AWS has the largest market share when it comes to general cloud com-
puting [Gar19], which gives it a larger existing user base that can move applications to serverless.

The very low adoption of private clouds outside of the scientific workflows is in strong contrast
to the large number of open-source Function-as-a-Service frameworks that have been developed.
A large appeal of the serverless application model is the reduction of operational concerns, so
we hypothesize that the increase in operational concerns that comes with maintaining a fleet of
servers and an open-source Function-as-a-Service frameworks is deterring the adoption of these
frameworks. Additionally, most serverless applications make use of many managed services (stor-
age, databases, messaging, logging, streaming, etc.) which are not available directly in a private
cloud environment.

It is interesting that five of the use cases we studied can be deployed across multiple cloud
platforms. This goes in contrast to the commonly reported vendor lock-in of serverless comput-
ing [AC17, Eiv17]. However, upon closer inspection, three of these use cases are computation
frameworks that provide additional layers of abstraction on top of commercial Function-as-a-
Service and another one is a monitoring framework that utilizes serverless technologies. There-
fore, we conclude that while there are some frameworks that can operate across multiple cloud
platforms, most serverless applications can only be deployed on the cloud platform they were
initially developed for. This provides further evidence that vendor lock-in exists for serverless
applications.

3.2.2 Application Type

Description. We categorized each use case according to their type of serverless application. The
motivation behind this was to explore for what kind of tasks a serverless approach is typically
employed—whether there are certain application types that are dominant or application types
that are notably missing in current use cases. To evaluate this usage aspect, we added the
Application Type metric in which we provided options of typical application types to group the
use cases in:

1. Operations & Monitoring: Consists of the use cases that deploy serverless application to
assist in operating software systems. Examples of such applications include automation of
the test or deployment pipelines, failure mitigation or remediation, or controlling the state
of running systems. This label superseeds all other labels.

2. Stream/async Processing: Groups the serverless applications that perform an asynchronous
task, which also includes any processing of events from an event bus or stream.

3. Batch Task: This is a special case of the stream/async processing category, which en-
compasses tasks that are executed in large batches. This label superseeds the stream/async
processing label.

4. API: Contains use cases that employ serverless to implement an API, such as a REST
API or a GraphQL API. The exact nature of this API is not relevant here, rather that it
is called synchronously, so the caller is waiting for a response.

5. Unknown: Denotes the use cases that did not provide enough information about what type
of serverless applications were employed.

Results. Figure 3.2 provides an overview of the collected results for the application type metric.
We find that serverless is commonly used to implement APIs (28%), stream/async process-

ing (27%), batch tasks (23%), and operations/monitoring tasks (20%). We were able to
determine this characteristic for all but 2% of the survey applications.
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Figure 3.2: Application type distribution among the surveyed use cases.

Discussion. Serverless is commonly recommended for operations tasks, which also shows in our
results as 20% of the use cases implement operations and monitoring applications. However,
we also find large shares of APIs, asynchronous processing, and batch tasks. This shows that
serverless is not seen as a niche technology that fits a special use case, but rather as a broadly
applicable solution.

3.2.3 In Production

Description. Another characteristic that we analyzed is whether or not a specific use case
was actually deployed in production environments. Our motivation behind this is to evaluate
how reliable the given characteristics actually are, or how representative they are for the real
applications running in practice. Therefore, this metric can be seen as a kind of validation of
our results.
For this characteristic, we work with three possible values:

• Yes: There is clear evidence or statements claiming that the specific use case is already
deployed in production.

• No: There is strong evidence that the specific use case is not deployed in production.

• Unknown: There can be no information found to support either “Yes” or “No”.

However, in our analysis an “Unknown” has almost certainly to be seen as a “No”, as if we can
not find evidence supporting that a use case was not applied in production, we have to assume
that it is not.

Results. The results of this characteristic are shown in Figure 3.3. We observe that more that
half (55%) of analyzed use cases are actually designed for and deployed in production. Roughly
a quarter (29%) is not used in production, and for the remaining 16% of use cases no clear
answer could be found. However, as discussed above, we should assume that all “Unknown” use
cases belong to the “No” field, leaving us with a total of 45% that do not have strong claims
supporting their application in production.

Discussion. As more than half of the use cases included in this study are actually used in pro-
duction, this can be seen as a strong indicator that the results of our analysis are representative
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Figure 3.3: Percentage of the survey use cases that are deployed in production.

and that the developed best practices have been applied in practice. Furthermore, many of the
approaches not actively used in production actually originate from white literature. As most of
the white literature papers just present prototypical studies and evaluation use cases, their share
of non-production use-cases is significantly higher. However, this in turn increases the respective
share of in-production use cases for grey literature and GitHub Projects.

3.2.4 Open Source

Description. Open source indicates whether the source code of the FaaS function or applica-
tion is publicly available. Open source software is a valuable contribution for education, reuse,
and testing. This is exemplified through FaaS providers sharing their own vision for high-level
reference architectures7 and fostering cataloging of example applications8. Yes indicates that a
use case is open-source and No indicates that no source code is available. Notice that we barely
check the availability of open source artifacts and cannot make any claims about completeness,
maintenance levels, or use of appropriate licenses for this characteristic.

Results. Figure 3.4 shows that 53% of the use cases are open source and 47% are closed source.

Discussion. Open source software is typically hosted on GitHub and similarly common for use
cases deployed in production. Interestingly, open source software is comparably widespread
among the 49 use cases deployed in production with 49%. We expected a clearer tendency of
use cases deployed in production to remain closed source, which is probably due to our selection
strategy favoring open source use cases.
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Figure 3.4: Percentage of the survey use cases that are open-source.

7https://aws.amazon.com/lambda/resources/reference-architectures/
8https://aws.amazon.com/serverless/serverlessrepo/
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3.2.5 Domain

Description. For each use case, we classified their application domain based as one of the follow-
ing: IoT, entertainment, scientific computing, WebServices, public authority, university, FinTech,
cross-domain, or other. Cross-domain are those use cases that are generic and could be useful
across more than one domain; for example, a generic image identification service which could be
used in IoT, scientific computing, WebServices, public authority, and university domains.
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Figure 3.5: Distribution of the domain of the surveyed use cases.

Results. Unsurprisingly, WebServices is the most common application domain in our survey
(33%, see Figure 3.5). This is followed by cross-domain use cases (24%), which we mostly found
via our GitHub search. The other groups with high representation in our review were scientific
computing (16%) and IoT (10%). The significant presence of scientific computing cases is a
result of our conscientious efforts in including scientific computing use cases in our survey.

Discussion. We find that there is a wide variety of application domains represented in our survey.
This is a strength of our study, as others can use our insights to make decisions about the design
and implementation of serverless frameworks that are applicable to a broad variety of domains.

3.3 Workload Characteristics

This section characterizes the nature of workloads imposed on serverless applications through
human users or technical invokers. In the following, we discuss execution patterns, burstiness,
trigger types, and common data volumes of our reviewed use cases.

3.3.1 Execution Pattern

Description. Functions or workflows of functions can be triggered on-demand as a direct result
of a user interacting with the application, or they can be scheduled to be run at specific times.
For the on-demand workflows, we further classify them as regular on-demand or high-volume
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on-demand.
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Figure 3.6: Execution pattern distribution among the surveyed use cases. Some use cases are
executed both on a schedule and on-demand.

Results. Most (workflows of) functions are triggered on-demand, with scheduled triggers being
used in only 17% of the use cases we analyzed (see Figure 3.6). Out of the on-demand execution
patterns, close to half are high-volume, business-critical invocations.

Discussion. The high prevalence of high-volume on-demand triggers calls for special study in
minimizing function start-up times, and auto-scaling mechanisms. In addition, half of the work-
flows that are scheduled fall into the application type category operations (see section 3.2.2),
highlighting how the serverless model has been adopted—in many cases—to automate opera-
tions, software management, and DevOps pipelines.

3.3.2 Burstiness

Description. The workload of a function can be either bursty or non-bursty. A bursty workload
follows a workload pattern that includes certain sudden and unexpected load spikes, or alterna-
tively a significant amount of sustained noise and variation in intensity. We classify a use case as
bursty (i.e., yes for burstiness) if its workload typically includes or can include burst patterns in
some situations and as non-bursty (i.e, no) if the workload is almost guaranteed to never receive
burst patterns (e.g., if all executions are scheduled and known in advance). If the burstiness of
a use case is unknown, then the use case was either under-specified, or can be both bursty or
non-bursty depending on the specific area of application. Note that in any scenario that involves
a set of human users, we consider the workload pattern to be bursty, as user behavior can almost
never the scheduled or reliably controlled, leading to a possibly bursty behavior.
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Figure 3.7: Percentage of the survey use cases that have a bursty workload.
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Results. Figure 3.7 depicts that a large majority (81%) of the analyzed workload patterns are
classified as bursty. Additionally, a 16% share have a clear non-bursty workload pattern, while
a small minority of 3% could not be attributed to be either bursty or non-bursty.

Discussion. As one of the strengths of serverless computing is its seamless and almost infinite
scalability, together with the general ease of operations it comes as no surprise that most of the
use cases indeed experience bursty workload patterns. Early adopters that want to test out the
new emerging paradigm are more likely to choose a use case that is optimized for the serverless
offering. At the same time, engineers that have been struggling with bursty workloads and face
regular performance issues are also more likely to migrate or adopt their application towards the
a serverless clouds than applications that run smoothly.
An interesting comparison here would be to compare the share of bursty workloads executed on
serverless platforms versus the share of bursty workloads of conventional applications. However,
we can still conclude that a large majority of use cases designed for or applied to serverless
platforms are experiencing bursty workloads and hence make use of the seamless elasticity that
these services offer.

3.3.3 Trigger Types

Description. Trigger types refer to alternative ways of invoking a FaaS function and are closely
related to external services (see Section 3.4.6). An HTTP request can trigger a FaaS function,
which then processes the request and generates an HTTP response. This HTTP routing is often
implemented through API gateways. A cloud event describes a state change happening in a
connected cloud service, such as a file upload to cloud storage or a modified value in a cloud
database. Such cloud events can be configured to trigger new function executions. A sched-
uled trigger invokes a FaaS function at a defined and potentially recurring time. The category of
manually triggered functions refers to human-initiated executions typically executed on-demand.
Notice that some use cases combine multiple trigger types and thus the sum of proportions ex-
ceeds 100%.

Results. Figure 3.8 reveals that the most common trigger types are HTTP request (46%) and
cloud event (39%). Far less common are scheduled (12%) and manual (9%) execution triggers.
We were unable to derive the trigger type for 3% of the use cases from their insufficient descrip-
tions.

0 10 20 30 40 50 60 70 80 90 100
Proportion of use cases [%]

Unknown

Manual

Scheduled

Cloud event

HTTP request

3%

9%

12%

39%

46%

Figure 3.8: Trigger type distribution among the surveyed use cases. Some use cases have multiple
trigger types.
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Discussion. We compare our results to the trigger types reported for the production workload
of Microsoft Azure functions [SFG+20]. Scheduled triggers and HTTP triggers are both 16-
20% more common among Azure FaaS applications in comparison to our analyzed use cases
focusing on AWS (85%). The results for the remaining categories very closely (<=2%) match
(after mapping some cumulative categories). We conclude that the order of categories is in
line with current production workloads reported for Azure but note that some values might be
higher in practice. Such an underestimation is plausible given that we derive our results from
potentially incomplete sources. However, the explicit grouping of functions into applications in
the Azure FaaS implementation possibly leads to different function groupings compared to our
AWS-focused use cases.

3.3.4 Data Volume

Description. The data volume defines what load will be on network and storage devices. The
motivation here is to analyze whether there are any clusterings of data usages or certain patterns
that are generally avoided. We categorized the different use cases into five different categories:
Volumes of less than 1 MB per execution, less than 10 MB, less than 100 MB, less than 1 GB,
and more than 1 GB. Additionally, there is also the unknown category, if data volume could not
be assessed. Note that the data volume refers to executions of the entire workflow. Furthermore,
as exact numbers were seldom found in the sources, this categorization is often based on the
estimate of our reviewers.
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Figure 3.9: Data volume distribution among the surveyed use cases.

Results. Figure 3.9 depicts the distribution of use cases among the different classes. Almost
half of the use cases (44%) fall in the smallest category of data volumes of less than 1 MB. The
second categorization transmitting more than 1 MB of data, but less than 10 MB, also make the
second largest group with a fraction of 13%. Even less use cases (3%) consider a data volume
between 10 and 100 MB. However, the following group between 100 MB and 1 GB increases
in popularity, and finally the share of use cases transmitting 1 GB or more to the serverless
platform increases to be the second-largest group (13%). Additionally, 18% of use-cases could
not have a specific data volume assigned and therefore do not count into any of the enumerated
groups.

Discussion. Generally, the different data volumes are relatively distributed and do not cast a clear
picture. There is definitely a use case for any data volume characteristic. Therefore platforms
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should not strive to optimize themselves towards any specific limitation here. That said, most
of the use cases transmit less than 1 MB of data per workflow execution. Note that this group
also includes all use cases that might not send any data at all. Therefore, the large majority of
serverless use cases that we surveyed does not work with big amounts of data. However, there is
also the exact opposite group of use cases working with vast vast amounts of data of 1 GB and
more per workflow execution.

3.4 Application Characteristics

This section characterizes the how the applications use cloud functions. In the following, we
analyze the applications regarding: the number of distinct functions in them, the function run
times, the resource bounds of the functions, the programming languages used to implement the
functions, the upgrade frequency of the cloud functions, and their interactions with external
cloud services.

3.4.1 Number of Distinct Functions

Description. The business logic of serverless applications is contained within serverless functions
and connects to a variety of managed cloud services. Similarly to microservices, the appropriate
granularity of serverless functions is a controversial topic. Opinions range from wrapping each
programming function as a serverless function, each API endpoint as a serverless function to full
microservices as a serverless function. In this characteristic we investigate the number of distinct
functions within the use cases. As this characteristics targets the development perspective, we
count a function that is executed multiple times within an application as a single function. For
some use cases, the only information available is along the lines of ”more than X functions”,
which we count as X for this analysis.
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Figure 3.10: Histogram of the number of functions per use case, single outlier at 170 not shown.

Results. About a third (32%) of the analyzed use cases consist of only a single function, as
shown in Figure 3.10. Further, about one-fifth (21%) consist of two functions, a tenth (12%) of
three functions, another tenth (11%) of four functions, and 5% of five functions. Larger sizes are
very rare and without causing a mode in the empirical distribution: there exists in our analysis
only one use case for each of the sizes 6, 7, 13, 15, 16, and, notably, 170; there exist only two
use-cases for each of the sizes 8, 9, and 10. The use case with more than 170 functions is the
back-end for the mobile app of a now defunct start-up. Overall, 82% of all use cases consist of
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five functions or less. Furthermore, 93% of the use cases that consists of ten functions or less.

Discussion. Our results determine that serverless application use a low number of serverless
functions, with 82% of all use cases consisting of five or less functions and 93% of the use cases
consisting of less than ten functions. There are two potential reasons for this. First, the serverless
application models reduces the amount of code developers have to write, as it allows them to
focus on business logic while all other concerns are taken care of by the cloud provider and
managed cloud services. Secondly, this seems to indicate that developers are currently choosing
a rather large granularity for the size of serverless functions. However, determining the optimal
granularity for serverless functions is still an open research challenge.

3.4.2 Function Runtime

Description. The run time of the cloud functions may have important impact on optimization
choices of the serverless frameworks running these functions. We classified the run time of the
functions in the use cases as: short (order of milliseconds or seconds) and long (order of minutes).

0 10 20 30 40 50 60 70 80 90 100
Proportion of use cases [%]

Unknown

Long (min+)

Short (ms, s)

10%

22%

67%

Figure 3.11: Function runtime distribution among the surveyed use cases.

Results. The majority of the functions in our survey are short (ms, s), 67%; only 22% of them
have a run time in the order of minutes (see Figure 3.11). We could not assess this characteristic
in 10% of the use cases we studied. All but one of the long-running functions is triggered on de-
mand (as opposed to scheduled), with half of them falling into the scientific computing domain.
The long-running functions that did not fall within the scientific computing domain, are mostly
operations or side-tasks, not business critical. Finally, these long functions are not high-volume
on demand APIs (only one was classified as such).

Discussion. The overhead associated with running a function is larger, in proportion, for the
case of functions with short run times. This supports the large number of efforts concentrated
in reducing this overhead. A limitation of our results is that, as the platforms impose a run time
limit in the order of minutes, there may be a bias towards short running functions that would
not exist if there were no time limits to the function run times.

3.4.3 Resource Bounds

Description. We wanted to know if the functions’ run time were limited by I/O, CPU, both (hy-
brid), the network, or an external service (e.g., cloud database). Information on the workload
mix can be useful for studies regarding the scheduling of functions and the routing of execution
requests.
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Figure 3.12: Distribution of the resource bounds among the surveyed use cases.

Results. Most use cases did not explicitly state this information (unknown is 72%, see Fig-
ure 3.12). For the use cases that did report this information, the I/O-bound functions and
CPU-bound functions are equally represented in our survey (9% I/O, 8% CPU, 6% hybrid, 4%
external service and 1% network).

Discussion. The percentage of use cases reporting this information is too small for us to derive
any statistically significant analysis of the results.

3.4.4 Programming Languages

Description. This characteristic refers to the main programming languages used to write code for
FaaS functions in a given application. FaaS providers typically offer a set of officially supported
runtimes (e.g., Node.js for JavaScript). These execution environments of FaaS functions deter-
mine the operating system and pre-installed software libraries. Some providers support further
languages through custom runtimes, often in the form of Docker images following a documented
interface. Notice that the programming language might differ from the technical function run-
time as so called shims can be used to invoke a target language through a wrapper runtime (e.g.,
invoking C++ through Node.js via system calls).

Results. JavaScript (32%) is the most common programming language for FaaS functions tied
with Python (32%). Less common languages include Java (9%), C and C++ (8%), C# (6%),
Go (3%), and Ruby (1%). We were unable to determine the language for 25% of the use cases
due to lacking technical descriptions.

Discussion. The ranking of languages in our results follows a general trend also observed in
other surveys. A study on FaaS industrial practices (N=161) [LWSH19] and initial results of
the latest Serverless Community survey (N=109)9 indicate that JavaScript is 20% more popular
than Python on used languages in FaaS applications. However, they largely follow the same
ranking but suggest higher popularity of Java over C#. Our results are plausible and confirm
that JavaScript and Python are the most widely supported programming languages in FaaS.
Further, the remaining languages (i.e., Java, C, etc.) all belong to the world’s most popular

9Question 25 in https://www.nuweba.com/blog/serverless-community-survey-2020-results
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Figure 3.13: Programming language distribution among the surveyed use cases. Some use cases
use multiple programming languages.

languages according to the TIOBE index10, although they are often not the primary choice for
the new FaaS paradigm.

3.4.5 Function Upgrade Frequency

Description. How frequently the code of the functions is updated has implications to software
engineering and to the mechanisms used by the framework to upgrade the code in the functions
that are already deployed. We used two classification levels for this property: rarely and often;
unknown indicates that this information cannot be obtained from the use case.

0 10 20 30 40 50 60 70 80 90 100
Proportion of use cases [%]

Unknown

Often

Rarely

70%

3%

26%

Figure 3.14: Function upgrade frequency distribution among the surveyed use cases.

Results. Most use cases did not explicitly state this information (unknown is 70%, see Fig-
ure 3.14). For the use cases that did report this information, the functions are updated rarely
(26% rarely, 3% often).

Discussion. The percentage of use cases reporting this information is too small for us to derive
any statistically significant analysis of the results.

10https://www.tiobe.com/tiobe-index/
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3.4.6 Use of External Services

Description. FaaS functions are often integrated into an ecosystem of serverless external services.
Persistency services include cloud storage for blob data (e.g., Amazon S3 for images) and cloud
database for structured data storage and querying (e.g., Amazon DynomoDB or Google Cloud
SQL). A cloud API gateway exposes HTTP endpoints and can trigger FaaS functions upon
incoming HTTP requests. Messaging services include cloud pub/sub for durable asynchronous
messaging (e.g., Amazon SNS), cloud queue for reliable FIFO-ordered messaging (e.g., Amazon
SQS), and cloud streaming for real-time data ingestion and processing (e.g., Amazon Kinesis).
Cloud logging and monitoring refers to applications that explicitly process log data because
we implicitly assume some essential logging infrastructure for FaaS functions (e.g., Amazon
CloudWatch for AWS Lambda). Cloud ML covers machine learning services, such as Amazon
Rekognition for image or video analysis. Notice that we abstracted from vendor-specific services
to cross-platform terminology (e.g., AWS S3 becomes Cloud Storage).
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Figure 3.15: Distribution of used external services among the surveyed use cases. Many use
cases use multiple external services.

Results. Figure 3.15 shows that cloud storage (61%) and cloud database (47%) are the most
popular external services, followed by the cloud API gateway (18%) and messaging services (10-
17%). For 12% of the use cases, we could not identify any external service integration.

Discussion. Given the ephemeral nature of FaaS functions, it is unsurprising that persis-
tency services are the most popular external services, which is consistent with other survey
results [LWSH19]. However, the API gateway receives surprisingly little attention, especially
when compared to the 46% of the use cases using HTTP triggers (see Section 3.3.3). We sus-
pect the use of an API gateway is often implicitly assumed, thus not explicitly mentioned, and
therefore not comprehensively captured here. Overall, we conclude that currently used exter-
nal services almost exclusively focus on technical aspects (e.g., storage or messaging) and more
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specialized services (e.g., cloud ML) are very uncommon among our surveyed use cases.

3.5 Requirements Characteristics

In the following section, we analyze the different requirements and expectations that users have
towards the serverless platforms when moving towards those. We discuss the main motivation
drivers, as well as the trade-off between cost and performance, and requirements towards latency
and locality of the invocations.

3.5.1 Motivation

Description. This characteristic aims at capturing the motivation of the respective engineers
and therefore quantifies why they decided to host their application in a serverless environment.
For this, we developed six main motivation fields and grouped each use case into one or multiple
of those fields, depending on the motivation the authors gave in the description. If no conclusive
motivation could be found, we put Unknown. The main motivations we found are:

• Cost : Running the application in a serverless platform significantly reduces operation cost
in comparison to traditional cloud hosting.

• NoOps: Deploying a serverless application has the advantage of saving operation effort.

• Scalability : The increased scalability of serverless platforms is advantageous for the appli-
cation.

• Performance: The performance of the application, i.e., throughputs and response times,
is better when running on a serverless platform.

• Simplify Development : The development cycle as well as the release structure is easier
using serverless applications.

• Maintainability : Deploying an application in a serverless cloud saves maintenance effort.

• Scalability : The increased scalability of serverless platforms is advantageous for the appli-
cation.

Results. The results of our study can be observed in Figure 3.16. The biggest drivers for the
adoption of serverless in our use cases are cost (33%), the reduced operation effort (24%), and
the offered scalability (24%). Two further significant motivation behind the adoption seems to
be the performance benefits (13%) and the simplified development (9%). However, the main-
tainability (2%) only plays a minor role. For 30% of the use cases, no specific motivation could
be determined.

Discussion. As the time savings by employing the NoOps paradigm of the serverless platforms
can be converted to personnel costs, we observe that saving effort and costs seems to be a
bigger contributor to the adoption of serverless than the offered performance and scalability
improvements (although they are closely behind on second place).
It is important to note here, that there are many common pitfalls which can make serverless
functions cost-inefficient. First, right now most providers bill by rounding up the execution time
to the nearest 100ms. While this is negligible for most functions, this can be quite inefficient
for very short-running functions. For example, if a functions runs for 10ms, it is billed for
100ms, which increases the billed duration tenfold. Secondly, most providers offer different
function memory sizes and scale the other allocated resources such as CPU, I/O capacity and
network bandwidth accordingly. A recent survey reports that about 50% of serverless functions
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use the minimum size of 128MB [Dat20], which is reported to be inefficient for most serverless
functions. Thirdly, at a very large scale, the raw infrastructure costs are significantly larger than
for a traditional VM-based solution [Eiv17]. However, one might argue that the total cost of
ownership could still be lower for the serverless solution due to the reduced operational overhead.
In general, the the economic benefits of serverless computing heavily depend on the execution
behavior and volumes of the application workload [Eiv17].
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Figure 3.16: Distribution of the motivation behind adopting serverless among the surveyed use
cases. Some use cases have multiple motivations.

3.5.2 Cost/Performance Trade-off

Description. The cost/performance trade-off describes whether a use case tends to focus rather
on cost optimization (i.e., cost-focused) or rather on performance optimization (i.e., performance-
focused). The trade-off is undefined if cost and performance are equally important and unknown
if we could find no evidence towards any previously mentioned value in the provided use case
description.
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Figure 3.17: Distribution of the cost/performance trade-off among the surveyed use cases.

Results. Figure 3.17 shows that cost is generally more important than performance for 41% of
the use cases. Cost-focused use cases are also twice as common compared to performance-focused
use case (23%). For 15% of the use cases, cost and performance are equally important. Finally,
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the trade-off remains unknown for 22% of the use cases.

Discussion. The clear focus on cost optimization is plausible given that cost is a strong motivation
for adopting serverless (see Section 3.5.1). Serverless solutions, such as FaaS, were also associated
with lower perceived total cost in another study [LWSH19].

3.5.3 Is Latency Relevant?

Description. A diversity of use cases comes with a broad spectrum of expectations or even
requirements on latency as a central performance metric. So we posed ourselves the question
about the relevance of latency across the analysed serverless use cases. For this characteristic,
we distinguish between four levels plus Unknown. The levels are:

• Not important : For these use cases we found evidence that latency does not play a central
role. Delays and variations in latency are acceptable without disturbing the mode of
operation.

• For complete use case: Latency plays a relevant role for the whole use case on a level of
mostly unspecified expectations on latency and its variations over time, e.g., expected to
exhibit a latency for convenient human user interaction.

• For parts of the use case: The use case includes parts where latency is irrelevant and other
parts where latency is of concern following the understanding of the level above as mostly
unspecified expectation.

• Real-time: We select the level real-time if evidence was found that there are soft latency
requirements specified. Replies that take longer than a given upper time limit are becoming
useless and are not further processed. This interpretation of real-time is not implying safety
critical states when latency requirements are violated.
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Figure 3.18: Distribution of latency importance among the surveyed use cases.

Results. Figure 3.18 shows that in more than one third (36%) of the use cases, latency does
not play a role. On the other side, for 58% of the analysed use cases, latency is of relevance
(joining the respective levels). In 27% this is only for parts of the use cases. The portion of use
cases with real-time requirements on latency is small with only 2%. No clear assignment of was
reasonable for 3% of use cases.

Discussion. Serverless computing is especially convenient for triggered or scheduled background
tasks that need to run from time to time without any latency requirements. But issues around
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function cold-starts and limited function life time have not shown to be a showstopper for
serverless uses cases that expect a certain degree of stable latency, e.g. for a smooth interaction
with human users. Also, over time, we would expect more examples for serverless use cases
that come with stricter soft-real-time requirements as the platforms continue to mature. We
doubt that serverless computing will accommodate use cases in production with hard real-time
requirements and safety critical implications in case of violations.

3.5.4 Locality Requirements

Description. Migration of any application from dedicated servers in a possibly self-owned data
center to a compute infrastructure managed by a cloud provider reduces the control over the
locality where the code runs and data is persisted. From the early days of cloud computing on
this remains still a possible issue or even show-stopper. We analyse the serverless use cases if
requirements on locality are imposed. The reasons for locality requirements can differ broadly
from regulatory to performance related ones. Here, we distinguish between four levels of locality
requirements plus the case “unknown”:

• None: There is evidence that for the given use case, no locality requirements are imposed.

• Multi-region: The serverless application is or should be deployed in multiple regions, e.g.
for improved latency or in tailored variations for specific geographic regions.

• Specific-region: The serverless applications is required to run in a specific region.

• Edge: The application or parts of it should run closer to a user or IoT device in an edge
infrastructure
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Figure 3.19: Locality requirement distribution among the surveyed use cases.

Results. While we have unclear or unspecified locality requirements for 34% of the use cases,
Figure 3.19 shows that the biggest portion (44%) comes with no locality requirements. For 21%
of the use cases, we found locality requirements. Out of those, 8% are deployed across regions,
while 10% are run in specific regions. The remaining 3% are tailored serverless solutions for edge
computing.

Discussion. As serverless technologies and applications are maturing, we expect to see more
business-critical elements of serverless applications in daily operation. The portion of serverless
use-cases that comes with region-specific requirements will grow respectively. Furthermore, the
use of serverless technologies for Edge computing can be seen as a trend of growing importance.
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Thus, we think it is likely to see a growing importance of the locality requirement “Edge”. At
the current time, for the dominating part of use cases, locality requirements are apparently not
specified or not given yet.

3.6 Workflow Characteristics

Many serverless use cases cannot use a single serverless function to meet their functional and
non-functional requirements. Instead, such use cases require the execution of multiple functions,
expressed and orchestrated as serverless workflows. In this section, we investigate the charac-
teristics of serverless workflows. However, not all use cases include workflows. Thus, we first
investigate in Section 3.6.1 which use cases are based on serverless workflows, and from then on
we only report results for the use cases that do (the workflow use cases).

3.6.1 Is it a Workflow?

Description. We evaluate here the prevalence of serverless workflows among the surveyed use
cases. A use case is categorized as a workflow (bar Yes in Figure 3.20) if for a part or all of
its functionality multiple serverless functions are needed. If not, the use case is not based on a
workflow (No). Use cases where this could not be determined are assigned Unknown.
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Figure 3.20: Percentage of use cases including workflows, among the surveyed use cases.

Results. As depicted in Figure 3.20, we observe that nearly a third (31%) of the use cases
include serverless workflows. The other use cases (69%) are simple enough that one or a couple
of independent serverless functions can fully provide the desired functionality. No use case was
labeled Unknown.

Discussion. The relative prevalence of workflows in use cases is important, as it hints that
serverless use cases are getting more and more complex. The evolution of use cases in fields
such as grid computing and more recently cloud computing is indicative that, once workflows
become acceptable practice, they become increasingly more prevalent [HTT+09, IH12, DPA+18].
Interesting too is the lack of use cases categorized as Unknown, which indicates that the presence
or absence of workflows for any relevant use case is one of the clearest questions to answer.

3.6.2 Workflow Coordination

Description. The use of workflows currently does not constrain the method used for orchestra-
tion. There are various approaches to ensure that tasks—or serverless functions—are executed
in a coordinated way, e.g., functions can use events to trigger the start of a new task or for
other purposes, a task can act as a coordinator for a specific workflow structure, or a workflow
engine can orchestrate arbitrary workflows. To evaluate which of these approaches is prevalent,
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we surveyed their use across workflow use cases. More formally, for this part we categorized
orchestration techniques as follows:

1. Event groups all use cases that rely on event-driven orchestration. In this approach,
workflows are constructed by configuring functions to be triggered to execute on the arrival
of the completion (or failure) events of other functions. Typically, this method requires
functions to explicitly listen for and publish their results or errors to a message queue—
though in some cases platforms this functionality is built-in and no explicit interaction
with an external message queue is needed.

2. Local coordinator groups all the applications which rely on programmed, user-side logic
to take care of the orchestration. An application running on the user’s machine, such as
a GUI or the client-side JavaScript running on a web page, invokes the functions in the
appropriate order, and ensures that each function is executed with the correct configuration
and input data.

3. Workflow engine contains the use cases that delegate the coordination to a dedicated
workflow management system. This workflow engine has functionality to ensure the correct
orchestration, along with higher-order concerns, such as (data) provenance, monitorability,
and task scheduling optimizations. The workflows typically need to be specified in a
consistent format using a set of workflow primitives that are supported by the workflow
engine. Compared to the local coordinator, a workflow engine can also be seen as an
external, persistent coordinator.

4. Unknown captures the use cases where we could not determine the coordination approach,
for example because of lacking or lack of documentation.
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Figure 3.21: Distribution of workflow coordination approach among the surveyed use cases.

Results. As depicted in Figure 3.21, half of the serverless workflows rely on events for the coordi-
nation (50%). Slightly less prevalent, about one-third (32%) of the use cases rely on a dedicated
workflow engine to ensure correct coordination. Only a few (2%) defer the coordination to a local
coordinator. For 16% of the workflow-based use cases the approach could not be determined.

Discussion. Our results indicate that event-driven workflows are currently most prevalent. In-
specting the individual use cases, we find that this is in part caused by implicit workflows;
use cases that do not explicitly construct workflows, but instead configure the function trig-
gers in such a way that these form simple pipelines. While this approach can address simple
workflows and especially chains of a few tasks, experience from the fields of grid and cloud com-
puting indicates using this approach will not scale to future workflows. We further find that,
as the workflows grow in complexity, workflow engines are more often used to coordinate the
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workflows. In contrast to cloud-side coordination techniques, the use of local coordinators is
unpopular because it distributes to the user more complex logic and, in part, because it is diffi-
cult to maintain. Furthermore, such an approach could be less reliable in operation – cloud-side
coordination techniques and workflow engines are carefully engineered for fault-tolerance, which
significantly exceeds the typical development effort of local coordinators.

3.6.3 Workflow Structure

Description. The complexity of a workflow is mostly determined by its structure. A bag of
tasks is a simple workflow (in mathematical terms: a degenerate workflow), which consists of a
set of tasks that can be executed in any arbitrary order. Another common workflow structure
is the sequential workflow, where all tasks need to be executed sequentially. We further define
complex workflows as workflows that include significantly more complex structure than the pre-
vious types, including (multi-stage) gather and scatter operations, workflows with conditional
execution of (some) tasks, workflows with loops, and fully dynamic workflows.
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Figure 3.22: Distribution of the workflow structure among the surveyed use cases.

Results. Figure 3.22 depicts the results. Sequential workflows are the most popular workflow
structure for serverless applications, with 40% of the workflow use cases including them. In-
cluding sequential workflows and bags of tasks (14%), over half (54%) of the workflow use cases
only include non-complex workflows. About one-quarter (26%) of the serverless applications are
complex workflows. Last, for over one-fifth (21%) of the workflow use cases we were not able to
determine the workflow structure.

Discussion. For serverless applications, simple workflow structures (bag of tasks and sequential
workflows) are more than twice as common as more complex workflow structures. We hypoth-
esize that this is because serverless applications are currently mostly used for comparatively
simple tasks and rarely for complex data analysis. Another possible explanation is the lack
of workflow engines (Section 3.6.2); it is difficult to orchestrate arbitrarily complex workflows
without such an engine.

The lack of bags of tasks can probably attributed to the fact that serverless applications come
with built-in scalability when the functions can be conveniently executed in parallel. For ex-
ample, resizing a collection of images can be conveniently implemented as a bag of many tasks,
where each task invokes the same image-resizing function. In this case, the serverless platform
has the capability to execute this case, without further need for orchestration from the user.
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3.6.4 Workflow Size

Description. Next, we study workflow size, expressed as the number of tasks in the workflow.
We aggregate all use cases into three groups:

1. Small workflows, containing 2–10 functions,

2. Medium-size workflows, invoking 10–1000 functions, and

3. Large workflows, comprised of more than 1000 function invocations.
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Figure 3.23: Workflow size distribution among the surveyed use cases.

Results. Figure 3.23 depicts the results of our analysis. The majority (59%) of analyzed work-
flows are small workflows. Around one fifth of use cases (19%) are medium-size, and only few
(3%) qualify as large workflows. Nearly one-fifth of the workflows (19%) could not be assigned
to one of the groups.

Discussion. Our results suggest that a majority of workflow executions are small; because these
workflows are only composed of ten or less individual function executions, they are also relatively
short-lived. This is consistent with the characteristics of early workflows in engineering and in
scientific prototypes [OIP+08]. Only about one-fifth of the workflows are medium or large-sized.
Similarly to the previous section, we hypothesize that orchestrating workflows of this size is
dependent on the presence of an automated facility, such as a workflow engine. (The other
hypothesis introduced in Section, that serverless workflows are currently used for relatively
simpler tasks, does not limit the size of the workflow – in the earlier example, the image-resizing
workflow can run 10,000s or even 100,000s of functions [BCD+08, DPA+18].)

3.6.5 Workflow Internal Parallelism

Description. For those use cases in which a workflow of serverless functions was present, we
further analyzed whether they present internal parallelism—at least an instance of multiple
functions running in parallel—or not.

Results. From Figure 3.24, we observe that most workflows (52%) exhibit internal parallelism;
about one-third (31%) of the workflows are simpler, exhibiting no internal parallelism. We could
not obtain this information (unknown) for 16% of the workflows.

Discussion. The high prevalence of workflows with at least some level of internal parallelism calls
for workflow managers that are native to—or well integrated with—the serverless framework, to
facilitate workflow composition and management yet deliver parallelism with low overhead.
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Figure 3.24: Percentage of workflows with internal parallelism among the surveyed use cases.

4 Threats to Validity

We discuss potential threats to validity and mitigation strategies for internal validity, construct
validity, and external validity.

4.1 Internal Validity

Manual data extraction can lead to inaccurate or incomplete data. To mitigate this threat,
we established and discussed a review protocol prior to reviewing, continuously discussed up-
coming questions during the review process, and performed redundant reviews through multiple
reviewers. In our review protocol, we established an exhaustive list of potential values for each
characteristic and configured automated validation, which immediately highlighted deviations
from these values. For characteristics with thematic coding, we continuously refined their values
in regular meetings during the review process. To address potential individual bias, we per-
formed two independent reviews for each use case, quantified the inter-rater agreement after
an initial review round through Fleiss’ Kappa, and resolved each disagreement in an extended
discussion and consolidation phase.

4.2 Construct Validity

To align the goal of this study (i.e., comprehensive understanding of existing serverless use
cases) with the data extraction, we compiled a list of 24 characteristics covering 5 different
aspect groups. We conducted and discussed this selection process together in an international
working group with authors from 5 different institutions but other researchers might consider
different characteristics as relevant.

4.3 External Validity

Our study was designed to cover use cases from open source projects, white literature, and
grey literature but we cannot claim generalizability to all serverless use cases. For open source
projects, we filtered non-trivial projects from the most popular open source repository (i.e.,
GitHub) but might have missed projects published in other repositories. However, we are un-
aware of such other repositories and also did not discover any among our other use cases from
white and grey literature. Our white literature collection is based on a curated dataset on server-
less literature and complemented with articles known to the authors but we might have missed
more recent articles uncovered in the dataset and unknown to all authors. Grey literature use
cases mostly focus on provider-reported case studies, an existing collection of grey literature use
cases, and sources known to the authors. We only partially cover corporate use cases as many of
them remain unpublished and others provide insufficient details to conduct a meaningful review,
which is similar to FaaS platforms [vIG+19]. Our scientific computing use cases are limited to
the aerospace domain originating from a national aerospace institution.
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5 Conclusion and Future Work

The emergence of serverless computing has already led to a diverse design space, with tens of
serverless platforms and the participation of all major cloud providers. We identify in this work
the need for a systematic, comprehensive study of serverless use cases, which could help the de-
velopment of serverless techniques and solutions in the fields of software engineering, distributed
systems, and performance engineering.

We have proposed a systematic process to identify, collect, and characterize serverless use cases.
To identify use cases, the process considers open-source software projects, peer-reviewed liter-
ature, self-published material, and domain knowledge. To collect the use cases, the process
proposes a structured repository, from which reviewers take and characterize each use case
alongside 24 features of interest. Each use case is covered by the following types of features: (a)
general characteristics, such as platform, application type and domain, whether the use case was
observed in production, and whether the use case provides open-source software; (b) workload
characteristics, such as the execution pattern, burstiness, types of triggers, and data volume;
(c) application characteristics, such as programming language(s) used to develop it, the resource
bounds, whether the application depends on external services, etc.; (d) the requirements posed
by the use case, such as locality and latency, or the performance-cost trade-off; and (e) workflow
characteristics, including structure, size, and internal parallelism.

Using this process, we have collected and characterized a total of 89 serverless use cases from
four different sources. Our systematic and comprehensive study reveals that:

1. We find a dominating portion of serverless use cases already being in production with
AWS as the most popular platform and web services being the most common application
domain.

2. Serverless workloads tend to exhibit on-demand execution patterns exemplified by 81%
bursty workloads, which makes their load hard to predict.

3. Most cloud functions (67%) are short-running, with running times in the order of millisec-
onds or seconds, thus requiring serverless frameworks that impose small overheads when
running functions.

4. Cost savings (both in terms of infrastructure and operation costs) are a bigger driver for
the adoption of cost than the offered performance and scalability gains.

5. We observe an increasing trend toward ever-larger, ever more complex workflows, indicating
the need to move toward (cloud-native) workflow engines.

Last, but not least, we see this study as a step toward a community-wide policy of sharing and
discussing about use cases. Persisting beyond our effort, such use cases could stimulate a new
wave of serverless designs, facilitate meaningful tuning and benchmarking, and overall prove
useful for both academia and industry. We therefore extend an open invitation to prospective
new collaborators in the SPEC-RG Cloud group.
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reviews in software engineering: Complementing systematic literature reviews
with grey literature,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2915970.2916008

[GMN11] G. Guest, K. M. MacQueen, and E. E. Namey, Applied thematic analysis. Sage
Publications, 2011.

[Gou13] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487132

[Gwe14] K. L. Gwet, Handbook of inter-rater reliability: The definitive guide to measuring
the extent of agreement among raters. Advanced Analytics, LLC, 2014.

[HFG+19] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith, V. Sreekanti,
A. Tumanov, and C. Wu, “Serverless computing: One step forward,
two steps back,” in CIDR 2019, 9th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings,
2019. [Online]. Available: http://cidrdb.org/cidr2019/papers/p119-hellerstein-
cidr19.pdf

[HSH+16] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with openlambda,”

https://doi.org/10.1145/3154847.3154848
https://doi.org/10.5281/zenodo.3822191
https://www.businesswire.com/news/home/20190729005169/en/Gartner-Worldwide-IaaS-Public-Cloud-Services-Market
https://www.businesswire.com/news/home/20190729005169/en/Gartner-Worldwide-IaaS-Public-Cloud-Services-Market
https://doi.org/10.1145/2915970.2916008
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf


in Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing,
ser. HotCloud’16. USA: USENIX Association, 2016, p. 33–39.

[HTT+09] T. Hey, S. Tansley, K. Tolle et al., The fourth paradigm: data-intensive scientific
discovery. Microsoft research Redmond, WA, 2009.

[IDC18] IDC, “FutureScape: Worldwide IT Industry 2019 Predictions,” https://www.idc.
com/getdoc.jsp?containerId=US44403818, Oct 2018.

[IH12] P. K. Isom and K. Holley, Is Your Company Ready for Cloud: Choosing the Best
Cloud Adoption Strategy for Your Business. IBM Press, 2012.

[IMS18] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models in a
serverless platform,” in 2018 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 2018, pp. 257–262.

[JSS+19] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A.
Popa, I. Stoica, and D. A. Patterson, “Cloud programming simplified: A berkeley
view on serverless computing,” CoRR, vol. abs/1902.03383, 2019. [Online].
Available: http://arxiv.org/abs/1902.03383

[Lev20] E. Levinson, “Serverless Community Survey 2020,” 2020. [Online]. Available:
https://bit.ly/SerComSurvey

[LK77] J. R. Landis and G. G. Koch, “The measurement of observer agreement for cate-
gorical data,” biometrics, pp. 159–174, 1977.

[LRC+18] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless com-
puting: An investigation of factors influencing microservice performance,” in 2018
IEEE International Conference on Cloud Engineering (IC2E). IEEE, 2018, pp.
159–169.

[LSF18] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless computing
environments,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 442–450.

[LWSH19] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method empir-
ical study of function-as-a-service software development in industrial practice,”
Journal of Systems and Software, vol. 149, pp. 340–359, 2019.

[OIP+08] S. Ostermann, A. Iosup, R. Prodan, T. Fahringer, and D. Epema, “On the char-
acteristics of grid workflows,” in Proc. of the CoreGRID Workshop on Integrated
Research in Grid Computing (CGIW’08), S. Gorlatch, Ed. CoreGRID, Apr 2008,
pp. 431–442.

[Orf] A. Orfin, “How Droplr Scales to Millions With The Serverless Framework,” https:
//www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework.

[PAM19] I. Pavlov, S. Ali, and T. Mahmud, “Serverless development trends in open
source: a mixed-research study,” Bachelor Thesis, 11 2019. [Online]. Available:
https://hdl.handle.net/2077/62544

[RM17] Research and Markets, “$7.72 Billion Function-as-a-Service Market 2017 - Global
Forecast to 2021,” https://www.businesswire.com/news/home/20170227006262/
en/7.72-Billion-Function-as-a-Service-Market-2017---Global, Feb 2017.

https://www.idc.com/getdoc.jsp?containerId=US44403818
https://www.idc.com/getdoc.jsp?containerId=US44403818
http://arxiv.org/abs/1902.03383
https://bit.ly/SerComSurvey
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://hdl.handle.net/2077/62544
https://www.businesswire.com/news/home/20170227006262/en/7.72-Billion-Function-as-a-Service-Market-2017---Global
https://www.businesswire.com/news/home/20170227006262/en/7.72-Billion-Function-as-a-Service-Market-2017---Global


[SAA19] J. Spillner and M. Al-Ameen, “Serverless Literature Dataset,” Zenodo dataset (3rd
revision) at https://doi.org/10.5281/zenodo.1175423, April 2019.

[SFG+20] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Lau-
reano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud provider,”
2020.

[TEIPN20] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, “Serverless cloud com-
puting (function-as-a-service) patterns: A multivocal literature review,” in Pro-
ceedings of the 10th International Conference on Cloud Computing and Services
Science (CLOSER’20), 2020.

[TLL18] Z. Tu, M. Li, and J. Lin, “Pay-per-request deployment of neural network models
using serverless architectures,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstra-
tions, 2018, pp. 6–10.

[VIA+18] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A SPEC RG
cloud group’s vision on the performance challenges of faas cloud architectures,”
in Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018, 2018, pp. 21–24.
[Online]. Available: https://doi.org/10.1145/3185768.3186308

[vIG+19] E. van Eyk, A. Iosup, J. Grohmann, S. Eismann, A. Bauer, L. Versluis,
L. Toader, N. Schmitt, N. Herbst, and C. L. Abad, “The SPEC-RG reference
architecture for FaaS: From microservices and containers to serverless platforms,”
IEEE Internet Comput., vol. 23, no. 6, pp. 7–18, 2019. [Online]. Available:
https://doi.org/10.1109/MIC.2019.2952061

[vTT+18] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is more: From paas to present cloud computing,” IEEE
Internet Comput., vol. 22, no. 5, pp. 8–17, 2018. [Online]. Available:
https://doi.org/10.1109/MIC.2018.053681358

[Wal19] J. Walter, “Systematic Data Transformation to Enable Web Coverage Services
(WCS) and ArcGIS Image Services within ESDIS Cumulus Cloud,” 2019. [Online].
Available: https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-
cloud

[WLJH19] P. A. Witte, M. Louboutin, C. Jones, and F. J. Herrmann, “Serverless seismic
imaging in the cloud,” 2019.

[WLZ+18] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the
curtains of serverless platforms,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 133–146.
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Appendix



1 Scientific Use Cases

1.1 Copernicus Sentinel-1 for near-real time water monitoring

Contact persons: Nico Mandery, Torsten Riedlinger, Maximilian Schwinger

Floods occur frequently and across most regions around the globe. They affect lives, infrastruc-
tures, economics and local ecosystems. The economic consequences of flood damage impacts
the most vulnerable members of society disproportionately. Emergency responders often request
Earth Observation based crisis information for flood monitoring to target the frequently limited
resources and to prioritize response actions during a disaster situation.

The European Earth Observation program COPERNICUS is providing satellite data and prod-
ucts suitable for a variety of environmental and security applications. The Sentinel-1 radar
satellites can be used for various applications in the field of marine and land surface dynamics,
e.g. for the detection of water bodies, the mapping of its seasonal dynamics and for the monitor-
ing of flood events. On average, Sentinel-1 provides approximately 1200 scenes per day, creating
a daily amount of data in the order of 800 GB.

This application facilitates the near-real time detection and monitoring of flooded areas and can
therefore provide vital information for decision makers, scientists and the general public.

Figure 1.1: Step dependencies during extraction of information from Sentinel 1 data.

A near-real time monitoring system for the provision of Sentinel-1 based products was developed
at DLR-DFD in the last years (Martinis et al. 2018, Twele et al. 2016), which is continuously
improved in terms of thematic quality and processing capacity.

The radar-based processing chains make use of an automatic hierarchical tile-based thresholding
approach in combination with fuzzy-logic-based post-processing for the unsupervised extraction
of the flood extent (Martinis et al. 2018). The processing chain can be divided into pre-
processing (internal calibration and terrain correction) and the thematic processing (derivation
of water bodies, dynamic and flood extent). The results are disseminated as raster and vector
files, including the provision through web-services.



Figure 1.2: Architecture Overview of the S1 water monitoring system implemented at DLR.

The processing is performed in a cloud native environment. Argo Workflows are orchestrating
docker container native workflows in a Kubernetes environment. Using Kubernetes and Argo
allows an easy evolution of the processing system and the implementation and adapting of other
thematic processing tasks in the future.
The physical infrastructure currently used for the Sentinel-1 application is the DLR-DFD multi-
purpose processing Environment GeoFarm. The near-real time application is planned to be
ported to DLRs new High performance data analytics (HPDA) -Infrastructure at the Leibnitz
Rechenzentrum (LRZ) in Munich.

References:
Martinis, S., S. Plank, and K. Cwik, “The use of Sentinel-1 time-Series data to improve flood
Monitoring in arid areas”, Remote Sensing, vol. 10 (582), pp. 1-13, 2018
Twele, A., W. Cao, S. Plank, and S. Martinis, “Sentinel-1 based flood mapping: a fully auto-
mated processing chain,” International Journal of Remote Sensing, 2016, vol. 37, no. 13, pp.
2990-3004, 2016



1.2 Terra Byte - High Performance Data Analytic for Earth Observation

Contact person: Maximilian Schwinger

Under the cooperation agreement Terra Byte between Europe’s second largest high performance
computing center LRZ (Leibnitz Super Computing Center) and the DLR (German Aerospace
Center) a high performance data analytic infrastructure fit for the specific requirements of earth
observation processing is procured and developed. The environment is composed from an opti-
mized hardware layer which can answer the high I/O requirements of earth observation require-
ments and a software stack, which provides earth observation scientists an easy access to the
available resources.

Core of the HPDA Terra Byte is a large high performance online storage based on the LRZ’s
Data Science Storage (DSS) concept which provides more than 30 PByte of relevant earth ob-
servation data online for use in different applications. The identification and access of the data
is one of the major tasks to be accomplished: applications need a simple way to identify rele-
vant data in hundreds of millions of data files, each larger than 1GByte. Besides identification
and access of data, usage of the significant computing infrastructure of HPDA-Terra Byte with
simple mechanisms matching the needs of earth observation scientists are required. To provide
this easy access and simple scalability the HPDA infrastructures stack will provide Platform as
a service (PaaS) as well as Function as a service (FaaS) capabilities.

To achieve this target an analysis and extension of available open source software will take place.
For the usage within the infrastructure a set of functions will be developed taking away logistical
core tasks from the scientists to provide them the freedom to focus on their core work.



Figure 1.3: Overview of the intended implementation of HPDA Terra Byte.

1.3 Reprocessing Sentinel 5 Precursor Data with ProsEO

Contact person: Maximilian Schwinger

The European Copernicus program provides a variety of satellite data products fit for appli-
cations in monitoring of environment and security. The Sentinel 5 precursor, carrying the
hyperspectral instrument TROPOMI, continuously monitors the earth’s atmospheric compo-
sition. Data is produced continuously but progress in understanding of the data as well as the
earth’s atmosphere leads to a continuous development in the algorithms retrieving trace gas
concentration from the sensor measurements. Due to this progress a reprocessing of the whole
missions data is required from time to time. The amount of input here is in a petabyte scale,
the number of files to be processed is in the scale of a million files and the time available is weeks.

The reprocessing system proposed has to follow a complex dependency graph of trace gas and
cope with a multitude of configuration dependencies between different processor versions and
configurations. The combination of processor version and configuration defines the require-
ment of an input product with a specific processor version and configuration produced. The
processing of a product is triggered by a simple request of a specific product produced by a
version/configuration of a processor. The dependency graph is generated by prosEO and the
triggering of functions on hardware is done by Kubernetes. The processors are encapsulated in



docker images.

Figure 1.4: Architectural Overview of ProsEO - a framework for generating higher level products
from satellite data.

prosEO is capable of handling multiple cloud providers (processing facilities) depending on cost
and data availability decisions.

1.4 Tandem-L exploitation platform

Contact persons: Wolfgang Balzer, Maximilian Schwinger

The Tandem-L mission is a German L-band Radar project proposal currently in ECSS phase
B of its development cycle. Tandem-L is a constellation of two satellites capable of observing
dynamic processes on the earth’s surface in unpreceded quality.

Tandem-L will generate a daily amount of 8 TByte of raw acquisition data which is processed
on ground to 13 interdepending products, operationally. In addition to this it is possible for
scientists to implement an own processor which then can be interconnected with the operational
processing streams. As no operational knowledge on processing streams, hardware allocation
and interdependencies will be handed to external scientists developing processors the processor
will be added to the exploitation platform as an additional function with interdependencies to
other functions of the exploitation platform.

1.5 Global Urban Footprint

Contact persons: Thomas Esch, Maximilian Schwinger
Source: https://www.dlr.de/guf

https://www.dlr.de/guf


Currently, more than half of the world’s population are urban dwellers and this number is still
rapidly increasing. Since settlements—and urban areas in particular—represent the centers of
human activity, the environmental, economic, political, societal and cultural impacts of urbaniza-
tion are far-reaching. They include negative aspects like the loss of natural habitats, biodiversity
and fertile soils, climate impacts, waste, pollution, crime, social conflicts or transportation and
traffic problems, making urbanization to one of the most pressing global challenges. Accordingly,
a profound understanding of the global spatial distribution and evolution of human settlements
constitutes a key element in envisaging strategies to assure sustainable development of urban
and rural settlements.

In this framework, the objective of the “Global Urban Footprint” (GUF) project is the world-
wide mapping of settlements with unprecedented spatial resolution of 0.4 arcsec (˜12 m). A
total of 180 000 TerraSAR-X and TanDEM-X scenes have been processed to create the GUF.
The resulting map shows the Earth in three colors only: black for “urban areas”, white for “land
surface” and grey for “water”. This reduction emphasizes the settlement patterns and allows for
the analysis of urban structures, and hence the proportion of settled areas, the regional popu-
lation distribution and the arrangement of rural and urban areas. When looking at the entire
GUF at once, mainly the metropolitan regions in Europe, USA East Coast and Asia stand out.
When focusing on the full resolution of the GUF, one can even recognize small villages stretched
along roads, single farm houses or non-built-up corridors in megacities. For a comprehensive
and objective analysis of the settlement patterns, the DLR additionally developed an approach
to display the spatial networks between the mapped settlements. This enables the computation
of various form and centrality measures, which are used for qualitative and quantitative charac-
terization of settlement patterns at different spatial units ranging from global to local scale.

The GUF exhibits a high potential to enhance climate modelling, risk analyses in earthquake
or tsunami regions and the monitoring of human impact on ecosystems. Moreover, the it also
can be employer as basis for monitoring both the historical growth of different settlements, as
well as their ongoing and future development.. This will allow effective comparative analyses of
urban dynamics among different regions of the world.

1.6 DESY - High Throughput Data Taking

Contact persons: Patrick Fuhrmann, Michael Schuh, Maximilian Schwinger
Source: https://www.desy.de/about_desy/desy/index_eng.html

DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities
at DESY to explore the microcosm in all its variety—from the interactions of tiny elementary
particles and the behaviour of new types of nanomaterials to biomolecular processes that are
essential to life. The accelerators and detectors that DESY develops and builds are unique
research tools. The facilities generate the world’s most intense X-ray light, accelerate particles
to record energies and open completely new windows onto the universe. That makes DESY not
only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a
coveted partner for national and international cooperations. Committed young researchers find
an exciting interdisciplinary setting at DESY. The research centre offers specialized training
for a large number of professions. DESY cooperates with industry and business to promote
new technologies that will benefit society and encourage innovations. This also benefits the
metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

https://www.desy.de/about_desy/desy/index_eng.html
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