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Executive Summary

The rapid adoption and the diversification of cloud computing technology exacerbate the impor-
tance of a sound experimental methodology for this domain.
This work investigates how to measure and report performance in the cloud, and how well the
cloud research community is already doing it.
We propose a set of eight important methodological principles that combine best-practices from
nearby fields with concepts applicable only to clouds, and with new ideas about the time-accuracy
trade-off.
We show how these principles are applicable using a practical use-case experiment. To this end,
we analyze the ability of the newly released SPEC Cloud IaaS 2018 benchmark to follow the
principles, and showcase real-world experimental studies in common cloud environments that
meet the principles.
Last, we report on a systematic literature review including top conferences and journals in the
field, from 2012 to 2017, analyzing if the practice of reporting cloud performance measurements
follows the proposed eight principles. Worryingly, this systematic survey and the subsequent
two-round human reviews, reveal that few of the published studies follow the eight experimental
principles.
We conclude that, although these important principles are simple and basic, the cloud commu-
nity is yet to adopt them broadly to deliver sound measurement of cloud environments.
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Section 1. Introduction

1 Introduction

Experimental methodology problems are common in many domains (SNTH13). In computer
science research they seem to appear also due to a lack of agreement on standard techniques for
measuring, reporting, and interpreting performance (HB15b; MDHS09a). A domain that raises
new and important performance evaluation challenges is cloud computing. The first commercial
cloud has opened for the general public in 2007 (Amazon AWS), and today cloud computing is
an established field that is growing rapidly. Cloud computing requires advances in performance
engineering, computer systems, and software engineering, which require meaningful experimenta-
tion to test, evaluate, and compare systems. In this relatively new field, experiments focusing on
cloud computing performance raise new methodological challenges (IPE14) related to technolog-
ical aspects such as dynamic environments, on-demand resources and services, diverse cost mod-
els, and new non-functional requirements such as elasticity (HKO+16) or elasticity-correlated
metrics (LPM+17). In this work, we focus on the principles and feasibility of experimental
performance studies in cloud computing settings.

Sound experimental methodology, and in particular reliable, consistent, and meaningful per-
formance evaluation, is challenging but necessary. Poor experimental design and/or execution
are often the cause for many pitfalls encountered by well-meaning researchers and practition-
ers (HB15b; SNTH13). As we show here, examples of problems that occur repeatedly, even for
research published in top venues, include: flawed or no definition of meaningful metrics, inade-
quate number of experiment repetitions, unreproducible cloud experiments, simplistic summa-
rization of data from multiple measurements across single or multiple clouds, and inconsistencies
between the experimental results and published claims. Consequently, it is difficult to repro-
duce experiments, to make fair comparisons between different techniques of the same class, or
to benchmark fairly across competing products. This situation is particularly undesirable for a
service-based industry such as cloud computing, which operates on the promise (or guarantee)
of performance delivery.

Although many top-level conferences accept cloud computing articles that include perfor-
mance results obtained experimentally, this work shows that the domain’s adherence to sound
methodological principles is lacking. Motivated also by increasing awareness about such prin-
ciples in other domains, e.g., software engineering over a decade ago (SHH+05) and high-
performance computing in the last few years (HB15b), we propose to revisit the basic principles
that underpin the performance evaluation of cloud computing artifacts. Toward this end, this
work makes three contributions, with each contribution structured around a main question of
experimental methodology:

RQ1 What methodological principles are needed for sound experimental evaluation
of cloud performance? (addressed in Section 2)

Reproducibility of experiments is a key part of the scientific method (Fei05). We focus on
technical reproducibility (defined in Section 2.2), and propose eight methodological principles
that target diverse aspects of experimental evaluation methodology and execution. These in-
clude designing experiments, obtaining and reporting results, and sharing software artifacts and
datasets. Cloud-specific aspects include reporting cost, based on two classes of pricing models.
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Section 1. Introduction

RQ2 Can the methodological principles be applied in common practice? (addressed
in Section 3)

Pragmatism is important for the adoption of methodological principles for experimentation. If
the principles are meaningful, but cannot be easily applied in practice or cost too much to
perform, the community will delay or even refuse to use them. This work provides evidence that
the proposed principles can be used in two common situations: (i) the commercial benchmark
SPEC Cloud IaaS, and (ii) a set of experiments with common cloud and self-owned infrastructure
conducted by a research team.

RQ3 How are cloud performance results currently obtained and reported?1 (ad-
dressed in Section 4)

To understand the state of practice, we conduct a systematic review (BB06; PVK15) of a repre-
sentative sample of papers on cloud computing that have been published, between 2012 and 2017,
in 16 leading venues. A highlight of this review is the careful, multi-reviewer examination
of these papers for the most important factors in experimental design and execution that may
limit technical reproducibility. The review also focuses on comparative performance evaluation
with competing approaches to the one presented in the paper.

Last, Section 5 compares this work with the body of work on principles and practice of
experimental evaluation, across four related research communities: cloud computing itself, per-
formance engineering, computer systems in general, and software engineering.

1In various related communities: cloud systems, control systems, performance engineering, general computer
systems.
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Section 2. Experiment Methodology

2 Experiment Methodology

This section addresses the question of how to design and report cloud performance experi-
ments (RQ1).

In other areas of experimental computing, the scope of the system under evaluation seems
relatively narrow. For example, both in the evaluation of infrastructure for High-Performance
Computing (HPC) (SBZ+08; FMMS14), or in the evaluation of Java Virtual Machines (JVMs)
and Just-in-Time compilers (GBE07; HLST15), the experimental methodology may consist of
a relatively compact, prescriptive list of artifacts and factors. In contrast, the open and in-
terconnected nature of cloud computing introduces too many relevant factors to be covered
exhaustively, of which the HPC systems and JVMs may be merely some of the evaluated as-
pects.

The experimental methodology we propose focuses on emphasizing the selection of suitable
metrics and the reproducibility of experimental results. This work presents eight principles that
are particularly relevant for reproducibility of performance experiments on cloud computing
platforms.

2.1 Metric Selection

A measurement is the assignment of values to objects or events, according to a defined procedure.
Based on collected raw measurement data, measures can be computed, each with the purpose
of capturing certain aspects of the experiment outcome (Ste59). In mathematics, the term
metric is explicitly distinguished from the term measure (the former referring to a distance
function). However, in computer science and engineering the terms metric and measure overlap
in meaning, and are often used interchangeably (Lil08). One way to distinguish between metric
and measure is to regard a metric as a value that can be derived from some measures obtained
from experimental evaluation. Metrics and measures may be defined for different scales. There
are absolute scales with a natural unit, ratio scales with a given zero point, and interval scales
with a given distance function (Ste46). When several metrics have similar value range and
distribution in practical settings, the definition of aggregated metrics may improve the ability
to establish valid claims about the experimental results. Examples of established aggregation
approaches include

• the arithmetic mean of raw measurements (but never of rates or percentages (FW86))

• a (weighted) geometric mean for speedup ratios compared to a reference implementa-
tion (Mas04),

• a pairwise comparison for closed sets of alternatives, and

• an Lp-norm as distance to the theoretical optimum.

More details are provided in previous works covering metric aggregation and metric quality
attributes (HBK+18).

2.2 Reproducibility

Although reproducibility of experiments is one of the pillars of the scientific method (Fei05),
it is rare in practice. In a 2016, Nature-published survey, Baker finds that 70% of the 1,500
researchers surveyed have tried and failed to reproduce prior work done by others, and over 50%
failed to reproduce their own experimental results (Bak16). Even in computer science, where
the use of open-source code, versioning, and virtualization are among the obvious techniques
that enhance reproducibility, Collberg and Proebsting showed in 2016 that more than 50% of
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Section 2. Experiment Methodology

the work published in top venues, including the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), the ACM Symposium
on Operating Systems Principles (SOSP), and the International Conference on Very Large Data
Bases (VLDB), cannot be reproduced due to missing or un-compilable code. They also showed
that authors are sometimes unable to reproduce their own published results (CP16).

Technical solutions to improve reproducibility have been proposed. One of the earliest,
PlanetLab, provided functional reproducibility of experiments, but could not ensure reproducible
non-functional properties, such as measured latency and bandwidth, due to uncontrolled resource
sharing (SPBP06). Handigol et al. (HHJ+12) promote the use of containers for repeatable
datacenter networking experiments; systems such as APT (RWS+15), EmuLab (ESL07), and
FlexLab (RDS+07) aim to provide environments for repeatable distributed networked systems
research; and frameworks such as DataMill (POZ+16) offer some control over experimental
variability. Among the more extreme examples is the work by Governor et al. (GSG+15) that
provides the means for the reader to reproduce everything in a paper, including the graphs,
by executing very simple steps. Another example is the work by Cavazos et al. (CFA+07),
that yielded an open toolkit2 for portable experiment definition, implementation, execution and
evaluation. Industry solutions, such as the Jupyter Notebook,3 are also gaining popularity
because they ease prototyping, sharing, and full reproduction of data processing projects.

Alongside the technical solutions to specific reproducibility issues, research communities now
try to improve the review and publication process. The ACM Symposium on Principles of
Database Systems (SIGMOD), a leading conference on data management and databases, has
been an early leader in championing experiment repeatability—accepted papers since 2008 are
invited to submit code and data required for third-party experiment reproduction4. Other lead-
ing computer-science venues follow suit (Boi16). In performance evaluation, the ACM/SPEC
International Conference on Performance Engineering (ICPE) conference is encouraging authors
to share research artifacts (both code and data) in a public repository maintained by the SPEC
Research Group5. The conference of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM) is running a workshop dedicated to reproducibility of networking research6.
The conference of the ACM Special Interest Group on Programming Languages (SIGPLAN)
is currently requesting feedback about a best-practices Empirical Evaluation Checklist to “help
[programming languages] authors produce stronger scholarship, and to help reviewers evaluate
such scholarship more consistently”7. As a publisher, ACM has an artifact evaluation (AE)
process8, used now by conferences such as the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC) and the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), which aims to reduce the expenses
of experiment reproduction.

There are many facets of reproducibility that need to be considered. In cloud benchmark-
ing, the experimental environment often includes opaque elements of the cloud infrastructure,
external workload over shared resources, and other complicating factors. An exact reproduction
of measurement results is rarely possible, and typically unnecessary (Fei05). Instead, the focus
should be on technical reproducibility, which requires only a description of the technical arti-
facts needed for the experiment and a clear description of what was measured and how it was
measured—i.e., the information needed to repeat the same experiment.

Another important concept is the reproducibility of claims, which asserts that a reproduction

2http://www.cknowledge.org
3http://jupyter-notebook-beginner-guide.readthedocs.io
4http://db-reproducibility.seas.harvard.edu/
5https://icpe.spec.org/artifact-repository.html
6http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
7http://sigplan.org/Resources/EmpiricalEvaluation/
8http://www.acm.org/publications/policies/artifact-review-badging
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Section 2. Experiment Methodology

of an experiment should support the same claims that were derived from the original study,
despite possible variations in the measurement results. Claim reproducibility requires not only
accounting for measurement variability, but also awareness and control for external factors.
While tools often address technical reproducibility factors, the reproducibility of claims depends
on the conditions under which the experiment is executed, on the computation, and on the
interpretation of the experiment results. Claim reproducibility focuses on the generality of the
findings, rather than on the specific technical aspects.

2.3 Methodological Principles

In this section, we propose a set of eight principles that represent a minimal set of guidelines
for performance evaluation in the cloud computing domain. The main purpose of such princi-
ples is to provide guidelines for designing experiments and reporting results in a sound way, in
order to promote reproducibility, and generality of the conclusions that can be drawn from the
experiments. Such a set of principles must be considered as a core that could be extended and
specified better for given application domains in cloud computing. The set of principles could
also be seen as a reviewer’s checklist for assessing the quality and reproducibility of an evaluation
in a experimental cloud research paper.

How to design experiments?

One of the core parts of a performance evaluation process is the experiment design, i.e., the
organization of the experiment to ensure that the right type of data, and enough of it, is available
to answer the questions of interest as clearly as possible (EM97).

P1: Repeated experiments. After identifying the sources of variability, decide how many rep-

etitions with the same configuration of the experiment should be run, and then quantify the

confidence in the final result.

It is essential to identify sources of variability in measured performance, because one of the
main aims of any designed experiment is to reduce their effect on the answers to questions
of interest. Cloud computing platforms exhibit significant performance variability (SDQR10;
IYE11; LC16; AB17). This is due to many factors, from multi-tenant workloads sharing the cloud
resources to minute differences in hardware of individual machine instances. Often, these factors
cannot be explicitly controlled. Instead, performing a sufficient number of equally configured
randomized experiments is needed to ensure that the results are not due to chance, and to
provide a statistically sound assertion about the confidence with which the data supports the
claims.

A decision on the number of repeated experiments (or the duration of an experiment when
observations are collected continuously) may need to account for factors such as random or
seasonal performance variations, the required accuracy, and the acceptable probability of an
erroneous conclusion. The number of repetitions can typically be reduced when a model that
explains or predicts the experimental results is available, e.g., a change in performance can be
judged significant depending on whether it reasonably correlates with changes in other system
metrics.

Violation Examples. In our survey (see Section 4), Principle 1 is often partially fulfilled
by performing certain number of repetitions or by selecting a long duration for the continuous
experimental run. However, often this choice is not justified and sometimes not even reported,
and is not explicitly connected to the required accuracy and confidence—evaluating peers appear
to have been content with merely seeing that some repetitions were done, even when the number
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Section 2. Experiment Methodology

of repetitions is specified ad hoc. This is not sufficient, because it may not be possible to
determine whether sufficient repetitions were done, with only aggregate results.

P2: Workload and configuration coverage. Experiments should be conducted in different

(possibly randomized) configurations of relevant parameters, especially parameters that are not

completely under control or those that may interact with the platform in unexpected ways, e.g., the

workload. Parameter values should be randomized according to realistic probabilistic distributions

or using historical data. The confidence in the final result should be quantified.

In cloud computing, experimental setup often includes configurable parameters. However,
some parameters that have significant effect on performance may not be under the (complete)
control of the experimenter. For example, although the experimenter may select the number
of allocated machine instances, the aggregate computing power across these instances may fluc-
tuate, and with it the observed performance. Similarly, some parameters may interact with
the platform unexpectedly. For example, when the allocation of resources for the experiment
happens to perfectly utilize the underlying host or rack, the observed performance might be
better than in a slightly larger setup that would require communication between multiple hosts
or racks. Carrying out independent experiments where the relevant parameters are randomized
can provide more robust results.

To avoid affecting the experiment, the choice of parameter values should be based on realistic
probabilistic distributions. Usually, the performance evaluation should examine common system
operation and should not be affected by rare events. If, on the other hand, the evaluation
targets robustness with respect to rare events, the number of independent experiments and their
parameters should be adjusted accordingly. In both cases, decisions should be reflected in the
quantification of the result confidence.

Violation Examples. The surveyed papers often partially address Principle 2 by using
multiple workloads, for example multiple benchmarks or multiple replay traces, which stress
the system in different ways. Unfortunately, the choice of workloads appears to be motivated
partially by ease of use. Despite existence of relevant techniques (HE07; JPEJ06), workload
coverage is not considered. Randomization is rare, in part perhaps because systematic treatment
of workload randomization is relatively recent (Fei16).

How to report experimental data?

Reports should include all information needed to evaluate the quality of the used data, to assess
the soundness and correctness of the evaluation approach, and to reproduce the results.

P3: Experimental setup description. Description of the hardware and software setup used to

carry out the experiments, and of other relevant environmental parameters, must be provided. This

description should include the operating system and software versions, and all the information related

to the configuration of each experiment.

This principle requires that the conditions under which the experiments were carried out are
described in sufficient detail to enable technical reproducibility (see Section 2.2). Some details
that are traditionally omitted may have a significant effect on the experimental results and thus
in the claims derived from the results. Descriptions should always include:

• the system under test (SUT),

• the environment under which this system is tested, including its non-default configuration
parameters, i.e., if a customized configuration has been used,

• the workload, possibly as a reference to a detailed characterization or standardization,
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• the monitoring system and how its data is converted into metrics, either formulas or plain
text, but with enough information if the metrics are not obtained from the monitoring
data straightforwardly.

In a cloud environment, the exact parameters of the system under test, e.g., both the host
platform of the virtual machine (VM) and the guest-VM instances, may change. This type
of information must therefore be documented in the experimental setup. The configuration
information may also be important to determine the number of experiments that is needed to
make sure that the results obtained are not dependent on the VM instance type.

Violation Examples. Our survey identified some papers that omit the experimental setup
information. However, a more salient point is that even for papers that provide such a de-
scription, there is much variation in how the setup is described. Some papers merely list the
(marketing) names of the VM instances, whereas others provide memory sizes and core counts,
and others further provide details such as kernel versions of the guest-VM. There is a marked
lack of certainty about what information to record and report, and there is little discussion of
whether and how unknown experimental setup parameters may affect the results.

As a practical constraint, the page limits applied to research papers may prevent inclusion of
the experimental setup description in appropriate detail, going beyond the ACM AE guidelines.
We believe a full description can only be presented in a separate document, e.g., a web page,
an appendix or a technical report in an archival form, and suggest that publishers provide
supplementary archival resources for the storage of such descriptions.

P4: Open access artifact. At least a representative subset of the developed software and data

(e.g., workload traces, configuration files, experimental protocol, evaluation scripts) used for the

experiment should be made available to the scientific community. The metadata of the released

artifact should uniquely identify the artifact, including timestamping and version in a versioning

system.

This principle is related to Principle 3 and, more generally, to the technical reproducibility
of results. A typical cloud experiment setup is quite complex, possibly with large third-party
components (guest operating system images, middleware, benchmark applications and workload
generators). It may not be practical to record the relevant details of such a setup other than
by preserving the entire experiment artifact. The experimenter may also have little control
over what happens in external data centers, e.g., for experiments run on Amazon S3 the actual
machine configurations may change from one run to the next. Preserving the experiment artifact
may be the only way to make the experiment pertinent in quickly developing environments.

Artifacts also have educational value. When made available, students can build on top of
prior results, acquire training by setting up experiments, reproducing them, and comparing the
results with those in published papers. These exercises accelerate the acquisition of skills and
expertise.

Finally, we should accept that experiment results may be distorted due to bugs that can only
be found through an external scrutiny of the artifact.9

Violation Examples. Our survey points to a dearth of published artifacts. Keeping the
artifacts private appears to be the default choice, with no justification offered, when the opposite
should be true—unless public artifacts are the norm, authors will find it difficult to justify
the extra effort needed to prepare artifacts for publication. On the technical side, we have
encountered examples of artifact web pages becoming inaccessible after publication, suggesting
that more robust archival options should be used.

Publishing reduced artifacts may be needed to meet intellectual property and privacy require-
ments. When publishing partial data, sampling methods should preserve Principles 1 and 2, and

9Several other sciences have taken steps toward this, including medical sciences (Soe15) and eco-
nomics (HAP14).
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the general result trends.

P5: Probabilistic result description of measured performance. Report a full characterization

of the empirical distribution of the measured performance, including aggregated values and variations

around the aggregation, with the confidence that the results lend to these values.

Reporting aggregated values, their variations, and the confidence in these values is useful to
understand the statistical features of the measured performance. However, aggregation does not
magically guarantee a faithful characterization of the measured performance. Averaged values
only make practical sense if the measurements have a distribution clustered around their central
tendency, such as the Gaussian distribution. Variation as a measure of dispersion can mask the
difference between a few big outliers and constantly fluctuating measurements. Experiments
with complex distributions of results should employ tools such as box plots, violin plots, and
empirical distribution function plots. Fundamentally, the experimenter must carefully examine
the raw data before computing aggregated values.

Violation Examples. One striking observation in our study was the focus on analyzing av-
erage performance, without looking at tail performance metrics such as latency quantiles, which
are of obvious practical importance. Sometimes, average values were accompanied in the plots by
error bars whose meaning was not defined, creating an impression of reporting on measurement
variation when in fact little can be derived from such data. Sometimes, inappropriate mean
computations are also used not in compliance with discussed guidelines (FW86; Mas04).

P6: Statistical evaluation. When comparing different approaches, provide a statistical evaluation

of the significance of the obtained results.

The results of an experimental evaluation are often not just reported, but also used to
derive conclusions, such as comparing an artifact against competing approaches. In these cases,
conclusions are made based on an evaluation that considered a (necessarily) limited number of
scenarios and observations. The likelihood and representativeness of these scenarios becomes a
factor in the (statistical) significance of the experimental conclusions, and is therefore essential
in establishing the validity of the claims.

When the conclusions involve competing approaches, the information available on the com-
peting approaches may not suffice for a robust statistical analysis of the comparative measure-
ments. The claims should then be carefully worded to warn about the threats to validity. The
statistical evaluation is to be considered in combination with Principles 1 and 2, to provide
sufficient backing for the results.

Cloud computing experiments may include numerous hidden services. This can produce high
volumes of data with particularly artificial statistical properties, such as unusual distributions or
complex dependencies. Experiments may also depend on factors that are outside experimenter
control. The methods used for statistical analysis must therefore be chosen to reflect the ex-
perimental circumstances, the properties of the data that is collected, and the conclusions that
are made. The choice of methods is not necessarily portable between studies – for example,
although Student’s or Welch’s t-test are often viable options for data with a normal distribution,
non parametric methods (EM97) may be needed in other cases. Rather than recommending a
single evaluation procedure, we therefore provide example references that may help the reader
build an appreciation for the pitfalls of the cloud computing experiments and select appropri-
ate statistical methods depending on particular circumstances. For general advice, the classic of
Huff (Huf93) is well complemented by a more recent work of Reinhart (Rei15). Exploratory data
analysis (Jam91) can be combined with bootstrap and similar sampling methods (Hes15) for in-
creased robustness in non parametric evaluation. Examples of practical experience illustrate the
need to carefully construct experiments (MDHS09b; dOPRF13a), evaluate the accuracy of em-
ployed tools (MDHS10; Shi14), avoid reporting statistics that mask variability (FBZL16; HB15a),
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Section 2. Experiment Methodology

or reflect the variability of the experimental environment in the reported conclusions (PAEÅ+16).
We also find it useful to adopt a self-reflective view of the experimental evaluation as described
in the article by Blackburn et al. (BDH+16b).

Violation Examples. Although the experimenters cannot be unaware of the stochastic
nature of their measurements, statistical evaluation of result significance is rare for cloud exper-
imentation. In fact, Principle 6 is the one most often violated in our survey. It is possibly also
the most difficult point to meet because, without robust statistical grounding of the experiment
design around Principles 1 and 2, simple application of statistical formulas cannot lend support
to claims reported in the surveyed papers.

P7: Measurement units. For all the reported quantities, report the corresponding unit of mea-

surement.

Although this principle may seem trivial, reporting the units of measurement of the different
reported quantities is essential to better understand the relevance of the presented results, to
compare with other approaches, and to analyze the correctness of the mathematical operations
involved.

Violation Examples. Although the few cases where a quantity without units appears are
possibly simple omissions, there are cases where wrong or ill-defined units are used. For example,
memory usage can be measured in many different ways, such as page-level VM-instance metrics
vs. heap occupation by an application with byte granularity—these two measurements inform
about very different quantities despite having the same unit.

P8: Cost. Every cloud experiment should include (i) the cost model used or assumed for the

experiment; (ii) accounted resource usage (per second), independently of the model; and (iii) charged

cost according to the model.

A distinguishing feature of cloud settings is the offer of services subject to cost, with explicit
and implicit guarantees (Service Level Agreements, SLAs). The charged cost (reported as item
3 of this principle) is derived from a cost model (i), provided by the cloud operator and accepted
by the cloud user, and accounted resource usage (ii), provided by the cloud monitoring system.
For point 1, the cost model and the SLA used in the experiments must be documented explicitly,
especially when they may differ per customer. For example, TPC10 and LDBC11 require explicit
descriptions of the cost model that a generic client would have to follow to use the system-
under-test over a period of three years, including licenses and maintenance pricing, and all other
elements relevant for real-world use. In contrast, Amazon’s EC2 has an explicit cost model, i.e.,
piece-wise linear addition of hourly usage intervals (and a per-second billing model since the end
of 201712), and several implicit clauses explaining the SLA applied to all clients, but also uses
other models, such as advance reservation and spot markets, with finer but different granularities.
All cost elements that still differ across public cloud operators should be documented.

2.4 The Principles behind the Principles

Although we have presented and analyzed the principles in turn, many principles are connected.
For example, a cloud experiment that seeks to present general results applicable across multiple
cloud providers must balance between the need for many experiments across many platforms
and the cost of conducting all those experiments. By following Principle 6, the experimenter
may express the robustness of the results in specific and quantifiable terms. In turn, this permits

10As defined for all benchmarks, see http://www.tpc.org/pricing/. For example, TPC-C, Clause 7: http:

//www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
11In its by-laws, v.1.0, published in 2017.
12https://aws.amazon.com/de/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-

volumes/
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keeping the repetitions required by Principles 1 and 2 to the minimum required to achieve selected
result significance. Additionally, Principle 8 informs the reader about reproducibility costs, and
Principle 4 facilitates doing so without the need to re-implement the experiment setup.

Our list includes only principles that our experience shows pose interesting challenges in cloud
environments. However, our list of principles related to cloud computing is non-exhaustive. For
example, from the more general issues in experiment design and evaluation that we survey in
Section 5, we draw attention to measurement perturbation.

The act of measuring performance in a computing system may affect the system behavior,
creating perturbations that affect the measurements (KABM12). These perturbations increase
if the measurements are frequent or if the instrumentation is particularly intrusive (MR91).
One way to address this problem is to obtain a model that quantifies the perturbation effects,
and use this model in the analysis of the results, to remove or reduce the impact of these
effects during analysis (MR91; MRW92). In some cases this approach may be impractical as the
configuration of such model is not trivial. For metrics that are captured by the cloud provider,
any perturbations introduced by the instrumentation are already part of the variability of the
experimental results, because such perturbations are not under the control of the experimenter.
For metrics that are captured optionally or for those where the benchmark introduces additional
instrumentation, careful implementations can minimize perturbations by limiting the frequency
at which the system is observed and by leveraging efficient sampling and processing techniques.

10
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3 Can the methodological principles be applied in common prac-
tice?

This section focuses on RQ2, and analyses how the principles relate to common practice.
Through an example of each, we analyze: (i) how the principles are embodied by commercial
benchmarks, and (ii) how the principles can be supported in a common use-case.

3.1 Principle use in Benchmarks

In this section, we describe how the experiment principles defined in Section 2.3 are embodied
in standard, commercial, independent industry benchmarks. We discuss Standard Performance
Evaluation Corporation (SPEC) and Transaction Processing Performance Council (TPC) bench-
marks, with a focus on the SPEC Cloud IaaS 2018 benchmark (Cor18).

Kistowski et al. define a benchmark as a “Standard tool for the competitive evaluation and
comparison of competing systems or components according to specific characteristics, such as
performance, dependability, or security” (vKAH+15). This definition has several consequences
that set benchmarks apart from other performance experiments. For example, it implies that
benchmarks are designed to be run by third parties on their systems, without the intervention
of the original developers of the benchmark. In particular, commercial benchmarks must have
clear run-rules and system definitions, and define beyond controversy their system scope, context,
reporting rules, and acceptance criteria and processes for benchmark results. In other words,
commercial benchmarks must ensure a form of technical reproducibility.

P1: Many industry-standard benchmarks define the number of runs that are required to
achieve a valid result. This number is usually programmed into the benchmark harness and
automatically run by every benchmark user. For example, the SPEC Cloud IaaS 2018 bench-
mark (Cor18) uses five separate re-runs for its baseline experiment. Some benchmarks also allow
a varying number of runs, for example, the SPEC CPU 2017 benchmark (BLvK18) allows either
two or three runs.

P2: Many standard industry benchmarks use multiple workloads that are run independently.
The SPEC Cloud IaaS 2018 benchmark runs a transaction workload using Apache Cassandra,
and a K-Means MapReduce workload. The SPEC CPU 2017 benchmark is based on nearly
twenty integer and floating point programs. For research purposes, additional workloads have
been created for the SPEC CPU 2017 workload suite (ABA+18). In addition to their workload
collections, the standard benchmarks usually feature rules on the order of workload execution,
workload durations, sequences, and even potential pauses, such as the 10-second idle pause
between each workload execution phase in the SPECpower ssj2008 benchmark (Lan09).

P3: Standard industry benchmarks feature a set of reporting rules that specify how to report
the characteristics of the SUT for benchmark acceptance. Reports are reviewed by a committee
or auditor. The reviewers evaluate whether the report ensures technical reproducibility by third-
parties.

P4: Typically, industry-standard benchmarks document their methodology and execution
in great detail, e.g. (Cor18), enabling deep understanding of their internal workings. The SPEC
Cloud IaaS 2018 benchmark, in particular, integrates a benchmarking harness cbtool as an
Apache-licensed open-source artifact.

P5: Many standard benchmarks report average performance values only. However, there
are exceptions, e.g: The SPEC CPU 2017 benchmark reports the median value of three runs,
or the minimum (worse) value if only two runs where executed. The SPEC Cloud IaaS 2018
benchmark reports the average of the 99th percentile measured for latency. The SPEC SERT 2
suite reports the coefficient of variation (CV) for performance as well.

P6: is usually out of scope for released benchmarks. The variance of result scores is usually

11
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checked thoroughly prior to a release by a committee. Evaluation of multiple results consists
simply of comparing the final metric score. Notably, the SPEC SERT 2 suite sets CV-thresholds
above which a test result is considered invalid.

P7: All benchmarks report their unit of measurement, which is usually throughput, response
time and some additional metrics, e.g., the number of application instances in the SPEC Cloud
IaaS 2018 benchmark.

P8: Benchmarks may use a cost component as part of their metric, depending on domain.
The TPC requests a monetary pricing element and details the rules for specifying it. The SPEC
Cloud IaaS 2018 benchmark counts application instances as its cost component, and benchmarks
focused on power consumption report Watts. Some benchmark reports (e.g., TPC-C) inlcude
a price-per-performance metric. The mentioned benchmarks rate individual cloud services. In
the case, a cloud benchmark assesses a composition of cloud services, a cost breakdown per
component would be part of a transparent result report.

12
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3.2 Applying the Principles

We now show, by example, how all principles proposed in Section 2.3 can be applied and re-
ported in common practice. The case study in this section investigates the hypothesis H: The
scaling behavior of a standard, reactive, CPU utilization-rule-based auto-scaler depends on its
environment. Measurements are presented in accordance to Principles 1–8. The case study
uses an auto-scaler for a CPU-intensive application—an implementation of the LU (lower-upper
decomposition of a n×n matrix) worklet from the SPEC SERT 2 suite—that is used as a bench-
mark in three different environments: (i) a CloudStack-based private cloud (CSPC), (ii) AWS
EC2, and (iii) the DAS-4 IaaS cloud of a medium-scale multi-cluster experimental environment
(MMEE) used for computer science (BEdLm16).

To reject or accept the hypothesis, we use an analysis of variance (ANOVA) test to determine
if the performance of the auto-scaler depends on the environment. For these experiments, we use
the open-source framework BUNGEE (HKWG15) adopting its measurement methodology and
metrics for auto-scaler evaluations13. The performance of the auto-scaler can be described with
a set of system- and user-oriented metrics. The system-oriented metrics are elasticity metrics
endorsed by the SPEC Research Group (HKO+16). The under/(over)-provisioning accuracy θU
(θO) is the amount of missing (superfluous) resources required to meet the SLO in relation to
the current demand normalized by the experiment time. The under/(over)-provisioning time
share τU (τO) is the time relative to the measurement duration, in which the system has in-
sufficient resources (resources in excess). A precise definition of each system-oriented metric
can be found in earlier related works (HBK+18; IAEH+18) Knowing the load intensity over
time from the replayed trace, the ideal resource supply is derived from repeated and system-
atic load tests for each scaling level of each environment as part of the BUNGEE measurement
methodology (HKWG15).

The implemented auto-scaler (BHS+19) and experiment data are online available14. We use
the authentic, time-varying trace of the FIFA championship 1998.15(→ Principle 4 is fulfilled
because all the experiment software and data are open-access, online.)

We choose a sub-trace containing three similar days for internal repetitions, and run each
trace in each environment. To cover setups with background noise, the application is deployed
in both the public AWS EC2 IaaS cloud and in an OpenNebula16-based IaaS cloud of a medium-
scale multi-cluster experimental environment (MMEE) used exclusively for these experiments.
(→ The use of different environments fulfills Principle 2.) To have long, representative
experiments, each experiment lasts 9.5 hours—a duration that includes the main concerns, e.g.,
the daily peaks. Due to the scope of this work and space constraint, we skip the analysis of
different worklets or applications, including other load traces. (→ The combination of long-
time experiments with internal repetitions fulfills Principle 1.)

In the CSPC scenario, the application is deployed in a private Apache CloudStack17 cloud
that manages 8 identical virtualized Xen-Server (v6.5) hosts (HP DL160 Gen9 with 8 physical
cores @2.4Ghz (Intel E5-2630v3)). We deactivate hyper-threading to limit VM overbooking and
rely on a constantly stable performance per VM. Dynamic frequency scaling is enabled as default
and also further CPU-oriented features are not changed. The hosts have each 2 × 16GB RAM
(DIMM DDR4 RAM operated @ 1866 MHz) deployed. The specification of each VM in all setups
is listed in Table 3.1. For all scenarios, Tomcat 7 is the application server. As the LU worklet
of the SERT 2 suite is CPU-bound, we do not have relevant disk I/O during the experiments
and only low utilization on the Gigabit Ethernet of the hosts. In all three deployments, the

13BUNGEE Elasticity Measurement Framework: https://descartes.tools/bungee
14Auto-scaler and experiment data: https://doi.org/10.5281/zenodo.1169900
15FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
16OpenNebula: https://opennebula.org/
17Apache CloudStack: https://cloudstack.apache.org/
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auto-scaler is configured identically to up-scale VMs when an average CPU utilization threshold
of 90% is exceeded for 1 minute and to scale VMs down when the average CPU utilization falls
below 60% for 1 minute. CPU utilization is measured inside the VMs using the top18 command
and averaged across all VMs currently running. (→ This experimental description fulfills
Principle 3.)
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Figure 3.1: The number of VMs allocated by the Reactive auto-scaler, in the Private, EC2, and
MMEE IaaS Cloud experiments.
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Figure 3.2: Distribution of response times, per experiment.

Figure 3.1 shows the scaling behavior of the auto-scaler, for each environment. The horizontal
axis shows the time of the measurement, in minutes, since the beginning of the experiment; the
vertical axis shows the number of concurrently running VMs; the blue curve shows the ideal
number of supplied VMs. The green, dashed line represents the supplied VMs in MMEE; the
red line shows the supplied VMs in EC2; and the black, dashed curve the shows the supplied VMs
in CSPC. Figure 3.2 depicts the distributions of the response times per day and Figure 3.3 shows
the distribution of allocated VMs per day. In both figures, the dotted black curve represents the
first day, the dashed red curve the second day, and the solid green curve the last day. Whereas
the distributions of each day in CSPC and EC2 are similar, they differ from MMEE distributions.
This can be explained by the scaling behavior depicted in Figure 3.1: during the first day, the
auto-scaler allocates too few instances, during the second day the auto-scaler almost satisfies the
demand, and during the third day the auto-scaler over-provisions the system. Table 3.2 shows the
average metrics and their standard deviation. Furthermore, Table 3.3 shows the used instance
hours and the charged instance hours. EC2 uses an hourly-based pricing scheme, whereas for
CSPC and MMEE we have applied a minute-based pricing scheme. (→ The presentation of
the results fulfills Principles 5, 7, and 8.)

To investigate the hypothesis ”The scaling behavior of a standard, reactive, CPU utilization-
rule-based auto-scaler depends on the environment”, we formulate the null hypothesis H0: ”The
elasticity metrics do not depend on the environment”. We conducted an ANOVA test with the
confidence set to the strict value of 1%. Table 3.4 shows the proportion of variance and p-value
(Pr(> F )) for each elasticity metric subject to the environment. The proportion of variance is
the variance of each elasticity metric caused by the environment. As each Pr(> F ) is less than

18top command manual: http://man7.org/linux/man-pages/man1/top.1.html
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Figure 3.3: Distribution of allocated VMs, per experiment.

Table 3.1: Specification of the VMs.

Component CSPC EC2 (m4.large) MMEE

Operating System CentOS 6.5 CentOS 6.5 Debian 8

vCPU 2 cores 2 cores 2 cores

Memory 4GB 8GB 2GB

1% together, and a high proportion of variance is due to the environment, we can reject the
null hypothesis. This confirms our claim is statistically correct. (→ The hypothesis analysis
fulfills Principle 6.)

This example has the main purpose of illustrating how the presented principles can be used in
a practical case, and that the adoption of the proposed principles can improve the presentation
of the results without significantly affecting the length of the paper.

15



Section 3. Can the methodological principles be applied in common practice?

Table 3.2: Average metric (and standard deviation) for a day in each scenario.

Metric CSPC EC2 MMEE

θU (accuracyU )[%] 2.39 (1.54) 14.05 (1.82) 19.42 (5.04)

θO (accuracyO)[%] 43.22 (4.38) 10.09 (1.75) 54.98 (11.87)

τU (time shareU )[%] 9.76 (4.77) 57.20 (2.60) 42.16 (1.76)

τO (time shareO)[%] 82.95 (5.46) 27.53 (4.42) 53.06 (3.08)

ψ (SLO violations)[%] 2.70 (3.68) 49.30 (1.71) 53.02 (7.11)

Avg. response time [s] 0.60 (0.17) 2.68 (0.08) 2.32 (0.68)

#Adaptations 25.67 (1.88) 80.66 (3.40) 39.67 (7.54)

Avg. #VMs [VMs] 10.53 (0.44) 8.84 (0.07) 11.01 (0.12)

Table 3.3: Cost overview of the experiments.

Instance hours CSPC EC2 MMEE

Used [h] 121.0 83.4 93.8

Charged [h] 121.0 131.0 93.8

Table 3.4: ANOVA results per metric.

Statistic θU θO τU τO

Pr(> F ) 0.006 0.001 0.003 0.003

Prop. of Var. due to Env. [%] 82 84 98 97
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4 How are cloud performance currently obtained and reported?

This section addresses RQ3, by analysing the current status of published academic research and
industrial practice in cloud computing. Concretely, we analyse the adherence to our methodolog-
ical principles of papers focusing on cloud computing. We adopt a systematic literature-review
approach (BB06), covering papers published in 16 top-level conferences and journals, between
2012 and 2017. In particular, the selected conferences and journals are: IEEE International
Conference on Cloud Computing (IEEECloud), IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), IEEE/ACM International Symposium in Cluster, Cloud, and
Grid Computing (CCGrid), IEEE Transactions on Parallel and Distributed Systems (TPDS),
IEEE International Conference on Cloud Engineering (IC2E), IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), IEEE International Conference on
Autonomic Computing (ICAC), ACM/SPEC International Conference on Performance Engi-
neering (ICPE), IEEE Transactions on Cloud Computing (TCC), ACM Symposium on Cloud
Computing (SoCC), ACM Symposium on High-Performance Parallel and Distributed Comput-
ing (HPDC), ACM International Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS), Future Generation Computer Systems (FGCS), European Conference on
Computer Systems (EuroSys), International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC), USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

4.1 Systematic Literature Review

The systematic literature review (BB06) is a structured method to provide an overview of a
research area. In this work, we follow the guidelines discussed by Peterson et al. (PFMM08;
PVK15). Figure 4.1 summarizes our workflow:

Specify Research Questions (RQs). The RQs that we considered are RQ1–RQ3 defined
in Section 1. The systematic literature review process focuses mostly in answering RQ2. The
answers to these questions provide an overview of the existing studies including the number
of publications, and the distribution of publications over publication venues and years in the
cloud-computing research area.

Specify Search String. After defining the RQs, the next step is to specify the search string
that is used to search for relevant publications. The search string is based on the keywords and
their alternative words that are in line with the main research goal of the paper. We use the
Boolean operators OR and AND to join the keywords and their synonyms in the search string.
The following string is used to search relevant publications in the known databases:

"cloud" AND "management"

AND NOT("security") AND (YEAR>=2012)

Identify Publication Sources/Databases. We selected 16 venues where cloud computing
papers are published; they are in our view the top-level conferences in the field. We query
the DBLP computer science bibliography (Ley02) to obtain bibliographic information on all
the papers published in the selected venues and years. For each paper, we obtain the link to
Semantic Scholar19, a comprehensive database that allows to easily automate the extraction of
publication metadata. Using the Scrapy web crawling framework and the Splash JavaScript
rendering service, we obtain and parse the metadata of each paper, including title and abstract.
Finally, we check if the title or abstract contain the specified search string, and remove duplicates.
Table 4.1 summarizes the results for the query through Semantic Scholar.

Study Selection Criteria The search results from the previous step provide a pool of 358
research publications which constitute the current body of knowledge in experimental evaluation

19https://www.semanticscholar.org/
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Table 4.1: Matching keywords per venue, per year.

Venue Total 2017 2016 2015 2014 2013 2012

IEEECloud 96 0 24 24 14 15 19

UCC 68 0 6 14 30 13 5

CCGrid 31 10 4 0 11 0 6

TPDS 31 8 6 6 4 5 2

IC2E 22 0 5 0 12 5 0

CloudCom 20 2 7 5 6 0 0

ICAC 18 3 3 6 4 1 1

ICPE 18 4 1 3 4 5 1

TCC 15 4 6 3 1 1 0

SoCC 11 0 0 3 4 3 1

HPDC 9 0 3 1 0 2 3

SIGMETRICS 6 1 0 0 2 1 2

FGCS 5 1 1 0 3 0 0

EuroSys 3 0 1 1 0 0 1

SC 3 0 0 0 1 2 0

NSDI 2 0 0 0 1 1 0

Total 358 33 67 66 97 54 41
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Figure 4.1: Workflow for the systematic literature review.

in cloud computing. This analysis includes papers that either had an impact in the scientific
community OR that have been published recently. We quantified the impact with the number of
citations on Google Scholar, requiring it to be greater or equal to 15, and the published recently
by selecting all the papers published since 2016 (i.e., in the last two years). After this step, 191
papers remain for analysis.

Data Analysis. The relevance of each paper is manually classified, as:

• Relevant (R) – Papers that include experimental results obtained in a real (or realistic)
environment, and the paper is not based exclusively on simulation results.
• Not Relevant (NR) – Papers that do not include any experimental result, or that include

only simulation results.

The relevant (R) papers are then manually analyzed, to identify, for every principle in Sec-
tion 2.3, if they are:

• Present (Y) – The evaluated principle is fully met.
• Partially present (P) – The evaluated principle is present, but does not completely match

the described criteria.
• Not present (N) – The evaluated principle is not present.

To account for the bias of manual classification and analysis, we have conducted a two-step
review process. Similarly to a conference-review process, we have assembled a team of 9 expert
reviewers in the field of cloud computing, performance engineering, and related topics. Because
each expert can review any paper for use of our principles, we have randomly assigned them to
the papers. Every paper was reviewed by exactly two different reviewers. In the first step, two
reviewers were assigned to each publication, and they had to evaluate independently both if the
paper is R or NR, and, if the paper was considered to be R, to what extent the principles described
in Section 2.3 are fulfilled in the paper. In the second step, the two reviewers have access to the
information of the other reviewer, and can discuss to reach an agreement (i.e., on the relevance
of the paper, and on the principle evaluation). As in typical conferences, full agreement was not
required, and reviewers could change their first-round decisions (i.e., on the fulfillment of each
principle, and even on the relevance of the paper).
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At the end of the two-round reviewing process, of the 191 papers, 98 were considered relevant
by both reviewers, there was a disagreement on 2 papers, and the remaining 91 papers were
considered not relevant by both reviewers. We next discuss these results in detail.

4.2 Analysis of Reviewer Agreement

To assess the level of agreement between reviewers, we performed a statistical evaluation for
the relevance analysis and for the principle analysis. We use the Fleiss’ Kappa analysis (Coh60;
Fle71) and the weighted Cohen’s Kappa analysis (Coh68) to measure the degree of agreement
between reviewers who rate a sample of a cohort; in our work, the cohort is the complete
set of papers in the reviewing process. The Fleiss’ Kappa analysis computes a value κ, which
quantifies the level of agreement and factors out agreement due to chance. According to (LK77),
κ < 0 corresponds to poor agreement, κ ∈ [0.01, 0.2] corresponds to slight agreement, κ ∈
(0.2, 0.4] corresponds to fair agreement, κ ∈ (0.4, 0.6] corresponds to moderate agreement, κ ∈
(0.6, 0.8] corresponds to substantial agreement, and, last, κ ∈ (0.8, 1] corresponds to almost
perfect agreement. The weighted Cohen’s Kappa computes a value κw, that has an analogous
interpretation to κ, with the difference that its computation accounts for differences in the type
of disagreement with more than one category (in our case Y, P, and N). For example, if the two
reviewers disagreed with a Y/N evaluation, its weight is higher than a disagreement with Y/P or
P/N. Finally, we also evaluate the percentage of agreement (%A), computed as the number of
agreed values over the total number of decisions.

Table 4.2 quantifies the reviewer agreement in terms of percentage of agreement (%A), and in
terms of the κ and κw statistics. Reviewers reached an almost perfect agreement (κw ≥ κ > 0.8)
for P1–5 and for P7-8. For the remaining P6, “Statistical evaluation”, the κ value of 0.59, and the
κw value of 0.61 indicate moderate agreement. However, the percentage of agreement for P6 is
high, at 94.9%. For P6, the low value of κ and κw is due to some disagreement in the evaluation:
5 papers out of 98 were evaluated differently by the two reviewers. This result is mainly due to
two factors: (i) as discussed in the next section, in most (> 92%) of the papers, the principle has
been assessed by the reviewers as not present. This affects the probability distribution of the
evaluation, and therefore, even small disagreement between the reviewers significantly decreases
the κ and κw values, and (ii) this result may be due to the wide scope of the definition, which
can leave room for different interpretations. Since the percentage of agreement is very high,
we argue that factor (i) is more likely to have led to a low value of κ and of κw, and keep the
definition of P6 as stated.

Although the level of agreement of the reviewers is very high, it is not perfect. This highlights
that even experts can find it difficult to assess consistently the proposed principles. Cases where
such difficulty was apparent include:

P1: It is not clear how the experiments were repeated, and if they had the same configuration
across repetitions.

P2: It is not clear how to define the “configuration”, especially if it needs to change contex-
tually.

P3: For the experimental setup, too few details are given, especially for (opaque) commercial
cloud infrastructures.

P4: It is unclear if the principle is met when the paper links to the code/data, but it is not
currently accessible.

P5: The measure of variance appears only in the graph, and in particular is not quantified
or discussed in text.

P6: Though statistical evaluation methods are used, they are not the most appropriate,
and/or important hypotheses are not tested (e.g., normality of data, equal variance).

P7: Only one ‘Y vs. P’ (strong) disagreement appeared, related to incomplete measurement
units in graphs.
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Table 4.2: Fleiss’ Kappa agreement analysis.

Rel. P1 P2 P3 P4 P5 P6 P7 P8

%A 99.0% 94.9% 88.8% 91.8% 92.9% 92.9% 94.9% 99.0% 90.8%

κ 0.98 0.90 0.82 0.86 0.83 0.86 0.59 0.96 0.82

κw 0.98 0.91 0.83 0.88 0.87 0.86 0.61 0.97 0.85

P8: Some experiments may not directly relate to cost model, because they focus on the more
technical aspects.

For this study, the two-step reviewing process used formulated principles to evaluate cloud
experiments—when in doubt, the reviewers can read again the principles. This led to reduced
presence of subjective judgment, as results in this section indicate. For current peer-reviewing
process in conferences and journals, common knowledge about the principles presented here
should be helpful for peers to agree about their application. We envision that, in the future,
automated tools could facilitate following the principles.

4.3 Evaluation of Principle Application

This section analyses how the principles are currently applied, using the results of the two-step
review process. Figure 4.2 shows the numerical results of the analysis over the eight identified
principles. Overall, we find that most of the principles are not followed in the analyzed papers,
which is an important result because some of the principles seem easy to verify. This finding
is further worrying due to the quality of the publications we study, implied by the selection
process (see Section 4.1) for which: (i) we have selected some of the top venues in the area of
cloud computing, and, (ii) among the found papers, we have selected either papers with a high
number of citations or very recent.

P1 highlights that more than two-thirds of the analyzed papers do not execute any repeated
experiments or long runs (label N in Figure 4.2, sub-plot P1), and only 21% do both. Such
information is inferred by the experimental setup description provided in the papers, and by the
provided experimental results. This can significantly impact the generalization of the obtained
results, because there are a number of factors that can affect the results even without any changes
to the controlled configuration of the tested cloud-systems.

P2 shows that less than 47% of the analyzed papers include a complete performance evalua-
tion with multiple configurations. Varying configurations can be challenging in some scenarios,
due to timing, cost of cloud service, and other factors. However, from a scientific perspective,
different configurations may significantly impact the overall performance and more extensive
evaluations are needed (PAEÅ+16).

P3 discusses the experimental setup description. Even though more than 52% of the analyzed
papers fully cover this principle, a substantial number of papers do not or only partially describe
the experimental setup in which the performance evaluation is conducted. This significantly
impacts the technical reproducibility of the results.

P4 partly complements P3, as it considers the accessibility of the datasets used in the analysis
and whether the authors have released the source code. In more than 70% of the cases, the code
of the assessed technique is not released and the datasets used for the evaluation are not publicly
available. Reproducibility seems impossible in this situation. The joint effect of not having a
complete experimental setup description (P3), and not having the code and datasets used for
the evaluation (P4) makes it also difficult for future experimental evaluations of novel techniques
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to compare with the published approach.
P5 focuses on how results are reported. Although many of the authors of the papers we study

argue themselves that uncertainty and stochastic processes are common in cloud computing,
and use this as motivation for their work, more than 63% of the papers do not report their
measurement variances and limit their reporting to averages.

P6 analyzes if a statistical evaluation has been performed, to include some (statistical)
confidence in the results. This principle is the most disregarded by the papers we study, with
N > 90%. Statistical evaluations are practically the standard practice in other fields (e.g.,
medicine, physics, biology, and in computing science database systems and software engineering),
but according to this result, the field of cloud computing has paid less attention to this aspect.
This may be due to the low rates of fulfillment of P3 and P4, which complicates the comparison
of different approaches, and also it can be related to the fast evolution of cloud technologies. In
the long run P6 should be much more carefully considered, and assessed for by reviewers.

P7 refers to the presence of the units of measurement throughout the paper. We find P7 is
the principle with the highest fulfillment, with Y > 85%. Only about 12% of the papers do not
or only partially include all the units of measurement. Even though the percentage of “P or N”
is low, its non-zero value justifies why P7 remains relevant.

P8 is not present in more than 63% of the considered papers. A cost model may be some-
times difficult to include in the performance evaluation of the system at hand, but it quantifies
the economic advantages of adopting one technique rather than another. The lack of standard-
ized benchmarks in cloud computing is partly justifying the scarce discussion of cost models in
scientific papers.

The analysis shows that the proposed principles have not yet been extensively adopted in
the cloud computing community. Their usage would improve the reproducibility of results and
enable more comparative studies in the future.
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Figure 4.2: Evaluation of P1–8, one sub-plot per principles. Columns R1 and R2 summarize
results by 1st/2nd reviewer.
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5 Related work

An increasing body of work focuses on the methodological principles of experimental performance
evaluation, in communities focused on high performance computing, performance engineering,
security, and general computer science. We survey the body of knowledge closest to our work,
grouped by community. In contrast to this body of work, our work focuses on cloud computing
environments, for which we raise distinctive challenges due to closed and opaque environments
(affects P1–P3, and occasionally P4 for closed-source stacks), dynamic (elastic) resources and
services (P5–P6), and use of explicit cost models for operation (P8).

Cloud community: Closest to our work, Folkerts et al. (FAS+13) and Iosup et al. (IPE14)
identify challenges in cloud benchmarking; some of the principles in this work formulate an
approach to address these challenges. Also close to this work, Schwartzkopf et al. (SMH12)
propose a set of seven principles, of which the second and the sixth apply to cloud computing
and roughly overlap with our principles P5 and P6. They do not survey published work in
the community. The examples they propose (their own) do not or only partially meet 5 of our
principles and 5 of their own.

Performance engineering community: Much attention is paid to the ability to repro-
duce experiments with reasonable effort. Frameworks like the Collective Knowledge Frame-
work (FLP16) aim at systematic recording of individual experiment steps that permits inde-
pendent reproduction and contribution of additional results. As unexpected effects can appear
during performance evaluation due to relatively unexpected properties of the experimental plat-
form (MDHS09a; KT06), environments such as DataMill (dOPRF13b) can randomize selected
environmental conditions and thus improve the ability to generalize from particular measure-
ments. Also, works such as (GBE07; HLST15) provide guidelines how to avoid most common
experimental evaluation pitfalls on specific platforms.

Computer Systems community: the high-performance computing community has pro-
posed and updated its guidelines for conducting experiments and for benchmarking. Closest to
our work, and most recently, Hoefler and Belli (HB15b) summarize and propose 12 rules that
enable interpretability, which they define as “a weaker form of reproducibility”. Their rules are
consistent with our principles but apply to supercomputing environments. As main differences
from the cloud community: the supercomputing community focuses on speedup as primary met-
ric (this is slowly changing, witness several keynotes and award-lectures at SC17), uses primarily
kernel-based benchmarks and not entire workloads to experiment with (our P4), much of the
tested software is difficult to compile and run in other environments (invalidates the meaning of
shared software in our P4), does not report operational costs (in contrast to our P8), etc.

Frachtenberg and Feitleson (FF05) focus on scheduling in large-scale computing systems, in
particular supercomputing facilities, for which they provide a framework with 32 pitfalls, each
combining practical principles and research challenges. Their seminal work combines general
and domain-specific issues, and even proposes a rate of severity for each pitfall, but is not
validated against real-world publications and does not provide examples of experiments that
avoid the pitfalls. Iosup et al. (IEF+06) focus on domain-specific issues, and propose principles
of metrics and workload characteristics to use in grid-computing experiments. Mytkowitz et
al. (MDHS09a) and Zhang et al. (ZIP+10) identify technology counterparts to our principles:
sources of measurement bias in experimental work corresponding to large-scale systems.

For networked systems, Krishnamurthy et al. (KWGA11) provide 12 activities that re-
searchers can use to check their experiments; 5 of these overlap roughly with 5 of our principles.
They draw observations about the application of the proposed activities in several of their arti-
cles, and in one hundred articles experimenting with a particular dataset. They do not conduct
a systematic survey such as ours, or a single experiment that follows all proposed activities.

Closely related to this work, Vitek and Kalibera discuss common mistakes made by re-
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searchers that decrease the value of their work (VK12). Examples are proprietary data (our
P4), weak statistics (our P5 and P6), and meaningless measurements. A case study is per-
formed to illustrate such mistakes. Several recommendations are provided to improve quality
with respect to the use of statistical methods (our P5 and P6), documentation, repetition (our
P1 and P2), reproducibility, and benchmarks.

Others have discussed the status of the performance evaluation of computer systems, in-
cluding the characterization of “sins” of reasoning when performing experimental evaluations or
reporting its results (BDH+16a).

Software engineering community: One of the fields of computing science to first use
systematic literature reviews is software engineering (KPBB+09). The decade-long longitudinal
study of Sjøberg et al. (SHH+05) surveys the use of controlled experiments in software engineer-
ing conferences; our work complements theirs with focus on explicit, fine-grained principles. The
seminal study of Zannier et al. (ZMM06) addresses in particular hypothesis-driven experimenta-
tion in software engineering; this approach is not common today in computer systems research,
in part because the field may not lend itself to the correct yet succinct formulation of mean-
ingful hypotheses. Pieterse and Flater discuss several aspects of software performance including
CPU utilization, memory usage, and power consumption (PF14). Collberg et al. (CP16) focus
on sharing of software, but conduct a study which methodologically overlaps with ours: they
conduct a large study of over 600 articles, published in 2012 in over 10 top-quality publication
venues covering several areas in software engineering, but also in computer systems, database
systems, security systems, and computer architecture. Similarly to our study, they conduct a
systematic analysis of all articles published in the target-venues, but their study is only for 2012
and is thus not also longitudinal.
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6 Conclusion

This report presents a first attempt to define fundamental methodological principles to allow
for reproducible performance evaluation in cloud environments. The main goal of this work
is to establish and analyze a minimal set of principles that could be adopted by the cloud
computing community to improve the way performance evaluation is conducted. We identified
eight principles, combining best-practices from nearby fields, concepts applicable only to the
cloud computing domain, but we do not claim that such principles are complete, but this report
represents a first attempt to formulate methodological aspects for the performance evaluation
in the cloud community.

We showed how such principles can be used in a practical scenario, and we surveyed some of
the main venues of the cloud community analyzing to what extent such principles are considered
in the papers published in the last 6 years. One of the main results of this study is showing
that most of the principles are not or only partially considered in the analyzed papers. The
principles are rather simple and basic, yet we are still far from seeing a broad adoption of sound
measurement principles for cloud environments.

We strongly believe that, as a community, adopting and possibly complementing these im-
portant principles will both improve the quality of our research, and the reproducibility of the
results in the cloud community, setting a sound basis for future work.
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Observing, analyzing, and reducing variance,” Proc. VLDB Endow., vol. 3, no. 1-2,
pp. 460–471, 2010.

[SHH+05] D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. By Kampenes, A. Karahasanovic,
N.-K. Liborg, and A. C. Rekdal, “A survey of controlled experiments in software
engineering,” IEEE Trans. Softw. Eng., vol. 31, no. 9, pp. 733–753, 2005.

[Shi14] A. Shipilev, “Nanotrusting the Nanotime,” 2014. [Online]. Available: https:
//shipilev.net/blog/2014/nanotrusting-nanotime/

[SMH12] M. Schwarzkopf, D. G. Murray, and S. Hand, “The seven deadly sins of cloud
computing research,” in HotCloud, 2012.

[SNTH13] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten simple rules for
reproducible computational research,” PLOS Computational Biology, vol. 9, no. 10,
pp. 1–4, 2013.

[Soe15] D. A. W. Soergela, “Rampant software errors may undermine scientific results,”
F1000Research, vol. 3, no. 303, pp. 1–13, 2015.

[SPBP06] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using PlanetLab for network
research: Myths, realities, and best practices,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 1, pp. 17–24, 2006.

[Ste46] S. S. Stevens, “On the Theory of Scales of Measurement,” Science, vol. 103, pp.
677–680, Jun 1946.

[Ste59] ——, “Measurement, psychophysics, and utility,” in Measurement: Definitions and
Theories, C. Churchman and P. Ratoosh, Eds. Wiley, 1959, pp. 18–63.

[VK12] J. Vitek and T. Kalibera, “R3: Repeatability, reproducibility and rigor,” SIGPLAN
Not., vol. 47, no. 4a, pp. 30–36, 2012.

[vKAH+15] J. von Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and
P. Cao, “How to build a benchmark,” in ICPE, 2015, pp. 333–336.

[ZIP+10] B. Zhang, A. Iosup, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “Sampling
bias in BitTorrent measurements,” in Euro-Par, 2010, pp. 484–496.

[ZMM06] C. Zannier, G. Melnik, and F. Maurer, “On the success of empirical studies in the
international conference on software engineering,” in ICSE, 2006, pp. 341–350.

https://shipilev.net/blog/2014/nanotrusting-nanotime/
https://shipilev.net/blog/2014/nanotrusting-nanotime/


Appendix A

System-oriented Metrics

Notably, the following metrics as part of the open-source BUNGEE auto-scaler evaluation frame-
work have been endorsed by the Standard Performance Evaluation Corporation (SPEC) Research
Group (HKO+16). The set of elasticity metrics has been adopted by a number of researchers
and applied in several papers, e.g., (IAEH+17) or (BGHK18). For the following equations, let
be:

• T the experiment duration with time t ∈ [0, T ]

• st the resource supply at time t

• dt the resource demand at time t

The demanded resource units dt are the minimal amount of VMs required to meet the SLOs
under the load intensity at time t. ∆t denotes the time interval between the last and the current
change either in demand d or supply s. The curve of demanded resource units d over time T is
derived by as a preparation step of the BUNGEE measurement methodology (HKWG15). The
resource supply st is the monitored number of running VMs at time t.

0.1 Provisioning accuracy θU and θO

These metrics describe the relative amount of resources that are under-provisioned, respectively,
over-provisioned during the measurement interval, i.e., the under-provisioning accuracy θU is
the amount of missing resources required to meet the SLO in relation to the current demand
normalized by the experiment time. Similarly, the over-provisioning accuracy θO is the amount
of resources that the auto-scaler supplies in excess of the current demand normalized by the
experiment time. Values of this metric lie in the interval [0,∞), where 0 is the best value and
indicates that there is no under-provisioning or over-provisioning during the entire measurement
interval.

θU [%] :=
100

T
·

T∑
t=1

max(dt − st, 0)

dt
∆t (A.1)

θO[%] :=
100

T
·

T∑
t=1

max(st − dt, 0)

dt
∆t (A.2)

0.2 Wrong provisioning time share τU and τO

These metrics capture the time in percentage, in which the system is under-provisioned, respec-
tively over-provisioned, during the experiment interval, i.e., the under-provisioning time share



τU is the time relative to the measurement duration, in which the system has insufficient re-
sources. Similarly, the over-provisioning time share τO is the time relative to the measurement
duration, in which the system has more resources than required. Values of this metric lie in
the interval [0, 100]. The best value 0 is achieved when no under-provisioning, respectively no
over-provisioning, is detected within a measurement.

τU [%] :=
100

T
·

T∑
t=1

max(sgn(dt − st), 0)∆t (A.3)

τO[%] :=
100

T
·

T∑
t=1

max(sgn(st − dt), 0)∆t (A.4)



Appendix B

Discussion of Metric Characteristics

In the following, we include a more detailed discussion of metrics characteristics (cf. Section 2.1)
and justify our selection of the elasticity metrics we adopted to showcase how the eight proposed
principle can be applied in practice. Different ways to aggregate them have been applied and
defined in a related experimental work [citation omitted for blind review]. In general, it is
impossible to prove correctness of a metric; it is more a common agreement on how to quantify
the given property. One can discuss to what degree metrics fulfill characteristics of a good,
well-defined and intuitive metric and additionally demonstrate their usefulness. Let us go in the
following step by step over a list of metric characteristics:

Definition. A metric should come along with a precise, clear mathematical (symbolic)
expression and a defined unit of measure, to assure consistent application and interpretation. Our
selected metrics are compliant with this requirement, as all of them come with a mathematical
expression, a unit or are simply time-based ratios.

Interpretation. A metric should be intuitively understandable. The chosen metrics are
simplistic metrics that can be described each in a compact sentence. Furthermore, it is important
to specify (i) if a metric has a physical unit or is unite-free, (ii) if it is normalized and if yes
how, (iii) if it is directly time-dependent or can only be computed ex-post after a completed
measurement and (iv) clear information on the value range and the optimal point. Aggregate
metrics should keep generality and fairness, combined with a way to customize by agreement on
a weight vector.

Measureability. A transparently defined and consistently applied measurement procedure
is important for reliable measurements of a metric. For example, it is important to state where
the sensors need to be placed (to have an unambiguous view on the respective resource), the
frequency of sampling idle/busy counters and the intervals for reporting averaged percentages.
The easier a metric is to measure, the more likely it is that it will be used in practice and that
its value will be correctly determined. We apply a defined measurement methodology (a.k.a
benchmarking approach) for the selected elasticity metrics (HKWG15).

Repeatability. Repeatability implies that if the metric is measured multiple times using the
same procedure, the same value is measured. In practice, small differences are usually acceptable,
however, ideally, a metric should be deterministic when measured multiple times. For the chosen
metrics, it has been shown that repeatability is possible in a controlled experiment environment
and with some variability in the public cloud domain (HKWG15).

Reliability A metric is considered reliable if it ranks experiment results consistently with
respect to the property that is subject of evaluation. In other words, if System A performs better
than System B with respect to the property under evaluation, then the values of the metric for
the two systems should consistently indicate this (e.g., higher value meaning better score). In
the optimal case, a metric is linear, if its value is linearly proportional to the degree to which
the system under test exhibits the property under evaluation. For example, if a performance



metric is linear, then twice as high value of the metric would indicate twice as good performance.
Linear metrics are intuitively appealing since humans typically tend to think in linear terms. In
the long run, the elasticity metric’s distributions in reality should be analyzed to improve the
reliability of their aggregation.

Independence A metric is independent if its definition and behavior cannot be influenced by
proprietary interests of different vendors or manufacturers aiming to gain competitive advantage
by defining the metric in a way that favors their products or services. As our selected metrics
come with a mathematical definition and a measurement methodology, we claim that it should
be possible to verify that the experiments included in this paper have been conducted according
to given run-rules.



Appendix C

ANOVA Results

In the following Tables 0.1 to 0.4, we include the complete results of the analysis of variance
we conducted per elasticity metric comparing the environments and days/repetitions (cf. Sec-
tion 3.2). The complete set of elasticity metric results per day for all three environments can be
found in Table 0.5.

Table 0.1: ANOVA for θU considering environment and day.

DoF Sum of Squares F value Pr(>F)

env 2 455.1 41.865 0.00643

day 1 13.4 2.462 0.21465

env:day 2 63.7 5.860 0.09201

residuals 3 16.3

Table 0.2: ANOVA for θO considering environment and day.

DoF Sum of Squares F value Pr(>F)

env 2 3801 151.176 0.000974

day 1 266 21.158 0.019315

env:day 2 185 7.373 0.069511

residuals 3 38



Table 0.3: ANOVA for τU considering environment and day.

DoF Sum of Squares F value Pr(>F)

env 2 3527 67.561 0.0032

day 1 2 0.074 0.8035

env:day 2 17 0.328 0.7431

residuals 3 78

Table 0.4: ANOVA for τO considering environment and day.

DoF Sum of Squares F value Pr(>F)

env 2 4617 77.243 0.00263

day 1 1 0.024 0.88589

env:day 2 86 1.443 0.36386

residuals 3 90

Table 0.5: Metric overview for each day for the MMEE vs EC2 vs CSPC scenario.

Metric MMEE Day1 Day2 Day3 CSPC Day1 Day2 Day3 EC2 Day1 Day2 Day3

θU (accuracyU ) [%] 12.76 20.56 24.96 4.24 0.48 2.45 15.99 11.61 14.54

θO (accuracyO) [%] 45.68 58.11 74.65 37.44 48.01 44.20 7.71 10.63 11.93

τU (timeshareU ) [%] 42.84 39.75 43.90 10.11 3.75 15.42 60.29 54.00 57.32

τO (timeshareO) [%] 50.81 57.42 50.95 84.08 89.00 75.78 21.38 29.58 31.63

υ (instability) [%] 14.04 14.00 10.98 14.85 13.25 13.91 19.05 17.75 17.57

ψ (slo violations) [%] 58.05 58.05 42.96 7.91 0.13 0.06 50.38 50.63 46.89

#Adaptations 45 45 29 27 27 23 84 82 76

Avg. #VMs [VMs] 11.13 10.84 11.07 9.93 10.93 10.74 8.80 8.78 8.93

Avg. response time [s] 1.45 3.11 2.39 0.85 0.48 0.48 2.72 2.74 2.56
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