
Technical Report: SPEC-RG-2013-001
Version: 1.0.1

Cloud Usage Patterns: A Formalism for Description of
Cloud Usage Scenarios

SPEC RG Cloud Working Group

Aleksandar Milenkoski
Institute for Program Structures and Data

Organization
Karlsruhe Institute of Technology

Karlsruhe, Germany
milenkoski@kit.edu

Alexandru Iosup
Faculty of Engineering, Mathematics and

Computer Science
Delft University of Technology

Delft, Netherlands
A.Iosup@tudelft.nl

Samuel Kounev
Institute for Program Structures and Data

Organization
Karlsruhe Institute of Technology

Karlsruhe, Germany
kounev@kit.edu

Kai Sachs
SAP AG

Walldorf, Germany
kai.sachs@sap.com

Piotr Rygielski
Institute for Program Structures and Data

Organization
Karlsruhe Institute of Technology

Karlsruhe, Germany
piotr.rygielski@kit.edu

Jason Ding
Performance Engineering - Cloud Apps

Salesforce.com
San Francisco, California, USA

jding@salesforce.com

Walfredo Cirne
Google Inc.

Mountain View, California, USA
walfredo@google.com

Florian Rosenberg
IBM T.J. Watson Research Center

Skyline Drive Hawthorne, New York, USA
rosenberg@us.ibm.com

®

Փ
Research

Փ
RG Cloud

Acknowledgements

The authors would like to thank Michael Faber who is with Deutsche Bank, Germany, and Jon Curtiss and Diane Mularz who are with
the MITRE Corporation, USA, for the fruitful discussions and comments to improve this work.

May 28, 2013 research.spec.org www.spec.org

Contents

1 Introduction . 1

1.1 Terms and Definitions . 2

2 A Representative Set of Cloud Applications . 4

2.1 A Categorization of Cloud Applications 4

2.2 Application Selection . 8

3 Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios . . 10

3.1 Dimensions of Cloud Usage Patterns . 10

3.2 Textual and Visual Cloud Usage Patterns 13

Textual Form of Cloud Usage Patterns . 14

Elementary Cloud Usage Patterns 14

Cloud Usage Patterns for Hybrid Services 17

Cloud Usage Patterns for Value Chains with Mediators 18

3.3 Visual Form of Cloud Usage Patterns . 19

4 Cloud Usage Patterns in Practice . 23

4.1 Real-World Cloud Usage Scenarios . 23

4.2 Textual and Visual Cloud Usage Patterns in Practice 25

Cloud Usage Patterns and Real-World Cloud Applications 28

5 Related Work . 31

5.1 Cloud Computing Characteristics, Challenges, and Use Case Scenarios . . 31

5.2 Cloud Applications . 32

5.3 Cloud Usage Taxonomies . 33

5.4 General Pattern Languages and Formalisms 35

6 Conclusion . 37

Glossary . 38

i

Executive Summary

Cloud computing is becoming an increasingly lucrative branch of the existing information and
communication technologies (ICT). Enabling a debate about cloud usage scenarios can help with
attracting new customers, sharing best-practices, and designing new cloud services. In contrast
to previous approaches, which have attempted mainly to formalize the common service delivery
models (i.e., Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service), in
this work, we propose a formalism for describing common cloud usage scenarios referred to as
cloud usage patterns. Our formalism takes a structuralist approach allowing decomposition of a
cloud usage scenario into elements corresponding to the common cloud service delivery models.
Furthermore, our formalism considers several cloud usage patterns that have recently emerged,
such as hybrid services and value chains in which mediators are involved, also referred to as
value chains with mediators. We propose a simple yet expressive textual and visual language
for our formalism, and we show how it can be used in practice for describing a variety of real-
world cloud usage scenarios. The scenarios for which we demonstrate our formalism include
resource provisioning of global providers of infrastructure and/or platform resources, online
social networking services, user-data processing services, online customer and ticketing services,
online asset management and banking applications, CRM (Customer Relationship Management)
applications, and online social gaming applications.

Keywords1:
cloud computing; usage patterns; domain-specific language; visual language; structuralism;
CCS - Software and its engineering - Software notations and tools - Context specific languages
- Domain specific languages
CCS - Theory of computation - Formal languages and automata theory - Grammars and context-
free languages CCS - Software and its engineering - Software notations and tools - Context spe-
cific languages - Visual languages
CCS - Computer systems organization - Architectures - Distributed architectures - Cloud com-
puting
CCS - Applied computing - Enterprise computing - Service-oriented architectures
CCS - Applied computing - Enterprise computing - Business process management - Cross-
organizational business processes
CCS - Software and its engineering - Software creation and management - Software development
process management - Software development methods - Design patterns

1The used keywords are defined as part of The 2012 ACM Computing Classification System [43].

ii

Section 1. Introduction

1 Introduction

The cloud computing paradigm is constantly gaining in popularity, mainly due to the reported
numerous benefits for cloud users such as the ease-of-use, the on-demand resource provisioning,
the pay-per-use business model, and the ability of cloud environments to support execution of
applications of various types [58]. Recent in-depth studies (e.g., Broderick [49]) predict rapid
expansion of the cloud computing market in the years to come in many areas where comput-
ing capabilities are needed. The adoption of clouds in many application areas, such as online
collaborative and entertainment services, and business intelligence and data preservation, led to
broadening of the term “cloud”. At the time of writing, i.e., 2013, there are more than 15 dif-
ferent definitions of broad acceptance [64, p.36]; unsurprisingly, this leads to confusion of terms
and hampers discussions about cloud usage for all stakeholders of the cloud ecosystem, such as
users, system integrators, and service brokers. The cloud ecosystem includes many stakeholders
- participants which consume and/or deliver resource provisioning services, and which gener-
ate or transfer value. For instance, Leimeister et al. [66] identify the following stakeholders:
customers (i.e., buyers of services); service providers (i.e., developers and operators of services
that offer value to customers); infrastructure providers (i.e., providers of technical backbones for
generation or transfer of value to customers); consultants (i.e., providers of customer support for
selection and implementation of services operated by service providers), and so on. To contribute
towards addressing the previously mentioned issue, we propose and investigate a formalism for
describing cloud usage scenarios in which stakeholders of the cloud ecosystem are involved. In
the context of this work, we refer to the proposed formalism as cloud usage patterns.

The formalism that we propose allows to describe in an agreed-upon notation the abstract
and the practical usage of cloud resource provisioning services in a given cloud usage scenario for
any application or application domain. For instance, the use of leased infrastructure resources by
Go!Animate [18] (e.g., computing, storage resources) from the infrastructure provider Amazon
(or, to be specific, Amazon Web Services [3]) for servicing users processing amateur videos, can
be formally described with the string i3.s.e6, where each letter relates to one of the known
cloud service delivery models [70] (i.e., Infrastructure-as-a-Service and Software-as-a-Service in
the given string), and/or a stakeholder (i.e., an end-user). Also, each number relates to a volume
of provisioned resources that may be expressed, for example, as a logarithmic value (e.g., 3 for
1,000 in the given string). The formalism that we propose provides many significant advantages
for the stakeholders of the cloud ecosystem. For instance, it greatly simplifies the discussion
about generic and specific cloud usage scenarios, which, among others, affects service providers,
customers, and consultants. Further, potential and actual users of cloud environments can use
our formalism to specify their service requirements in a compact manner. Also, cloud system
designers can easily compile frequently used patterns, whereas cloud integrators and auditors
can benefit by sharing cloud usage best-practices from industry. In addition, service providers
can learn how to tune systems, researchers and consultants can classify and compare different
scenarios, engineers can be trained for the most common usage patterns of cloud environments,
and so on.

Other fields have already made significant progress towards standardization of their com-
mon use cases and have extensively used scenario formalisms. One of the earliest formalisms
with a long-lasting impact is Shannon’s theory of communication, which introduced the main
components of communication and proposed abstract textual and graphical notations for many
common processes in communication. In architectural design, Alexander [45] abstracted tens
of patterns common in the field. In creative industries, the structuralist formalism of folk tales
by Propp [76], later extended by Campbell [50] and Vogler [82], has been used in scriptwriting
at Hollywood [69]. In software engineering, the use of patterns and also anti-patterns has be-
come wide-spread, following the seminal work of “the gang of four” [57]. Each of the previously

1

Section 1. Introduction

mentioned formalisms has acted as a catalyst for a fragmented market or practice.
Our main objective in this work is the design of a formalism for describing cloud usage sce-

narios and also the demonstration of its practicality by applying it to a comprehensive set of
such scenarios. Towards this goal, our main contribution is an abstract formalism that uses tex-
tual and visual notation, interchangeably, to express succinctly yet understandably various such
scenarios. Our formalism uses less than ten symbols to specify involved stakeholders and their
roles, service delivery models, service level agreements (SLAs), and sizes/volumes of provisioned
resources, as part of a cloud usage pattern to which multiple cloud usage scenarios can con-
form. We designed our formalism considering several design requirements such as expresiveness,
mutual exclusiveness, and comprehensibility, aiming to satisfy all of these requirements while
taking into account the trade-offs between them (e.g., the trade-off between expresiveness and
comprehensibility). We show evidence that our formalism can be used in practice for describing
real-world cloud usage scenarios; that is, we use our formalism to describe the use of an airline
company’s booking system deployed in a cloud environment, of an asset management system,
of a CRM software delivery service, and so on. We also analyze relationships between cloud ap-
plications and application types involved in real-world cloud usage scenarios, on the one hand,
and the respective cloud usage patterns, on the other hand, in order to identify and analyze best
practices in industry.

The remainder of this document is structured as follows: In Section 2, we categorize appli-
cations deployed in cloud environments and we also make a selection of several representative
applications; in Section 3, we analyze the main dimensions across which we discuss cloud usage
scenarios and propose a formalism for describing such scenarios addressing all of the considered
dimensions; in Section 4, we use the formalism to describe several real-world cloud usage scenar-
ios, many of which involve usage of the applications that we selected in Section 2; in Section 5,
we put our contribution in the context of related work, and finally, in Section 6, we conclude
our work.

1.1 Terms and Definitions

In the context of this work, a concrete and accurate definition of a cloud system and of the
different services that such a system may offer is needed. Such definitions are crucial for building
a formalism describing cloud usage scenarios, which requires a stricly defined understanding of
the features and characteristics of cloud systems, and in addition, of the different cloud service
delivery models. To this end, we take into consideration the definitions of the term “cloud
system” and of the common service delivery models as proposed by Mell et al. [70] from NIST
(National Instutite for Standards and Technology). Next, we briefly present these definitions.

Cloud system and infrastructure. Mell et al. [70] define a cloud system as a collection of
hardware and software enabling the five essential characteristics of cloud computing - on-demand
self-service, broad network access, resource pooling, rapid elasticity, and measured service. We
refer the reader to [70], or to the Glossary of this work, for detailed information on these charac-
teristics. Further, Mell et al. [70] define a cloud infrastructure as an infrastructure consisting of
a physical and an abstract layer. The physical layer is consisting of the bare hardware resources,
while the abstract layer is a specialized software that enables the previously mentioned essential
characteristics of cloud computing.

Cloud service delivery models. Mell et al. [70] differentiate between three different
service delivery models, i.e., Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS), according to which infrastructure, platform, and software
resources are provisioned, respectively2. In the following, we give a brief description of each of

2We refer the reader to the Glossary at the end of the document for definition of infrastructure, platform, and
software resources.

2

Section 1. Introduction

these models:

(i) Software-as-a-Service (SaaS): This model enables provisioning of applications de-
ployed in cloud environments to end-users. An end-user is not able to manage and/or
control infrastructure resources (e.g., servers, network, storage resources), nor the en-
vironment in which the provisioned application is hosted.

(ii) Platform-as-a-Service (PaaS): This model enables an end-user to deploy customer-
created or aquired applications created using libraries, services, languages, tools, and
similar, that may, but do not have to, be provided by the cloud provider itself that
enables this model. An end-user is not able to manage and/or control infrastruc-
ture resources (e.g., servers, network, storage), but can control application-hosting
environments.

(iii) Infrastructure-as-a-Service (IaaS): This model enables provisioning of basic in-
frastructure resources (e.g., servers, network, storage) such that an end-user may
deploy arbitrary software, including operating systems. An end-user is not able to
manage and/or control the underlying cloud infrastructure.

3

Section 2. A Representative Set of Cloud Applications

2 A Representative Set of Cloud Applications

In this section, we provide a categorization of applications deployed in cloud environments (i.e.,
cloud applications), and then, we reason about a selection of representative cloud applications,
which are used throughout the rest of this work as use cases. In Section 2.1, we categorize and
discuss a variety of cloud applications, and in Section 2.2, we select several such applications.

2.1 A Categorization of Cloud Applications

The categorization we propose in the following includes both traditional applications that have
been migrated to clouds as well as applications that have been developed exclusively for cloud
environments. The proposed categorization does not include applications that have not yet been
migrated to clouds, such as applications tightly bound to hardware (e.g., hardware monitoring
and control software) and low-latency applications (e.g., racing and sport games, first-person
simulations normally used in military training). Our contribution is to show evidence of the
diversity of cloud-hosted applications, thus enabling a judicious selection of use cases.

For categorizing cloud applications, we use the taxonomy of software applications proposed by
Forward and Lethbridge [54]3; for a critical analysis of alternative taxonomies, such as the ACM
computing taxonomy and GoogleCode’s application tags, we refer the reader to Forward and
Lethbridge [54, Section 1.2]. The taxonomy of Forward and Lethbridge [54] includes nearly 200
application types grouped into four major categories: data-dominant software (e.g., consumer-
oriented software, business-oriented software, design and engineering software), systems software,
control-dominant software, and computation-dominant software (e.g., operations research and
scientific software). The data-dominant and computation-dominant categories (depicted as cat-
egories A and D in Figure 5.1, Section 5.2) include many applications that are normally seen in
cloud environments. Given that systems software and control-dominant applications (categories
B and C in the taxonomy of Forward and Lethbridge [54]) are normally used in relation with
specific hardware, we do not foresee them as immediate candidates for deployment in cloud
environments, with the exception of simple enablers of larger applications (e.g., load balancers,
messaging queues, and so on).

The categorization that we propose, depicted in Table 2.1, shows that many cloud appli-
cations fit well into the taxonomy proposed by Forward and Lethbridge [54]. However, there
are cases in which a cloud application can only be described as a combination of several cat-
egories from the Forward and Lethbridge taxonomy [54]. For example, the data mining ser-
vices packaged as the integrated cloud service Google BigQuery or Cloud9 Analytics, and the
database services packaged as Amazon DB and Quickbase, can fit well in the following cate-
gories: spreadsheets/calculators (category A.con.2.c); personal management (A.con.4, with sev-
eral matching sub-categories); strategic and operations analysis (A.bus.1, with several match-
ing sub-categories); data warehousing (A.bus.3.a); and data mining and business intelligence
(A.bus.3.h). We argue that such an ambiguous matching is due to the high complexity of
modern cloud applications, which in turn is a result of the growing sophistication of users and
application domains. Software providers in their efforts to attract new customers and to retain
existing customers, often extend the main functionality of an application with features that may
be categorized differently from the original goals of the application. Moreover, bundling services
that combine several services into a single offering are typical for cloud environments. We discuss
value chains in the context of cloud computing and service bundling in more detail in Section 3.

3The Forward and Lethbridge taxonomy [54] is described in more detail in Section 5.2.

4

Section 2. A Representative Set of Cloud Applications

Table 2.1: categorization of cloud applications (the listed cat-
egories are matched with respective categories in the Forward
and Lethbridge taxonomy [54] enclosed in square brackets.
Application types are sorted ascendingly according to the
matching category in the Forward and Lethbridge taxonomy.)

Application
Type

Usage Description Example

Messaging
[A.con.1.a–c]

Enable users to exchange information normally
in text form and of relatively small volume.

Various e-mail and
instant messengers

File storage and
exchange
[A.con.1.f]

Enable users to store and exchange files. These
applications are normally deployed with
sophisticated security and privacy policies.
They usually require substantial amount of
storage and network capabilities.

Dropbox, RapidShare,
Apple iCloud, Google
Drive, Microsoft
SkyDrive

Data mining
[A.con.2.c,
A.con.4,
A.bus.3.a/h]

Analyse a dataset to discover relations between
data. These applications normally analyze
large amounts of data in order to find
non-trivial patterns and relations. They
usually generate CPU- and file I/O-intensive
workloads.

Cloud9 Analytics,
Aster Database, Google
BigQuery

Databases
[A.con.2.c,
A.con.4,
A.bus.3.a/h]

Store data in a structured and organized
manner. Database applications feature data
storage and management mechanisms, which
require a significant amount of storage and
processing capabilities.

Amazon SimpleDB,
Quickbase

Massive Open
Online Course
(MOOC)
[A.con.3.b, etc.]

Enable students to access lecture material,
such as (video) presentations and assignments,
work in online study groups (forums), grade
each other’s assignments and receive electronic
feedback, authenticate and take exams, and so
on. MOOCs are Web-based online courses
designed for large-scale enrollment, typically at
university level, but without accreditation or
credit-offering [73]. MOOC platforms might
also offer additional services for assignment
processing, automatic cheat detection, and
automatic grading.

edX, Coursera, Udacity

User data
processing
[A.con.3.d, etc.]

Enable users to work on user-supplied files by
providing professional tools for various tasks,
e.g., video processing, audio processing, and
document creation.

Go!Animate, Animoto,
Flickr

Continued on next page

5

Section 2. A Representative Set of Cloud Applications

Table 2.1 – continued from previous page

Application
Type

Usage Description Example

Audio/Video
Streaming
[A.con.3.e]

Enable real-time exchange of multimedia data.
The applications that belong to this category
normally require fast network connectivity for
efficiency. Further, if a multimedia stream is
processed during streaming, these applications
also require a substantial amount of processing
capabilities.

VideoOnDemand,
Netflix, Spotify,
SoundCloud

Online gaming
and meta-gaming
[A.con.3.g,
A.inf.3.a/c/d]

Provide entertainment for a group of users
sharing the same virtual reality. Many games
have social elements; that is, they enable social
mechanisms such as friendship and foster
pro-social gaming emotions (e.g.,
competitiveness, vicarious pride, and similar).
The meta-gaming element allows users to share
information, opinions, images, and videos
related to the games; in this sense these
applications are similar to messaging and
collaboration applications. Some applications
may provide only video feedback, as opposed to
the traditional stream of server-initiated binary
commands; these services are similar to
audio/video streaming applications, but are
focused on games and may include specific
adaptation to some audio/video channels, e.g.,
higher quality for the voice commands issued
by a team-leader to the other players.

World of Warcraft,
OGame, Zynga,
GoLive, Gaikai

Financials
[A.bus.1.b/f,
A.bus.2.c/d,
A.des.3.p, etc.]

Manage expenses. The applications that
belong to this category normally use a
back-end database and a business analytics
engine. The security of the stored and
transmitted data during operation is crucial
due to high sensitivity.

Workday, Expensify

Continued on next page

6

Section 2. A Representative Set of Cloud Applications

Table 2.1 – continued from previous page

Application
Type

Usage Description Example

Customer
Relationship
Management /
Partner
Relationship
Management
(CRM/PRM)
[A.bus.1.f,
A.bus.1.e/f, etc.]

Manage contacts with business partners and
customers. The applications of this type are
focusing on data integration and storage.
Similar to financial applications, the stored
data by CRM/PRM applications normally
contains sensitive information such as
employees’ and/or customers’ personal data.

Salesforce.com,
NetSuite, Basecamp

Project and team
management
[A.bus.1.g]

Allow users to manage teams and projects by
defining roles, formulating and scheduling
tasks, packaging and managing products, and
similar.

Bubbl.us, Huddle,
LiquidPlanner, Zoho
Planner, Teambox,
Agilezen

On-line
Transaction
Processing
(OLTP)
[A.bus.3.c,
A.bus.4.a–j]

Process user-supplied datasets by executing
high numbers of simple instructions. The data
being processed is usually related to
business-oriented tasks running in a cloud
environment.

Amazon RDS,
CloudTran OLTP
Sandbox, Apache Pig

Collaboration
[A.des.1.b]

Enable users to communicate and
collaboratively read and/or write to a single
document or a multimedia file.

WebEx, Google Docs,
Blogspot, Wordpress,
Stormboard,
Wallwisher, Adobe
Creative Cloud

Development
environments
[A.des.1–11]

Provide a development environment that may
also support collaboration between multiple
users. The applications of this type enable
code editing, automatic code analysis, product
testing, bug tracking and removal, and so on.

Cloud9, Ajax.org’s Ace,
Codeanywhere,
Kodingen, CodeRun
Studio

Content
management
[A.inf.3.c/k]

Enable web content management, interactivity,
and navigation. The applications of this type
support creation, design, and maintenance of
web pages.

Clickability, Crown
Point Design

Social networking
[A.inf.3.d]

Enable users to exchange messages and
multimedia as members of a virtual society
normally accessed through a web front-end.

Facebook, Reddit

Continued on next page

7

Section 2. A Representative Set of Cloud Applications

Table 2.1 – continued from previous page

Application
Type

Usage Description Example

Online commerce
[A.inf.3.o]

Enable product presentation and sale. The
applications of this type are similar to social
networking applications (i.e., users as members
of a virtual society present, describe, and
comment on sale items), however, the goal is to
sell and/or buy products so the non-functional
requirements put on the application’s operation
are different. Many of these applications
feature sophisticated product search and
comparison mechanisms.

Amazon, eBay,
marktplaats.nl

High
Performance
Computing
(HPC) [D.or.2,
D.im, D.sci]

Offer services to solve complex computational
problems, usually with application to scientific
and engineering studies. These services may
consist of libraries or even integrated
applications. The workloads of the applications
belonging to this category are normally
characterized as CPU- and memory- intensive.

WolframAlpha

e-Science [D.or.2,
D.sci]

Provide computational services for scientific
processes: control of scientific instruments,
production of data from simulations, gathering
and reducing data, analyzing and modeling
results, and visualizing results. These services
include provisioning of CPU cycles and disk
storage, value-adding services (e.g.,
checkpointing and backup), complex services
(e.g., scientific workflow management), and so
on.

Netherlands eScience
Center, NERSC,
NorduGRID, Open
Science Grid

Integration
[B.mid]

Manage cooperation between multiple
applications and services supporting
composition of new software products.

Boomi AtomSphere,
Gnip

Web hosting
services [B.svr]

Provide web hosting functionalities. The
applications in this category feature
provisioning of servers for web hosting,
applications servers, and/or infrastructure
resources (e.g., storage resources).

Eleven2, OVH Cloud

2.2 Application Selection

Throughout this work, we consider a set of selected software applications provisioned to end-users
according to the SaaS service delivery model, as use cases; we use these applications in the context
of relevant resource provisioning scenarios in cloud environments (i.e., cloud usage scenarios)
when analyzing and identifying the benefits of different approaches for software provisioning

8

Section 2. A Representative Set of Cloud Applications

(i.e., application provisioning scenarios) in terms of the involved service delivery models, cloud
providers, SLAs, and similar. We use the selected applications to analyze relationships between
application provisioning scenarios in cloud environments, on the one hand, and the respective
cloud usage patterns to which these scenarios conform, on the other hand. We provide such an
analysis in Section 4.2.

We show the selected applications and the respective application types in Table 2.2. The
application types listed in Table 2.2 are defined as part of the application categorization that we
provided in Section 2.1.

Table 2.2: the selected applications

Application Application Type

Facebook [13] Social networking

Go!Animate [18] User data processing

EasyJet [10] CRM/PRM

Salesforce.com [32] CRM/PRM

Zynga [38] Online gaming and meta-gaming

We selected the applications listed in Table 2.2 according to the following relevant criteria:
(i) Representative application types: The selected applications are of types that are com-

monly seen in cloud environments. For instance, the IBM Institute for Business Value [63] has
performed an extensive survey of applications deployed in cloud environments identifying the
application types listed in Table 2.2 as amongst the most common ones.

(ii) Representative workload characteristics: Under representative workload characteristics,
we understand characteristics that exercise the unique features of cloud environments, such as
scalability and on-demand resource provisioning. Some of these characteristics include workload
transiency, sudden peaks in workload intensity, and similar. Given the large user-base of the
applications listed in Table 2.2 (e.g., Facebook [13], Salesforce.com [32]), and the fact that
applications of the same types are commonly seen in cloud environments [63], one may conclude
that the workloads of the selected applications have characteristics that exercise the unique
features of cloud environments (e.g., intensity peaks due to large number of concurrent users,
and so on).

(iii) Publicly available records supporting the analysis of application provisioning scenarios
in cloud environments: This includes relevant press release statements, technical reports, white
papers, and similar. We support our analysis by referring to such records in Section 4.2, where
we discuss various application provisioning scenarios.

9

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

3 Cloud Usage Patterns: A Formalism for Description of Cloud
Usage Scenarios

In this section, we propose a formal notation language for describing common real-world cloud
usage scenarios. A specification of a cloud usage scenario by means of our proposed formalism
is referred to as cloud usage pattern. The proposed cloud usage patterns can be used to present
and describe real-world cloud usage scenarios in a formal and standard manner. They are able
to specify both simple cloud usage scenarios (i.e., where a single service provider provisions
resources directly to end-users), as well as more complex scenarios (i.e., where multiple service
providers, belonging to a single or multiple legal entities, collaborate and mutually interact in
order to provision resources to an end-user). From a business perspective, the latter are known
as value chains, or value networks, since multiple stakeholders are involved each of them adding
value to end-user [66]. Quoting from Leimeister et al. [66]: “... network of relationships that
generates economical value and other advantages through complex dynamical exchanges between
companies.” Standardized and formal descriptions of cloud usage scenarios can be exploited
in many areas such as cloud performance benchmarking where, for example, the specification
of formally defined and structured information about a SUT (System Under Test, i.e., in the
context of this work - an evaluated cloud environment) is typically required. For instance,
relevant information about a SUT is information on the interaction between the different service
delivery models (i.e., IaaS, PaaS, and SaaS) involved in a service provisioning scenario. The
complexity of mandating structured and standardized relevant information about the service
delivery models of cloud environments evaluated as part of benchmarking efforts is acknowledged
as an important issue in a recent report of SPEC’s OSG Cloud Subcommittee [41].

The cloud usage patterns we propose convey information on several aspects relevant for the
formal description of cloud usage scenarios, referred to as dimensions. In the following, we first
present the different dimensions and discuss them in detail. Then, we present our formalism
for describing cloud usage scenarios, which can take a textual or visual form. We propose
cloud usage patterns enabling formal specification of simple cloud usage scenarios, referred to
as elementary cloud usage patterns (Section 3.2), and of more complex cloud usage scenarios,
including specification of hybrid resource provisioning (Section 3.2) and of value chains with
mediators (Section 3.2), referred to as extended cloud usage patterns.

3.1 Dimensions of Cloud Usage Patterns

In this section, we identify and categorize relevant information for the formal description of
cloud usage scenarios. The proposed cloud usage patterns are designed to describe all common
scenarios in which a cloud infrastructure may be used. As an example, the provisioning of
infrastructure, platform, and/or software resources is managed with respect to many Quality-of-
Service (QoS) requirements and customer contracts defined as part of Service-Level Agreements
(SLAs). The latter may have a significant impact on the behavior of the infrastructure, platform,
or software resource provisioning mechanisms of cloud environments. Also, an end-user for
executing a given task may use services from only a single IaaS, PaaS, or SaaS provider, or
might use resources from multiple such providers at the same time which may, or may not be,
within the same legal boundary. For instance, Staten et al. [81] state that the once clearly
distinguishable IaaS, PaaS, and SaaS service delivery models have recently begun to overlap
forming so-called mixed service delivery models, which are gaining on popularity among cloud
service providers. From a business perspective, the mixed service delivery models are referred to
as value chains, previously mentioned in Section 3. An example of a cloud provider featuring a
mixed service delivery model is Microsoft Azure, a former pure PaaS provider that is now known
to support provisioning of platform resources with underlying IaaS services to enhance efficiency

10

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

and add value to end-users (see [36]). Driven by the increasing customer demand for greater
flexibility, the number of cloud providers offering mixed service delivery models are expected to
increase in the years to come.

In light of the above discussion, one may conclude that when describing a cloud usage sce-
nario, information on various aspects, such as the relationships (e.g., SLAs) between the different
stakeholders (e.g., end-users, cloud providers) and service delivery models (i.e., IaaS, PaaS, and
SaaS) involved in executing end-user tasks, is required. In Figure 3.1, we depict the dimensions
and their categories that we use as a basis when constructing cloud usage patterns. Under di-
mension, we understand a relevant information on a specific aspect relevant for description of
real-world cloud usage scenario. We distinguish between the dimensions stakeholders, abstrac-

Stakeholders
— End-user
— Organization
—— Cloud service provider
——— Native provider
——— Non-native provider
—— End-user’s organization

Abstraction Levels
— SaaS
— PaaS
— IaaS
— Hardware Resources
—— With virtualization technology
—— Without virtualization technology

Roles
— Consumer
— Provider
— Intermediary

SLAs
— Internal
— External

Size/Volume

Figure 3.1: dimensions and respective categories of a cloud usage pattern

tion levels, roles, service-level agreements (SLAs), and size/volume:

Stakeholders: A stakeholder is defined as an entity that plays a certain role in a given cloud
usage scenario. We distinguish between two types of stakeholders: end-user and organization.
An end-user is an individual or a programmed system that consumes cloud services (i.e., it uses
provisioned resources). An organization is a legal entity that may either be the organization to
which an end-user belongs or a cloud service provider (i.e., an organization that provides cloud
services). We distinguish between native and non-native cloud service providers. A native cloud
service provider is a provider that owns a cloud infrastructure, e.g., a data center. In contrast,
a non-native cloud service provider does not own a cloud infrastructure, but it rather relies
on provisioned resources from one or more native cloud service provider(s) in order to provide
services to end-users. For instance, as a non-native cloud SaaS provider, we consider a company
that provides an application to end-users according to the SaaS service delivery model where the
application is deployed on leased infrastructure and/or platform resources from a native cloud
provider. We depict the relationships between the considered stakeholders in Figure 3.2.

11

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

End-user‘s
organization

Organization

Cloud service
provider

Native cloud service
provider

Non-native cloud
service provider

End-user

<<belongs to>>
<<is type of>> <<is type of>>

<<is type of>> <<is type of>>

<<provides resources>>

<<provides resources>>

Figure 3.2: relationships between different stakeholders

Abstraction Levels: This dimension captures the levels at which the resource provisioning
mechanisms of cloud providers abstract and manage the provisioned infrastructure, platform, or
software resources in a given cloud environment. We differentiate between the abstraction levels
hardware resources4, IaaS, PaaS, and SaaS. We assume that the resource provisioning mecha-
nisms may be accessed through specialized access-enabling mechanisms (e.g., APIs), and may
function in an independent manner. We also assume that the resource provisioning mechanisms
enable resource provisioning between providers at different abstraction levels. In that case, the
involved providers at different abstraction levels interact in a strict hierarchical relationship;
that is, providers at a lower abstraction level may provide services to a provider at a higher
abstraction level, but not vice-versa. We consider SaaS as the highest abstraction level, hard-
ware resources as the lowest, with the PaaS and IaaS abstraction levels in between. Given the
previously mentioned hierarchy of abstraction levels, an example resource provisioning relation-
ship between providers at different abstraction levels is an IaaS provider providing infrastructure
resources to a PaaS provider, but not vice-versa5.

Roles: As we mentioned previously when discussing stakeholders, we assume that any stake-
holder in a cloud usage scenario plays a given role. We differentiate between the roles provider,
consumer, and intermediary. A provider provides resource provisioning services to consumers
and may be a native or a non-native cloud provider that operates at any of the abstraction
levels Hardware resources, IaaS, PaaS, or SaaS. We do not consider an end-user as a provider in
any situation. A consumer may either be a provider operating at one of the abstraction levels
IaaS, PaaS, or SaaS, and consuming resources at the same time, or an end-user. We refer to
a provider at any abstraction level that consumes and provides resources at the same time as
an intermediary. For instance, a SaaS provider provisioning a software application to end-users
and using platform resources leased from a PaaS provider at the same time, is an intermediary.

According to the previously presented resource provisioning hierarchy between abstraction

4Under hardware resources, we understand the bare hardware (e.g., computing, storage, and network resources)
including virtualization technology (if used). Note that the management and provisioning of hardware resources
may be performed with or without the use of virtualization technology. Although the bare hardware does not
have any mechanisms for provisioning resources (in the form of cloud services), for the sake of completeness and
consistency, we consider the hardware resources layer as a separate abstraction level in our resource provisioning
hierarchy.

5An exception of the strict hierarchical order in the resource provisioning hierarchy exists in the case where a
provider at a given abstraction level provisions resources to a provider at the same abstraction level (e.g., in cases
where a mediator is involved in the resource provisioning to add value), a topic discussed later in Section 3.2.

12

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

levels, providers at lower abstraction levels may provision resources to consumers at higher
abstraction levels, but not vice versa. In Figure 3.3, we depict the interactions between stake-
holders in the case where an end-user consumes software resources from a SaaS provider that
uses virtualized infrastructure and platform resources provisioned from IaaS and PaaS providers,
respectively, according to the hierarchy which applies in such a provisioning.

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization IaaS

PaaS

SaaS

Hardware
Resources

End-user

Platform
Resources

Software
Resources

<<consumes>> <<manages>>

<<manages>>

<<manages>>

<<provides>>

<<provides>>

<<manages>>

Figure 3.3: interactions between stakeholders in a resource provisioning scenario

Service Level Agreements (SLAs): We distinguish between internal and external SLAs.
Internal SLAs define QoS requirements and customer contracts for resource provisioning scenar-
ios within the jurisdiction of a single organization. For instance, the QoS requirements related
to the provisioning of infrastructure resources from an IaaS provider to an intermediary at the
PaaS abstraction level, in the case where both are within the legal jurisdiction of a single cloud
provider, are defined as part of an internal SLA. In contrast, external SLAs define QoS require-
ments and customer contracts for resource provisioning scenarios where different organizations
are involved. For instance, the QoS requirements for the provisioning of software resources from
a SaaS provider to an end-user, who does not belong to the SaaS provider’s organization, are
defined as part of an external SLA. The notions of internal and external SLAs can be used to
differentiate between private and public cloud infrastructures. A cloud usage scenario where the
QoS requirements and customer contracts related to the resource provisioning processes between
all involved (provider, consumer) pairs are defined as part of internal SLAs is a usage scenario
of a private cloud environment.

Size/Volume : The size/volume dimension is a quantifier of the amount of provisioned
resources from a provider to a consumer in a given resource provisioning scenario. In the following
Section 3.2, we present the formal notation of this dimension in greater detail.

3.2 Textual and Visual Cloud Usage Patterns

Taking into account the relevant dimensions described in Section 3.1, we now present a formalism
for formal description of real-world cloud usage scenarios. The proposed formalism has been
designed to satisfy the following requirements (RQs):

13

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

RQ 1. Expressiveness: A cloud usage pattern should convey information covering all relevant
dimensions of the described cloud usage scenario. The formalism should be expressive enough
to describe any common cloud usage scenario that occurs in practice.

RQ 2. Mutual Exclusiveness: A given cloud usage scenario should fit into the description
of at most one cloud usage pattern.

RQ 3. Comprehensibility : A cloud usage pattern should be intuitive and easy to understand.

RQ 4. Determinism: The process for defining a cloud usage pattern should be clearly
defined and produce deterministic results.

Given the above requirements, we introduce two forms of cloud usage patterns: textual and
visual.

Textual Form of Cloud Usage Patterns

We distinguish between:

(i) elementary cloud usage patterns for describing cloud usage scenarios where a
single provider at any abstraction level provisions resources to a consumer, i.e., an
intermediary or an end-user. An example would be the typical scenario where a
single IaaS provider provisions infrastructure resources to a SaaS provider for hosting
a software application provisioned to end-users.

(ii) extended patterns for describing describing more complex cloud usage scenar-
ios, e.g., hybrid resource provisioning (i.e., provisioning of resources from multiple
providers at the same abstraction level to a consumer) and value chains with medi-
ators. For instance, an example of the former scenario is the case where two IaaS
providers provision infrastructure resources to a SaaS consumer for hosting a software
application provisioned to end-users. An example of the latter scenario is the case of
an organization specializing in the operation and management of the resources pro-
vided by given PaaS provider, consumes platform resources and re-provisions them
to end-users.

In Section 4.1, we present several real-world scenarios similar to the above mentioned exam-
ples. Next, we discuss the textual form of elementary cloud usage patterns.

Elementary Cloud Usage Patterns An elementary cloud usage pattern, in its textual form,
is specified as a string consisting of several sections where each section corresponds to an ab-
straction level: Hardware resources, IaaS, PaaS, SaaS, or End-user. Next, we present the rules
that define the syntax of the proposed notation:

Rule E.I) In Figure 3.4, we depict the structure of an elementary cloud usage pattern in
textual form.

Rule E.I.1) When read form left to right, the sections must follow the exact order
shown in Figure 3.4, however, only those sections must be included that apply to the
considered scenario.

14

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

{n[s/v]}{i[s/v][.]}{p[s/v][.]}{s[s/v][.]}{e}

Hardware
resources

IaaS PaaS SaaS End-user

Figure 3.4: structure of an elementary cloud usage pattern in textual form

Rule E.I.2) A pattern must consist of at least two sections, including the section
End-user, and at least one of the sections IaaS, PaaS, or SaaS. The section Hardware
resources may only be used in cases where hardware resources are provisioned without
the use of virtualization technology.

Rule E.I.3) The section End-user may contain at most one character. The sections
Hardware resources, IaaS, PaaS, and SaaS may contain at least one character, and
at most two characters and one number.

Rule E.I.4) The provisioning size/volume at any abstraction level (depicted as
[s/v] in Figure 3.4) is a quantifier specified using numerical notation. The spec-
ification of the provisioning size/volume at any abstraction level is optional. For
instance, such a specification may be ommited when one does not have the respec-
tive information, or when the provisioning size/volume is of no importance in the
considered scenario.

Rule E.I.5) At maximum one number may be used to specify the provisioning
size/volume at any abstraction level. The number that specifies the provisioning
size/volume at a given abstraction level is a subscript placed next to the letter that
denotes the respective abstraction level (i.e., n, i, p, or s).

Rule E.I.6) The character “dot” (.) may be included only in the sections IaaS,
PaaS, or SaaS, however, only in the sections that apply to the considered scenario.

Note that the capitalization of letters in a cloud usage pattern does not convey any specific
information; that is, one may use uppercase and/or lowercase letters. However, we recommend
the use of consistent letter capitalization for clarity and consistency. Next, we present the rules
that define the semantics of the proposed notation:

Rule E.II) The semantics of the characters that may be used when specifying an elementary
cloud usage pattern in textual form are defined in Table 3.1.

Rule E.II.1) The order of the letters, when read from left to right, denotes the
(provider, consumer) pairs that exist in a given cloud usage scenario. For instance,
the pattern ips.e denotes the following (provider, consumer) pairs: (Hardware re-
sources, IaaS), (IaaS, PaaS), (PaaS, SaaS), and (SaaS, End-user). Consequently,
a letter that has an adjacent letter or the character “dot”(.) on both sides, denotes
an intermediary. In the above pattern, the providers at the abstraction levels PaaS
and SaaS denoted by the letters p and s are intermediaries.

Rule E.II.2) Two adjacent letters that are separated by a “dot” (.) indicate that
the QoS requirements and customer contracts for the resource provisioning relation-
ship in the respective (provider, consumer) pair are defined as part of an external

15

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Table 3.1: semantics of the characters used in cloud usage patterns.

Character Meaning

n Denotes hardware provisioning without the use of virtualization tech-
nology.

i Denotes a cloud provider/intermediary at the IaaS abstraction level.

p Denotes a cloud provider/intermediary at the PaaS abstraction level.

s Denotes a cloud provider/intermediary at the SaaS abstraction level.

. Denotes an external SLA as part of which the QoS requirements and
customer contracts for a resource provisioning relationship between a
provider and a consumer belonging to two different organizations are
defined, i.e., it denotes crossing of a legal boundary between two different
organizations in a resource provisioning relationship.

e Denotes an end-user.

SLA. Consequently, two adjacent letters that are not separated by a “dot” (.) imply
the opposite situation. For instance, the pattern ips.e indicates that the QoS re-
quirements and customer contracts for the resource provisioning relationships (IaaS,
PaaS) and (PaaS, SaaS) are defined as part of an internal SLA, whereas the require-
ments and contracts for the resource provisioning relationship (SaaS, End-user) are
defined as part of an external SLA.

Rule E.II.3) It is assumed that the hardware resources are provisioned with the
use of virtualization technology, which is the most common case for modern cloud
systems. For this reason, the use of virtualization is not specified explicitly in the
proposed notation, however, in the unlikely case that the hardware is provisioned
without the use of virtualization, this can be specified by including the character n

in section Hardware resources, which is normally omitted. For instance, the pattern
ns.e specifies that the hardware used by the SaaS abstraction level is provisioned
without the use of virtualization, whereas the contrary applies for the pattern s.e.

Rule E.II.4) The resource provisioning size/volume specified in the dimension
size/volume (denoted as [s/v] in Figure 3.4) in any of the sections Hardware re-
sources, IaaS, PaaS, or SaaS, is a specification of a metric indicating the size/volume
of provisioned resources at the respective levels. The provisioning size/volume may
be specified in an arbitrary unit of measurement which has to explicitly defined, for
example, an order of magnitute (e.g., hundreds, thousands), or a logarithmic value.

The specification rules for elementary cloud usage patterns given above provide a formal
notation for almost all of the relevant dimensions of information and their categories described
in Section 3.1. The only dimension that is not covered by the above notation is the cloud
service provider category. This category consists of the sub-categories native and non-native
cloud service providers. As defined in Section 3.1), under native cloud service provider, we
understand a provider that owns a cloud infrastructure and provisions infrastructure, platform,

16

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

and/or software resources. In a cloud usage pattern the provider that operates at the abstraction
level of the lowest order is a native cloud service provider and it provisions resources at the
abstraction levels that are specified up until the first “dot” (.) when reading the pattern from
left to right. The resource provisioning at the other abstraction levels is performed by non-
native cloud providers. For instance, the pattern ip.s.e describes a scenario in which a native
cloud provider provisions infrastructure and platform resources, and a non-native cloud provider
provisions software resources to an end-user.

Cloud Usage Patterns for Hybrid Services With the elementary cloud usage patterns
defined, we extend the existing formalism to support the formal description of hybrid resource
provisioning scenarios which are common in practice. Under hybrid resource provisioning, we
understand the provisioning of resources to a consumer (i.e., a provider at a given abstraction
level or an end-user) from multiple native or non-native cloud providers at the same abstraction
level. For instance, when the capacity of a platform-level provider is reached, additional platform
resources may be leased from another platform provider. In order to support the specification
of hybrid services in our formalism, we introduce the following rules:

Rule H.I) The specification of multiple different providers provisioning resources
at the same abstraction level is performed using similar notation as the notation
for elementary cloud usage patterns (Rule H.II) where for each provider the respec-
tive spectification is enclosed in parentheses. An example would be the pattern
(ip)(i.p.)s.e, in which the two specifications in parentheses ip and i.p. cor-
respond to two independent providers of platform resources. The specifications in
parentheses may contain nested specifications of the same nature, also enclosed in
parentheses. Further, the order in which specifications at the same nesting level are
written is irrelevant, for example, the patterns (ip)(i.p.)s.e and (i.p.)(ip)s.e

are equivalent.

Rule H.II) The specifications enclosed in parentheses must conform to the rules
for elementary cloud usage patterns with the exception that they are not required
to contain all mandatory sections (e.g., the section end-user). To the contrary,
such specifications normally only contain sections up to the abstraction levels at
which the providers involved in the respective hybrid resource provisioning scenario
operate (i.e., beginning with the lowest applicable abstraction level and ending at the
abstraction level at which multiple providers provide resources of the same type to
a consumer). For instance, in the pattern (ip)(i.p.)s.e, both specifications (ip)

and (i.p.) end by specifying the PaaS abstraction level with the letter p, indicating
that multiple platform providers jointly provision platform resources to a consumer
at the SaaS abstraction level.

Rule H.III) In the case where the QoS requirements and customer contracts for a
given (provider, consumer) pair are defined as part of an external SLA, and where
the provider is involved in a hybrid resource provisioning scenario, the external SLA
is specified by placing a“dot” (.) character inside the parentheses that enclose the
specification corresponding to the respective provider. For instance, the specification
(i.p.) in the pattern (ip)(i.p.)s.e, denotes a platform provider that is not
within the same legal boundaries as the consumer at the SaaS abstraction level. To
the contrary, the specification (ip) indicates that a second platform provider is used
that is within the same legal boundaries as the consumer at the SaaS abstraction
level.

17

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Rule H.IV) The total size/volume of the provided/consumed resources in a hy-
brid resource provisioning scenario is equal to the sum of the resource provisioning
sizes/volumes of each involved provider. For instance, given the pattern (ip1)(i.p2.)s.e

where the provisioning size/volume is specified in the unit of hundreds, one may as-
sume that the consumer at the SaaS abstraction level consumes 300 resource units
in total.

Cloud Usage Patterns for Value Chains with Mediators As discussed in Section 3), the
term value chain, in the context of cloud computing, is normally used to refer to a network of
multiple service providers that cooperate in order to add/generate value to a consumer [66]. The
presented formalism for elementary and hybrid cloud usage patterns allows to specify different
interrelation scenarios involving multiple cloud providers in a value chain (i.e., scenarios where a
single provider provisions resources at a single abstraction level in a hierarchical order of multiple
such levels, and where multiple providers provision resources at a single abstraction level, also
in a hierarchical order of multiple such levels). In this section, we extend our formalism to
support the specific case where an organization that does not own a cloud infrastructure including
infrastructure, platform, or software resources, leases such resources provisioned from a single, or
multiple, native or non-native cloud IaaS, PaaS, or SaaS providers, in order to re-provision them
to a consumer with added value. In the context of this work, we refer to such an organization as
a mediator. In the commercial cloud market, mediators are also commonly referred to as value-
adding resellers (VARs). The trend having mediators involved in cloud resource provisioning has
only recently emerged and it is attracting a significant amount of attention. For instance, many
native cloud providers have reseller programs enabling cost- and time-efficient provisioning of
infrastructure, platform, and/or software resources to mediators for reselling. An example is the
reseller program of the Google App software provider, which has attracted over 6000 authorized
resellers [22].

The value added by mediators to resource provisioning services may be of various nature,
for example, a mediator might possess strong expertise in a relevant domain (e.g., provisioning
mechanisms and policies such as resource allocation, task scheduling, and similar) adding signifi-
cant value to the resource provisioning services through enhanced efficiency. Further, a mediator
may provision resources at a lower cost than the native and/or non-native cloud provider(s) from
which it leases resources; that is, in the case where a mediator is a high-volume customer of its
cloud provider(s), it may be eligible for discounts allowing to resell resources at lower prices6.

The specific class of value chains considered in this section (i.e., value chains with mediators)
may involve resource provisioning from a single native or non-native cloud provider, or from
multiple such providers, for reselling by a mediator. Given the latter scenario, we extend the
previously defined rules for specifying hybrid services (Section 3.2) to support value chains with
mediators.

Rule M.I) A mediator relying on leased resources from a single cloud provider at
a given abstraction level is denoted using the letter that corresponds to the specific
abstraction level at which resources are provisioned for reselling, i.e., n (optional,
otherwise no letter is used, see Rule E.I.2), i, p, or s. This letter is written after
the pattern specification for the provider from which resources are leased enclosed in
parentheses, and which is similar to an elementary cloud usage pattern (see Rule H.I
and Rule H.II). An example is the pattern (i.)i.e, where the second i, when one
reads from left to right, denotes a mediator provisioning infrastructure resources to
an end-user, leased from a single infrastructure-level cloud provider.

6An example of a commercial native cloud provider that offers discounts for high-volume customers is Amazon
[42].

18

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Rule M.II) A mediator relying on leased resources from multiple independent
providers at the same abstraction level is denoted using the letter that corresponds
to the specific abstraction level at which resources are provisioned for reselling, i.e.,
n (optional, otherwise no letter is used, see Rule E.I.2), i, p, or s. This letter is writ-
ten after the pattern specifications for the providers from which resources are leased
enclosed in parentheses, i.e., (), and which are similar to elementary cloud usage pat-
terns (see Rule H.I and Rule H.II). An example is the pattern (ip.)(i.p.)p.s.e,
where the third p, when one reads from left to right, denotes a mediator that pro-
visions leased platform resources from two platform providers, to a consumer at the
SaaS abstraction level.

Rule M.III) As for the elementary cloud usage patterns, the character “dot” (.)
denotes an external SLA (i.e., in the context of value chains it indicates that the
provider provisioning resources for reselling and the mediator are separate legal enti-
ties). Note that the use of a “dot” (.) is mandatory, since by definition a mediator is
an independent legal entity that leases and resells resources from a single or multiple
native or non-native cloud providers.

Rule M.IV) The specification of the provisioning size/volume of a mediator is
optional (see similar rule E.I.4).

3.3 Visual Form of Cloud Usage Patterns

In this section, we propose a visual formalism depicting cloud usage patterns in a graphical
notation. The visual formalism is not intended to be as strict as the textual formalism we
introduced in the previous section; that is, we consider it merely as a recommendation on
visualizing textual forms of cloud usage patterns in an intuitive manner and in a form easy
to understand by a wide audience. Also, we do not claim improved features and or higher
expressive power over existing visual formalisms for value chains, such as the e3-method proposed
by Gordjin [61]. To the contrary, our formalism is intended for straightforward use and immediate
interpretation by a wide audience, whose members are not necessarily assumed to have extensive
expert knowledge on value chains, especially in the context of cloud computing.

The proposed visual formalism is based on the graphical elements presented in Table 3.2 and
Table 3.3. The graphical elements listed in Table 3.2 may be used to visualize elementary cloud
usage patterns (Section 3.1), while the graphical elements listed in Table 3.3 allow to visualize
extended cloud usage patterns describing hybrid services and value chains with mediators.

In Figure 3.5, we present several examples of the use of the graphical elements listed in
Table 3.2 and Table 3.3 for visualizing elementary (i.e., ni.s.e) and extended cloud usage
patterns (i.e., (ni3.)(i2.)i.s.e).

The pattern i.e describes a common situation where a native IaaS cloud provider provisions
infrastructure resources to an end-user. The native cloud provider, depicted as a box with
solid line, and the end-user belong to different organizations. Thus, the QoS requirements and
customer contracts are defined as part of an external SLA visualized with a solid line. The
underlying hardware resources and the IaaS abstraction level belong to the same organization
and therefore the QoS requirements and customer contracts for the provisioning of hardware
resources are defined as part of an internal SLA visualized with a dashed line. The hardware
resources are provisioned with the use of virtualization technology. This is reflected by placing
the graphical symbol of a provider inside the box representing the virtualization abstraction
level. An important difference between the pattern ni.s.e, also depicted in Figure 3.5, and
the pattern i.e is that in the former hardware resources are provisioned without the use of
virtualization technology. Therefore, the graphical symbol of a provider is placed inside the box

19

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Table 3.2: graphical elements for specifying elementary cloud usage patterns in visual form

Dimension Graphical Element

Abstraction Levels SaaS

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualizati
on

IaaS

PaaS

SaaS

HW

PaaS

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualizati
on

IaaS

PaaS

SaaS

HW

IaaS IaaS

Virtualization7 Virtualization

Hardware resources

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization

IaaS

PaaS

SaaS

Hardware

Stakeholders Native cloud service provider

Non-native cloud service provider

End-user’s organization

End-user

SLAs Internal

External

Roles Consumer

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Provider

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Size/Volume (optional) Provisioning with internal SLA

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization

End-User

IaaS

PaaS

SaaS

HW

H B F G E C A D

Roles:
 Consumer
 Provider

Actor:
 Organization
 End-User

SLAs:
 Internal
 External

<size/volume>

<size/volume>

Provisioning with external SLA

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization

End-User

IaaS

PaaS

SaaS

HW

H B F G E C A D

Roles:
 Consumer
 Provider

Actor:
 Organization
 End-User

SLAs:
 Internal
 External

<size/volume>

<size/volume>

representing the hardware resources abstraction level. Further, the pattern ni.s.e describes
provisioning of software resources from a non-native cloud SaaS provider, which is therefore
visualized using a box with dashed line.

Beside the elementary patterns i.e and ni.s.e, we also visualize the pattern (ni3.)(i2.)s.e,
describing hybrid provisioning of infrastructure resources to a consumer at the SaaS abstraction
level, and the pattern (ni3.)(i2.)i.s.e, describing the involvement of a mediator in the hybrid
resource provisioning. The considered hybrid resource provisioning scenario is a scenario where
a consumer at the SaaS abstraction level consumes infrastructure resources from two infrastruc-
ture providers conforming to the patterns ni.s.e and i.e, respectively. Thus, to visualize this
scenario, we apply the visual forms of the elementary patterns i.e and ni.s.e as a basis and use
a thick line as a graphical element to visualize the hybrid provisioning of infrastructure resources
from the two infrastructure providers. We place this line inside the graphical element for a non-

7In the context of this work, virtualization is considered as part of the abstraction level Hardware resources
(Figure 3.1). However, in Table 3.2, we list virtualization as a separate abstraction level for clarity of the presen-
tation. For the same reason, we refer to it as “the virtualization abstraction level”.

20

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

Table 3.3: graphical elements for specifying extended cloud usage patterns in visual form

Graphical Element Meaning

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Hybrid resource provisioning (merged resources)

Mediator (non-native cloud service provider)

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization!

IaaS!

PaaS!

SaaS!

Hardware!

ni.s.e i.e (ni3.)(i2.)i.s.e

3

2 3 2

(ni3.)(i2.)s.e

Figure 3.5: visual form of the textual cloud usage patterns i.e, ni.s.e, (ni3.)(i2.)s.e, and
(ni3.)(i2.)i.s.e.

native cloud service provider at the abstraction level at which the provisioned resources from the
two infrastructure providers are merged (i.e., SaaS). A thick line is used in many other visual
formalisms for similar purposes, i.e., for depiction of common activities of multiple stakeholders,
a prominent example being the activity diagrams in the UML (Unified Modeling Language) [71].
Note that an alternative visualization of a hybrid resource provisioning is also possible in the
case where one of the multiple providers involved in a hybrid resource provisioning abstracts the
resources provisioned by the other providers and provisions them to a consumer. This is usually
the case when the provider mentioned above is within the same legal domain as the consumer.
An example of such a case is the scenario described by the textual pattern (i.)(i)s.e, where
a private IaaS provider expands (i.e., “spills over”) to a public IaaS provider when its capacity
is reached in order to provision a sufficient amount of resources to the consumer at the SaaS
abstraction level. From the consumer’s perspective, the provisioning of infrastructure resources
is performed by a single IaaS provider, that is, the private IaaS provider. When visualizing the
above scenario, a thick line is placed inside the graphical element visualizing the private infras-
tructure provider to indicate the merging of the private and public infrastructure resources at
the IaaS abstraction level. We present a real-world example of such a scenario and visualization
of the respective pattern in Section 4.2.

21

Section 3. Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios

In the visual forms of the patterns (ni3.)(i2.)s.e and (ni3.)(i2.)i.s.e, we also specify
the provisioning sizes/volumes by placing the respective numbers next to the lines that visualize
the SLAs and close to the graphical elements that visualize the providers whose provisioning
size/volume is specified.

In order to visualize a value chain with a mediator, we use the same set of graphical elements
used when visualizing hybrid resource provisioning without a mediator, however, we use in
addition to this the graphical element for a non-native cloud service provider (i.e., a mediator),
which in this case consumes resources from two infrastructure providers and operates at the
same abstraction level as the infrastructure providers (i.e., IaaS). Note that in the depicted
example, the mediator uses hybrid resource provisioning to provision infrastructure resources to
a consumer at the SaaS abstraction level, thus the use of the thick line. We provide an example
in which a mediator does not use hybrid resource provisioning in Section 4.2, where we provide
examples of real-world cloud usage scenarios.

22

Section 4. Cloud Usage Patterns in Practice

4 Cloud Usage Patterns in Practice

In this section, we present examples of how cloud usage patterns can be used to describe real-
world cloud usage scenarios. To this end, in Section 4.1, we provide a brief overview of several
cloud usage scenarios, and then, in Section 4.2, we apply our formalism to formally describe
these scenarios.

4.1 Real-World Cloud Usage Scenarios

In order to identify practically relevant cloud usage scenarios, we surveyed multiple reports
on resource provisioning from commercial cloud providers that play a major role in the cloud
computing market, such as Facebook, Amazon, and similar.

Scenario AWS : Amazon Web Services [3] is a native cloud provider that provisions infras-
tructure resources to end-users. This includes provisioning of computing, database, storage, and
networking resources offered in the form of “Web Services”. In Table 4.1, we list some of these
services as well as the respective types of provisioned infrastructure resources [4].

Table 4.1: several Amazon Web Services

Amazon Web Service Infrastructure Resources

Amazon Elastic Compute Cloud (EC2)
Amazon Elastic MapReduce (EMR)

Computing

Amazon Simple Storage Service (S3)
Amazon Elastic Block Store (EBS)

Storage

Amazon DynamoDB
Amazon Relational Database Service (RDS)

Database

Amazon Virtual Private Cloud (VPC)
Amazon Route53

Networking

Scenario FBK : At the time of writing, Facebook [13] is the world’s largest online social
networking application. The Facebook application is delivered to end-users according to the
SaaS service delivery model. It is deployed on a private cloud infrastructure, which does not use
virtualization technology for maximum performance and efficiency [14]. The Facebook social
networking application relies on platform resources provisioned by a PaaS provider residing
on the same cloud infrastructure as the application. This provider also provisions resources
to end-users; that is, it provides an API for developing applications supported by the cloud
infrastructure in which it resides, and therefore, such applications may be integrated in Facebook
itself.

Scenario GAN : Go!Animate [18] provides a web application for developing animation
videos. For maximum efficiency and scalability, Go!Animate leases infrastructure resources from
the native cloud infrastructure provider Amazon Web Services for application hosting and man-
agement. The Amazon Web Services used by Go!Animate are listed in Table 4.2 [19].

Scenario EJT : easyJet [10] is one of the leading European low-fare airlines. As part of

23

Section 4. Cloud Usage Patterns in Practice

Table 4.2: Amazon Web Services used by Go!Animate

Amazon Web Service Usage

Amazon Elastic Compute Cloud Hosting of web servers

Amazon Relational Database Service Hosting of a relational database

Amazon Simple Storage Service Hosting of static content

Amazon Simple Queue Service Coordination of asynchronous jobs

its customer services, it provides an airline application for handheld devices called Halo [25]
featuring various electronic airline services such as check-in and seat reservation. Halo has been
developed using the Windows Azure Service Bus platform [37] from Microsoft on which it is
currently hosted [25]. The latter resides on the Windows Azure cloud infrastructure and provides
development and operational environment for scalable applications with occasionally connected
clients. It features automatic management of the communication between the application users
and the request processing servers handling client disconnections. The underlying Windows
Azure cloud infrastructure where Halo is deployed provisions infrastructure resources to the PaaS
provider Windows Azure Service Bus. This includes provisioning of, for example, networking
and storage resources, that can be provided to Halo on demand in an elastic manner. For further
information on the infrastructure resources offered by Windows Azure, we refer the reader to
[36].

Scenario EZS : EZasset [11] is a business and agency asset management system delivered
to end-users according to the SaaS service delivery model. Using knowledge-based technology,
it efficiently manages documents and assets of a wide range of businesses. It has been built and
designed to operate on the application development and hosting platform Google App Engine
[21] [12]. Consequently, EZasset supports the integration of many proprietary Google APIs, such
as Google Calendar and the Google Docs API [23].

Scenario FRC : Force.com [16] is a provider of platform resources for development, manage-
ment, and marketing of cloud applications. Some of the central platform provisioning offerings
of Force.com are Appforce and ISVForce. Appforce supports easy integration of cloud applica-
tions with social networks and mobile devices [5]. ISVForce supports the promotion of cloud
applications on the market and offers functionality to manage the process of running businesses
on cloud infrastructures, including software licensing, upgrade provisioning, and similar [24].
Note that Force.com does not natively support the provisioning of infrastructure resources to
end-users (i.e., application developers leasing platform resources). Since recently, Force.com
users may lease infrastructure resources, but they are provisioned by Amazon as a native cloud
infrastructure provider [17].

Scenario SFR: Salesforce.com [32] is a provider of CRM applications delivered to end-users
according to the SaaS service delivery model. Some of its products include SalesCloud (a set
of applications for marketing and sales operations [31]) and ServiceCloud (a set of applications
for customer care services [6]). Both of them include Chatter, an application for real-time
collaboration tasks. These applications rely on the platform resources provisioned by the native
platform provider Force.com. Note that the SaaS provider Salesforce.com and the PaaS provider
Force.com are within the jurisdiction of the same company - Salesforce.com.

24

Section 4. Cloud Usage Patterns in Practice

Scenario DNB : At the time of writing, DenizBank [7] is a fast growing Turkish bank
in need of expansion and increased efficiency of its IT infrastructure. DenizBank has built its
own private cloud infrastructure by virtualizing existing servers using the Hyper-V hypervisor
technology [27]. It uses Microsoft System Center 2012 [28], which enables easy and flexible
management of infrastructure resources [26]. Some of the reported benefits that DenizBank
gained by building a private cloud environment include total savings of up to 19 million in data
center costs and 20% reduction of IT staff costs [26].

Scenario ZNG: Zynga [38] is a provider of many popular social game applications. Since
its inception and shortly thereafter, Zynga has used public hosting resources in order to deploy
and run gaming services. However, with the sudden immense popularity of one of their games -
Farmwille - the amount and intensity of the workloads processed by Zynga’s private infrastruc-
ture have drastically increased. This has been a major reason for the migration of the existing
Zynga infrastructure to infrastructure resources provisioned by Amazon, i.e., Amazon Web Ser-
vices [3] (see Scenario AWS). However, due to the need for greater control over the optimization
of the infrastructure resources, Zynga has also built their own private cloud environment for pro-
visioning of infrastructure resources. Currently most of the workloads are processed on Zynga’s
private infrastructure and in case the capacity of this infrastructure is saturated, Zynga’s uses
additional leased infrastructure resources from Amazon Web Services. Thus, Zynga’s approach
towards dealing with inflating workloads is a hybrid infrastructure resource provisioning for
maintaining efficiency in delivering social game services to end-users [35].

Scenario DTO : Dito [8] is an authorized Google App reseller which adds value to end-users
by providing experise knowledge on the migration to software resources originally provisioned by
Google. Among many other services, Dito provisions Google’s software resources to end-users
with additional add-on services customized according to specific end-users’ needs. For instance,
Dito provisions a proprietary management tool for Google Apps called Dito GAM, which enables
the efficient management of domain and user settings. For further information on the features
of Dito GAM, we refer the reader to [9].

4.2 Textual and Visual Cloud Usage Patterns in Practice

In this section, we apply our formalism for describing cloud usage patterns to the presented
real-world cloud usage scenarios. The patterns describing each of the considered cloud usage
scenarios are shown in Table 4.3. Note that we do not consider provisioning sizes/volumes
since we focus on the provider-consumer relationships between the involved stakeholders. In the
following, we discuss the textual form of selected patterns from Table 4.3 relating them to the
respective cloud usage scenarios:

Scenario AWS - i.e: The native cloud provider Amazon provides infrastructure resources
to end-users [3]. In the cloud usage pattern, this is reflected by the (provider, consumer) pair
(IaaS, End-user) denoted as i.e. The QoS requirements and customer contracts are defined as
part of an external SLA. Therefore, the letters i and e are separated by a“dot”(.). The hardware
resources are provisioned to the intermediary at the IaaS abstraction level using virtualization
technology, which is the default case. Therefore, the section Hardware resources is omitted in
the cloud usage pattern.

Scenario FBK - nps.e: The native cloud provider Facebook [13] provides a social net-
working application to end-users. This is reflected in the cloud usage pattern by the (provider,
consumer) pair (SaaS, End-user) denoted as s.e. The respective QoS requirements and customer

25

Section 4. Cloud Usage Patterns in Practice

Table 4.3: cloud usage patterns that describe real-world cloud usage scenarios

Cloud Usage Scenario Cloud Usage Pattern

AWS i.e

FBK nps.e

GAN i.s.e

EJT ip.s.e

EZS p.s.e

FRC p.e

SFR ps.e

DNB ie

ZNG (i.)(i)s.e

DTO (s.)s.e

contracts are defined as part of an external SLA. Therefore, the letters s and e are separated
by a “dot” (.). The Facebook application is deployed on platform resources provisioned by a
platform provider within the jurisdiction of the same company (i.e., Facebook). This is reflected
by the (provider, consumer) pair (SaaS, End-user) denoted as ps. The hardware resources are
provisioned to the intermediary at the PaaS abstraction level without the use of virtualization
technology. Therefore, the letter n preceding the letter p is included in the cloud usage pattern.

Scenario EJT - ip.s.e: The non-native cloud service provider easyJet [10] provides a
flight management application to end users. This is reflected by the (provider, consumer) pair
(SaaS, End-user) denoted as s.e. easyJet does not own a cloud infrastructure, but instead
relies on infrastructure resources provisioned by another cloud provider, i.e., Windows Azure.
The QoS requirements and customer contracts related to the provisioning of the application to
end-users are defined as part of an external SLA. Therefore, the letters s and e are separated
by a “dot” (.). The easyJet application is implemented and deployed on platform resources
leased from Windows Azure [29], the latter being a separate legal entity. This is reflected
by the (provider, consumer) pair (PaaS, SaaS) denoted as p.s. The provisioning of platform
resources is supported by infrastructure resources also provisioned by Windows Azure. This is
reflected by the (provider, consumer) pair (IaaS, PaaS) denoted as ip. The hardware resources
are provisioned to the consumer at the IaaS abstraction level using virtualization technology.
Therefore, as usual, the Hardware resources section is omitted and no letter precedes the letter
i. Note that the platform provider Windows Azure is considered as a native cloud provider
since it owns a cloud infrastructure; that is, the ommited Hardware resources section and the
IaaS section of the respective cloud usage pattern are within the legal boundaries of the provider
Windows Azure.

Scenario DNB - ie: DenizBank [7] has deployed the infrastructure provider platform
Microsoft System Center 2012 for managing and scaling the bank’s private IT infrastructure [26].

26

Section 4. Cloud Usage Patterns in Practice

This is reflected in the pattern by the (provider, consumer) pair (IaaS, End-user) denoted as ie.
Given that in this case, the end-users and the IaaS provider are part of the same organization,
the respective QoS requirements and customer contracts are defined as part of an internal SLA
and therefore, the letters i and e are not separated by a “dot” (.). The hardware resources
are provisioned to the infrastructure provider with the use of virtualization technology [26].
Therefore, as usual, the Hardware resources section is omitted and no letter precedes the letter
i. Note that this scenario is an example of a usage scenario of a private cloud, reflected by the
lack of dots in the cloud usage pattern.

Scenario ZNG - (i.)(i)s.e: Zynga [38] provides gaming applications to end-users accord-
ing to the SaaS service delivery model. This is reflected by the (provider, consumer) pair (SaaS,
End-user) denoted as s.e. For scalability and efficiency, Zynga uses provisioned infrastruc-
ture resources that it owns, but it also leases additional infrastructure resources from Amazon
Web Services. To this end, the respective cloud usage pattern contains two pattern specifica-
tions enclosed in parentheses (see Rule H.II, Section 3.2): (i.) specifying the provisioning of
infrastructure resources from Amazon Web Services, and (i) specifying the provisioning of in-
frastructure resources from Zynga’s private infrastructure provider. Regarding the specification
(i.), note that the character “dot” (.) is written inside the parentheses in order to indicate that
the respective infrastructure provider involved in the hybrid resource provisioning (i.e., Amazon
Web Services) is not within the legal domain of Zynga. To the contrary, the character “dot”
(.) is omited when writing the specification (i), since Zynga’s private infrastructure provider is
within the same legal boundaries as the SaaS provider.

Scenario DTO - (s.)s.e: Dito [8] resells software resources provisioned by Google’s SaaS-
level provider Google Apps. Thus, the cloud usage pattern uses parentheses (see Rule M.I,
Section 3.2), i.e., (s.), to indicate the provisioning of software resources from Google Apps to
the mediator Dito A“dot”(.) is included inside the parentheses in order to indicate that Google’s
SaaS provider is not within the legal domain of Dito (i.e., the respective QoS requirements and
customer contracts are defined as part of an external SLA). The specification (s.) is followed
by the letter s indicating that Dito is a SaaS-level mediator that resells software resources to
end-users.

In Figure 4.1, we use the proposed visual formalism (Section 3.3) to visualize the textual
cloud usage patterns shown in Table 4.3. Note that when visualizing Scenario ZNG, we place
the thick line indicating hybrid resource provisioning in the graphical element of Zynga’s private
IaaS provider to visualize the ability of this provider to “spill over” to the IaaS provider Amazon
Web Services [3] (i.e., to use leased infrastructure resources [3]).

Although in Section 4.1 and Section 4.2 we discussed only 10 cloud usage scenarios, there
are many other real-world scenarios that conform to the presented cloud usage patterns. For
instance, as in Scenario AWS, the provisioning of infrastructure resources of the popular IaaS
provider Terremark [34] to end-users conforms to the pattern i.e, and further, as in Scenario
ZNG, the use of both leased and private infrastructure resources by the SaaS provider Music
Mastermind [30] conforms to the pattern (i.)(i)s.e (see [53]).

27

Section 4. Cloud Usage Patterns in Practice

Software Design and Quality Group
Institute for Program Structures and Data Organization

1 02.11.2011

Virtualization

IaaS

PaaS

SaaS

Hardware

AWS
i.e

FRC
p.e

`

 GAN
i.s.e

EJT
ip.s.e

EZS
p.s.e

FBK
nps.e

DNB
 ie

SFR
ps.e

DTO
(s.)s.e

ZNG
(i.)(i)s.e

Figure 4.1: visual forms of the textual cloud usage patterns listed in Table 4.3

Cloud Usage Patterns and Real-World Cloud Applications

In this section, we consider the set of representative real-world cloud applications selected in
Section 2 to analyze the relationship between cloud usage patterns, on the one hand, and appli-
cations and application types, on the other hand. By studying which cloud usage patterns are
typically used in different application domains, we reason about the advantages and disadvan-
tages of different approaches in which cloud services can be used to support the implementation
and operation of different application types. Furthermore, by studying the relationships be-
tween common cloud usage patterns and application domains we identify best practices for the
adoption of cloud computing technologies in different domains.

We first classify the applications involved in the previously presented real-world cloud usage
scenarios (Section 4.1) according to their type by means of the cloud application categorization
from Section 2. We then map the considered applications and application types to respective
cloud usage patterns. The results of this mapping are summarized in Table 4.4. In the rest of
this section, we present our observations for each of the considered applications.

Facebook - nps.e Facebook is a social networking application enabling the sharing and
exchange of messages and multimedia among a vast number of users. Each Facebook user main-
tains a personalized profile that is usually updated frequently. Profile updates are propagated
to related user profiles (referred to as “friends” in the Facebook terminology) in a continuous
and timely fashion. Also, Facebook users can use platform resources provided by Facebook to
develop applications, and deploy and run them on Facebook’s cloud. Some reports indicate that
Facebook’s data centers in 2009 stored more than 40 billion photos, and that users upload 40
million photos each day [1]. Given the high intensity of user activities, on the one hand, and
the increasingly stringent application performance requirements, on the other hand, it can be
concluded that one of Facebook’s main technological requirements is to support scalability and
efficiency of operation. This requirement is the major reason behind the cloud usage pattern
(i.e., nps.e) used to implement Facebook’s services. Gio Coglitore of Facebook Labs has stated
that the lack of using virtualization technology for the provisioning and management of hardware

28

Section 4. Cloud Usage Patterns in Practice

Table 4.4: mapping of cloud applications and application types to cloud usage patterns

Application Application Type Cloud Usage Pattern

Facebook Social networking nps.e

Go!Animate User data processing i.s.e

EasyJet CRM/PRM ip.s.e

SalesForce.com CRM/PRM ps.e

Zynga Online gaming and meta-gaming (i.)(i)s.e

resources, denoted by the letter n in the respective cloud usage pattern, significantly reduces the
overhead of scaling the application during operation:

“We find within our testing that a realised [non-virtualised] environment brings effi-
ciencies and the ability to scale much more effectively”

Source: PC World Magazine, IDG News Service, March, 2011 [65].

Go!Animate - i.s.e Go!Animate is a web application for development of amateur anima-
tion videos. A major requirement for the effective functioning of Go!Animate is the provision-
ing of infrastructure resources for hosting its operating systems, application components, and
databases in a scalable manner [19]. To this end, Go!Animate leases infrastructure resources
from Amazon. In this direction, Go!Animate’s Chief Executive Officer Alvin Hung has stated:

“It was important to put our tech stack on a flexible and cost effective architecture...
The ability to bring up and shut down instances easily has given us much more flex-
ibility...”

Source: Amazon, Case Studies, February, 2011 [19].

Note that Go!Animate does not lease platform resources as indicated by the lack of the letter
p in the respective cloud usage pattern, a major reason being the fact that Go!Animate requires
maximum flexibility at the platform level (i.e., its operation relies on a set of custom platform
components developed specifically for the Go!Animate application, as opposed to using readily
available platform services offered by cloud providers).

EasyJet - ip.s.e The EasyJet’s Halo application is a CRM application. Similar to other
applications of this type, Halo features complex business logic which, on the one hand, requires
many common enterprise middleware services (e.g., transaction processing, data persistence,
access control, and fault tolerance mechanisms), and, on the other hand, dynamic resource
provisioning and elastic capacity management. This calls for the use of platform resources that
are supported by provisioning of underlying infrastructure resources, which Halo obtains from the
Windows Azure cloud environment acting as an infrastructure and platform provider at the same
time. Regarding the benefits of leveraging both infrastructure and platform resource provisioning
according to the IaaS and PaaS service delivery models, EasyJet’s Enterprise Architect Bert
Craven has stated:

“We don’t have to build a new high-availability service platform, make firewall con-
figuration changes, or deploy lots of new servers. From the service consumer’s point
of view, there is no difference in how they get to that service.”

Source: Microsoft, Case Studies, August, 2011 [25].

29

Section 4. Cloud Usage Patterns in Practice

Salesforce.com - ps.e/ Force.com - p.e The development and hosting of the Sales-
force.com CRM application [32] is supported by platform resources provisioned by the platform
provider Force.com (Scenario FRC, Section 4.1). The latter enables rapid application develop-
ment by providing support for many essential platform-level features such as the integration with
various APIs (e.g., Google Apps, web services APIs), and a developer sandbox. The platform
services of Force.com have recently been extended to support the use of provisioned infrastruc-
ture resources from Amazon, resulting in a new product called Force.com for Amazon Web
Services [17]. At the time of writing, we do not have any evidence that infrastructure resources
from Amazon are intended to also be used for the Salesforce.com applications. If that were
to happen in the future, the Salesforce.com applications would conform to the pattern i.ps.e.
Force.com for Amazon Web Services has been positively received by many Force.com customers,
including John Johnson, Vice President of Licensing at ASCAP, who has stated:

“We’re excited to use Force.com and Amazon Web Services together to run our busi-
ness in the cloud. We’ve been able to leverage these cloud services to create new
applications, including document management, that bring new efficiencies to our
business.”

Source: Salesforce.com, Press Releases, November, 2008 [33].

Zynga - (i.)(i)s.e As we previously mentioned (Section 4.1), Zynga [38] has initially
relied solely on infrastructure resources provided by Amazon [3] in order to maintain efficiency
in provisioning social gaming services to end-users. However, due to the need for more fine-
granular management and customization of the infrastructure resources, Zynga has decided to
use a hybrid resource provisioning approach; that is, Zynga has built its own infrastructure
cloud provider and in addition, it leases additional infrastructure resources from Amazon when
the capacity of Zynga’s private infrastructure provider is saturated. In this direction, Allan
Leinward, a Chief Technology Officer of Infrastructure for Zynga, has stated:

“...we came to the realization that we were renting what we could own. The public
cloud isn’t your own infrastructure; it isn’t something you can own and operate in
your own way, and it isn’t capital equipment, so it was an operating expense.”

Source: TechRepublic, Blog Entry, March, 2012 [35].

30

Section 5. Related Work

5 Related Work

Our work closely relates to several research topics including: (i) analysis of cloud usage trends,
characteristics of cloud environments, and challenges in using these environments, (ii) classifica-
tion of cloud applications, and (iii) construction of formalisms for expressing patterns. In this
section, we review relevant related work focusing on these research topics.

5.1 Cloud Computing Characteristics, Challenges, and Use Case Scenarios

Armbrust et al. [47] provide an in-depth analysis of cloud environments; that is, they provide an
overview of many concerns related to cloud environments, such as conrete and accurate definition
of these environments, identification of their unique characteristics, identification of representa-
tive application types, and similar. They identify the following features and characteristics that
distinguish cloud environments from their traditional counterparts: (i) on-demand provisioning
of “infinite” computing resources, (ii) scalability, (iii) pay-as-you-go business model. Armbrust et
al. [47] also identify and analyze application types commonly seen in cloud environments such as
mobile interactive applications, parallel batch processing applications, compute-intensive desk-
top applications, and so on. Further, Armbrust et al. [47] study the cloud computing market
at the time of writing, analyzing the popular cloud computing services Amazon Web Services
[3], Microsoft Azure [29], Google AppEngine [21], and others. This includes observations of the
effects of elasticity, as a unique cloud computing characteristic, on the revenue and the expenses
of cloud providers, on the economical gains to customers of these providers, and so on. Finally,
Armbrust et al. [47] analyze some of the major challenges in cloud computing such as secu-
rity concerns, not standardized APIs for development of cloud applications, and similar. They
also provide an overview of promising future trends such as the development of software for
deployment in virtualized environments, development of novel billing practices, standardization
of cloud technologies, and many other.

Another related work with a focus on the analysis of cloud technologies and usage scenar-
ios is [41] by the SPEC OSG Cloud Working Group of SPEC. OSG [41] provides an extensive
analysis of the challenges and requirements in the area of performance benchmarking of cloud
environments. Based on earlier work by Mell et al. [70], OSG [41] characterizes a given envi-
ronment as a cloud environment if it has the following characteristics: on-demand self-service,
broad network access, resource pooling, rapid elasticity, and measured service. For a detailed
description of these characteristics, we refer the reader to [41] and [70]. Because of the relevance
to cloud performance benchmarking, OSG [41] analyzes typical cloud usage scenarios such as so-
cial networking, data analytics, and voice-over-IP. They also relate the identified usage scenarios
to specific organizations that implement such scenarios, for example, Facebook [13] as a provider
of social networking services. Also, OSG [41] defines a cloud SUT as a system consisting of a
set of components (e.g., services, hardware, and software components) that are exercised by a
workload representative for workloads in cloud environments. OSG [41] also defines a FDR (Full
Disclosure Report) as a report containing a detailed description of the components of a given
cloud SUT. Such a report is important since it enables a benchmarker to verify that a cloud SUT
(system under test) conforms to a given set of benchmarking run rules, and further, it enables the
reproduction of benchmarking experiments. Among the many other contributions of the work
of OSG [41] are an analysis of the unique characteristics of a cloud benchmark, a specification
of relevant metrics (e.g., elasticity, throughput, power, price), and a survey of existing cloud
evaluation tools and frameworks (e.g., the cloud benchmarking frameworks proposed by Cooper
et al. [51] and Sobel et al. [80]).

Amrhein et al. [46] leverage the previously mentioned definitions of cloud computing and
cloud computing services by Mell et al. [70] (dated 8-19-09; Section 1.1) to identify and char-
acterize common cloud use case scenarios. This includes end-user to cloud (i.e., a scenario in

31

Section 5. Related Work

which an end-user accesses data or applications in the cloud), enterprise to cloud to end-user
(i.e., a scenario in which an enterprise delivers cloud services to an end-user, the end-user being
someone within the enterprise, or an external user), enterprise to cloud to enterprise (i.e., a
scenario in which resources are hosted on a cloud such that multiple enterprises can interoper-
ate), and so on. Amrhein et al. [46] also identify relevant requirements related to each of the
previously mentioned use case scenarios, for example, SLAs, security, identity, and so on. In
addition, Amrhein et al. [46] describe customers’ experiences with each of the identified cloud
usage scenarios, considering customers such as central and local government, space agencies ex-
ecuting astronomic data processing, and so on, identifying solved problems of the considered
customers by the migration to cloud environments.

5.2 Cloud Applications

In Section 2, we categorized many applications that are typically deployed in cloud environments,
and selected a smaller set of representative cloud applications for use throughout this work when
discussing common cloud usage scenarios. In this section, we briefly review related work on
application taxonomies and on the identification of representative cloud applications.

Categorizing computer software applications has a long history that has co-existed and has
developed in parallel to the evolution of software itself. Glass and Vessey [59] provide an overview
of the history of software categorization by reviewing taxonomies of software domains published
between 1955 and 1992. A more recent taxonomy than those surveyed by Glass and Vessey [59] is
the taxonomy proposed by Forward and Lethbridge [54] (2008) that consists of approximately 200
categories. They divide the software space into four main categories: data-dominant software,
systems software, control-dominant software, and computation-dominant software, where each
category has multiple sub-categories. As an illustration, in Figure 5.1, we depict the top two
category levels of the Forward and Lethbridge taxonomy [54].

A Data-dominant software
— A.con Consumer-oriented software
— A.bus Business-oriented software
— A.des Design and engineering software
— A.inf Information display and transaction
entry
B Systems software
— B.os Operating systems
— B.net Networking / Communications
— B.dev Device / Peripheral drivers
— B.ut Support utilities
— B.mid Middleware and system components
— B.bp Software Backplanes (e.g. Eclipse)
— B.svr Servers
— B.mal Malware

C Control-dominant software
— C.hw Hardware control
— C.em Embedded software
— C.rt Real time control software
— C.pc Process control software (i.e. air traf-
fic control, industrial process)
D Computation-dominant software
— D.or Operations research
— D.im Information management and manip-
ulation
— D.art Artistic creativity
— D.sci Scientific software
— D.ai Artificial intelligence

Figure 5.1: the top two category levels of the Forward and Lethbridge taxonomy [54]

Regarding cloud applications in particular, a survey conducted by the IBM Institute for
Business Value [39] in 2009 presented a selection of application types commonly seen in cloud
environments. This survey focuses on applications that have been migrated to, or have been
natively developed in, cloud environments, and identifies six classes of such applications, which
we depict in Figure 5.2. We extended thus survey by including several additional relevant

32

Section 5. Related Work

application categories (e.g., gaming and e-Science applications) in the context of our analysis of
common cloud usage scenarios.

Analytics
— Data mining, text mining or other analytics
— Data warehouses or data marts
— Transactional databases
Business services
— CRM or sales force automation
— E-mail
— ERP applications
— Industry-specific applications
Collaboration
— Audio/Video/Web conferencing
— Unified communications
— VoIP infrastructure

Desktop and devices
— Desktop
Development and test
— Development environment
— Test environment
Infrastructure
— Application servers
— Application streaming
— Business continuity/disaster recovery
— Data backup and archiving
— Data center network capacity
— Security, servers, storage
— Training infrastructure
— WAN capacity

Figure 5.2: categories of representative cloud applications as identified by the IBM Institute for
Business Value [39]

5.3 Cloud Usage Taxonomies

The research and industrial communities have developed multiple taxonomies that categorize the
cloud computing space with respect to different cloud usage scenarios. For instance, Intel [40]
has built a taxonomy for the purpose of establishing a common cloud computing terminology
for use across the company. The proposed taxonomy segments the cloud space according to
the different types of resources provisioned to customers, i.e., according to the service delivery
models Software-as-a-Service, Platform-as-a-Service, Infrastructure-as-a-Service, Service-as-a-
Service, Client Software, and Cloud Client. Intel [40] focuses on the enterprise aspects of the
common service delivery models SaaS, PaaS and IaaS, also identifying additional categories such
as Service-as-a-Service, Client Software, and Cloud Client. The Service-as-a-Service category
represents auxiliary services to the services delivered as part of the SaaS, PaaS, and IaaS deliv-
ery models (e.g., monitoring, accounting and billing). The Cloud Software category represents
software products developed for deployment in cloud environments (e.g., data software, com-
puting software). This category classifies software products according to the cloud properties
that are relevant for Independent Software Vendors (ISV), the latter being considered as an
important part of the cloud market. Finally, the Cloud Client category represents client-centric
services that directly impact the customers’ experience, for example, widgets, context awareness
services, and client application services.

Similar to Intel [40], IBM [60] has developed a taxonomy for cloud computing, consisting
of the categories cloud delivery models (i.e., a private, public, and hybrid cloud, each consisting
of several sub-types such as exploratory and departmental cloud - sub-types of a private cloud,
exclusive and open cloud - sub-types of a public cloud, and so on), cloud service types (i.e.,
infrastructure, platform, and application cloud services, and roles in cloud consumption and
delivery (i.e., consumers, providers, and integrators). Leimeister et al. [66] also analyze the
use of cloud systems from a business perspective; they focus on structuring and conceptualizing
value networks in the context of cloud computing. Under value network, they understand a
network of multiple actors, i.e., suppliers of services and distributers linked together in order

33

Section 5. Related Work

to create or add value for end-users. Leimeister et al. [66] state that the main characteristic
of a value network is the large amount of exchanges, interactions, and value flows between
the different actors. Leimeister et al. [66] classify these actors into customers (i.e., buyers of
services through various distribution channels), service providers (i.e., developers and operators
of services adding value to customers), consultants (i.e., providers of support to customers in
the selection and implementation of relevant services), and so on. For a detailed description of
the different actors, we refer the reader to [66]. Leimeister et al. [66] also demonstrate the use
of the e3-value method [61] for the visualization of value networks. This method enables visual
presentation of economically valuable objects in a value network consisting of multiple actors.

In contrast to the taxonomies used in industry, taxonomies developed by the research commu-
nity are less focused on the enterprise aspects of cloud systems. For instance, Oliviera et al. [72]
segment the cloud space according to the needs of researchers for using cloud environments for
scientific experimentation. They define eight top-level categories: architecture, business model,
technology infrastructure, privacy, standards, pricing, orientation, and access. Oliviera et al. [72]
also propose sub-categories, for example, the technology infrastructure category classifies cloud
systems into systems with HPC Support and systems without HPC Support, where the former
is considered as an important feature for conducting computationally intensive scientific exper-
iments. The three classical cloud service delivery models (i.e., SaaS, PaaS and IaaS) belong to
the business model category as part of which an additional category Storage-as-a-Service (with
Database-as-a-Service as a sub-category) is defined. The latter is used to explicitly distinguish
data management and storage services, which are crucial for managing and storing results of
scientific experiments. Oliviera et al. [72] use the proposed taxonomy to classify existing popular
cloud environments such as Amazon EC2 [2] and Windows Azure [29].

Other taxonomies focusing on specific uses of cloud environments are proposed by Abbadi et
al. [44], Rimal et al. [77], and Foster et al. [55]. Abbadi et al. [44] propose a taxonomy classifying
the components of cloud environments that are relevant for the development and operation
of autonomic cloud management services maintaining reliable and efficient operation of cloud
applications. Abbadi et al. [44] classify the different components of cloud environments according
to: (i) their nature, as physical, virtual, or application components, and (ii) their function, as
server, network, or storage components. Abbadi et al. [44]“slice”the cloud space into a horizontal
and vertical dimension, the former structuring the cloud space in physical, virtual and application
layers, the latter further dividing each layer into server, network, and storage sub-layers. As a
use case scenario, Abbadi et al. [44] focus on analysing the requirements for deployment and
operation of a multi-tier weather forecast application in a cloud environment. Abbadi et al.
[44] map required cloud infrastructure components to respective taxonomy categories in order
to identify relevant autonomic cloud management services for management of these components
so that the considered weather forecast application operates efficiently.

Rimal et al. [77] analyze the cloud space in terms of features of cloud environments relevant
for massive data processing applications. Rimal et al. [77] propose the categories cloud archi-
tecture, virtualization management, service, fault tolerance, security, and other. As part of the
cloud architecture category, Rimal et al. [77] define the sub-categories private, public, and hybrid
clouds representing different data access restrictions in cloud environments. The category fault
tolerance classifies fault tolerance mechanisms that may be implemented in cloud environments.
As part of the category other sub-categories such as load balancing, interoperability, scalable data
storage, and so on, are defined. Rimal et al. [77] further segment the sub-category scalable data
storage into vertical and horizontal data storage scalability. Rimal et al. [77] use their taxonomy
to analyze popular cloud service providers such as Amazon Web Services [3], GoGrid [20], and
Flexiscale [15].

Foster et al. [55] focus on comparing cloud computing and grid computing by discussing
similarities and differences in the features and use of these computing paradigms. To this end,

34

Section 5. Related Work

Foster et al. [55] structure the unique characteristics of cloud computing into six categories,
i.e., business model, architecture, resource management, programming model, application model,
and security model. As an example, when considering the category business model, Foster et al.
[55] state that cloud computing features billing by considering resource utilization, whereas the
payment for grid computing resources is project-oriented (i.e., customers pay for the use of grid
resources for a fixed amount of time estimated to be sufficient for completing the relevant project
tasks). We refer the reader to [55] for details on these categories. Foster et al. [55] also provide an
outlook on future activities in the domain of cloud computing that would enhance the efficiency
and usability of cloud environments, such as the development of resource provisioning methods
precisely following the customers’ demands, the development of protocols for close monitoring
and management of resource reservations, and so on.

Some taxonomies, such as the ones proposed by Prodan et al. [75], Lenk et al. [67], Hofer
et al. [62], and Liu et al. [68], do not focus on a specific use of cloud environments, but
instead categorize cloud environments from a general perspective. Prodan et al. [75] survey
14 cloud environments and classify them into the categories service type, resource deployment,
hardware, runtime tuning, security, business model, middleware, and performance. As part of
these categories, they define many further interrelated sub-categories. For instance, the SaaS,
PaaS, and IaaS service delivery models are defined as sub-categories of the service type category.
Also, a sub-category of service type is specialized services, which is used for classifying services
into web hosting and file hosting services. The work of Lenk et al. [67] focuses on a categorization
classifying known cloud services into the main service categories IaaS, PaaS, and SaaS. They
define sub-categories such as Physical Resource Set Services and Virtual Resource Set Services
(parts of the IaaS category), Programming Environments and Execution Environments (parts of
the PaaS category), and Basic Application Services and Composite Application Services (parts
of SaaS category).

Hofer et al. [62] construct a taxonomy that segments the cloud space according to several
relevant characteristics of cloud computing services such as license type (i.e., proprietary, open-
source), intended user group (i.e., corporate, private), security and privacy (e.g., encryption,
authentication), and others. Hofer et al. [62] also define the category openness of clouds clas-
sifying cloud environments according to the amount of available information on the provisioned
cloud services to costumers. This includes information on the used hardware and software, the
deployed security solutions, and similar. As part of the category openness of clouds, Hofer et
al. [62] define the sub-categories unknown/limited, basic, moderate, and complete. Further, they
build upon the existing common categorization of cloud service delivery models as SaaS, PaaS,
and IaaS, and define additional sub-categories to reflect specific characteristics of each service
delivery model. We refer the reader to [62] for further details on these sub-categories. Finally,
Hofer et al. [62] classify the cloud computing services of several popular cloud providers (e.g.,
Amazon EC2 [2], Microsoft Azure [29], and Google Apps [21]).

Liu et al. [68] propose a four-level taxonomy that describes major actors as well as their
roles and responsibilities and consists of the levels: role (i.e., set of obligations and behaviors
associated with actors), activity (i.e., behaviors/tasks associated with a given role), component
(i.e., process, actions, or tasks needed for meeting the objective of a given activity), and sub-
component (i.e., a modular part of a component). Similar to Leimeister et al. [66], Liu et al. [68]
identify the actors Cloud Consumer, Cloud Provider, Cloud Broker, Cloud Auditor, and Cloud
Carrier. We refer the reader to [68] for further details on this taxonomy.

5.4 General Pattern Languages and Formalisms

Over the past half-century, a variety of pattern languages and formalisms have been developed
to ease discussions and design in many areas of computer science and engineering, and as such,
they have proven influential for many application domains. In this section, we present a non-

35

Section 5. Related Work

exhaustive survey of such pattern languages and formalisms. In contrast to the surveyed body
of work, our work focuses on applications that are built on top of cloud computing services.

In computer science and information theory, Shannon and Weaver [78] formalized and ana-
lyzed general communication systems. Parnas [74] was one of the first to formalize the idea of
design patterns in software engineering in particular; two decades later, the work of Gamma et
al. (also known as “the gang of four”) on code design patterns [57] identified many elemental
patterns that are useful in the development of practical software packages. Further, Blaauw and
Brooks [48] introduced a formalism for the description of computer architectures and used it to
describe a variety of practical computer designs. Finally, De Marco et al. [52] analyzed project
behavior in IT projects by developing and using project behavioral patterns.

In parallel with developments in the computer science domain, work in linguistics, archi-
tecture, and other scientific domains has also led to the design and development of patterns
and formalisms. These works have proven valuable for decades facilitating the discussion about,
and design around, the patterns and formalisms that they introduce. For instance, Propp [76]
introduced a structural formalism that has been used for matching a large number of Russian
folk tales to global mythos and folk tales. This formalism was later adapted by Campbell [50]
and by Vogler [82], works still used in practice, for example, for the development of Hollywood
scripts [69]. In the early 1960s, and in a more refined form at the end of the 1970s, Alexander [45]
introduced a formalism for describing architectural elements and usage patterns in design pro-
cesses in general; despite the initial controversy, it is widely considered as a milestone in the
development of architectures [56, Chapter 1]. These parallel developments have at times found
their way into computer science, for example, the work of Smith and Williams [79], based on the
work of Alexander [45], provides a collection of software performance patterns and anti-patterns.

36

Section 6. Conclusion

6 Conclusion

Contrasting the growth of cloud computing as an important branch of automated ICT services,
discussing the elements involved in a cloud-based ICT scenario is still relying on imprecise
terminology and ambiguously used concepts. To address this situation, previous work has focused
on defining and formalizing general types of service delivery models (i.e., IaaS, PaaS, and SaaS).
To the contrary, in this work we proposed a formalism for describing common real-world cloud
usage scenarios, referred to as cloud usage patterns.

Our formalism takes a structuralist approach by defining individual elements of composition
that correspond to the typical cloud service models and to various other aspects of cloud usage,
such as virtualization, service leasing, and service composition. We specifically designed our
formalism to support several cloud usage patterns that have emerged recently, such as hybrid
services and value chains. We also proposed simple yet expressive textual and visual languages
for our formalism.

We designed our formalism to support both abstract usage, for example, in the design of
cloud services through the innovative composition of existing elements, and practical usage, for
example, in the discussion between benchmarking professionals through the precise description
of benchmarking scenarios. By decomposing a cloud usage scenario into individual elements
corresponding to the common cloud service delivery models and by describing each of them
using our formalism, a computer expert will be able to communicate to a wider audience or
to a prospective customer. By expressing multiple cloud usage scenarios with our formalism,
a designer will be able to extract common usage features and express them with cloud used
patterns, which can then be shared with a community of experts and users.

We showed comprehensive evidence that our formalism can be used in practice for describing
a variety of cloud usage scenarios derived from real-world situations. Among the cloud scenarios
for which we demonstrated our formalism are: global infrastructure providers leasing resources
to end-users, companies offering online customer and ticketing services with software hosted
entirely on external cloud platforms, companies offering online asset management and banking
services while also managing a private cloud infrastructure, companies providing online social
gaming services while also leasing resources from multiple cloud providers, and so on. As part
of our future work, we plan to extend our formalism to support further emerging cloud service
delivery models, such as Data-as-a-Service and Science-as-a-Service.

37

Section Glossary

Glossary

Resources

Infrastructure resources: Processing, network, storage, and other fundamental computing
resources that enable the deployment and running of arbitrary software, including operating
systems and applications.

Platform resources: Tools, libraries, software development, deployment, testing and host-
ing environments that enable software configuration management, database integration, state
management, application versioning, and so on.

Software resources: Software applications.

Systems

Cloud system (synonyms: cloud infrastructure, cloud platform, cloud environment, cloud):
Collection of hardware and software that enables the five essential characteristics of cloud com-
puting: on-demand self-service, broad network access, resource pooling, rapid elasticity, and
measured service.

On-demand self-service: A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring human
interaction with each service provider. (Quoted from Mell et al. [70])

Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, tablets, laptops, and workstations). (Quoted from Mell et al. [70])

Resource pooling: The provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand. There is a sense of location indepen-
dence in that the customer generally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter). Examples of resources include storage, processing, memory, and
network bandwidth. (Quoted from Mell et al. [70])

Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the con-
sumer, the capabilities available for provisioning often appear to be unlimited and can be ap-
propriated in any quantity at any time. (Quoted from Mell et al. [70])

Measured service: Cloud systems automatically control and optimize resource use by lever-
aging a metering capability at some level of abstraction appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported, providing transparency for both the provider and consumer of the
utilized service. (Quoted from Mell et al. [70])

38

Section Glossary

Providers

Infrastructure provider (synonyms: infrastructure service provider, infrastructure-level provider,
IaaS provider): An organization, i.e., a legal entity, that provides infrastructure resources to con-
sumers according to the IaaS service delivery model.

Platform provider (synonyms: platform service provider, platform-level provider, PaaS provider):
An organization, i.e., a legal entity, that provides platform resources to consumers according to
the PaaS service delivery model.

Software provider (synonyms: software service provider, software-level provider, SaaS provider):
An organization, i.e., a legal entity, that provides software resources to consumers according to
the SaaS service delivery model.

Cloud provider (synonym: cloud service provider): An organization, i.e., a legal entity, that
acts as infrastructure, platform, and/or software provider.

39

References

[1] A Look Inside Facebook’s Data Center. http://www.datacenterknowledge.com/

archives/2009/04/17/a-look-inside-facebooks-data-center/. [Online: accessed Au-
gust 2012].

[2] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/. [Online:
accessed May 2012].

[3] Amazon Web Services. http://aws.amazon.com/. [Online: accessed May 2012].

[4] Amazon Web Services Documentation. http://aws.amazon.com/documentation/. [On-
line: accessed February 2013].

[5] Appforce - Build social and mobile apps with ease. http://www.force.com/products/

appforce/. [Online: accessed February 2013].

[6] Customer Service Software and Support Software Service Cloud. http://www.salesforce.
com/service-cloud/overview/. [Online: accessed February 2013].

[7] DenizBank. http://www.denizbank.com/EN/. [Online: accessed July 2012].

[8] Dito. http://www.ditoweb.com/. [Online: accessed February 2013].

[9] Dito GAM. http://www.ditoweb.com/dito-gam. [Online: accessed February 2013].

[10] easyJet. http://www.easyjet.com/EN. [Online: accessed May 2012].

[11] EZasset. http://www.ezasset.com/. [Online: accessed May 2012].

[12] EZasset Launches on the Google AppEngine Platform at Google I/O Con-
ference. http://www.pressreleasepoint.com/ezasset-lauches-google-appengine-

platform-google-io-conference. [Online: accessed February 2013].

[13] Facebook. http://www.facebook.com. [Online: accessed June 2012].

[14] Facebook: Virtualisation does not scale. http://www.zdnet.co.uk/blogs/mapping-

babel-10017967/facebook-virtualisation-does-not-scale-10021998/. [Online: ac-
cessed June 2012].

[15] FlexiScale. www.flexiscale.com. [Online: accessed May 2012].

[16] Force.com. http://www.force.com. [Online: accessed May 2012].

[17] Force.com for Amazon Web Services. http://wiki.developerforce.com/page/Amazon_

Toolkit. [Online: accessed August 2012].

[18] GoAnimate. http://goanimate.com/. [Online: accessed May 2012].

[19] GoAnimate Case Study: Amazon Web Services. http://aws.amazon.com/solutions/

case-studies/goanimate/. [Online: accessed May 2012].

[20] GoGrid. http://www.gogrid.com/. [Online: accessed May 2012].

[21] Google App Engine. https://developers.google.com/appengine/. [Online: accessed
May 2012].

[22] Google Apps: 6,000 Resellers Embrace Cloud Consulting. http://talkincloud.com/

google-apps-6000-resellers-embrace-cloud-consulting. [Online: accessed February
2013].

[23] Integration - EZasset. http://www.ezasset.com/integration/. [Online: accessed Febru-
ary 2013].

[24] ISVForce - Partner management with ease. http://www.force.com/products/isvforce/.
[Online: accessed February 2013].

[25] Microsoft Case Study: Microsoft Visual Studio Team Foundation Server 2010 - easy-
Jet. http://www.microsoft.com/casestudies/Microsoft-Visual-Studio-Team-

Foundation-Server-2010/easyJet/Airline-Aims-to-Save-Millions-Shorten-

Airport-Waits-with-Cloud-Based-Mobile-Services/4000010767. [Online: accessed
May 2012].

[26] Microsoft Case Study: Windows Server 2008 R2 Datacenter - DenizBank.
http://www.microsoft.com/casestudies/Windows-Server-2008-R2-Datacenter/

DenizBank/Bank-Delivers-IT-as-a-Service-using-Private-Cloud-Model-Avoids-

12-Million-Expense/710000000254. [Online: accessed July 2012].

[27] Microsoft Server and Cloud Platform Hyper-V Server. http://www.microsoft.com/en-

us/server-cloud/hyper-v-server/default.aspx. [Online: accessed July 2012].

[28] Microsoft System Center 2012. http://www.microsoft.com/en-us/server-cloud/

system-center/default.aspx. [Online: accessed July 2012].

[29] Microsoft Windows Azure. http://www.windowsazure.com/en-us/. [Online: accessed
May 2012].

[30] Music Mastermind. http://www.terremark.com. [Online: accessed March 2013].

[31] Sales Cloud Resource Center. http://www.salesforce.com/sales-cloud/resources/.
[Online: accessed February 2013].

[32] Salesforce.com. http://www.salesforce.com. [Online: accessed May 2012].

[33] Salesforce.com Announces Force.com for Amazon Web Services, Extending the Benefits of
the Cloud to Even More Businesses. http://www.salesforce.com/company/news-press/
press-releases/2008/11/081103-5.jsp. [Online: accessed May 2012].

[34] Terremark. http://www.terremark.com. [Online: accessed March 2013].

[35] The Evolution of Zynga’s zCloud: Interview with CTO of Infrastructure, Allan Lein-
wand. http://www.techrepublic.com/blog/datacenter/the-evolution-of-zyngas-

zcloud-interview-with-cto-of-infrastructure-allan-leinwand/5426. [Online: ac-
cessed February 2013].

[36] Windows Azure Fundamentals. http://www.windowsazure.com/en-us/develop/net/

fundamentals/intro-to-windows-azure/#components. [Online: accessed February
2013].

[37] Windows Azure: Messaging -Services. http://www.windowsazure.com/en-us/home/

features/service-bus/. [Online: accessed May 2012].

[38] Zynga. http://www.zynga.com/. [Online: accessed February 2013].

[39] Dispelling the vapor around cloud computing. Thought Leadership White Paper, 2010.

[40] Intel Cloud Computing Taxonomy and Ecosystem Analysis. White Paper, February 2010.

[41] Report on Cloud Computing to the OSG Steering Committee. Technical Report, 2012.

[42] Reserved Instance Volume Discount. http://aws.amazon.com/ec2/pricing/#reserved-
volume-discounts, 2012. [Online: accessed February 2013].

[43] The 2012 ACM Computing Classification System. http://www.acm.org/about/class/

2012, 2012. [Online: accessed February 2013].

[44] Imad M. Abbadi. Clouds’ Infrastructure Taxonomy, Properties, and Management Services.
In Ajith Abraham, Jaime Lloret Mauri, John F. Buford, Junichi Suzuki, and Sabu M.
Thampi, editors, Advances in Computing and Communications, volume 193 of Communi-
cations in Computer and Information Science, pages 406–420. Springer Berlin Heidelberg,
2011.

[45] Christopher Alexander. Notes on the Synthesis of Form. Harvard University Press, 1964.

[46] Dustin Amrhein, Patrick Anderson, Andrew de Andrade, Joe Armstrong, Ezhil Arasan B,
Richard Bruklis, Ken Cameron, Reuven Cohen, et al. Cloud Computing Use Cases. Cloud
Computing Use Case Discussion Group Whitepaper, 2009.

[47] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, An-
drew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Zaharia. Above
the Clouds: A Berkeley View of Cloud Computing. Technical report, 2009.

[48] Gerrit A. Blaauw and Jr. Frederick P. Brooks. Computer Architecture: Concepts and Evo-
lution. Addison-Wesley, Reading, MA, 1997.

[49] Katherine Broderick. IDC Study: Worldwide Enterprise Server Cloud Computing 2011-
2015 Forecast. http://www.idc.com/getdoc.jsp?containerId=228916", 2012.

[50] Joseph Campbell. The Hero with a Thousand Faces. New World Library, 3rd Edition, 2008
edition, 1972.

[51] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SoCC), pages 143–154, New York, NY, USA, 2010. ACM.

[52] Tom DeMarco et al. Adrenaline Junkies and Template Zombies: Understanding Patterns
of Project Behavior. Dorset House, New York, 2008.

[53] Edison Group. Music Making for the Masses: More Performance for Less Cost in Commer-
cial Cloud Environments using IBM iDataPlex in the Zya Cloud. http://www.microstrat.
com/MSICollateral/EdisonGroup-IBMiDataPlexMusicMastermindWhitePaper_.pdf.
White Paper.

[54] Andrew Forward and Timothy C. Lethbridge. A taxonomy of software types to facilitate
search and evidence-based software engineering. In Proceedings of the 2008 Conference of
the Center for Advanced Studies on Collaborative Research: Meeting of Minds (CASCON),
pages 14:179–14:191, New York, NY, USA. ACM.

[55] Ian T. Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Com-
puting 360-Degree Compared. CoRR, 2009.

[56] Jr. Frederick P. Brooks. The Design of Design: Essays from a Computer Scientist. Addison
Wesley, 2010.

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[58] Frank Gens, Robert Mahowald, Richard L. Willards, David Bradshaw, and Chris Morris.
Cloud Computing 2010: An IDC Update, 2010.

[59] Robert L. Glass and Iris Vessey. Toward a taxonomy of software application domains:
History. Journal of Systems and Software, 17(2):189–199, 1992.

[60] IBM Global Technology Services. Defining a framework for cloud adoption, 2010. Thought
Leadership White Paper.

[61] Jaap Gordijn. E3-value in a Nutshell. Technical report, HEC University Lausanne, 2002.

[62] C. N. Höfer and G. Karagiannis. Cloud computing services: taxonomy and comparison.
Journal of Internet Services and Applications, 2(2):81–94, 2011.

[63] IBM. Dispelling the vapor around cloud computing. Whitepaper, 2010.

[64] Frank Keuper, Christian Oecking, and Andreas Degenhardt, editors. Application Manage-
ment: Challenges - Service Creation - Strategies. Gabler Verlag, 2011.

[65] Stephen Lawson. Facebook Nixes Virtualization, Eyes Intel Microservers.
http://www.pcworld.com/article/222225/facebook_nixes_virtualization_eyes_

intel_microservers.html. [Online: accessed February 2013].

[66] Stefanie Leimeister, Markus Böhm, Christoph Riedl, and Helmut Krcmar. The Business
Perspective of Cloud Computing: Actors, Roles and Value Networks. In ECIS, 2010.

[67] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sandholm. What’s
inside the Cloud? An architectural map of the Cloud landscape. In Proceedings of the
2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD
’09, pages 23–31. IEEE Computer Society, 2009.

[68] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn Leaf.
NIST Cloud Computing Reference Architecture. Technical report, 2011. Special Publication
500-292.

[69] Robert McKee. Story: Substance, Structure, Style and the Principles of Screenwriting.
Methuen Publishing Ltd, 1999.

[70] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Technical
report, July 2009.

[71] Object Management Group. OMG Unified Modeling LanguageTM (OMG UML), Infras-
tructure. http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF. OMG Document
Number: formal/2011-08-05.

[72] Daniel Oliveira, Fernanda Araujo Baião, and Marta Mattoso. Towards a Taxonomy for
Cloud Computing from an e-Science Perspective. In Nick Antonopoulos and Lee Gillam,
editors, Cloud Computing, volume 0 of Computer Communications and Networks, pages
47–62. Springer London, 2010.

[73] Laura Pappano. The year of the MOOC. NYTimes.com, http://www.nytimes.com/2012/
11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-

rapid-pace.html, 2012.

[74] David Lorge Parnas. On the Design and Development of Program Families. IEEE Trans-
actions on Software Engineering, 2(1):1–9, 1976.

[75] R. Prodan and S. Ostermann. A survey and taxonomy of infrastructure as a service and web
hosting cloud providers. In 10th IEEE/ACM International Conference on Grid Computing,
pages 17 –25, October 2009.

[76] Vladimir Propp. Morphology of the Folktale. University of Texas Press, 2nd Edition edition,
1968.

[77] B.P. Rimal, Eunmi Choi, and I. Lumb. A Taxonomy and Survey of Cloud Computing
Systems. In Fifth International Joint Conference on INC, IMS and IDC (NCM), pages 44
–51, August 2009.

[78] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication.
University of Illinois Press, December 1949.

[79] Connie U. Smith and Lloyd G. Williams. Performance Solutions - A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[80] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert Wong,
Arthur Klepchukov, Sheetal Patil, O Fox, and David Patterson. Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web 2.0, 2008.

[81] James Staten. Is The IaaS/PaaS Line Beginning To Blur? http://blogs.forrester.

com/james_staten/11-01-24-is_the_iaaspaas_line_beginning_to_blur, 2011. [On-
line: accessed August 2012].

[82] Christopher Vogler. The Writers Journey: Mythic Structure for Writers. Michael Wiese
Productions, 3rd Edition edition, 2007.

