
Scalable End-to-End Data I/O over Enterprise and Data-Center Networks

A Dissertation presented

by

Yufei Ren

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

August 2015

Stony Brook University

The Graduate School

Yufei Ren

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Dantong Yu - Dissertation Advisor

Adjunct Professor, Department of Electrical and Computer Engineering

Yuanyuan Yang - Chairperson of Defense

Professor, Department of Electrical and Computer Engineering

Shudong Jin

Adjunct Professor, Department of Electrical and Computer Engineering

Michael A. Bender

Associate Professor, Department of Computer Science

Fan Ye

Assistant Professor, Department of Electrical and Computer Engineering

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

ii

Abstract of the Dissertation

Scalable End-to-End Data I/O over Enterprise and Data-Center Networks

by

Yufei Ren

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2015

Data-intensive applications in commercial cloud and scientific computing

demand ultra-high-speed end-to-end data access capability between data storage

and computing locations. Meanwhile, advancements in hardware systems con-

tinuously change the landscape of data centers core capabilities, i.e., computing,

networking, and storage. The two trends expose new research and development

challenges and opportunities to bring the bare-metal capacity and performance

of state-of-the-art hardware to the rising needs for high performance by appli-

cations.

Simply deploying and tuning existing software and services on state-of-the-

art platforms does not necessarily ensure expected performance due to the over-

iii

head on data-copy in OS kernel functions and conservative network protocol.

We adopt holistic approach, from the ground up, to reconsider network proto-

col, storage management, and software architecture, and align them with the

new hardware characteristics to better orchestrate system resources. This is ex-

tremely challenging in several aspects. First, we can not rely on existing data-

copy based OS libraries and network protocols. Secondly, simple synchronous

sequential programming paradigm and network protocol becomes barrier to sys-

tem performance. Therefore, the new design should follow more complex asyn-

chronous parallel model and carefully investigate the tradeoff between the pro-

gramming overheads and performance improvement.

Two major objectives are the focus of this work: designing user-level end-

to-end protocol and software to coordinate data movements and to bypass OS

kernels, and scaling storage caching system performance in multi-core envi-

ronments with large scale asymmetric memory layout (NUMA). We design

and build real systems to achieve these objectives. First, to fully utilize hard-

ware capabilities, we propose an asynchronous memory-centric software frame-

work for high throughput data-intensive applications. We implement a zero-

copy data movement protocol using asynchronous Remote Direct Memory Ac-

cess (RDMA) to maximize the parallelism of data transmission. The design

achieves 97% network hardware bandwidth. Our software achieves more than

2× speedup over the existing solutions (for example, GridFTP) in replicating

data across the entire storage-to-storage path. Secondly, we design and imple-

ment a NUMA-aware caching system for storage area networks that optimizes

in-memory data locality on serving raw storage blocks. We further improve its

performance with our decentralized and parallel event processing framework.

The data locality awareness provides up to 80% throughput improvement on

large scale memory caching system; The decentralized event processing shows

its linear scalability with the number of threads on multi-core systems.

The unprecedented data volume and the continuing trend of adopting cloud

iv

computing and storage by industry and consumers give rise to the pressing

need for efficient software design and network protocol to distribute and repli-

cate data over high performance networks. Our research focuses on the need

and proposes a scalable framework to manage and coordinate multi-/many-core

computing, deep hierarchy storage and high speed network in a coherent way.

Therefore, this framework enables in-situ data retrieval, checksum calculation,

encryption, and transmission to address the growing concerns of data privacy,

security, integrity and on-demand delivery in the cloud era. It paves the path

to harness multi-core/many-core architecture, i.e., GPGPU and Intel Coproces-

sor, by accelerating data I/O, to replace out-dated software that was designed

for traditional rotary magnetic disks, and to enhance the IOPS throughput of

storage system to incorporate newly-emerging Solid State Drives (SSD) and

Non-volatile random-access memory (NVRAM).

v

To Qi and Kaylee

vi

Contents

List of Figures xii

List of Tables xv

Acknowledgements xvi

Publications xviii

1 Introduction 1

1.1 Research Motivation . 2

1.1.1 Big Data Needs Efficient Movement 2

1.1.2 Hardware Exposes Opportunities and Challenges 4

1.1.3 Limitations in Existing Solutions 5

1.2 Research Challenges and Research Goals 7

1.2.1 Achieve Zero-Copy In An End-to-End Data Path 7

1.2.2 Scale Zero-Copy Based Network Protocol In WANs . . 8

1.2.3 Caching Locality in Large-Scale NUMA Systems 9

1.2.4 Towards Scalable End-to-End Data I/O Systems 9

1.3 Dissertation Contributions . 10

1.4 Dissertation Overview . 12

2 Background 14

2.1 RDMA and Zero-Copy Techniques 14

2.1.1 RDMA Semantics and Performance Analysis 17

2.1.2 OS Kernel Zero-Copy Techniques 19

vii

2.2 Asynchronous High Throughput Computing and Thread-based

Concurrency . 20

2.2.1 RDMA Asynchronous Programming Model 22

2.2.2 Asynchronous Storage I/O 23

2.3 NUMA Architecture . 23

2.3.1 SMP and NUMA Architecture 24

2.3.2 Asymmetric Memory Layout 24

2.4 iSCSI/iSER and Storage Caching System 25

2.4.1 iSCSI and iSER . 25

2.4.2 Caching Layer in iSCSI/iSER 25

2.5 Summary . 26

3 ACES Software Architecture 27

3.1 Introduction . 27

3.2 Existing High Throughput Solutions 30

3.3 Memory-Centric Asynchronous Design 32

3.3.1 Design Goals . 32

3.3.2 End-to-end Staged Asynchronous Software Architecture 34

3.3.3 Stage Implementation 36

3.3.4 Uncertainty and Determinism 38

3.3.5 Memory Centric Design and Memory State Transition . 38

3.4 Evaluation . 40

3.4.1 Experimental Setup . 40

3.4.2 RDMA Asynchronous I/O Evaluation 41

3.4.3 ACES-FTP End-to-End Evaluation 42

3.5 Conclusion . 43

4 Scalable RDMA-based Data Transfer Protocol 45

4.1 Protocol Overview . 46

4.2 Finite State Machines Modeling 48

viii

4.3 Connection Management and Message Format 49

4.4 Discussion on Scalability . 52

4.4.1 Scalability to Next Generation High Speed Networks . . 52

4.4.2 Scalability to Wide Area Networks 52

4.5 Evaluation . 53

4.5.1 Testbed Setup . 53

4.5.2 Parameter Configuration and Tuning 55

4.5.3 Experimental Results over LAN 55

4.5.4 Experimental Results over WAN 59

4.6 Summary . 60

5 NUMA-Aware Cache for Storage Area Networks 62

5.1 I/O Cost Analysis with iSCSI 63

5.1.1 Processing Time and Throughput Modeling 63

5.1.2 The Impact of Queuing Delay 64

5.1.3 Cost Analysis with Our Testbed System 65

5.2 NUMA-aware Cache Design and Implementation 66

5.2.1 Software Overview . 67

5.2.2 Cache Organization . 69

5.2.3 Routing I/O Tasks to NUMA Nodes 71

5.2.4 Placement of the I/O Interpreting Function 73

5.2.5 Discussions on Overhead and Scalability 74

5.3 Decentralized Event Processing 75

5.3.1 Scalability Limitations in Standard iSCSI/iSER Servers . 76

5.3.2 Events Categories in iSCSI/iSER Servers 77

5.3.3 Decentralized Event Processing Model 78

5.3.4 RDMA Network Events Processing 81

5.4 Evaluation with Synthetic Workloads 82

5.4.1 System Setup . 83

5.4.2 Evaluation of Request Processing Time 84

ix

5.4.3 Random Access on Fully Cached Data 86

5.4.4 Decentralized Event Processing Evaluation 89

5.4.5 Queuing Delay Analysis 90

5.5 Evaluation with Real-life Workloads 95

5.5.1 The PostMark Workload 95

5.5.2 The YCSB Workload 96

5.5.3 Decentralized Event Processing Evaluation with YCSB . 97

5.6 Summary . 99

6 RDMA-Based NUMA-Aware End-to-End Performance Optimiza-

tion 101

6.1 Introduction . 101

6.2 Background . 105

6.2.1 Memory Access in NUMA Multi-core Systems 105

6.2.2 Protocol Offloading . 106

6.2.3 A Motivating Experiment 107

6.3 Characterization of System Design and Network Application . . 109

6.3.1 Back-End Storage Area Network Design 109

6.3.2 RDMA Application Protocol: Cost Analysis and Imple-

mentation . 111

6.4 Experimental Results . 113

6.4.1 Testbed Setup . 113

6.4.2 Evaluation of Memory-Based Storage System Perfor-

mance . 116

6.4.3 End-to-End Data Transfer Performance 118

6.4.4 Experimental Results over 40 Gbps WAN RoCE Link . 122

6.5 Conclusions . 124

7 Related Work 125

7.1 Software Architecture for Highly Concurrent and Asynchronous

Data Processing . 125

x

7.2 High Performance Data Transfer Protocol and Software 127

7.3 Hardware and Software Accelerated Key Value Stores 130

7.4 Storage Cache Performance Optimization 131

8 Conclusions and Future Work 133

8.1 Conclusions . 133

8.2 Future Work . 135

8.2.1 Efficient I/O for High Speed Parallel Hardware Accel-

erator . 135

8.2.2 Asynchronous I/O Event Scheduling 136

8.2.3 Memory-based Data Backup over SAN 136

8.3 Summary . 137

xi

List of Figures

1-1 Data transfer and synchronization between data centers. 3

1-2 Dissertation overview. 13

2-1 Data path of TCP/IP applications. 15

2-2 Data path of RDMA applications. 16

2-3 Mellanox ConnectX supports both RDMA over InfiniBand and

RDMA over Converged Ethernet (RoCE) devices. 16

2-4 One-sided vs. Two-sided in RoCE. 18

2-5 One-sided vs. Two-sided in InfiniBand. 18

3-1 Data transfer workflow with OpenSSH scp and sftp. 31

3-2 End-to-end asynchronous software architecture. 34

3-3 Stage implementation methods. 36

3-4 End-to-End memory status transition. 39

3-5 Testbed connectivity. 40

3-6 RDMA asynchronous performance in 40 Gbps Ethernet. 41

3-7 Performance comparison among OpenSSH-SCP, HPN-SSH, and

ACES-FTP. 42

4-1 Data transfer protocol overview. 46

4-2 Finite state machine modeling. 47

4-3 Message format description . 49

4-4 GridFTP vs. RFTP over RoCE in LAN. 56

4-5 GridFTP vs. RFTP over InfiniBand in LAN. 58

xii

4-6 GrifFTP vs. RFTP over RoCE in WAN. 59

4-7 RFTP scalability with disk access. 60

5-1 Memory copy routine on a four-node NUMA host. 63

5-2 NUMA-aware cache for tgtd. 67

5-3 Software architecture of NUMA-aware cache. 69

5-4 I/O request decomposition. 71

5-5 Event processing model in the standard software. 76

5-6 Decentralized event processing Model for the iSCSI/iSER servers. 79

5-7 Centralized processing for RDMA network events. 80

5-8 Decentralized processing for RDMA network events. 81

5-9 Processing time of I/O requests with different sizes. 84

5-10 Processing time with various cache block sizes. 85

5-11 NUMA-aware cache vs. page cache with random access. 86

5-12 Decentralized event processing vs. standard centralized one. . . 88

5-13 Queuing delay in iSCSI target system. 90

5-14 Queuing delay with small I/O requests. 91

5-15 Average number of responses within a batching task in NUMA-

aware cache solution. 94

5-16 The results of YCSB over MongoDB. 96

5-17 Throughput of YCSB workloads over MongoDB which in turn

retrieve data from iSER target in decentralized optimization. . . 98

6-1 iSER tuning in NUMA architecture with multiple adapters. . . . 110

6-2 Data block transfer delay breakdown. 111

6-3 The breakdown of data transfer cost at 40 Gbps rate. 112

6-4 RDMA-based end-to-end system connectivity in LAN. 113

6-5 The DOE’s ANI 40 Gbps RoCE WAN between NERSC and ANL.114

6-6 iSER bandwidth comparison between default scheduling and

NUMA-tuning. 117

xiii

6-7 iSER CPU utilization comparison between default scheduling

and NUMA-tuning. 118

6-8 Throughput of end-to-end data transfer over 25 minutes. 119

6-9 CPU utilization breakdown for RFTP and GridFTP. 119

6-10 Throughput of bi-directional end-to-end data transfer over 50

minutes. 120

6-11 CPU utilization breakdown for RFTP and GridFTP bi-directional

test. 121

6-12 RFTP bandwidth with various block sizes and numbers of streams.122

6-13 RFTP CPU utilization with various block sizes and numbers of

streams. 123

xiv

List of Tables

3.1 Software policies for each part of hardware advances 28

4.1 RFTP testbed description . 54

5.1 Testbed configuration for NUMA-aware cache 82

5.2 IOPS comparison under different workloads. 92

5.3 PostMark performance . 95

6.1 End-to-end testbed configuration 115

xv

Acknowledgements

First and foremost, I would like to express my deep gratitude to my advisor,

Prof. Dantong Yu. Throughout my Ph.D. studies, Prof. Yu has given me nu-

merous pieces of priceless advice. He patiently listened my thoughts in every

meeting discussion through over five years, and provided insightful feedback to

motivate my research forward. He also gave me substantial research freedom

to explore and broaden my research interests. I am extremely thankful for his

support and encouragement to complete this exceptional Ph.D. journey.

My thanks also go to Prof. Shudong Jin, for his guidance to my research

exploration and technical writing. I have benefited from numerous discussions

during these years.

I would also like to thank my dissertation committee members, Prof. Yuanyuan

Yang, Prof. Michael Bender, and Prof. Fan Ye, for their insights and sugges-

tions on my research. Prof. Yang was instrumental to several key steps in my

graduate studies and exemplary in her passion and rigorous attention toward re-

search. I would especially like to thank Prof. Bender and Prof. Ye for their

invaluable advice to my future research.

Thanks to Dr. Li Zhang and Dr. Yandong Wang, who helped to start my

career at IBM T.J. Watson Research Center. Thanks to Dr. Zhikui Wang, Dr.

Dejan Milojicic, and Dr. Harumi Kuno, for providing me the rewarding intern-

ship opportunity at HP Labs.

As an international student at Stony Brook University, I would also like to

express my gratitude to many individuals, including my international advisor,

xvi

Jasmina Gradistanac, and ECE department staff members, Susan Hayden and

Rachel Ingrassia. They made my life easier and more comfortable.

I am fortunate to have the opportunities to work with stellar and hardworking

colleagues: Tan Li, Cheng Chang, Shun Yao, Zhenzhou Peng, Jin Xu, Hao

Huang, Li Shi, and Shuchu Han.

Finally, not the least, great thanks to my wife, my parents, and my maternal

grandparents, for their love, strong encouragement, and unconditional supports.

Kaylee, my dear daughter, your little feet made the biggest footprints in this

Ph.D. journey.

xvii

Publications

Journal Publications

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, “De-

sign, Implementation, and Evaluation of a NUMA-Aware Cache for iSCSI

Storage Servers”, IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol.26, no. 2, pp. 413-422, Feb. 2015, doi:10.1109/TPDS.2014.2311817.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, “De-

sign and Testbed Evaluation of RDMA-Based Middleware for High-Performance

Data Transfer Applications”, Journal of Systems and Software, Volume

86, Issue 7, July 2013, Pages 1850-1863, ISSN 0164-1212, 10.1016/j.jss.2013.01.070.

Conference Publications

• Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, “Resources-conscious Asyn-

chronous High-speed Data Transfer in Multicore Systems: Design, Op-

timizations, and Evaluation”, In Proceedings of Parallel and Distributed

Processing Symposium (IPDPS), 2015 IEEE International , vol., no., pp.1097,1106,

25-29 May 2015 28th International, (IPDPS ’15), May, 2015.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, “De-

sign and Performance Evaluation of NUMA-Aware RDMA-Based End-

to-End Data Transfer Systems”, In Proceedings of the International Con-

ference on High Performance Computing, Networking, Storage and Anal-

ysis, (SC ’13), Denver, Colorado, November 2013.

xviii

• Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, Thomas Robertazzi, “Char-

acterization of Input/Output Bandwidth Performance Models in NUMA

Architecture for Data Intensive Applications”, In Proceedings of the In-

ternational Conference on Parallel Processing, (ICPP ’13), Lyon, France,

October 2013.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, Brian

L. Tierney, Eric Pouyoul, “Protocols for Wide-Area Data-intensive Appli-

cations: Design and Performance Issues”, In Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage

and Analysis, (SC ’12) , Salt Lake City, Utah, November 2012.

Workshop Publications

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, “Mid-

dleware Support for RDMA-based Data Transfer in Cloud Computing”,

In Proceedings of the High-Performance Grid and Cloud Computing Work-

shop, Shanghai, China, May 2012.

xix

Chapter 1

Introduction

The fast growing data volume in data centers demands scalable data I/O sys-

tems to transfer data efficiently and to cache data effectively for supporting

big data processing, analysis, visualization and archiving. The existing and

upcoming applications, such as social networks, scientific computing, online

storage and inter data center backup, have been generating high volume data

traffic in tera-/peta-byte scale [1]. At the same time, data services become more

centrally managed among distributed physical storage systems that aggregates

data from billions of users. Cloud computing and cloud storage are the exam-

ple of this paradigm [2]. On the other hand, network capacity in storage area

network (SAN), virtual host area network in hypervisor and its Ethernet adap-

tors (VAN), local area network (LAN), wide area network (WAN), have been

exponentially growing in last ten years, largely driven by rapid improvements

in opto-electronics technologies. This growth trend which closely reassembles

Moore’s law, coupled with the fast-evolving software-defined network technolo-

gies (SDN), offers necessary bandwidth on demand to upper layer data applica-

tions and presents challenges of bridging the widening gap between the software

layer and hardware in the network application stack. Therefore, the data I/O sys-

tems is one of the cornerstone in accelerating data centers’ big data processing

capability.

1

Hardware advancements have been changing the performance of I/O sys-

tems and the capacity of memory significantly. The design of existing software

I/O systems, however, mostly relies on the general purpose OS abstractions (i.e.,

system calls) and services, which in turn hide the control plane, i.e., TCP flow

control and transmission, from the upper layer application and expose data plane

based on data copy, i.e., copy data between application user space and OS ker-

nel space. On one hand, data copies among OS layers and modules consume

a large portion of system resources [3] and undermines the software scalability

in high performance networks. On the other hand, advanced hardware char-

acteristics motivate researchers to re-think data placement and locality in such

environment to efficiently utilize state-of-the-art hardware characteristics.

This dissertation tackles research challenges in the field of high performance

data I/O by decoupling software functions, and integrate appropriate compo-

nents into control plane and data plane. It defines a scalable software frame-

work to cope with hardware advances in enterprise and data centers networks.

It achieves the bare-metal performance of high-speed networks for end-to-end

data movement and betters data locality in serving cached data of storage sys-

tems.

1.1 Research Motivation

1.1.1 Big Data Needs Efficient Movement

Various data-intensive applications require ultra high-speed data transfer capa-

bility, such as those in data centers, cloud-computing environments [2], and

distributed scientific computing. They frequently need data transfer software

to support true end-to-end data and file delivery, i.e., between the storage sys-

tems that are attached to the source and the destination hosts. Figure 1-1 shows

an intuitive example from the Department of Energy’s (DOE’s) Magellan cloud

2

WAN

SAN

Network/Secure

App Group

Computation Group

Argonne
Data Center

Brookhaven
Data Center

Oak Ridge
Data Center

NERSC

Figure 1-1: Data transfer and synchronization between data centers. This is an

example from the Department of Energy’s (DOE’s) Magellan cloud data cen-

ters that are interconnected by multiple 100 Gbps links of the DOE’s Advanced

Network Initiative.

data centers [4] that are interconnected by multiple 100 Gbps links provided

by the DOE’s Advanced Network Initiative (ANI). The architectural layout in

Figure 1-1 can often be found in the DOE’s National Laboratories, for example,

three leadership computing facilities hosted at Argonne National Laboratory,

Oak Ridge National Laboratory, and the National Energy Research Scientific

Computing Center, respectively, and the tier-1 Large Hadron Collider comput-

ing facilities at Brookhaven National Laboratory and Fermilab that play a vital

role in searching and analyzing exascale experimental data for scientific insights

and discoveries [5]. The science programs (climate simulation, astrophysics,

high-energy physics, material science, and system biology) at these DOE Lab-

oratories frequently rely on high-performance supercomputers and server clus-

ters, along with back-end storage systems encompassing hundreds of petabyte

disk and tape storage, to run computing and data intensive applications, and

to move data from experiments and simulations between computing and stor-

age infrastructures and frequently across high-speed wide area networks. It be-

comes a necessity to design and deliver efficient high-performance data I/O and

data transfer systems for these computing facilities. To scale up data transfer to

3

100Gbps and higher, we must overcome various bottlenecks along the end-to-

end paths that consist of hosts, networks, and storage systems.

1.1.2 Hardware Exposes Opportunities and Challenges

Recent hardware advances, such as network protocol offloading and large (non-

volatile) memory (RAM) integration in deep memory hierarchy, have been im-

proving bare-metal systems performance and capability significantly. It’s a pre-

dictable trend that data center servers become more compact (less footprint),

more energy efficient (less power consumption), and more powerful (less invest-

ment). For example, by 2020, warehouse-scale computers (WSCs) will have up

to 100,000 cores and 100Petabyte Non-Volatile Memory (NVM) which are con-

nected by high-speed radix switches and communication links spreaded across

several racks [6, 7].

Remote direct memory access (RDMA), non-uniform memory access (NUMA),

and multi/many-core are among the mainstream hardware techniques to achieve

high efficient architecture and to provide fundamental building blocks for mod-

ern supercomputers and data centers. In particular, remote direct memory ac-

cess (RDMA) [8] is one of these promising technologies that were developed as

the supercomputer interconnect technology in the domain of high-performance

computing (HPC). By enabling network adapters to transfer bulk application

memory blocks to or from remote memory, it eliminates data copies in protocol

stacks, reduces software interrupt handling, and achieves low latency and high

bandwidth. InfiniBand [9, 10], a ubiquitous RDMA implementation, dominates

the technology market of intra-data-center interconnects. Recently RDMA over

Converged Ethernet (RoCE) [11] and the Internet wide area RDMA protocol

(iWARP) [12] extended the RDMA capabilities to LAN and WAN between ge-

ographically distributed data centers. Consequently, RDMA provides an oppor-

tunity to facilitate data synchronization and replication within or between data

4

centers for applications to accomplish their routine tasks in a highly efficient

manner. It is necessary to employ these advanced network technologies and

protocols to fully utilize the bare-metal bandwidth of high-speed networks (100

Gbps and higher), and to eliminate network performance bottlenecks. One of

our main goal in this dissertation is to introduce RDMA into the high throughput

cloud computing and confirm its viability in new domains.

In addition, as the numbers of CPU sockets and cores per CPU processor

grow in the multi-core architecture of modern computer hosts, it becomes in-

creasingly difficult and inefficient to ensure the same memory access latency

across all CPU cores by using a centralized and shared memory bus. A state-

of-the-art CPU architecture integrates a memory controller as a core component

within the CPU die and discards the external controller hub that would have

become a bottleneck in a multi-core architecture [13]. In modern architecture,

memory banks at different locations in a motherboard are directly attached to

their corresponding CPUs, while multiple CPUs maintain cached data consis-

tency by following cache coherent protocol. The accesses to a remote memory

bank active inter-processor communication links and incur extra costs. There-

fore, the access latencies from a specific CPU core to different memory banks

are no longer same. From another aspect high speed interconnect, for example

QuickPath Interconnect [13] and Hyper Transport [14],, helps a system achieve

higher resource density and integration [15–17]. Although high-speed connec-

tivity between CPUs greatly speeds up random memory access, an application

that maximizes local memory accesses always outperforms than those that does

not.

1.1.3 Limitations in Existing Solutions

Data-intensive applications often rely on data transfer services and place strin-

gent requirements on the performance of the back-end storage systems and the

5

front-end network interfaces in modern multi-core servers. Existing data trans-

fer software design and implementation heavily rely on operating systems ab-

straction and services [18]. They involve several data copies and trigger frequent

interrupt services in processing networks packets. However, for transferring

data at 100 Gbps and higher, existing solutions experience multiple bottlenecks

along a full end-to-end path. For instance, existing TCP/IP based data transfer

protocols and software contribute high CPU consumption due to excessive data

copies; existing services of storage area networks are NUMA-agnostic and thus

can not fully utilize the aggregate memory bandwidth of NUMA systems. As

a result, existing software design and implementations often suffer scalability

problems.

In storage systems, many existing applications intuitively achieve the best

performance with a coarse-grained control policy by binding all related threads

to a single NUMA node and allocating applications’ memory to the local NUMA

node via the numactl command tool. However, two types of popular applica-

tions require a fine-grained, NUMA-aware design for scheduling threads and or-

ganizing memory: the first one are memory intensive applications (i.e., database

engines) that require a large memory footprint distributed across different NUMA

nodes to speed up aggregated performance; and the second type are storage ser-

vice applications that rely on kernel cache utilities, i.e., page cache. Because

the standard file interface, e.g., read and fread, does not provide any NUMA-

related configuration parameter, the applications using the interface cannot ex-

plicitly manipulate kernel-level cached data on a designated NUMA node. For

example, the existing iSCSI target software that is widely used to manage scal-

able storage blocks for enterprise databases and distributed file systems, has

the property of these two types of applications: it requires a great amount of

memory for serving cached data and relies on OS page cache that is agnostic to

NUMA. Our research exploits an explicit and fine-grained NUMA-aware design

to expedite its cache access.

6

1.2 Research Challenges and Research Goals

In this section, we elaborate challenges and research goals on achieving scalable

data transfer systems.

1.2.1 Achieve Zero-Copy In An End-to-End Data Path

The stubborn speed disparity between the CPU and memory, named “Memory

Wall”, which is common in the previous single-core architecture, will continue

to exist and even deteriorate with multi-core architecture. As detailed in [3],

latency in memory access will be a major bottleneck in computer system. Pur-

suing high CPU clock rate is not sustainable due to the power wall problem,

i.e., severe transistor current leakage under high clock rate leads to uncontrolled

power consumption and generates excessive heat that is hard to dissipate. From

the system architecture perspective, memory latency might partially negate the

high CPU clock rate and the associated computing capacity. As a result, chip

designers turn to exploring multi-core architectures and pack more cores into

a single CPU die. Consequently, the speed imbalance between fast-growing

number of CPU cores and memory will become more severe in the multi-core

architecture.

Meanwhile, network performance is significantly improved by zero-copy

and protocol offloading technologies such as remote direct memory access (RDMA).

It enables network interface to transfer memory blocks in user space to the mem-

ory in remote hosts without CPU involvement. This is different from traditional

TCP based solutions in which data are copied multiple times: applications copy

data to kernel sending buffer, and then OS kernel copies the data again the lower

layer of network stacks before reaching network interface cards. Memory band-

width is not efficiently utilized in this scenario.

It’s challenge to build a user-level communication protocols to bypass ex-

isting kernel communication support. Different from traditional data transfer

7

software, an efficient software design has to relies on zero-copy mechanism and

restricts data plane from involving kernel space [19, 20]. On the other hand,

the control plane of data transfer needs to optimize communication, and fully

utilizes network bandwidth with a user-level communication management pro-

tocol, including multiple streams, memory credit management, and flow con-

trol. We will elaborate on decoupling control plane and data plane by using

asynchronous software framework for data transfer software in Chapter 3.

1.2.2 Scale Zero-Copy Based Network Protocol In WANs

In addition to scale software performance in local area networks, we study the

issues related to designing a scalable high-speed network protocol and improv-

ing application performance in wide area networks. When the bandwidth delay

product is large, an application inevitably needs to manages a large mount of

on-fly network packets and their related memory buffers: a zero-copy based so-

lution can not recycle memory block until the data successfully reaches their

destination. We focus on RDMA primitives, and investigate the interaction be-

tween application protocols/software and network hardware capabilities. An

adaptive network mechanism is critical to improve both memory and network

resource utilization.

To extend the zero-copy mechanism in WAN, we design an application layer

protocol for RDMA networks in Chapter 4, as part of a middleware layer that

integrates network access, memory management, and multi-tasking. We address

various issues in the RDMA implementation, such as buffer management, mem-

ory registration, and the parallelization of RDMA operations, all of which are

vital to delivering the benefits of RDMA to applications. Using this protocol, we

implemented an RDMA-based FTP software, RFTP [21–24]. This developmen-

tal work is funded by a larger project to exploit the full capacity of a 100Gbps

network in the U.S. Department of Energy’s Energy Sciences Network (ESnet).

8

1.2.3 Caching Locality in Large-Scale NUMA Systems

Storage system is another important aspect for data movement, and caching is

widely used to improve the data accessing performance. Asymmetric memory

architecture such as NUMA dominates enterprise and data center systems. It

scales hardware memory capacity by connecting CPU and memory nodes with

multiple lanes of high-speed processor interconnect. The asymmetrical perfor-

mance on accessing different memory locations becomes notable as a single

server integrates more CPU nodes with complicated interconnects [25]. There-

fore, it’s critical to improve data access locality in such highly integrated sys-

tems.

In Chapter 5, we will construct a storage area network (SAN) with the

iSCSI and iSER protocols (iSCSI Extensions for RDMA) over InfiniBand based

storage fabrics among which we utilize the Remote Direct Memory Access

(RDMA) to move data blocks. The existing iSCSI software relies on the OS

page cache which is NUMA-agnostic. We design a NUMA-aware cache at the

userspace of iSCSI software to achieve better data locality, to eliminate the bot-

tleneck effect of remote memory access and thereby to lead to high efficiency

on serving cached data. The software product is tested rigorously and is demon-

strated applicable to supporting various data-intensive applications and exas-

cale supercomputers that constantly use powerful NUMA computers to serve

iSCSI/iSER based storage.

1.2.4 Towards Scalable End-to-End Data I/O Systems

Our research goal is to design the end-to-end data I/O systems that can fully

utilize state-of-the-art hardware advancements, and is scalable to the upcoming

hardware evolutions. As shown in the previous section, existing solutions are

not optimized to harness the new hardware features. Simply deploying existing

solution in state-of-the-art hardware environment leads to waste resources and

9

incur unsatisfied user experience. This dissertation tackles the scalability prob-

lems in the network control path, the data transmission pipeline, and the storage

caching layer. Particularly, Our research targets overcoming the aforementioned

research challenge and implementing a real systems that can efficiently satisfy

the end-to-end data I/O requirements in 100Gbps networks and beyond.

1.3 Dissertation Contributions

The main contributions of this dissertation are listed as follows:

• Proposing asynchronous concurrent event-driven systems. We present

a memory-centric software framework for high speed data movement.

Based on this framework, we implement an integrated, multi-level, asyn-

chronous processing model to unify the computing, storage, and network-

ing operations and to maximize their performance. By using this process-

ing model, we develop a data-driven, memory-centric, software architec-

ture for data-intensive applications.

• Designing scalable RDMA-based data transfer protocol for wide area

networks [21, 22, 24]. We design an application layer protocol [22] for

RDMA networks, as a component of a middleware layer [21] that inte-

grates network access, memory management, and multitasking. We ad-

dress various issues that are related to the efficient implementation and

implement a series of optimization methods, such as buffer management

and memory registration, and the parallelization of RDMA operations, all

of which are vital to delivering the benefits of RDMA to applications. Us-

ing this protocol, we implement an RDMA-based FTP software, RFTP.

Our developmental work is a part of a large project in Department of En-

ergy (DOE) to exploit the full capacity of a 100Gbps network in DOE’s

Energy Sciences Network (ESnet) [26]. Third, we also integrate TCP

10

zero-copy mechanism, sendfile and splice, to accommodate network en-

vironment without RDMA capability [24]. In addition, we show the im-

portance of resource awareness, i.e., NUMA multi-core and parallel I/O

capacity, in TCP based data transfer systems [27]. Fourth, we present our

extensive experiments to evaluate the performance of our protocol, partic-

ularly over wide-area networks. We show that our tool has much higher

performance compared with those existing widely used data transfer tools,

such as GridFTP [28].

• Providing NUMA-aware caching for storage area networks [29]. We

characterize the bottleneck of processing I/O requests [30] in the standard

iSCSI/iSER software, and show the benefit of a NUMA-aware caching

strategy. Second, we design and implement a NUMA-aware cache at the

user level for the Linux SCSI target software and its iSCSI/iSER drivers.

This cache module reduces remote memory access penalty, and improves

throughput and latency of the target process. Its core design principles, in-

cluding cache partitioning, node-affinity ranking, and request forwarding,

are applicable to other memory-intensive applications. Third, to tackle the

scalability problem on small I/O request processing, we propose a decen-

tralized I/O event processing model for multi-core and NUMA systems.

Fourth, we evaluate our solution on a 4-node NUMA testbed. Compared

with the default Linux page cache, our user level NUMA-aware solu-

tion shows impressive performance gains with both synthetic and real-life

workloads. Finally, this solution, initially developed as a enhancement to

the backend block storage devices, ultimately provide performance im-

provements to front-end bulk data transfer applications (i.e., RFTP) and

small I/O intensive applications (i.e., key-value stores).

• Optimizing the end-to-end data I/O performance [23]. We elaborate

the design, tuning, and performance evaluation of a novel high-speed data

11

transfer system for delivering data at 100 Gbps in an end-to-end fash-

ion. The system utilizes a pair of multi-core front-end hosts (sender and

receiver). First, our back-end storage systems use the standard iSER pro-

tocol that is configured for high-speed data access. The protocol enables

InfiniBand based data delivery from the back-end storage systems to the

front-end hosts. This design allows us to eliminate the bottleneck in back-

end storage with scalable InfiniBand fabrics. Second, we integrate our

RDMA-based file transfer protocol, RFTP [21,22,24], into the end-to-end

data transfer system, to maximize bandwidth throughput and to minimize

the host processing overhead. Third, we perform a thorough NUMA tun-

ing to optimize the performance for all hosts along an end-to-end path,

and to minimize the impact of host processing overhead. We note in the

current implementation of iSER or RFTP, the NUMA factor is not con-

sidered. We present the observed performance benefit of simple NUMA

tuning in this chapter. Our design is the first one to achieve 100 Gbps end-

to-end real data file transfers between one pair of commodity hosts. We

evaluate our system comprehensively by designing the testbed to closely

resemble the production environments that are common in large national

laboratories and commercial cloud computing providers. Furthermore,

we perform inter-data center data transfer tests along the long-haul high

bandwidth paths of over 4000 miles long and confirm our protocol and

tool clearly outperform the alternative design and implementations.

1.4 Dissertation Overview

Figure 1-2 shows the problems that each chapter tries to tackle and their scopes

and locations with respect to a real-world cloud computing environment. The

rest of the dissertation is organized as follows. Chapter 2 elaborates the con-

cepts that are related to this dissertation. Chapter 3 proposes asynchronous

12

Figure 1-2: Dissertation overview.

staged software design, followed by RDMA-based zero-copy network proto-

col for WAN in Chapter 4. Chapter 5 presents design and implementation of

NUMA-aware cache for improving iSCSI servers performance. Chapter 6 elab-

orates system optimization methods along an end-to-end data movement path.

We summarize related research in Chapter 7 and offer our conclusion in Chap-

ter 8.

13

Chapter 2

Background

This chapter provides a background of various aspects that are integral com-

ponents of this dissertation. First, we provide a background on RDMA and

high performance networks, e.g. RDMA semantics and memory registration in

programming with RDMA networks. We then describe the asynchronous pro-

gramming models and libraries for network I/O and storage I/O. We also discuss

the NUMA architecture and the libraries and utilities of constructing NUMA-

aware applications. Finally, we discuss the caching layer in iSCSI system and

the necessity to design a NUMA-aware caching system for iSCSI protocol.

2.1 RDMA and Zero-Copy Techniques

Traditional TCP/IP applications involve multiple data copies. As shown in

Fig. 2-1, sender copies data from user space memory to kernel space. It con-

sumes a large amount of CPU resource and involves multiple context switches.

Then, the sender’s network card driver fetches data from kernel space by DMA

operations and sends data packets into communication links. On the receiver

end, NIC driver interrupts kernel service and places the packet into kernel TCP

socket buffer. Thereafter, the kernel copies data into user space and interrupts

the receiving application for data arrival.

14

Figure 2-1: Data path of TCP/IP applications.

RDMA, remote direct memory access, is introduced to eliminate data copy

overhead in high performance networks. It moves data from source host mem-

ory to a remote host memory with kernel-bypass and zero-copy operations. Be-

fore a communication party starts RDMA operations, both sides perform mem-

ory registration, as shown in Fig. 2-2. Here to register a memory region means

to pin a designated chunk of memory into physical RAM and prevent it from

being swapped out by OS. The application uses ibv reg mr() to specify the

memory space to be pinned, which in turn uses the system API and the corre-

sponding function mlock() to register the memory region in the physical main

memory space. In addition, applications can use the interface to setup desired

memory protection attributes. The registered memory information is also stored

in a page table of the RDMA network interface that manages and controls direct

data accesses into/from the registered memory.

RDMA write is one of the zero-copy operation that bypasses kernel space.

Once getting an RDMA write work request from an application, the RDMA

NIC (RNIC), also known as host channel adapter (HCA), uses DMA operations

to fetch data from user space memory directly without kernel involvement. The

work request contains the information of the local source memory and the re-

mote destination memory. At the remote side, its RNIC contains the page table

for the target region. Upon data arrival, the RNIC of the remote side adds the

15

Figure 2-2: Data path of RDMA applications.

(a) Mellanox ConnectX-3 40

Gbps network interface.

(b) Mellanox ConnectX-3 56

Gbps network interface.
(c) Mellanox ConnectX-4

100 Gbps network interface.

Figure 2-3: Mellanox ConnectX supports both RDMA over InfiniBand and

RDMA over Converged Ethernet (RoCE) devices.

target offset, obtains the corresponding physical pages, write data to the user

space memory directly without kernel involvement. RDMA read operation is

used for retrieve remote memory information bypassing kernel involvement on

both local and remote sides’ OS kernel, and its data movement path is opposite

to the RDMA write’s.

RDMA is designed to be scalable to bundle multiple links (channels) to

increase the communication bandwidth. The last three generations of RDMA

device support either InfiniBand, Internet, or RDMA over converged Ethernet

(RoCE), and achieve 40 Gbps (QDR: quad data rate), 56 Gbps (FDR: fourteen

data rate), and 100 Gbps (EDR: enhanced data rate). Figure 2-3 shows a family

of InfiniBand and RoCE devices from Mellanox Technology.

In summary, RDMA coordinates hardware and applications to eliminate data

copies and to accelerate network processing with hardware support. It achieves

16

low latency and high throughput comparing to the traditional TCP/IP network

stack. We explore the RDMA semantics, remote memory operations and pro-

gramming interfaces in the following section.

2.1.1 RDMA Semantics and Performance Analysis

RDMA offers two types of message transfer semantics: Channel and Memory.

The former, “send/receive”, that is also referred as two-sided operation, involves

the OS network kernel for the completion event notification at both the source

and sink hosts of data transfer once a network connection is established [31].

The communication channel between source and sink is modeled as queue pair

(QP). Each QP consists of a sender queue and a receiver queue, whilst each

queue represents one end of the channel. Before an application uses RDMA to

transfer data, the receiver posts a work request to the receiver queue. Thereafter

the sender posts a work request to the sender queue. Both the sender and receiver

will get a completion event after the data transfer completes. On the other hand,

the memory semantics of RDMA, “read/write mode”, is often termed “one-

sided operation”. With this type of RDMA, the receiver advertises its available

registered memory to the sender, including the address and other information

about the memory region, so that the sender can directly use RDMA write to

write a chunk of data into the specified memory location at the receiver host.

To decide which type of RDMA semantics to choose to move bulk data, we

consider various performance factors. We design an RDMA I/O engine for the

fio benchmark and stress test tool [32] that offers flexible parameter settings and

excellent capabilities to report the performance statistics of both synchronous

and asynchronous I/Os. Compared with the standard OFED (OpenFabrics En-

terprise Distribution) benchmark tools, our approach is easier to collect com-

prehensive performance statistics from the I/O module, including CPU usage,

I/O latency, bandwidth, and I/O performance distribution. The RDMA engine

17

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
C

P
U

 u
til

iz
at

io
n

(%
)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(a) I/O depth is 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(b) I/O depth is 32

Figure 2-4: RDMA semantics performance evaluation in the RoCE Environ-

ment.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(a) I/O depth is 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
C

P
U

 u
til

iz
at

io
n

(%
)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(b) I/O depth is 32

Figure 2-5: RDMA semantics performance evaluation in the InfiniBand Envi-

ronment.

uses asynchronous I/O and allows our test program to simultaneously post mul-

tiple I/O requests. We conducted a comprehensive set of test cases with varying

block sizes and maximum number of concurrent blocks in flight (also called I/O

depths) for the two types of RDMA semantics.

Figure 2-4(a) and Figure 2-5(a) show that with a small I/O depth, RDMA

WRITE, RDMA READ and SEND/RECEIVE exhibit similar performance, while

the CPU consumption of SEND/RECEIVE is much higher than that of the oth-

ers. The high CPU consumption reflects the fact that SEND/RECEIVE involves

both the data source and sink during transfer, and the sink must process the same

number of RDMA events as the source. However, RDMA READ/WRITE only

18

handles RDMA events at one end. A high I/O depth improves bandwidth per-

formance as depicted in Figure 2-4(b) and Figure 2-5(b). To improve RDMA

performance, an application must post multiple I/O tasks in flight to fully take

advantage of OFED’s asynchronous programming interface. We made several

observations from these experiments: 1) RDMA WRITE and SEND/RECEIVE

perform better than RDMA READ; 2) all test cases set block size in the range

from 16KB to 128KB to achieve the best bandwidth; 3) performance saturates

when the block size is bigger than 128KB; 4) CPU usage decreases when the

block size increases because of fewer interrupts; and 5) during their peak per-

formance, the CPU usage of SEND/RECEIVE is higher than that of RDMA

WRITE.

Since the arrival rate of incoming data is unpredictable, the data sink must

post sufficient registered buffers at the receive queue in advance before the data

source sends data. Otherwise, the data source may encounter the error of Re-

ceiver Not Ready (RNR). The error will pause the source, and lead to low per-

formance and under-utilized network resource. Tian et. al. proposed to intro-

duce a control message mechanism to avoid the RNR error in their protocol

implementation [33], where the source must wait for credits to be piggybacked

with the message from the data sink before the source further posts more tasks

into the send queue. In summary, RDMA WRITE performs the best with the

least CPU consumption in all test cases, and I/O depth should be set to a rela-

tively large number, as identified in the previous testing results. Therefore, we

designed a hybrid data transfer protocol that exchanges control messages via

SEND/RECEIVE, and transfers bulk data via RDMA WRITE.

2.1.2 OS Kernel Zero-Copy Techniques

In addition to the RDMA hardware-based zero-copy acceleration, software based

optimization is another approach to reduce data copies and the associated pro-

19

cessing overheads, for example the system calls sendfile() and splice(),

newly supported by modern operating system kernels. In contrasting to TCP/IP

stack that involves multiple data copies and incurs high CPU load in the high

speed data transfer environment, the sendfile() primitive in Linux performs

pass-by-reference to copy data between one file descriptor and another, e.g.,

between a disk file descriptor and a socket descriptor. Because this type of

copying occurs within the kernel and merely exchanges data reference point-

ers, sendfile() is more efficient than the combination of the standard POSIX

read and write functions which require physical data copies to and from the user

space.

splice further extends the functionality of sendfile(). It is a Linux-

specific system call that moves data between a file descriptor and a pipe without

a detour to user space. splice() requires to setup a pipe buffer prior to the

function call. A pipe buffer is an in-kernel memory buffer and transparent to

user space processes. A user process can splice the content of a source file, e.g.,

a socket, into this pipe buffer, then splice the pipe buffer into the destination file

descriptor, e.g., a file in the disk systems.

2.2 Asynchronous High Throughput Computing and

Thread-based Concurrency

General asynchronous I/O model separates I/O issuing and I/O status checking

to avoid blocking operations. It can be utilized to overlap computing and I/O

resources efficiently. Inspired by the RDMA based asynchronous communica-

tion model, we extend it to be a generalized asynchronous computing model

and apply it to many other aspects of an end-to-end high throughput data path.

A typical OS interacts with heterogeneous devices and handles various system

calls via hardware/software interrupts (events) asynchronously, while providing

20

a simple uniform POSIX interface to applications. Thus, the manner the soft-

ware handles asynchrony is fundamental to the performance of applications and

their hosting server in high throughput computing.

Newly developed multi-core processor technology is capable of packing

dozens of CPU cores in a single server, and therefore it is cost-effective to fully

utilize these resources first within the server before reaching out to other servers

for high-throughput computing. A simple approach is to maximize the con-

currency of a server via a multi-threaded parallel programming model, wherein

a master program is responsible for partitioning a large task into smaller ones

and assigning each one of them to a different, dynamically created thread to

parallelize and expedite processing. Here, the master program often relies on

complex inter-thread synchronization schemes to synchronize thread status and

ensure task completion. For example, OpenMP [34] uses the lock and barrier

primitives. The slowest thread always dominates the overall execution pace and

performance of an application that is implemented with this model. Given the

uncertainty of server system status, non-uniform memory access, and process-

ing loads, it is possible that several threads may hold CPU cores and wait idle for

the slowest thread to complete. Thereby, this parallel model does not guarantee

the optimal server performance.

On the other hand, asynchronous computation proceeds via triggering events

and acting upon them instead of being directly orchestrated by a central master

program. Within the asynchronous computing paradigm, a set of threads that

entail a sequence of data processing instructions are created apriori and bound

to all available cores to reduce context switches and to minimize overheads. A

thread, along with its associated instructions and one allocated CPU core, forms

a unit of computing resource, and is made available to the main application via

event exchanges.

Even when an application involves multiple threads, some of them engage

in the synchronous parallel paradigm (for example, wait for and respond to user

21

requests) and some of them perform asynchronous computing, an asynchronous

computing thread executes at its own rate without affecting the aggregate per-

formance, and remains in a background mode with regard to the master pro-

gram running in the foreground. No explicit join step is required once an asyn-

chronous thread completes its current data processing assignment. Instead, it

will proactively check for the next event to get more task assignments.

In the context of our work, a high throughput computing program often loads

initial input data from internal and/or external storage and high speed network

adapters, applies a series of transformations to data, and writes output back to

storage media and/or network stacks. There is less inter-dependency between

two threads assigned to different datasets or segments of memory. To avoid ex-

cessive data copies and relocations, we adopt a data-and-memory-centric com-

puting paradigm: an end-to-end high throughput program is regarded as a series

of operations that are applied to memory-resident data: storage I/O to popu-

late and evacuate memory space, data transformations (for example, compres-

sion/decompression, encryption/decryption, Fourier Transformation and its in-

verse), and network I/O to import and export memory space. These operations

interact with a main program asynchronously and apply changes to shared mem-

ory space even though their nature, duration, and internal implementation are

heterogeneous.

2.2.1 RDMA Asynchronous Programming Model

The RDMA architecture permits an application to access hardware directly in

the user mode. RDMA provides a set of verbs (function calls) that customizes

and optimizes the RDMA-aware network interface cards. All I/O operations

involved in RDMA programming are asynchronous: an application posts an

I/O request into hardware, and then polls a corresponding completion event to

confirm the outcome of the I/O, either success or failure with a particular cause.

22

To perform RDMA operations, an application must establish connections

between local and remote host. The Queue Pair (QP) in the RDMA program-

ming plays an equivalent role as the socket interface to TCP/IP stack. The

QP needs to be setup and initialized on both sides of connection. An appli-

cation uses Verbs to interact with Communication Manager (CM) which sub-

sequently exchanges the information about the QP and sets up the QP. Once a

QP is established, application calls the verbs API to perform one-sided RDMA

reads, RDMA writes, and other atomic operations. Applications can also per-

form serialized two-sided send/receive operations which are similar to the socket

send()/recv().

2.2.2 Asynchronous Storage I/O

Asynchronous I/O functions enables applications to saturate the storage I/O per-

formance with a single thread by submitting a batch of concurrent I/O requests

to the disk queues. There are two types of asynchronous I/O interfaces: POSIX

AIO and Linux native AIO - libaio [35]. These two implementations are funda-

mentally different: the POSIX AIO creates multiple threads within OS, each of

which performs normal synchronous and blocking I/O. Essentially it wraps syn-

chronous I/O functions with multiple threads to emulate the behavior of asyn-

chronous I/Os. On the other side, libaio is truly asynchronous, and directly

supported by the OS kernel which internally queues I/O requests and submits

to devices in an optimized manner. We choose libaio for our implementation

method in the following chapters.

2.3 NUMA Architecture

In a state-of-the-art NUMA system, A CPU die, along with its memory con-

troller and local memory banks, comprises a NUMA node. A NUMA node

references its directly attached memory banks as local memory and those at-

23

tached to other CPU dies as remote memory. Multiple NUMA nodes in a host

are connected by high-bandwidth and low-latency interconnects, such as Intel

QuickPath [13] and AMD HyperTransport [14]. Due to the traffic contention on

memory controllers and interconnects, remote memory accesses cause longer

access latency and lower throughput compared to local accesses [36].

2.3.1 SMP and NUMA Architecture

In multi-core era, symmetric multiprocessing (SMP) was first introduces to in-

crease a single server’s processing capacity. It connects two or more identi-

cal processors to a single, shared main memory by using a shared system bus.

However, connecting processors with a shared system bus suffers the scalabil-

ity problem when the number of processors increases because of the contention

for the shared bus resource. Modern servers typically adopt the NUMA archi-

tecture and use dedicated CPU interconnects instead to scale memory system

performance.

2.3.2 Asymmetric Memory Layout

Because interconnect topologies in NUMA system can be 2-D torus or even 3-D

torus, the distance or the number of “hops” in NUMA system between the CPU

which runs an application and the memory location where the application’s data

resides varies and leads to different performance behavior in terms of latency

and bandwidth. On one hand, this asymmetric memory layout further enlarges

the performance disparity among the memory accesses by different CPU cores.

On the other hand, because of the shared memory architecture, all processors

enforce the cache coherence policy to simplify application-level development.

NUMA-agnostic applications incur remote memory access penalty and unstable

performance. Therefore, applications has to be tuned accordingly to gain better

performance in NUMA systems.

24

2.4 iSCSI/iSER and Storage Caching System

This section presents the research problems and efforts on cache performance

in iSCSI/iSER systems.

2.4.1 iSCSI and iSER

The Internet Small Computer System Interface (iSCSI) is an IP-based approach

to build storage area networks. It supports storage virtualization over local area

networks (LANs) and even wide area networks (WANs) by encapsulating SCSI

commands and payload within IP packets, which are exchanged between clients

(initiators) and SCSI storage devices (targets). Ko et al. proposed a standard ex-

tension of iSCSI for RDMA networks, named iSER [37]. The Linux SCSI target

framework [38, 39] is the de facto iSCSI target software supporting various tar-

get drivers, such as the iSCSI driver for TCP/IP, the iSER driver for RDMA [40],

and several vendor specific drivers (e.g. IBM, QLogic, LSI). We design and im-

plement a cache module in user space for this framework, and provide the same

interface for all transport drivers to interoperate with the cache module.

2.4.2 Caching Layer in iSCSI/iSER

Several caching mechanisms have been investigated and developed to improve

the overall performance of the iSCSI system. He et al. proposed a strategy

of combining non-volatile RAM and log disk to cache iSCSI traffic in initia-

tors [41]. For a shared target server, however, synchronizing cache status among

multiple initiators incurs a significant cost. Wang et al. proposed an on-board

cache in a network interface card. Given a NIC cache hit, cached data does not

need to traverse the host’s PCI bus and memory controllers. A “Helper” cache

in an iSCSI target server has advantages over the on-board one as it eliminates

the limitation to cache size [42].

25

From a system perspective, storage area networks consists of a three-tier

memory cache hierarchy, including application client cache, file or database

server cache, and storage server cache, and cache layer often duplicates a frac-

tion of the content already cached by another. To convert the inclusive cache

hierarchy with duplications to the exclusive one, researchers have proposed

hierarchy-aware caching, which maintains the existing I/O interface and is trans-

parent to the application client, and aggressively-collaborative caching, which

requires centralized cache management by the application client. For hierarchy-

aware caching, an eviction-based placement policy [43] and Multi-Queue (MQ)

algorithm [44] reduce network traffic and improve the cache hit rate at storage

servers. For aggressively-collaborative caching, Wong and Wilkes proposed a

“DEMOTE” operation to evict the content from the frontend and re-cache it into

the backend storage server to ensure exclusive caching [45]. Chen et al. found

that the aggressively-collaborative caching provides a mere 1.0% improvement

over hierarchy-aware caching for most workloads and cache configurations in

their real system experiments [46].

2.5 Summary

In this section, we introduce RDMA networks and the NUMA architecture.

We also provide necessary background knowledge on the state-of-the-art re-

search works on the RDMA programming model, storage area networks, and

the caching layer in the iSCSI and iSER systems.

26

Chapter 3

ACES Software Architecture

Asynchronous storage I/O and communication exhibit advantages over their

synchronous counterparts and can achieve bare-metal performance. Various

types of asynchronous processing (computing, storage, and networking), how-

ever, have never been considered holistically in today’s high throughput com-

puting, and therefore their advantages and flexibility have never been shown to

cope with big data processing. In this chapter, we present a memory-centric

software framework for high-throughput data transfer applications, called asyn-

chronous concurrent event-driven system (ACES).

3.1 Introduction

Scientific and industry applications are generating increasingly large amounts

of data, often referred to as “big data”. Effective analysis and accurate in-

ference from these data towards knowledge discovery require high-throughput

data processing, transforming, transporting, and sharing among data manage-

ment/analytics specialists and application-domain scientists. A deluge of paral-

lel and distributed programming paradigms have been proposed to address this

“big data issues”: Google MapReduce [47] and its open source Hadoop [48],

Grid Computing [49], and cluster computing [50]. All these paradigms parti-

27

Hardware Hardware Advances Software Policy

Network RDMA, TCP offloading asynchronous I/O

event-driven

Disk SSD, TCQ, NCQ asynchronous I/O

event-driven

Memory NUMA, memory wall zero-copy

CPU Multicore thread-based concurrency

Encryption acceleration

Table 3.1: Software policies for each part of hardware advances

tion data and dispatch data processing tasks into a large number of computer

servers for an aggregated high-throughput computing (HTC) performance.

The steady progress of VLSI technology continues adding more cores, higher

network bandwidth, and faster storage into a single commodity server than be-

fore. These technology breakthroughs afford rethinking the existing computing

models for a single Linux server to meet the performance, energy, and efficiency

requirements of various HTC applications. Meanwhile, technological trends in-

dicated that hardware throughput/bandwidth continues to be the biggest win-

ner, and outpaces other performance components (for example, latency) with

individual servers and computing facilities [51]. In the network and storage

fields, disruptive innovations, such as CPU bypass Remote Direct Memory Ac-

cess (RDMA) and semiconductor flash drives, have improved the throughput of

I/O facilities by two to three orders of magnitude. Single host computation den-

sity and capacity are continuously improved by multi-/many-core technologies.

In contrast, the speed of main memory is relatively slow and memory controller

is generally the bottleneck in symmetric multiprocessing (SMP). This led to

the popularity of Non-Uniform Memory Architecture (NUMA), which obtains

a good aggregate memory performance, but complicates application tuning of

memory accesses cross the asymmetric layout. Given the expensive memory

copy operations within the NUMA servers, zero-copy primitives (such as direct

I/O in storage and RDMA in network) becomes more attractive in application

28

design and implementation. Furthermore, high performance hardware becomes

competitive in term of price and can be economically added into a commod-

ity servers [52]. Given these trends, it is important that we understand how to

leverage the advantages of these hardware advances to build high throughput

applications.

Unfortunately, existing software design in high-throughput computing can-

not survive rapid changes in computer technology. In terms of data transfer

which has stringent requirements on throughput, existing solutions emphasize

and satisfy a fraction of user demands by a unified design philosophy. For ex-

ample, OpenSSH scp/sftp [53] concentrates user requirements on security and

believes in clean and simple code. It heavily relies on traditional operating sys-

tem facilities such as pipe, fork(), synchronous I/O to maintain its simple de-

sign choice. GridFTP, a popular data transfer tool in grid computing, focuses

on TCP throughput optimization and makes use of an event-driven software ar-

chitecture to manage numerous concurrent TCP connections [28]. However,

with the increase of hardware bare-metal throughput, no single design philos-

ophy and methodology is currently able to take full advantage of the range of

hardware advances. As shown in table 3.1, a hybrid software design policy is

required to extract the best performance from each part of a computing system.

In this chapter, we present a memory-centric software framework for high-

throughput applications: asynchronous concurrent event-driven system (ACES).

Our framework divides an end-to-end data path into a series of stages, each of

which implements either an (storage/network) I/O task or a computation task

to check, search, or transform data. We use explicit task queues to connect the

stages and utilize thread synchronization primitives to efficiently handle tasks.

Within each stage, an application selects a combination of asynchronous, con-

current, and event-driven operations to maximize the I/O and computing perfor-

mance.

We implemented a prototype high-performance secure data transfer applica-

29

tion, called ACES-FTP, on top of the proposed ACES framework. In particular,

ACES-FTP leverages asynchronous I/O and direct I/O operations to expedite

disk access, maximizes RDMA network performance through a hybrid design

of event-driven and concurrent threads, makes use of zero-copy primitives to

offset memory copy overhead, and offloads computation intensive encryption

to dozens of CPU cores. In end-to-end data transfer tests over high perfor-

mance networks, ACES-FTP demonstrates three times higher throughput than

scp while maintaining the same level of data security. During these performance

test, we have achieved secure data transfer at line speeds of 80 Gb/s using off-

the-shelf hardware. To further explore the benefit of asynchronous comput-

ing, we present an asynchronous implementation of a data integrity function for

iSCSI servers and, and show it achieves 140% higher IOPS over its synchronous

counterpart in small size dominant workloads.

Our contributions are as follows: firstly, we implement an integrated, multi-

level, asynchronous processing model to unify the computing, storage, and net-

working operations and maximize their performance; secondly, based on this

processing model, we develop a data-driven, memory-centric, software archi-

tecture for high-throughput data-intensive applications; finally, using this soft-

ware architecture, we provide a reference implementation on how to transfer

data securely at speeds of 40G/100Gbps or higher.

3.2 Existing High Throughput Solutions

Most existing works apply the asynchronous paradigm in only one or two as-

pects of processing (event-driven programming, asynchronous storage I/O, and

one-sided RDMA transport), and asynchrony is implemented at a single level.

In this chapter, we propose a two-level asynchronous computing model to op-

timize application performance from the high level programming logic to the

low level devices. An asynchronous computing thread that transforms data can

30

Figure 3-1: Data transfer workflow with OpenSSH scp and sftp.

asynchronously off-load computation-intensive operations to a many-core sys-

tem such as the Intel Phi coprocessor or GPGPU hardware [54, 55]. For exam-

ple, SSLShader [56] implemented SSL acceleration with modern graphics pro-

cessor units (GP-GPU), where expensive public/private key encryption and the

associated exponentiations and modular operations are off-loaded to hundreds

of simple GPU cores.

However, two-level asynchronous hierarchy gains more and more attention

in high performance exascale computing [57], and provides a promising model

to mitigate variations and uncertainties that arise from heterogeneous prob-

lem domains, dynamic system load, hardware devices and their optimal access

mechanisms (sequential and/or random) and execution costs and duration.

Existing end-to-end high throughput solutions often create a data moving

path by reusing OS functions and kernel facilities, such as forks and pipes, and

by integrating user function libraries in a synchronization logic. This simplified

software design and implementation. Yet most of those solutions are not able to

meet the performance requirements in HTC, due to the overhead for data copies,

process management, etc. For example, a secure data transfer involves six steps:

reading (from storage), encrypting, sending, receiving, decrypting, and writing

(into storage systems). The secure data transfer software - OpenSSH scp relies

on ssh, which compresses and encrypts data by utilizing Zlib’s compression and

digest functions [53], and OpenSSL’s security modules [58]. The scp and sftp

data transfer procedures involve four single-threaded processes: scp client for

data reading, ssh for encryption and sending, sshd for receiving and decryption,

and scp server for data writing. As depicted in Figure 3-1, the two processes

31

at each side use a kernel pipe for their inter-process communication. Each data

transfer task uses a single TCP connection. Our preliminary experiments have

shown that even with multiple scp instances, this software is not able to transfer

data at the line speed of state-of-the-art hardware connections, such as 40Gbps

RoCE (RDMA over Converged Ethernet) and 56 Gbps InfiniBand.

3.3 Memory-Centric Asynchronous Design

In this section, we present a two-level asynchronous design, ACES, which fo-

cuses on the memory-centric principle for high throughput computing. ACES

treats user requirements as divisible into stages, such as storage I/O stage, net-

work I/O stage, data integrity stage, etc, connected by explicit task transit queues.

From an application’s perspective, memory blocks are processed by multiple

stages asynchronously. Within each stage ACES selects a suitable implemen-

tation method to maximize the corresponding hardware throughput and uses

asynchronous I/O interfaces whenever possible. In addition, ACES manipu-

lates, maintains, and transits memory blocks to avoid memory copy operations.

Based on these design methods, we implemented ACES-FTP, an asynchronous

file transfer application for high throughput systems.

3.3.1 Design Goals

The ACES framework and ACES-FTP software target various big data appli-

cations that require intensive network and storage I/O operations, as well as

memory-resident data processing and transformation, such as data integrity and

encryption/decryption. Our design goals include the following:

• Efficiently utilize hardware advances: To attain bare-metal throughput

capacity of hardware, ACES-FTP makes use of the advanced features pro-

vided by hardware, such as zero-copy and parallel I/O execution. Specif-

32

ically, ACES-FTP leverages RDMA technology and its one-sided RDMA

Write operation to achieve high network data transfer speeds, and makes

use of asynchronous and direct I/O storage file operations to gain abun-

dant storage throughput.

• Mitigate I/O latency accumulation: In general, there are two types of

latency: I/O latency associated with peripherals and computation latency

in yield from CPU intensive functions. A single-threaded synchronous

application accumulates all computation and I/O latencies in a sequence

of processing steps. This may lead to some peripheral devices waiting in

idle state when an application interacts with a different peripheral device.

Therefore, an application may suffer low throughput as a result of in-

efficient resource utilization. Although a multi-threaded application can

avoid wasting I/O resources, it incurs the overheads for thread manage-

ment and context switching if the application has to manage numerous

resources, such as TCP connections. The two-level asynchronous design

in ACES aims to overlap latencies among different I/O-intensive oper-

ations and computation-intensive ones without incurring thread context

switches.

• Flexible, reusable, and configurable stage design: A stage in the ACES

model is a reusable module that combines threads design and function in-

tegration. This is different from traditional software design which either

delivers a user function binary or a packaged library of function calls. In

ACES, we concentrate more on the throughput of each module, and try to

use the best practice in each hardware facility. In addition, to satisfy user

demands, the ACES functions should be configurable per task. For exam-

ple, some local data transfer may not need security stage involvement.

• Automatic balancing of stage threads: This framework balances the

number of threads in a stage automatically by monitoring the queue and

33

Figure 3-2: End-to-end asynchronous software architecture.

thread status. We propose a global monitor thread for status accounting

and threads adjustment through queuing delay, thread waiting time, and

task processing time. For this purpose, timestamps are marked by the

framework when tasks are going through processing stages. This cen-

tralized monitor is different from SEDA distributed resource controllers

deployed in each stage [59]. A new introduced stage could easily leverage

on the existing timing based feedback and adjustment mechanism.

3.3.2 End-to-end Staged Asynchronous Software Architecture

An end-to-end data transfer path involves several stages, including storage stage,

data integrity stage, data security stage, and network stage, in both the data

source and data sink, as shown in Figure 3-2. ACES-FTP defines these stages

and connects them using explicit task queues. Once a storage I/O stage pushes

a task into the task queue of a data integrity stage, it uses a thread signal as a

notification to trigger another thread in the data integrity stage to process the

incoming task.

With the event-based design, the queue states are critical data accessed and

updated by multiple threads. Their integrity and consistency are protected by

34

thread synchronization primitives: mutexes and condition variables. Multiple

threads will simultaneously access large memory segments that host data to be

processed and transported. However, we only need to protect event queues with

exclusive access. Such a design minimizes the granularity of critical sections

within a thread to access the protected data and avoids potential thread wait,

thereby maximizing parallel operations.

Between the two sides (source and sink) of an event queue, we develop a

flow control mechanism. The starting or ending point in each side is a queue

of available memory blocks. A memory block has to be ready before each side

starts a new task. The queue is also used for flow control, and it limits the

throughput automatically if any stage incurs performance fluctuation. For ex-

ample, when the sink side is experiencing a period of performance drop due to

storage competition, it will stack memory in the task queue of the storage I/O

stage. Consequently, the source side is not be able to get more credits from the

sink side and will wait in the network stage.

In RDMA network stage, we use RDMA one-sided operation and its zero-

copy capability to attain the best performance of state-of-the-art high perfor-

mance network capability. At the same time, we use two-sided Send/Recv to

exchange control messages, such as memory credits and completion notifica-

tions [22, 23]. Because RDMA one-sided operation is only supported by Reli-

able Connected (RC) communication, we selected RC for RDMA connection

management.

To fully utilize the hardware advances and concurrent capacity of a system,

multiple tasks associated with memory regions are processed in parallel by sev-

eral facilities in different stages, such as disks, network interfaces, and CPUs

(we regard CPU cores for function computation as a type of resources). We

pass between stages tasks with memory data pointers to eliminate data copies

between stages. However, different stages can manipulate the content of mem-

ory blocks according to the control header information.

35

(a) Single thread event-

driven.

(b) Multi-threaded concur-

rency.

(c) Hybrid method with event-

driven and multi-threaded.

Figure 3-3: Stage implementation methods.

3.3.3 Stage Implementation

To capture the characteristics of different hardwares (CPU, storage disk, and

network adapter), we use three types of stage implementation in ACES-FTP. As

shown in Figure 3-3, each stage could be implemented as one of three scenar-

ios: (1) a single thread with an event-driven design (for disk I/O), (2) multiple

parallel threads (for CPU processing), and, (3) multiple threads with different

functions (for network I/O).

Asynchronous event-driven single-threaded stage. The disk I/O stage

makes use of asynchronous I/O functions, and a single thread is able to saturate

the entire disk I/O performance by submitting a batch of I/O requests to hard-

ware disk, as shown in Figure 3-3(a). There are two types of asynchronous I/O

interfaces in Linux: POSIX AIO and Linux native AIO - libaio [35]. These two

AIO implementations are fundamentally different. The POSIX AIO implemen-

tation creates multiple threads within the OS, each of which performs normal

blocking I/O. It wraps synchronous I/O functions to emulate the behavior of

asynchronous I/Os. On the other side, libaio is truly asynchronous, and directly

supported by the OS kernel which internally queues I/O requests and submits to

devices in an optimized manner. We choose libaio in our implementation.

Parallel multi-threaded stage. In data integrity and encryption/decryption

stages, we use multiple parallel threads to maximally utilize multiple cores, as

shown in Figure 3-3(b). In the staged software design, we uniformly treat CPU

cores as one regular type of hardware resource for data processing functions

36

(such as encryption, checksum, and compression), which altogether can process

a batch of tasks asynchronously. The number of parallel threads is adjusted

dynamically by a global monitor thread and is determined by system running

status.

Asynchronous multi-threaded stage. Network I/O stage in ACES-FTP

is more complex given the need for coordination between sender and receiver.

ACES-FTP tries to obtain the line speed of state-of-the-art hardware by using

one-sided RDMA data transport via verbs interfaces libibverbs and RDMA

communication with the communication manager librdmacm. The RDMA-

based network stage involves explicit user-level protocols, and ACES-FTP man-

ages several resources, such as RDMA connections, memory credits, and asyn-

chronous RDMA events. Therefore, we use a hybrid software module that

combines event-driven and multi-threaded paradigm, as shown in Figure 3-3(c).

First, ACES-FTP at the source side proactively requests memory credits prior to

the incoming data transfer events. This asynchronous credit preparation over-

laps the network latency on data transfer with that on credit exchanging. Second,

ACES-FTP posts multiple RDMA one-sided operations into each of the reliable

connections. It places a master-worker thread pool to handle completion events,

including Send, Recv, and RDMA Write completions, polled from completion

queue (CQ). This asynchronous, multi-threaded stage is different from the sin-

gle threaded event-driven stage in which one thread handles the entire completed

events: here, one top level data transfer request (application event) will incur a

series of low level network RDMA events, and a CQ thread dispatches network

events to a pool of worker threads to increase the concurrency in processing a

large number of low level events.

37

3.3.4 Uncertainty and Determinism

Traditional sequential programs consider data as sequential streams. This deter-

ministic sequence of data stream simplifies software implementation. Because

data integrity and consistency in any stage are guaranteed by the sequential pro-

cessing logic, there is no need to implement additional control logic to deal with

the out-of-order issue. On the other hand, this approach suffers from hardware

uncertainty on performance. For example, the throughput performance varies

when different disk sectors and/or disk storage media (magnetic v.s. solid state)

are involved or network is under congestion for a particular task, an individ-

ual processing step will hold up the entire processing pipeline without moving

forward.

The two-level asynchronous software architecture increases the probability

of data sequence uncertainty while alleviating the hazard of hardware uncer-

tainty. In the disk I/O stage, although ACES-FTP submits I/O requests in a

sequential manner, the completion sequence will not necessarily be identical to

the submitted one. OS I/O scheduler may reorder the execution sequence of

I/O requests. Second, the completion sequence might be affected by storage

hardware uncertainty. The same behavior may occur in the network I/O stage

because ACES-FTP uses multiple concurrent connections to avoid the bottle-

neck of a single connection. The out-of-order issue causes storage performance

degradation in the data sink side. We implemented a pending queue for sequence

reordering in the network I/O stage at the sink side to minimize the impact of

this uncertainty.

3.3.5 Memory Centric Design and Memory State Transition

We design our software with a memory-centric perspective to maximize pro-

cessing throughput while minimizing the overhead of memory, disk, and net-

work operations. State-of-the-art hardware fosters the adoption of several zero-

38

Figure 3-4: End-to-End memory status transition.

copy mechanisms. For instance, high performance network adapters bridge the

performance gap between network and memory, and RDMA’s advanced zero-

copy feature eliminates the overhead of memory data copy between kernel and

user space. For storage systems, direct I/O in file operation prevents data from

going through the kernel cache, and enables applications, instead of the OS, to

optimize data access, since applications have first-hand knowledge on what data

are going to be accessed in the incoming operation steps. In addition, asyn-

chronous I/O operations require software to track and associate memory states

in different stages, then to perform corresponding behavior according to I/O

context and triggering event.

In our design, we model memory state transitions using a finite state ma-

chine(FSM), as shown in Figure 3-4. In terms of each state transition, an op-

erator (thread) performs a defined operation (method function) in responding

to a related event, usually in an asynchronous fashion. For instance, the mem-

ory block at the sink side is in the “FREE” state in the beginning. Once the

39

Figure 3-5: Testbed connectivity.

sink side gets a event on credit request (i.e., availability of a memory block), a

completion queue worker thread sets a memory block into “NIO WAIT” state,

and sends back the credit of this particular memory block to the source. Each

memory block has its own state fields, and this FSM guides application threads

to parallelly perform on numerous memory blocks asynchronously.

3.4 Evaluation

We evaluate the integrated asynchronous computing and asynchronous I/O op-

erations from high-level application layer. We use our developed ACES-FTP

to transfer data in a high performance network environment, and compare its

performance with that of the scp software which is commonly used to transfer

sensitive data in an insecure network, for example, Internet.

3.4.1 Experimental Setup

Our testbed consists of five servers connected by both RoCE and InfiniBand

links via a switch. Each host connected to the InfiniBand switch has two 56-

Gbps Mellanox InfiniBand FDR adapters. Each IBM host has two 40-Gbps

Mellanox RoCE QDR adapters, and the SuperMicro server has four network

adapters of the same brand. Figure 3-5 shows the detailed host configurations.

40

 0

 10

 20

 30

 40

1 4 16
T

hr
ou

gh
pu

t (
G

bp
s)

I/O depth: maximum requests inflight

4KB
32KB

128KB
512KB

Figure 3-6: RDMA asynchronous performance in 40 Gbps Ethernet.

We enabled hyper-threading in all three hosts to maximize the processing ca-

pacity for encryption. We set up a Ganglia [60] cluster monitoring system in

our testbed. The performance metrics, including both CPU usage and cluster

throughput, are obtained by Ganglia comma-separated values (CSV) output. All

disk I/O accesses use direct I/O to bypass kernel page cache.

3.4.2 RDMA Asynchronous I/O Evaluation

We developed an asynchronous RDMA benchmark, called iperf-rdma, based

on iperf [61], a popular TCP/UDP bandwidth benchmark. The iperf-rdma sup-

ports multiple RDMA streams and multiple asynchronous outstanding requests

in each stream. To show the impact of asynchronous I/O operation, we perform

iperf-rdma in a mockup synchronous manner with only one I/O block in a con-

nection and an asynchronous manner with multiple network I/O blocks pushed

simultaneously into the sending queue. We deployed the iperf-rdma over a 40

Gbps RoCE link. As shown in Figure 3-6, RDMA performance is improved by

posting multiple requests in the network link. Therefore, to attain bare-metal

RDMA performance, an application should post multiple I/O tasks in flight to

fully take advantage of RDMA hardware advances.

41

 0

 20

 40

 60

 80

 100

scp-24

scp-48

scp-96

scp-192

hpn-24

hpn-48

hpn-96

hpn-192

aces-ftp

T
hr

ou
gh

pu
t (

G
bp

s)

(a) Throughput comparison with AES

128bit CBC.

 0

 20

 40

 60

 80

 100

 120

scp-24

scp-48

scp-96

scp-192

hpn-24

hpn-48

hpn-96

hpn-192

aces-ftp

C
P

U
 u

til
iz

at
io

n
(%

)

data source data sink

(b) CPU utilization comparison with AES

128bit CBC.

 0

 20

 40

 60

 80

 100

scp-24

scp-48

scp-96

scp-192

hpn-24

hpn-48

hpn-96

hpn-192

aces-ftp

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Throughput comparison with AES

256bit CBC.

 0

 20

 40

 60

 80

 100

 120

scp-24

scp-48

scp-96

scp-192

hpn-24

hpn-48

hpn-96

hpn-192

aces-ftp

C
P

U
 u

til
iz

at
io

n
(%

)

data source data sink

(d) CPU utilization comparison with AES

256bit CBC.

Figure 3-7: Performance comparison among OpenSSH-SCP, HPN-SSH, and

ACES-FTP. The numbers in X-axis is the parallel processes launched during

experiments.

3.4.3 ACES-FTP End-to-End Evaluation

We compare ACES-FTP to the popular openssh software suite and its high per-

formance variant, High Performance SSH/SCP (HPN-SSH) [62]. HPN-SSH

improves the performance of traditional ssh implementation by adding multi-

threaded cipher, desynchronizing all I/O and cryptographic operations, and auto-

tuning the TCP window sizes. In the storage I/O stage, we exported files from

the memory based storage (RAM disk) at HP hosts to IBM hosts via Infini-

Band links using iSER (iSCSI Extensions for RDMA) protocol to emulate high

throughput storage devices. The detailed design of the Storage Area Network

can be found at [23,29]. Those applications transferred data via the RoCE links,

and the capacity of network adapters is 80 Gbps with two 40 Gbps RoCE links,

as shown in Figure 3-5. We launched multiple instances of scp to maximize the

performance.

Figure 3-7 shows performance comparison among scp (OpenSSH), hpn-scp

(HPN-SSH), and ACES-FTP. Both scp and hpn-scp are not able to saturate the

80 Gbps links due to high CPU consumption, including data copies between

42

user and kernel spaces, TCP stack processing(especially on the receiving end),

and process scheduling. In contrast, ACES-FTP saturated this link with lower

CPU consumption. First, ACES-FTP uses asynchronous RDMA operations to

offload network operations into hardware. Second, ACES-FTP integrated direct

I/O to bypass kernel cache and to load data directly from hardware into user

space memory. Third, ACES asynchronous operations overlap the latencies in

disk I/O, encryption processing, and network I/O.

Magnetic disks are cheaper, non-volatile compared to RAM disk and SSD

drives and are still of primary use in many HTC applications and databases.

This experiment targets a common storage environment and validates our asyn-

chronous design. Thereby, we set up the SuperMicro 46 magnetic disks as a

data sink to receive data from two IBM hosts which load data from iSER mem-

ory disks. The fio benchmark revealed the best throughput of those 46 disks is

7.5 GByte/s (sustained). Our experiments show that the best performance with

ACES-FTP is 6 GByte/s while scp can achieve 3 GB/s at best. The small dif-

ference between the ideal case of the fio benchmark and real life end-to-end

data transfer can be attributed to high CPU loads incurred by both file system

operation and computation-intensive data encryption.

3.5 Conclusion

This chapter details ACES, a memory-centric software framework for high-

throughput computing within a single server, and ACES-FTP, a reference im-

plementation of a high-performance secure data transfer application on top of

ACES. ACES-FTP relies on and integrates several types of asynchronous pro-

cessing mechanisms, including (1) asynchronous direct I/O operations for disk

access, (2) asynchronous RDMA operations for ultra high-speed networks, and,

(3) asynchronous processing of computation-intensive data integrity and en-

cryption using dozens of Intel CPU cores. In an end-to-end data transfer test

43

over high performance networks, ACES-FTP shows a throughput three times as

high as that of scp with the same level of security enforcement. Furthermore, it

achieves a remarkable performance gain, i.e., 80 Gbps (line speed) secure data

transfer throughput with off-the-shelf computer hardwares. In summary, ACES-

FTP provides an efficient approach for large-scale, secure data replication within

data center networks and between data centers over the public Internet.

44

Chapter 4

Scalable RDMA-based Data

Transfer Protocol

As data center network performance increases significantly under RDMA’s sup-

port, an RDMA-based data transfer protocol enables applications to more effi-

ciently utilize the hardware advances such as zero-copy and kernel bypass. To

that end, we propose a scalable networks protocol based on RDMA primitives.

Scalability in RDMA-based protocol design is twofold: First, the protocol is re-

quired to scale applications’ network performance to ultra-high-speed networks,

such as 100 Gbps and beyond; Second, the protocol is able to scale to wide

area networks with extreme long latency, which means large bandwidth delay

product and huge numbers of packet in flight that are managed by applications

instead of kernel services.

In this chapter, we propose a scalable RDMA-based data transfer protocol.

We first present a protocol overview. Then, we use a finite state machine to

model the memory status transition in with zero-copy constraint. We also give

out message format and multi-stream connection management. We construct an

end-to-end data transfer software, RFTP, on top of this protocol. We present

the comparison of RFTP and popular data transfer tools, such as GridFTP, in

various testbed environment.

45

Process Load

Data

Data

Source

Data

Sink

Control Msg QP

get_free_blk
put_ready_blk put_free_blk

get_ready_blk

Bulk Data Transfer QPs

Process

Offload Data

Figure 4-1: RDMA-based Data Transfer Protocol Overview.

4.1 Protocol Overview

The OFED standard supports two types of queue pairs for host-to-host commu-

nication: Reliable Connected (RC) and Unreliable Datagram (UD). Considering

the requirements of performance and reliability, we selected RC queue pairs for

our protocol. The application can divide the entire dataset to be transferred into

large blocks, a feature that usually leads to low processing overhead. On the

other hand, the UD type is supported only in channel semantics, and the block

size is limited by the size of the MTU [63]. A small block size may incur high

CPU consumption, since many small blocks trigger a large number of queue pair

events and interrupts that must be handled at both the data source and sink. In

our protocol, we use one dedicated queue pair for exchanging control messages

between two communicating parties, and one or more for actual data transfer.

Figure 4-1 illustrates how this protocol works. We use an event-driven design

where different types of control message or regular data blocks trigger different

events to be handled by pre-defined event routines.

To fully utilize the RDMA technology, our protocol design incorporates sev-

eral optimizations. Firstly, the protocol keeps multiple data blocks in flight dur-

ing the entire data transfer period. As we mentioned in the previous section, a

high queue depth with several data blocks in flight is the key to achieving good

46

RDMA Write

Operation failed

Task post

success

put_free_blk

RDMA Write
Operation
success

Ready to send

Task post failed

Load data
success

Load data
failed

get_free_blk

Loading

Free

Loaded Start Sending

Waiting

a) FSM of the data source

get_ready_blk
Offload data

failed

Data block transfer
completion notification

Memory

semantic

failed

Request

block

notification

Waiting

Free

Data Ready

Offloading

b) FSM of the data sink

Figure 4-2: User payload block’s finite state machine.

performance. Secondly, the protocol is capable of using parallel queue pairs to

transfer multiple data blocks simultaneously, eliminating the performance limi-

tation of a single queue pair. With multiple queue pairs, there is the possibility

of out-of-order arrivals of data blocks at the data sink. The protocol implemen-

tation must therefore be able to reassemble such out-of-order blocks. Thirdly,

since the protocol uses RDMA WRITE to deliver bulk user payload, credits (to-

kens with destination address) are required before transmitting the data. It takes

one additional round trip time (RTT) if the source explicitly requests credit in-

formation from the data sink. To save this RTT, our protocol adopts an active

feedback mechanism. The data sink will proactively send the available data

block information (credits) to the data source, and the data source keep track of

all available ones.

47

4.2 Finite State Machines Modeling

To better illustrate our protocol, we used a finite state machine to model buffer

blocks and their status at both the data source and sink. In our data transfer

protocol, unlike TCP sockets, the sender does not explicitly copy data from user

space to kernel space. Instead, the sender only posts tasks via the OFED in-

terface, and afterwards the network card directly retrieves data from user space.

With this model, the finite state machine of buffer blocks explains our protocol’s

behavior. In the data source, a block (a chunk of memory resource for storing

data) is initialized into a “free” state. A data transfer application can reserve a

free block by get free blk which changes the state of the reserved block from

“free” to “loading”. The application then loads data from disk directly to the

memory block, and the state then changes from “loading” to “loaded”. Before

the actual data transfer, the data source needs to know the remote memory’s in-

formation, such as the unique identifier (rkey) and memory address of the data

sink. Afterwards, the source encapsulates the block information into a memory

semantic task, and posts it into the send queue. The state then changes from

“Start sending” to “Waiting” if the task is posted successfully. “Waiting” means

the content of the memory block is in flight. After the application polls the sta-

tus of the memory semantic operation, the state is changed to “free” again if

successful or “loaded” for re-sending if polling fails.

A block’s state in the data sink finite state machine changes from free into

waiting once either of the following two kinds of event is retrieved. One is a

block request notification, which means the data source runs out of credits and

is eager to get more credits as soon as possible. The other possible event is a

completion notification of another memory block, which implies that the data

source consumes one credit for that block. For efficient data transfer, a proactive

feedback mechanism sends back one or two credits immediately to avoid the

source running out of credit. A finish notification related to this block changes

48

Event Type (16bits)

Type Associated Data

Session ID (32bits)

Sequence Number (32bits)

Offset (64bits)

User Payload Length (32bits)

Reserved

Payload

Response

Associated Data Length (32bits)

(b)

(a)

Figure 4-3: Message Format of (a) Control message, and (b) User Payload Bulk

Data Block.

its state into “data ready”. The application retrieves a block’s payload from the

protocol layer by get ready blk. After the application consumes the block’s

payload, i.e. offloading data into file system, the block’s state is changed into

“free” again by put free blk.

4.3 Connection Management and Message Format

As described in the previous subsection, the data source and sink manage buffer

blocks and transfer data using asynchronous RDMA operations. Next, we de-

tail connection management and message types during the process of moving

data. Each instance of data movement consists of three phases: (1) Initialization

and parameter negotiation; (2) data transfer and reordering, and (3) connection

teardown. Figure 4-3(a) shows the format of the control message exchanged

through the dedicated control message queue pair, and Figure 4-3(b) shows the

format of the user payload data delivered through multiple data channel queue

pairs.

49

In the first phase before data transfer, the data source sends requests to the

sink to negotiate the block size, number of data channel queue pairs, and session

identifier for each data transfer job.

• Block size negotiation: The data source selects a block size based on

the user’s input parameters, and copies the size information to the field of

“Type Associated Data” of the control message to be sent to the sink. The

sink sends back a reply on whether or not it accepts the block size for data

transfer.

• Number of data channels negotiation: The protocol is designed to sup-

port multiple data channels, even when only transferring a single file. The

source and the sink will exchange messages to agree on and establish a

user-defined number of parallel queue pairs to deliver payload data.

• Session identifier negotiation: Each data transfer job, such as one file,

is assigned a unique session identifier before the data is transferred. This

identifier is placed into the header of every user payload block during the

transfer of data. The application probably issues multiple data transfer

tasks simultaneously. Each task is associated with a global session iden-

tifier which is available in both the source and sink. The sink is able

to reassemble out-of-order blocks and deliver an in-order sequence of

blocks to upper applications according to the session identifier and se-

quence number.

Our protocol supports asynchronous data transfer using OFED, viz., the key

to enabling higher performance over the traditional TCP-based approaches. The

source posts multiple payload data blocks in flight, and the sink actively ac-

knowledges the successful receipt of data and returns the available memory re-

gion for the subsequent data transfer. There are three types of control message

in this phase.

50

• Memory Region (MR) block information request: Once there is no

available remote memory region for storing data before transferring, the

data source sends this message to the data sink to request the next avail-

able memory region. The source is blocked until the sink sends back a

response with MR information.

• Block transfer completion notification: The source sends a completion

notification to notify a data sink that a data block is finished and available

for the sink to read. This notification includes the block’s ID and address,

allowing the data sink to extract the payload from the memory block.

• Memory region block information response: The previous two types of

control messages from the data source trigger the sink to send back any

available memory region information. If the sink gets a memory region

block information request, this indicates the source is idle and waiting

for credits to proceed. The sink sends back one or multiple available ad-

dresses information according to the runtime status of the data transfer. If

the sink gets a block transfer completion notification, the source must

consume an available data address, and the sink grants back, at most, in-

formation on two available memory regions. This results in an exponential

increase in the number of available remote MR in the data source at the

beginning of a data transfer session. Such a design is similar to the slow

start of TCP which allows the data transfer protocol to quickly fill up the

available bandwidth. If at that time there is no available memory region

in the data sink, the completion notification is simply ignored and the sink

does not have to send a response. However, for the memory region block

information request, the sink must send a response once there is at least

one available memory regions. Otherwise, the responder will be delayed

until one becomes available.

Finally, in the teardown phase, the source issues a data set transfer com-

51

pletion message indicating that the whole data set was transferred completely

to the sink.

4.4 Discussion on Scalability

We design the RDMA-based data transfer protocol with the goals to scale the

applications’ performance to high performance networks with high bandwidth

and long latency. In this section we discuss the scalability of our protocol design.

4.4.1 Scalability to Next Generation High Speed Networks

As the increasing network bandwidth in local area networks, end hosts require

more computation resources on data processing and data copy in tradition TCP

based approach. Because TCP/IP based applications rely on kernel level service

as a relay agent, they involves significant amount of data copy, interrupt pro-

cessing, and protocol processing. Our RDMA-based solution takes advantage

of kernel bypass and zero-copy advances to eliminate the data copy overhead.

This enables the protocol to be scalable to high throughput networks with 100

Gbps bandwidth or even higher.

4.4.2 Scalability to Wide Area Networks

In wide area networks, we focus on the scalability with long latency. RDMA

data transfer relies on credit-based mechanism, and it takes one round trip time

(RTT) to get such credits. To get over the impact of long RTT, we proposed a

proactively feedback mechanism and pipelined implementation to overlap data

transfer phase and credit management one. As a result, our protocol is able to

be scalable to wide area networks with long latency.

52

4.5 Evaluation

To validate our protocol and its reference implementation, RFTP (RDMA-enabled

FTP), we conducted comprehensive experimental studies on several LAN and

WAN test environments. We begin this section describing the test configura-

tion based on various RDMA architectures, including RoCE and InfiniBand, in

LAN and WAN network environments. We then compare the performance of

RFTP with GridFTP, a high performance data transfer tool widely used in the

data-intensive science applications.

4.5.1 Testbed Setup

We consider both memory-to-memory and memory-to-disk data transfer be-

tween local and remote hosts. For the former, memory data in the source is

generated from /dev/zero, transferred via RDMA, and copied into /dev/null at

the sink. In this configuration, our focus is to evaluate the performance in terms

of network bandwidth and the efficacy of protocol offloading. We did not ac-

cess the performance of a test scenario with a file system considered since it is

much slowed than our 40 Gbps network testbed. For modern data center appli-

cations, as suggested in [64], it is a reasonable simplification to avoid the disk

I/O bottleneck. We consider a variety of network environments include the LAN

(which plays a key role in today’s data center and cloud computing applications)

and the WAN (which is essential to inter-data center transfers and to upload or

download data to remote clients). The details of our three configurations are as

follows.

To test application performance over different RDMA architectures, we set

up two local-area test platforms. The first one is a back-to-back connection

testbed in Stony Brook University. The propagation delay between hosts is less

than 0.1ms. Each host is equipped with a 40Gbps RoCE HCA. The second

test platform includes two nodes at the NERSC Computational Center. Each

53

Table 4.1: RFTP testbed description

InfniBand

LAN

RoCE

LAN

RoCE

WAN

CPU * Cores

Intel Xeon

X5550

2.67GHz

8 Cores

Intel Xeon

X5650

2.67GHz

12 Cores

ANL: AMD

Opteron Processor

6140 2.6GHz

16 Cores

NERSC: Intel Xeon

E5530 2.40GHz

8 Cores

Mem(GBytes) 48 24
ANL: 64

NERSC: 24

NICs(Gbps) 40 40 10

OS RHEL 5.5 CentOS 6.2
ANL: CentOS 5.7

NERSC: CentOS 6.2

Kernel Version 2.6.18-238 2.6.32-220
ANL: 2.6.32-220

NERSC: 2.6.32.27

OFED Version 1.5.3.1
MLNX OFED

1.5.3
1.5.3

TCP Congestion

Control Algorithm
cubic bic

ANL: cubic

NERSC:htcp

MTU Size 65520 9000 9000

RTT(ms) 0.013 0.025 49

node has a Mellanox InfiniBand HCA interconnected by a 4X QDR InfiniBand

switch, theoretically providing 32 Gb/s of point-to-point bandwidth. The ven-

dor reported that the actual bandwidth is about 25 Gbps during their product

validation.

High-bandwidth long-latency WAN RoCE Testbed

For the WAN test with long-latency links, we used the Advanced Network-

ing Initiative (ANI) 100Gbps testbed1 between Argonne National Laboratory

near Chicago, IL, and the National Energy Research Scientific Computing Cen-

ter (NERSC) in Oakland, CA, about 2000 miles away. The hosts on the ANI

Testbed are equipped with a 10 Gbps RoCE NIC.

1ANI Testbed: http://ani-testbed.lbl.gov/

54

4.5.2 Parameter Configuration and Tuning

For a fair application comparison of these applications, we ran our test cases of

RFTP and GridFTP on the same set of well-tuned hosts, and in a common net-

work environment. Table 4.1 lists the detailed configurations for all the nodes,

in all three testbeds described. To improve the performance of TCP for trans-

ferring bulk data, we tuned the parameters of O.S. kernel, NIC and the host’s

power setup according to the vendor supplied manual [65]. For certain hosts

in the testbeds, we employed some variants of TCP algorithms. But we always

evaluate RFTP and GridFTP with the same TCP variants. The size of MTU

was set to 9000 bytes on all hosts. We also have optimized the configuration of

GridFTP to ensure that it reached the best performance for network link with a

large bandwidth-delay product (BDP). The GridFTP client, the globus-url-copy

with extended block mode (MODE E) [66] was utilized for all data transfer;

authentication was intentionally turned off to minimize the extra cost for data

security. Both the GridFTP client and server here are threaded [67]. The size of

TCP buffer is set to be the BDP of the link, a proven value for the optimal net-

work performance. An important characteristic for GridFTP and RFTP is that

they can both transfer a large file via multiple streams. Since there is no disk

bottleneck in the memory-to-memory test, we transferred one file in each test

case to assess the impact of the number of parallel streams. For the memory-to-

disk test, we created a group of 400GB files spread across multiple RAID disks

to achieve the best performance of the disk system.

4.5.3 Experimental Results over LAN

In this set of experiments, we used memory-to-memory data transfer as the base-

line results to compare the performances of RFTP and GridFTP.

55

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Figure 4-4: Bandwidth and CPU Utilization comparison between GridFTP and

RFTP over RoCE in LAN.

Bandwidth and CPU usage comparison over the RoCE link

We consider the aggregate application bandwidth and CPU utilization as the pri-

mary performance metrics. The performance numbers obtained are as follows.

For each test, we transferred 900GB data with both GridFTP and RFTP. The ag-

gregate bandwidth was obtained by collecting the average transfer performance

of all streams. To calculate the CPU usage, we employed the “nmon” [68] tool

to record the CPU utilization of the application during the entire transfer period,

and then determined the average usage. We note that if the host has 12 cores,

the total CPU utilization can be up to 12×100%.

Figure 4-4 shows the bandwidth and CPU utilization performance of GridFTP

and RFTP over RoCE in LAN, with different block sizes and numbers of streams.

We made the following observations:

56

• RFTP saturates the bare-metal bandwidth with different block sizes while

CPU utilization declines as the block size increases. Block sizes play

an important role in reducing the CPU load, since the number of control

messages and CPU interruptions are fewer with larger blocks.

• Although the data transfer application can load data from /dev/zero with

a high throughput it generates excessive CPU load to reset the memory

content with 0x00s. We monitored the CPU usage of the data loading

thread using the “top” tool, finding that loading data from /dev/zero at

25Gbps leads to a 50% utilization of one core. According to Amdahl’s

law, the improvement to CPU utilization will be limited if loading data

consumes a dominant share of the application’s CPU usage. This is the

case when the block size exceeds a certain threshold; for example, CPU

utilization does not improve further when the block size is increased from

4MB to 64MB.

• A single GridFTP runtime process cannot archive bare-metal bandwidth,

even with multiple streams or large block sizes. After we used the ap-

plication debug tool “strace” to capture the underlying software behavior

of the GridFTP application, we found that GridFTP only used a single

thread to handle regular file operations, such as reading and writing data,

and also network events, such as multiplexing, sending and receiving data.

Consequently, good performance was not achieved once a single CPU be-

came the bottleneck. As shown in Figure 4-4, both the GridFTP client

and server always consume more than 100% of the CPU resource in a

high bandwidth network environment. Furthermore, GridFTP’s perfor-

mance will be limited by a single core, while RFTP can take advantage

of multi-core combined with multi-thread architecture simultaneously to

handle more network events for a better transfer performance.

57

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Figure 4-5: Bandwidth and CPU Utilization comparison between GridFTP and

RFTP over InfiniBand in LAN.

Comparison of Bandwidth and CPU usage with the InfiniBand link

Figure 4-5 compares the bandwidth and CPU utilization between GridFTP and

RFTP in the LAN environment with a 40Gbps InfiniBand link. We ran RFTP

with one stream and eight streams. We also tested GridFTP with a single

TCP connection and eight parallel connections. RFTP consistently outperforms

GridFTP and attains high bandwidth in this setting. We also note that with

RFTP, the bare-metal bandwidth is almost fully utilized when block size is suf-

ficiently large, for example, 512K bytes. The bare-metal bandwidth is limited

by the eight-lane PCI 2.0 (Peripheral Component Interconnect) network adapter.

The observations in the previous section also are applicable in the InfiniBand en-

vironment. In addition, we made two more observations. First, compared with

the results from the RoCE environment, the RFTP consumes less CPU in the

58

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Figure 4-6: Bandwidth and CPU comparison between GridFTP and RFTP over

RoCE in WAN.

InfiniBand environment. The reason is that libibverbs has lower overhead in the

latter environment than that in the former one. Second, GridFTP’s bandwidth

performance fluctuates at different block sizes. This instability again might re-

flect GridFTP’s single thread, and CPU power must be split between loading file

data and network operations.

4.5.4 Experimental Results over WAN

We ran RFTP and GridFTP over the long-haul WAN RoCE link in the ANI

testbed (the DOE’s Advanced Network Initiative). In this set of experiments, we

used both memory-to-memory and memory-to-disk data transfer to demonstrate

the efficacy of our protocol design. Figure 4-6 compared the bandwidth and

CPU utilization with one stream and eight streams. In most cases, RFTP again

59

 0

 20

 40

 60

 80

 100

256KB 1MB 4MB 16MB 64MB
 0

 5

 10

 15

 20

C
P

U
 u

til
iz

at
io

n
(%

)

B
an

dw
id

th
 (

G
bp

s)

Block Size

RFTP Server CPU Usage (/dev/null)
RFTP Server CPU Usage (Disk)

RFTP Bandwidth (/dev/null)
RFTP Bandwidth (Disk)

Figure 4-7: RFTP Bandwidth and CPU utilization comparison between

Memory-to-Memory and Memory-to-Disk.

outperforms GridFTP in getting full bare-metal bandwidth with lower CPU uti-

lization. The reason for bandwidth fluctuation of GridFTP is the same as we

discussed in the previous subsection.

Figure 4-7 shows the bandwidth and CPU utilization of the RFTP server in

the memory-to-memory and memory-to-disk test cases. We enabled the direct

I/O feature of RFTP to save CPU usage and accelerate the RAID disk perfor-

mance. To the best of our knowledge, GridFTP has not yet integrated direct I/O.

Since writing data to disks with standard POSIX I/O consumes much more CPU

time than direct I/O, GridFTP’s performance is not comparable with RFTP using

direct I/O. This figure shows that RFTP maintains the same bandwidth perfor-

mance between memory and disk tests, with slightly higher CPU usage at the

RFTP server since moving data into disk is more CPU intensive than simply

writing into /dev/null. Hence, the design of our protocol and application are

flexible in various testbed environments, including with disk operations.

4.6 Summary

RDMA is known as a promising high-performance protocol offload technique

that supports zero-copy and kernel bypass. Several factors limit the use of

RDMA techniques, including the lack of middleware support to RDMA hard-

60

ware and the lack of efficient protocols to fully utilize the available network

bandwidth. In this chapter, we described our study of the design and perfor-

mance issues of data transfer tools for high-speed networks such as 40 Gbps

Ethernet and InfiniBand. Our work provides an RDMA-based middleware layer

that provides simple resource abstraction and management, task scheduling, and

parallel data transfer. Based on this middleware, we designed a data transfer

protocol that supports high performance flow control and parallel data transfer.

To demonstrate the efficiency of our protocol and software design, we de-

veloped a reference implementation for the proposed FTP protocol. We set up

testbeds with various RDMA technologies in various network environments to

cover many different real-life data transfer scenarios. In particular, we demon-

strated the performance of our protocol over the Department of Energy’s ANI

Testbed that includes multiple 10Gbps RoCE links over a 2000 mile path. The

experiments show that our protocol and its intelligent design achieved remark-

able bandwidth performance and fully maximized the RDMA hardware capaci-

ties.

61

Chapter 5

NUMA-Aware Cache for Storage

Area Networks

Data centers often use non-uniform memory access (NUMA) technology to in-

crease computation density per host and construct high-speed networks to offer

low latency and high throughput for distributed applications. The asymmet-

ric memory topology in NUMA systems results in a performance disparity in

accessing different memory banks, and this disparity grows larger with an in-

creasing number of CPUs per system, as shown in Figure 5-1. Meanwhile, two

types of modern networks, modern intra data center high-speed interconnects

between storage nodes and computer serves and communication networks in-

cluding LAN and WAN, had significant technology improvements in the past

decade, and shortened the throughput gap between memory and network ac-

cesses. Under several circumstances, the interconnect’s performance even sur-

passed that of the inefficient NUMA-agnostic memory accesses, and thereby

rendered memory access a new bottleneck along the end-to-end I/O path. For

example, the current memory caching design in storage servers is affected by

this problem and restricts the performance of end-to-end data access path.

In this chapter, we first analyze the I/O cost of iSCSI systems. Then we

elaborate the design and implementation of a NUMA-aware cache for iSCSI

62

Host

Node 2 Node 3

Node 1 Node 0

T

src

dst

T

src dst

OS Default Solution NUMA-aware Solution

Figure 5-1: Memory copy routine on a four-node NUMA host.

systems. We further enhance the parallel capability to process the requests by

introducing the decentralized event processing model to storage server. We also

evaluate our design with both synthetic and real-life workloads.

5.1 I/O Cost Analysis with iSCSI

To illustrate how NUMA-aware caching improves the performance of SAN sys-

tems, we analyze the I/O cost associated with the iSCSI and iSER protocols.

We focus on two performance metrics in serving cached data in the iSCSI/iSER

systems. One is the response time (or processing time) of an individual request.

It is important for real-time applications to get prompt response from backend

storage systems. The other one is aggregated iSCSI system throughput which is

critical for data-intensive applications to get high bandwidth.

5.1.1 Processing Time and Throughput Modeling

Let us first consider the processing time of an individual I/O request. Processing

time measures the total time between when the I/O request is sent (i.e., passed

to the network layer of an initiator) and when the last byte of the response data

63

is received. For a read request resulting in a cache hit, the processing time is

approximately the sum of four latencies shown by Equation (5.1): 1) the propa-

gation delay of the request and response that is equivalent to one round trip time

(RTT); 2) memory access latency to copy data from either the NUMA-aware

cache or OS page cache to the target’s network buffer, which can be calculated

as the size of data divided by memory bandwidth; 3) network transmission la-

tency; and 4) queuing delay.

ProcessingTime = RT T +
I/OSize

MemoryBandwidth

+
I/OSize

NetworkBandwidth

+QueuingDelay

(5.1)

In addition, we formulate aggregated throughput performance when the sys-

tem is under the stress test with data-intensive applications. In this case, both

system memory and network can be bottlenecks. Consequently, the overall

throughput could be defined as min(MemoryBandwidth,NetworkBandwidth).

5.1.2 The Impact of Queuing Delay

The queuing delay is an important element in heavy-loaded systems. First, the

queuing delay contributes to the processing time of each request: The higher

the IOPS (IO requests per second) is, the more requests are queued up and the

longer queuing delay contributes to the entire processing time. Second, the total

bandwidth is determined by the bottleneck section along the data path. For ex-

ample, even though there are many requests in queue before they are responded

and served, the total bandwidth is still determined by network adapter’s capac-

ity if network is the bottleneck. In this case, the queuing delay is a result of the

bottleneck section.

64

5.1.3 Cost Analysis with Our Testbed System

In storage area networks, previous tuning approaches focused on network sys-

tems, as network was the dominant bottleneck for both latency and through-

put. For example, memory bandwidth, usually 1 GB/s to 20 GB/s [69], was a

factor of ten or more faster than the network transmission speed of early giga-

bit networks; memory access latency was measured in the scale of microsec-

ond, while network was measured in milliseconds. However, 40 Gbps quad

data rate (QDR), 56 Gbps fourteen data rate (FDR), and 100 Gbps enhanced

data rate (EDR) InfiniBand and converged Ethernet bridge the performance gap

between network and memory. The increase in network bandwidth greatly re-

duces the transmission latency within LAN, and therefore, the latency and band-

width of memory copy become significant and can no longer be ignored. Fur-

thermore, the performance ratios of bandwidth and latency between local and

remote memory accesses vary from 1.5 to 5.5 within a 4-node NUMA sys-

tem [70]. Therefore, memory access likely can become a new bottleneck in

modern NUMA hosts if not carefully optimized.

We look into the memory portion of Equation (5.1), and derive the average

memory-related latencies and bandwidth for applications with page cache or

NUMA-aware cache, respectively. Due to the imbalance in memory access in a

NUMA system, we define the average memory bandwidth of an application as a

weighted sum of all nodes’ memory bandwidth, as shown in Equation (5.2). In

the performance model of a page cache in a NUMA system, the source memory

location of cached data and the destination (network buffer) location are uni-

formly distributed across all NUMA nodes. Meanwhile, the performing thread

is not aware of those memory locations. Therefore, the Weight of each node

is equal to any other node: 1/n, e.g., 25% for each node in a 4-node NUMA

system. In contrast, our NUMA-aware solution aims to increase the Weight of

local memory access and decrease that of remote memory access. The perfor-

65

mance gain on memory access in the NUMA-aware solution is determined by

the performance disparity between local and remote access and the increment

on the Weight of local memory.

MemBWCachedData =
n

∑
i=0

Weighti ∗MemBW i (5.2)

We did preliminary experiments in a 4-node NUMA system to validate the

aforementioned analysis. The local memory bandwidth is about 18.9 GB/s,

while the memory bandwidths for three remote nodes are about 3.3 GB/s, 2.9

GB/s, and 3.3 GB/s, respectively. The detailed performance analysis can be

found in [27, 30]. According to Equation (5.2), the memory bandwidth for an

application using the default page cache is about 7.1 GB/s. If the NUMA-aware

solution achieves 90% access to be local, i.e. Weight of local access = 90%,

the memory bandwidth for an application is about 17.32 GB/s. Furthermore,

NUMA-aware cache may reduce the processing time of each individual I/O re-

quest by 20% as compared to the default page cache. We present and discuss

the synthetic and real-life experimental performance results in Section 5.4 and

Section 5.5.

5.2 NUMA-aware Cache Design and Implementa-

tion

In this section, we describe our NUMA-aware cache solution, including cache

memory organization, I/O request scheduling methods, and I/O interpreting

function.

66

Figure 5-2: Construct a NUMA-aware solution for the master-worker threads

model.

5.2.1 Software Overview

We design and implement NUMA-aware cache based on the latest version of

Linux SCSI Target Framework. The existing framework employs a master-

worker model to achieve parallelism in serving concurrent I/O requests in a

multi-core system. A daemon process of the framework, named tgtd, manages

multiple logical units in iSCSI, and exports each logical unit as a disk drive to

the corresponding front-end initiator(s). Each logical unit is assigned to a group

of dedicated worker threads. Here we use an example of serving an I/O request

to illustrate the mechanism of the master-worker thread model in the existing

framework. The master thread manages multiple network connections from

several initiators. It receives an iSCSI command from one network connection,

identifies the corresponding logical unit number (LUN), and then dispatches

the command to the iSCSI command list associated with the requested LUN.

A worker thread for the corresponding LUN retrieves the I/O request from the

command list, and initiates a read or write operation. In the event of a cache hit,

the worker thread copies data from the OS page cache into an available network

buffer, and subsequently sends it to the initiator.

67

To construct a NUMA-aware cache for the framework, we consider the fol-

lowing requirements:

• Performance scalability. The cached data of a logical unit is evenly dis-

tributed across all the NUMA nodes to scale performance and balance

system loads. Meanwhile, the overhead of managing cache should not

increase with the number of NUMA nodes on a large multi-core server.

• NUMA-awareness on cached data. The memory location of target data

can be calculated for an incoming request that happens to be cache-hit,

i.e., with its starting address and data length.

• NUMA-awareness on worker threads. Because of the performance

scalability requirement, each NUMA-node handles a fraction of all re-

quests. Therefore, a group of worker threads in each NUMA node handles

corresponding requests to each logical unit.

• NUMA-awareness on network buffers. Network buffers are the desti-

nation memory locations for buffering the requested data before sending

them over networks. The framework needs to allocate a group of dedi-

cated networks buffers on each NUMA-node.

• Avoiding potential bottlenecks. The NUMA-aware solution improves

access performance by minimizing remote accesses. Meanwhile, it also

introduces several types of inevitable overhead. For example, NUMA-

awareness on cached data means there should be a procedure to identify

the relevant NUMA node. This additional procedure may lead to a fixed

amount of latency for every I/O request. Therefore, we need to take such

a potential overhead into consideration in the system design.

To meet these requirements, we reconsider the model of master-worker threads

with an integrated storage cache and network buffer allocation. As depicted in

68

Figure 5-3: Software architecture of NUMA-aware cache. It achieves NUMA-

awareness for iSCSI I/O accesses.

Figure 5-2, each NUMA node contains its own NUMA-aware cache, network

buffers, and worker thread groups. Different from the existing framework, the

worker threads in our model try to copy data from their local cache to a lo-

cal network buffer in a cache-hit case. As all three entities involved in the I/O

request are in the same NUMA node, the framework is able to gain the best

performance to serve cached data. We use libnuma [71] in our implementation,

the de facto library for Linux NUMA programming at the user level, which

schedules threads and binds memory regions to a specified NUMA node.

5.2.2 Cache Organization

We first describe the cache organization in our design. In a NUMA host, each

NUMA node maintains a cache region in its local memory banks. The SCSI

storage corresponds to a storage address space that consists of one or more log-

ical units, which are further divided into many data blocks, each of which has a

unique “cache block number”. A cache region can host many cache blocks, and

each of them is used to cache one data block belonging to a logical unit. Here,

69

“cache block” is the unit of operation to our proposed cache.

Instead of allocating a single cache partition per NUMA node, a practice

which is commonly adopted by others, we organize each NUMA node’s cache

into a number of “cache partitions”, each of which is an independent, fully

associative cache area that manages cache blocks with several different types

of data structure, e.g., a hash table for valid caches, a linked list for invalid

caches (i.e., empty buffers), and a linked list for LRU replacement candidates,

as shown in Figure 5-3. This cache partitioning method has several advantages

over the single partition approach. First, it eliminates contention from a global

lock per NUMA node. With one cache partition per NUMA node, multiple

worker threads compete for a global lock and wait for a critical section, thereby

creating a bottleneck. To overcome this drawback, we chose to use a multi-

partitioned approach with locks of smaller granularities. Multi-partitioning can

also reduce hash collisions in comparison with a single partition. It is scalable

to various systems, as its number of cache blocks is manageable within each

cache partition, regardless of the total memory capacity of a particular system.

By hashing its cache block number, a cache block is associated with a unique

partition. The hash function plays a critical role in improving cache perfor-

mance. In our initial cache design, the hash function striped neighboring cache

blocks into neighboring partitions with a modulo operation, i.e., Partition ID of

a Cache Block = Cache Block Number mod Number of Partitions. When this

method was applied to serve a large I/O request with a small cache block size, it

led to excessive locking and unlocking contentions. For example, processing a

512 KB request with 4 KB cache block size required 128 partitions, and hence

128 locking and unlocking operations. To solve this problem, our current hash

function carefully places a group of neighboring cache blocks in the same cache

partition: Partition ID of a Cache Block = (Cache Block Number / Number of

Neighbouring Blocks per group) mod Number of Partitions. In the previous

example, if 128 neighboring cache blocks are configured within the same parti-

70

Figure 5-4: I/O request decomposition. In this 2-node NUMA system example,

NUMA node 0 will be chosen because it has a better affinity to handle this I/O

request.

tion, then a 512 KB request involves at most two partitions and two locking and

unlocking operations.

Finally, our software also allocates a number of network buffers in user

space at each NUMA node for both TCP/IP and RDMA network communica-

tion. When serving a request, it chooses a network buffer in the same local node

of the designated worker thread. To avoid the overhead of dynamic memory al-

location and release, our software pre-allocates both cache blocks and network

buffers, and makes repeated use of them afterward.

5.2.3 Routing I/O Tasks to NUMA Nodes

As an I/O request arrives at the target host, the framework needs to interpret the

request and to determine which NUMA node has the closest affinity to handle

this request. To understand this interpretation step, we revisit the address space

of an iSCSI storage system. The backend storage of a target consists of an array

of hard drives or NAND-based flash memory that can be accessed via physical

block addresses. The iSCSI target exports each backend storage device as a

series of logical blocks, and an initiator addresses an iSCSI device by logical

71

block address (LBA). The size of a logical block is configured to be a multiply

of physical block size. A cache block, described in the previous subsection,

further contains one or several logical blocks.

Algorithm 1: I/O interpreting routine for calculating closest affinity

NUMA node
Input: LOGICAL BLOCK ADDRESS, I/O LENGTH

Output: A CLOSEST AFFINITY NODE, SUB I/O REQUESTS

1 n← number of Sub I/O Requests

2 m← number of NUMA nodes in the host

3 create affinity array, a f f [], with size m

4 create sub IO requests array, sio[], with size n

5 for i← 1 to n do

6 Calculate cache operation related parameters for cache hit

7 Calculate disk operation related parameters for cache miss

8 Calculate PARTITION ID by hashing the Cache Block Number

9 Calculate NUMA NODE ID of sio[i] according to PARTITION ID

10 Accumulate I/O length of sio[i] to a f f [NUMA NODE ID]

11 set CLOSEST AFFINITY NODE to the node with the maximum value in

a f f []
12 return CLOSEST AFFINITY NODE

In practice, the data size of an I/O request varies. A large I/O request in-

volving multiple cached blocks may spread across multiple cache partitions, as

shown in Figure 5-4. The NUMA-aware cache decomposes the request into sev-

eral independent sub-requests by Algorithm 1, and each sub-request is aligned

with a cache block. To minimize data transfer between NUMA nodes, the al-

gorithm chooses the node with the best locality (i.e. the node with the largest

number of related cached data blocks) to process the request, schedule the re-

quest there, and aggregate all related cache data to a network buffer associated

with the chosen NUMA node. For instance, in the situation depicted by Fig-

ure 5-4, the algorithm would choose node 0. Algorithm 1 involves complex

address translation: Its processing time increases linearly with the number of

sub-requests that belong to the same I/O request, and therefore could itself be-

come a performance bottleneck.

72

After an I/O request has been forwarded to the NUMA node with the closest

affinity, a worker thread running on that node will search for the requested data

in the cache, and perform a memory copy on a cache hit and disk operations

on a cache miss. We note that the NUMA-aware cache utilizes direct I/O by

setting the O DIRECT flag in Linux to bypass the page cache at the kernel level

and accelerate data loading from disks to user memory directly.

5.2.4 Placement of the I/O Interpreting Function

Given the complexity of the I/O interpreting function, its placement also affects

the feasibility of NUMA-aware caching and must be addressed carefully. We

consider three different methods for placing this function:

• First, the master thread executes the interpretation routine and then dis-

patches the request to a worker thread on the selected NUMA node. Since

the single master thread is already shared by all LUNs, this extra computation-

intensive dispatching task could potentially create a bottleneck, and thus

affect the overall system performance.

• Second, the master-worker architecture can be extended to a three-tier,

master-scheduler-worker architecture. A group of dedicated scheduler

threads could be arranged between the master thread and worker threads.

The master thread immediately sends an incoming request to a randomly

chosen scheduler thread. The scheduler thread executes the I/O interpret-

ing routine, and forwards the request to a worker thread at the NUMA

node with the closest affinity.

• Third, the master thread sends the request to a worker thread on a ran-

domly chosen NUMA node. After performing the I/O interpreting rou-

tine, the worker thread either serves the request if its local NUMA node

has the closest affinity, or forwards the request to the corresponding NUMA

73

node, as shown in Figure 5-3. Note that in this method, to avoid a dupli-

cated interpreting routine from being executed again, we turn on a flag

when the request is forwarded to the target NUMA node.

Our preliminary tests showed that the first approach increases the load of the

master thread’s CPU to 100% with many small I/O requests that are less than

32KB. The second and third approaches essentially adopt a similar distributed

re-scheduling method, but with slightly different implementations. The third

one relies on intelligent worker threads to avoid a forwarding operation if the

first randomly picked worker thread affiliates with the corresponding NUMA

node. We chose the third approach in our customized framework.

5.2.5 Discussions on Overhead and Scalability

Our NUMA-aware solution significantly reduces remote memory accesses and

leads to efficient memory copies when serving cached data. However, it also

introduces extra computation and scheduling overheads. Hence, there is a trade-

off between the benefit of NUMA-aware memory access and overhead. On one

hand, to enable NUMA-aware memory organization and thread placement, the

I/O interpreting and forwarding functions are indispensable and incur overhead

in terms of I/O latency and CPU consumption. On the other hand, this overhead

is compensated when I/O requests are larger, and the performance improvement

from local memory access surpasses the overhead. In summary, the tradeoff is

determined by the size of I/O requests: The larger I/O request size means the

greater benefits realized with the NUMA-aware solution.

Software scalability is another consideration in our design. First, we divide

each NUMA node’s memory into partitions, and each partition has its own data

structure to maintain its status. This avoids competition on a global data struc-

ture in a non-partitioned solution, and thereby increases efficiency and flexibility

in serving concurrent requests. Second, as we described, we also carefully de-

74

sign our hashing method for placing cache blocks, such that neighboring cache

blocks fall into the same partition. This optimized design reduces the overhead

of locking/unlocking cache partitions. In summary, our design is scalable to

large NUMA systems.

5.3 Decentralized Event Processing

The scalability of the I/O event processing becomes critical in IOPS-bound

workloads, such as those with many small I/O requests. Modern network de-

vice can deliver millions of requests per second, and each request often incurs

several I/O events, such as request arrival event and response completion event.

This demands an efficient processing model that has scalable software process-

ing performance even with many intensive I/O events.

The standard iSCSI/iSER software uses a centralized single-threaded event

processing model, as shown in Figure 5-2. The master thread is responsible for

processing and scheduling all the I/O events related to the requests from multi-

ple initiators. Although the forwarding mechanism, presented in section 5.2.4,

offloads the data affinity calculation from the master thread to worker threads,

the master thread in such a model still constitutes a severe bottleneck for pro-

cessing IOPS-bound workloads.

In this section, we present a decentralized event processing model to further

improve the iSCSI server’s performance in term of IOPS which is particularly

important to process a huge number of small-scale requests. This design cre-

ates multiple event processing threads to better utilize multi-core computing

resources. It not only benefits the overall processing throughput, but also binds

the event processing thread to the affiliated CPU core to reduce event detecting

latency. In addition, the decentralized design ensures load balance for the whole

storage system because it distribute CPU-intensive event processing procedure

to all NUMA nodes.

75

Figure 5-5: Event processing model in the standard iSCSI/iSER software.

5.3.1 Scalability Limitations in Standard iSCSI/iSER Servers

The conventional software design principle assumes that CPU is alway much

faster than I/O devices in terms of throughput and latency. Therefore, the num-

ber of I/O event thread is much smaller than that of I/O operation thread. This

principle broadly influences the web server design and implementation. For

example, Nginx, a popular open-source web server implementation, uses an

asynchronous event-driven approach to handling requests [72]. There is no ded-

icated I/O thread in the Nginx implementation: it assumes web server to be

always I/O-bound and uses asynchronous I/O to overlap computing tasks and

I/O tasks.

In the standard iSCSI/iSER server design, it uses a single master thread to

detect and process I/O events that are generated by multiple clients, and deploy

multiple I/O helper threads to perform read and write operations, as shown in

Figure 5-5. This model worked for non-NUMA hosts and the single master

thread can keep up with I/O performance because the I/O processing is always

the bottleneck along the end-to-end path, and CPU is much faster than networks

and disks. The master thread is the only entity that manages and controls the

resources including connections and event queues. Therefore, the access on

such resources can be lockless. Lockless resource operations simplify the event

76

processing implementation and maximize the full capability of a single CPU

core. The state-of-the-art storage media, such as SSD, can deliver millions I/Os

per second, and the I/O worker threads are not the bottleneck in such cases,

while the master thread becomes the new bottleneck. Therefore, we need a new

design to scale the master thread’s capability on event processing.

5.3.2 Events Categories in iSCSI/iSER Servers

To scale up event handling in a multi-core system, we need to re-think the event

processing model in iSCSI/iSER servers. We first present the event categories

in iSCSI/iSER servers.

• Incoming connection event. Before performing actual iSCSI I/O oper-

ations, the initiator connects to the target, and triggers an incoming con-

nection event. To handle this type of event, the iSCSI/iSER target server

checks the eligibility of the connection by applying a white-list rule: each

storage target media is configured to be available for a group of legiti-

mate initiators. Afterward the server process allocates resources for the

initiator, such as file descriptors and command lists.

• Management I/O request event. There are two types of I/O requests:

management and data. Management I/O requests retrieve the properties

of one particular storage media, such as block size and storage capacity.

This meta data of storage is often handled by the master event thread

instead of an I/O thread.

• Data I/O request event. Another type of I/O request is block-layer Data

I/O request. For example, in the RDMA based iSER implementation, the

initiator first submits requests using RDMA two-sided operations. The

server detects incoming requests by checking the completion status of its

receiving queue. Once a new requests arrives and is fetched from the

77

receiving queue, the server process parses the incoming request, and then

retrieve data from (I/O write request) or send data to (I/O read request)

the initiator.

• I/O scheduling event. In responding to an Incoming I/O request event,

the iSCSI server divides the processing into multiple steps: I/O polling

step, I/O submission step, and network transmission step. These steps,

each of which is represented as an event, are queued in the list of schedul-

ing events, as shown in Figure 5-5. An event thread processes multiple

scheduling events in a batch to better utilize CPU resources.

• Inter-thread communication event. The master event thread and the

I/O thread need inter-thread communication to synchronize I/O tasks.

Because the inter-thread communication based on event queue involves

block-and-wait operations, the standard programming model creates a

helper thread for transforming the blocking operation to the event-driven

Operating System pipe operation. Here pipe is a technique for passing in-

formation from one program process to another, or one thread to another.

As a result, the master event thread also needs to manage the inter-thread

communication event to check the availability of finished I/O requests.

5.3.3 Decentralized Event Processing Model

The event-driven paradigm constructs an event pool that tracks all resource han-

dlers (i.e. file descriptors) and leverages multiplex interfaces, such as select

and epoll, to detect I/O events associate with these resources. The standard

iSCSI/iSER software relies on only one event pool managing multiple resources

Although the master event thread can detect multiple concurrent events with a

single event detecting call, the detected events are processed sequentially in the

standard implementation.

78

Figure 5-6: Decentralized event processing Model for the iSCSI/iSER servers.

We propose a decentralized event processing model to ensure high concur-

rency in event processing for iSCSI/iSER servers. The core idea is to design

a parallel event processing model and to distribute many I/O related events to

parallel threads on multi-core systems as fast as possible. To this end, for each

logical unit, we create a group of threads to handle related I/O events and I/O op-

erations. Different logical units can process their I/O events exclusively and in

parallel. We enumerate three different aspects between our decentralized model

and the standard one as follows:

First, each logical unit has a dedicated event processing thread. As shown

in Figure 5-8, once the master thread detects an incoming connection event,

it constructs a new event pool. In the iSER implementation, each initiator has

two resource handler: a connection file descriptor and a completion channel

descriptor. The event thread manages these two types of resource and uses the

epoll system call to detect the upcoming events. Different logical units and

initiators are managed by different event threads, and therefore this design can

parallelize the event processing.

Second, each logical unit has a dedicated acknowledgement thread in the

79

Figure 5-7: Centralized processing for RDMA network events.

decentralized solution, which is in contrast to the single threaded solution for

the standard iSCSI server. The acknowledgement thread, also termed a helper

thread, translates the completion of a series of RDMA network events into the

corresponding I/O scheduling events, and queues them into the event queue for

the designated logic unit. This acknowledgement thread utilizes an OS pipe

utility to trigger I/O events, to pass the transfer status information back to the

storage system, and to wake up the event thread dedicated to a logic unit.

Third, the decentralized design creates private network buffers for each ini-

tiator connection to attain lockless operations on buffer management and max-

imize parallelization. This is different from the standard iSCSI/iSER design

where a single network buffer pool is shared by multiple initiators. In our de-

sign, when a new connection event arrives, the device master thread acquires a

group of network buffers from the global network buffer pool, and use them re-

peatly during the life time of connection. The device master thread of a connec-

tion returns the network buffers to the global pool upon a disconnection event.

In summary, this decentralized event processing model improves the scal-

ability of event processing in a multi-core environment by employing multiple

event processing threads.

80

Figure 5-8: Decentralized processing for RDMA network events.

5.3.4 RDMA Network Events Processing

The iSER protocol has a sophisticated mechanism for processing network events

as each I/O request triggers at least three RDMA operations. For example,

to read data from a target, an initiator sends a request to the target using the

two-sided SEND/RECEIVE semantics. Upon the request arrival, the target pro-

cess issues an RDMA write to send data back to the initiator. The target com-

poses another notification event and sends it to the initiator using a two-sided

SEND/RECEIVE operation. More importantly, the three RDMA operations are

asynchronous and their completion events are delivered through a shared com-

pletion queue. As shown in Figure 5-7, the single completion event channel is

responsible to deliver all completion events from several connection pairs in the

entire target system, and presents a bottleneck in a multi-core system.

We allocate multiple completion channels for different initiator connections,

named queue pairs in the RDMA context, and associate a dedicated completion

queue to each completion channel, as shown in Figure 5-8. Each completion

channel belongs to a particular event pool managed by the event thread for an

initiator. In addition, one server may contains multiple network interfaces, each

of which is attached to different NUMA nodes. We bind the event thread to the

CPU core that has the closest affinity to the network interface card for transfer-

ring data between the target/initiator pair. This greatly shortens the event deliver

81

Table 5.1: Testbed configuration for NUMA-aware cache

Target

Dell R820

Initiator

IBM x3650

Initiator

HP DL380

CPU * Cores

Intel Xeon

E5-4620

2.20GHz

32 Cores

Intel Xeon

E5-2660

2.20GHz

16 Cores

Intel Xeon

E5-2650

2.00GHz

16 Cores

NUMA nodes 4 2 2

QPI Speed (GT/s) 7.2 8 8

Memory(GB) 768 128 384

Local Memory

Bandwidth (GB/s)1 18.71 25.21 20.62

Remote Memory

Bandwidth (GB/s)2 3.26 13.99 11.40

Max Memory

Bandwidth (GB/s)3 42.6 51.2 51.2

Network

Adapters

56Gbps

IB FDR

56Gbps

IB FDR

56Gbps

IB FDR

OS CentOS 6.3 CentOS 6.3 CentOS 6.3

Kernel Version 2.6.32-279 2.6.32-279 2.6.32-279

MLNX OFED

Version
1.5.3-3.1.0 1.5.3-3.1.0 1.5.3-3.1.0

MTU Size (IB) 65520 65520 65520

RTT(ms) 0.07 0.07 0.07

1,2 The practical memory bandwidth is from the multi-threaded

STREAM benchmark;
3 The theoretical maximum memory bandwidth is from

http://ark.intel.com;

path and minimizes the NUMA overhead.

5.4 Evaluation with Synthetic Workloads

In this section, we study the effects of NUMA-aware caching using synthetic

workloads by comparing it with the default OS page cache available on the cur-

rent storage servers. Our goal is to confirm the intuitive discussion presented in

Section 5.1. We conduct different sets of experiments with synthetic workloads.

82

5.4.1 System Setup

Our iSCSI-based SAN testbed consists of four initiators and a target connected

to a stand-alone InfiniBand storage fabric. All hosts are equipped with two Mel-

lanox ConnectX-3 FDR InfiniBand adapters which all connect to a Mellanox

SX6018 FDR InfiniBand switch. All hosts use the Intel sandy-bridge chipset

which supports PCI Express Gen3. We set up a 4-node Dell R820 as the tar-

get server. Each NUMA node contains an eight-core Intel Xeon E5-4620 CPU

with 16-MB shared L3 cache and 192 GB local main memory for a total of 768

GB main memory. All NUMA nodes are interconnected via QPI I/O bus for

inter-node traffic. The internal disk array has an aggregate capacity of 3.3 TB.

Configurations details for all the hosts are shown in Table 5.1.

To serve multiple initiators simultaneously, we export a dedicated portion of

disk space, a.k.a. a logical unit, from the target to each initiator. We use XFS file

system to format the entire target disk array and create eight pre-allocated 300

GB files as logical units. Each logical unit goes through a dedicated adapter,

while all the devices share a global NUMA-aware cache.

We use Flexible I/O Tester (fio) [32], an I/O benchmark with a number

of fine-grained parameters, including I/O engine, block size, and random dis-

tribution of I/O sequences. It also reports I/O performance statistics including

bandwidth, IOPS, CPU usage, and I/O latency. To eliminate the thread and

memory migration overhead in on the initiator side and ensure a fair compar-

ison, we integrate the libnuma into fio and statically place each thread of a

single experiment into the same node, using the same CPU cores and memory

banks. On the target side, we use the “nmon” tool to record the CPU utilization

by application during each experiment.

83

 0

 100

 200

 300

 400

 500

 600

 700

4 KB
8 KB

16 KB

32 KB

64 KB

128 KB

256 KB

512 KB

P
ro

ce
ss

in
g

T
im

e
(m

ic
ro

se
co

nd
)

Size of I/O requests

NUMA-aware Cache
OS Page Cache

Figure 5-9: Processing time of I/O requests with different sizes.

5.4.2 Evaluation of Request Processing Time

In the first set of experiments, we investigate the NUMA effect on the request

processing time of the iSCSI/iSER protocol. The processing time for each sin-

gle I/O request is formulated in Section 5.1. We preload a 720GB dataset into

the NUMA-aware cache or the page cache by sequentially reading data from

disks. For the NUMA-aware cache, the data is evenly distributed across all the

NUMA nodes according to the partitioning and hashing method. For the page

cache, the dataset is cached inside the kernel memory by default provided that

sufficient space is in the testbed. To simulate how I/O is handled by a real sys-

tem, we use numactl to interleave the page cache in several NUMA nodes. For

the NUMA-aware cache, we set a 512 KB cache block size, 36 partitions in

each NUMA node, and every four consecutive (neighboring) cache blocks in

the same partition. To eliminate the effect of CPU register cache on data re-use

and prefetching, we randomly access data and assign a unique random seed (by

setting randrepeat=0 in fio) in each run of the experiments. The test cases

include I/O requests ranging from 4 KB to 512 KB.

In each test case, we run fio for 300 seconds with a fixed rate of 10 IOPS,

84

 0

 100

 200

 300

 400

 500

 600

 700

 800

256 KB 512 KB

P
ro

ce
ss

in
g

T
im

e
(m

ic
ro

se
co

nd
)

I/O Request Size

Cache Block Size - 4 KB
16 KB
64 KB

256 KB
512 KB

Figure 5-10: Processing time with various cache block sizes.

and obtain performance statistics for processing time, as shown in Figure 5-9.

We have made the following observations. First, the NUMA-aware cache re-

duces average processing time by about 13% to 23%, for 256 KB and 512 KB

requests, respectively. Second, the actual improvement on memory access la-

tency is more pronounced with large I/O requests. These two observations con-

firm the calculated result by Equation (5.1), i.e., with both cache methods, the

processing time includes a fixed RTT between initiators and target (about 70

microseconds), a fixed network transmission time (about 156 microseconds for

a 512 KB block), and queuing delay (about 30 to 50 microsecond for 512 KB

blocks at 10 IOPS rate). According to Equation (5.1), the average memory ac-

cess latency can be reduced by about 66% in the best case scenario with our

NUMA-aware cache with large I/O requests. Third, with small I/O requests

(4 KB to 32 KB), the overhead of NUMA-aware modules outweighs the ben-

efit of NUMA-aware memory accesses. In these test cases, we configure the

NUMA-aware cache to avoid the overhead of forwarding I/Os. As a result, the

NUMA-aware cache and the page cache demonstrate a compatible processing

time even for small I/O requests, as shown in Figure 5-9.

85

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

T
hr

ou
gh

pu
t (

M
B

/s
)

(note: X-axis is the number of concurrent threads on each logical unit with different block sizes.)

NUMA-aware Cache
OS Page Cache

1024k512k256k128k64k32k16k

(a) Throughput Comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

C
P

U
 U

til
iz

at
io

n

(note: Gray bar represents NUMA-aware Cache and black bar represents OS Page Cache.)
1024KB512KB256KB128KB64KB32KB16KB

(b) CPU Utilization Comparison

Figure 5-11: Throughput and CPU utilization comparison between NUMA-

aware cache and page cache with random access pattern.

In addition, we investigate the effect of cache block size for large I/O re-

quests. As described in subsection 5.2.2, the hash function places neighbor-

ing cache blocks into the same partition to reduce the overhead of locking and

unlocking multiple partitions related to a given I/O request. As shown in Fig-

ure 5-10, there is no notable difference in processing time for an identical I/O

request with different cache block sizes. This validates our choice with regard

to the hash function.

5.4.3 Random Access on Fully Cached Data

In this set of experiments, we evaluate the aggregate throughput of the whole

system with I/O requests ranging from 16 KB to 512 KB. At each initiator, we

run parallel I/O threads to generate contention workloads. We use the same

86

method, as mentioned in the last section, to load data from disk to memory and

spread data across all the NUMA nodes in the target. We configure 400 GB

cache memory in total, and load 50 GB memory for each logical unit. To avoid

any CPU cache effect, each I/O thread is assigned with a unique random seed.

The tgtd process is configured with 16 worker threads for each logical unit.

For the NUMA-aware cache, we set 10 partitions in each NUMA node, and

each partition manages 10 GB memory with 512 KB cache blocks.

Figure 5-11 shows the aggregate read throughput and corresponding CPU

utilization performance of both NUMA-aware cache and page cache. We have

made the following observations:

• For requests larger than 64 KB, tgtd with the NUMA-aware cache out-

performs the standard tgtd with the page cache by up to 80%. This im-

provement is more impressive than the 20% reduction in processing time.

Under the stressed/overloaded condition, the page cache inevitably incurs

more inter-node traffic, such as remote memory access and CPU cache

synchronization by the MESI (Modified-Exclusive-Shared-Invalid) pro-

tocol, than the NUMA-aware cache in the target host. The page cache

generates more contention and congestion on QPI and suffers longer la-

tency. On the other hand, with the NUMA-aware cache, tgtd is able

to saturate network bandwidth with the appropriate cache block size and

number of parallel I/O threads.

• For smaller I/O requests, such as those for 16 KB and 32 KB, the overhead

of remote memory access in the page cache is less than that of Algorithm 1

and the I/O forwarding in NUMA-aware cache. Thus, the size of I/O

requests plays an important role in determining the tradeoff between the

NUMA-aware cache and the OS page cache.

• Finally, the NUMA-aware cache reduces CPU load in all our experiments,

as remote memory access incurs a synchronization cost in NUMA sys-

87

 0

 200

 400

 600

 800

 1000

1 2 4 8 16 32 64

T
ho

us
an

d
R

eq
ue

st
 P

er
 S

ec
on

d

of Parallel Clients (Disks)

Decentralized Event Model
Standard iSCSI

(a) Throughput Comparison

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16 32 64

C
P

U
 U

til
iz

at
io

n
(%

)

of Parallel Clients (Disks)

Decentralized Event Model
Standard iSCSI

(b) CPU Utilization Comparison

Figure 5-12: Throughput and CPU utilization comparison between the decen-

tralized event processing and the standard one with random accesses. The ex-

periments use 512-byte I/O read requests, and the dataset is cached entirely in

the target main memory.

tems and leads to higher CPU consumption. Here, each fully occupied

CPU core is shown with 100% CPU utilization, and the total CPU utiliza-

tion can be up to 32× 100% on the 32-core target host. In experiments

wherein the NUMA-aware cache fully utilizes network bandwidth, the

tgtd consumes 300% less CPU usage, or equivalently saves three CPU

cores.

During additional tests, we changed the file access pattern and used a Zipf-

like distribution [73] to evaluate cache performance again. We found that the

88

NUMA-aware cache achieves similar performance gain in these new tests to

that in the random distribution case.

5.4.4 Decentralized Event Processing Evaluation

We evaluate the decentralized solution for serving small I/O requests. The previ-

ous evaluation reveals the scalability problem of the single-threaded event pro-

cessing design with small I/O requests for both the NUMA-aware cache solu-

tion and the OS page cache. The master thread is the bottleneck to high IOPS

workloads as it can not utilize the concurrent processing capability of multiple

cores. To evaluate the scalability and performance of the decentralized solu-

tion, the iSER target exports multiple iSER disks to many initiators. We use the

fio benchmark again to generate concurrent I/O requests. We enable the direct

I/O option to bypass the kernel cache and to eliminate its caching effect at the

initiator side.

Figure 5-12 shows the performance comparison between the iSER with de-

centralized event processing and the standard iSCSI/iSER software. We made

four observations as follows:

First, the decentralized solution demonstrates linear increase in performance

when the number of concurrent clients increases to the physical limitation. Here

the iSER server has 32 physical CPU cores with hyper-threading enabled. Given

the computation intensive event processing, the 64 clients with hyper-threading

enabled have 15% improvement over the 32 clients in term of throughput. Sec-

ondly, the standard iSCSI/iSER software does not scale up with more concur-

rent clients. Its performance is capped at 160K IOPS: the maximum perfor-

mance that a single CPU core delivers in the testbed. Third, our decentralized

implementation achieved 940K IOPS, a factor of six speed up over the standard

iSER/iSCSI. To the best of our knowledge, this is the best performance that soft-

ware iSCSI/iSER achieves for a single target server. Forth, the CPU utilization

89

Figure 5-13: Queuing delay in iSCSI target system. We monitor the delay in the

network buffer queue at user space.

in the decentralized solution is proportional to its throughput. This confirms the

scalability of the distributed event processing: Our decentralized solution scales

up its performance by utilizing more CPU cores.

5.4.5 Queuing Delay Analysis

In this section, we profile the impact of queuing delay to the entire processing

latency. We first define it in the iSCSI target software, then construct various

workloads with different I/O patterns (request sizes and IOPS), and analyze the

experiment results. We consider the queuing delay in an iSCSI system as the

interval between when a response data is placed in the network sending queue

and when a network adapter starts its transmission. We note that there are po-

tentially other queues and queuing delays in the iSCSI target system, and our

experiments intend to qualitatively illustrate the impact of the queuing delay.

In Linux SCSI target framework implementation, a worker thread enqueues the

task that responds to a data request into a response task queue once the system

fills the relevant data per a data request into network buffers. At this stage, it

90

(a) Queuing delay in page cache with 512 bytes requests.

(b) Queuing delay in NUMA-aware cache with 512 bytes

requests.

Figure 5-14: Queuing delay with small I/O requests. The points represent the

delay in the network buffer under different loads, and the lines represent M/M/1

model approximation.

enters the final stage of sending the requested data to the requesting party. Then

a network thread checks the task queue and locates those tasks that are in the

ready-to-transmission stage. Once it finds such a task, it dequeues the task from

the queue and engages network to send out data immediately. The queuing delay

for a data transmission task in iSCSI target system is approximately the interval

between when it is enqueued to and dequeued from a response task queue.

In practice, the queuing delay in Linux SCSI Target Framework (tgtd) soft-

ware consists of the waiting time in a response task queue and the associated

overhead for queue management, e.g., mutex locking and condition variable

notification. Figure 5-13 shows the queuing delay of the response task queue.

The M/M/1 queue is an appropriate model to approximate the queuing delay in

91

Table 5.2: IOPS comparison under different workloads.

Proposed IOPS
Actual IOPS with

Page Cache

Actual IOPS with

NUMA-aware Cache

24k 24k 24k

48k 48k 48k

72k 72k 72k

96k 96k 96k

120k 116k 120k

144k 109k 144k

168k 89k 159k

192k 97k 160k

216k 104k 162k

such a systems: As the arriving data rate (requests per second) approaches and

exceeds the limit of the request processing capacity (also known as the trans-

mission rate of measuring how many requests can be processed within a given

time interval), the queuing delay increases exponentially. To profile the queu-

ing delay of a running program, we use the clock gettime() function to generate

timestamp (with a resolution of nanosecond) and calculate the queuing delay

accordingly. We deploy the tgtd software in a 4-node NUMA system, and use

three hosts to generate workloads to randomly read data from the cache that is

already warmed up and managed by either the default OS page cache or our cus-

tomized NUMA-aware cache. Then we comprehensively measure the queuing

delay in the tgtd software that is overloaded for serving cached data.

Each of the hosts contains two 56 Gbps InfiniBand adapters that connect to

an InfiniBand FDR 56Gbps switch. During each test, we run fio for 60 seconds

to generate I/O requests. We calculate the average queuing delay from tgtd, and

the average total processing latency and the actual number of completed I/O

requests served by each of two caching systems.

In this experiment, we use fio to generate many workloads with a small I/O

request size: 512 bytes per I/O request. Figure 5-14 captures the variations

of queuing delay and the number of IO requests that are actually served when

the number of IO requests to be sent out every second linearly increases. This

experiment explores the capability of serving concurrent requests in the tgtd

process. Table 5.2 lists the actual IOPS being served under different incom-

92

ing IOPS rates. We make the observations from Figure 5-14 and Table 5.2 as

follows:

• With the OS page cache or the NUMA-aware cache, the average queu-

ing delay consistently follows an exponential growth curve before tgtd

reaches its performance limit. The page cache sustains about 110K IOPS

while the NUMA-aware cache sustains about 160K.

• The queuing delay contributes 15% to 25% to the total processing delay

time (Equation (5.1)).

• when IOPS is low, the minimum delay of 20 microsecond is due to the

overhead associated with queue management.

• Initiators (clients) use synchronous I/O interfaces (read()) with parallel

threads, and thus each thread suffers long queuing delay and cannot sub-

mit more I/O requests into the target when heavily loaded. Eventually,

the client and server reach a saturation point, and no more requests can

be submitted anymore unless earlier requests are completed. Therefore,

queuing delay has an upper bound.

• A network adapter, along with its device driver and the system thread

which manage and handle network events from the adaptor, not only has

the bandwidth limitation (bit rate), but also has the IOPS limitation. Even

with the highest IOPS (162K), all 512 byte requests add up about 648

Mbps bandwidth, which is far more less than the bare-metal network

bandwidth. In such a high IOPS rate, the system thread for the network

device already hits its IOPS limitation and cannot scale up anymore.

• Its counter-intuitive that the queuing delay in the NUMA-aware cache

system decreases when the sending rate increases from 120K/second to

a higher IOPS. This result is caused by sending multiple responses in a

93

0

2

4

6

8

10

12

24k

(24k)

48k

(48k)

72k

(72k)

96k

(96k)

120k

(120k)

144k

(144k)

168k

(159k)

192k

(160k)

216k

(162k)

I/O Request per Second: Setup (Actual)

Average # of responses per batching task

Figure 5-15: Average number of responses within a batching task in NUMA-

aware cache solution.

batch. The tgtd’s RDMA driver sends a number of responses into the net-

work adapter via a batch system call (ibv post send()). In Figure 5-15,

a higher IOPS of workloads increases the average number of responses

within a batch task, and consequently shifts the queuing delay from soft-

ware into hardware by queuing more responses earlier in the hardware

queue. Under this circumstance, our profiled queuing delay indeed de-

creases moderately, nevertheless the hardware queue delay increases and

is difficult to measure.

We conduct another experiment with large I/O requests (512 KB). In this

experiment under stressed conditions, the queuing delay is 1% to 5% of the

total processing time. To process larger I/O requests, the total processing time

is more likely to be dominated by the nodal processing step (e.g., data copy from

cached memory into network buffers).

In summary, the queuing delay we observed in the iSCSI system is consistent

with the classical queuing theory, and it cannot be neglected especially at a high

I/O request rate. We note that our NUMA-aware cache gains advantages mostly

when I/O request size is large and queuing delay is not the main factor.

94

Table 5.3: PostMark performance
Data set 500 GB 1 TB

Number of files 1,000 10,000 100,000 1,000 10,000 100,000

Transaction

time on

NUMA-aware

cache (sec)

988 974 1006 5997 6110 8112

Transaction

time on

page cache

(sec)

1401 1491 1611 8516 9236 14387

Ratio 0.705 0.653 0.624 0.704 0.662 0.568

5.5 Evaluation with Real-life Workloads

In this section, we evaluate both NUMA-aware cache and OS page cache us-

ing two real-life workloads, PostMark and YCSB over MongoDB. Our goal is

to quantify the performance gains of NUMA-aware cache with realistic bench-

marks. In this set of experiments, we configure the Dell host as the iSCSI target

to export a 1.3 TB disk data (in an XFS file system) to an IBM host with 128

GB main memory used as the iSCSI initiator. The performance of disk array

is about 600 MB/s with sequential read and 15 MB/s with random read. The

NUMA-aware cache is configured with a total cache size of 720 GB (the entire

physical memory in the Dell host) for all NUMA nodes, 32 partitions in each

NUMA node, and a cache block size of 512 KB.

5.5.1 The PostMark Workload

PostMark [74] is an email server workload simulator. It first creates a number

of files repeatedly and randomly chooses a file, and then sequentially performs

transactions (either read or write data) upon the file. The workload generator

is executed on the initiator host. We generate a 500 GB dataset, which can be

loaded entirely into the main cache memory of the target server, and another

1 TB data set, with about 75% cache hit rate, on the storage server. We use a

request size of 512KB in PostMark, the same as the cache block size, and con-

figure the workload generator to access each file three times on average during

95

 0

 2000

 4000

 6000

 8000

 10000

 12000

9:1 8:2 5:5

T
hr

ou
gh

pu
t (

op
s/

se
c)

Operations Proportion (read:update)

NUMA-aware Cache
Page Cache

(a) The overall throughput

(ops/sec) with different read-

to-update ratios. The rela-

tive improvement of NUMA-

aware cache are 12.8%, 3.5%

and 0%.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

9:1 8:2 5:5

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

se
co

nd
)

Operations Proportion (read:update)

NUMA-aware Cache
Page Cache

(b) Average transaction la-

tency of read operations with

various ratios. The rela-

tive improvement of NUMA-

aware cache are 10.98%,

11.56% and 11.43%.

 0

 20

 40

 60

 80

 100

N(9:1) P(9:1) N(8:2) P(8:2) N(5:5) P(5:5)

P
er

ce
nt

ag
e

0-1 ms 1-2 ms > 2 ms

(c) Latency distribution of

read operations with dif-

ferent read-to-update ratios.

‘N’ stands for NUMA-aware

cache, and ‘P’ for Page

cache.

Figure 5-16: The results of YCSB over MongoDB.

the entire transaction test.

Table 5.3 shows the performance of the PostMark test when the data set is

served by the NUMA-aware cache and the page cache. The ratio is calculated

as the transaction time of the NUMA-aware cache divided by that of the page

cache. The NUMA-aware cache shows a 30% to 44% improvement in total

transaction time. Furthermore, it achieves a comparable improvement regardless

of whether actual disk operations are performed.

5.5.2 The YCSB Workload

Yahoo! Cloud Serving Benchmark (YCSB) [75] is a framework and common

set of workloads for evaluating the performance of different “key-value” and

“cloud” serving stores. It generates configurable workloads by a multi-threaded

client, and submits them to a data serving system. We chose MongoDB, a

state-of-the-art “key-value” database as the data serving engine, and stored all

database files on the iSCSI disk at the target server. Database records are config-

ured with 10 fields and 1000 bytes per field, and the total dataset size is 500 GB.

Three test workloads have a read-to-update ratio of 9:1, 8:2, or 5:5, respectively.

The YCSB client is configured to run with 10 parallel threads.

On our testbed, the 500 GB data set is fully cached by either the NUMA-

96

aware cache or the page cache on the storage (target) server during the data

preloading step. The request distribution is uniform. The main memory of the

database server is 128 GB. About 75% of read requests cause page faults in the

database server, and are subsequently dispatched to the storage server.

Figure 5-16(a) shows the overall throughput of MongoDB with different

read-to-update ratios. NUMA-aware cache achieves 12.8% improvement in the

9:1 case. Update operations dominated the transaction time in the 8:2 and 5:5

cases, as they introduced much higher locking and synchronization costs. There-

fore, the effect of the NUMA-aware cache on the storage server is not obvious

in update-heavy workloads.

We focus on read operations in the following discussion. First, the NUMA-

aware cache improves the average transaction latency of read operations in all

three test cases, as shown in Figure 5-16(b). The relative improvements of

the NUMA-aware cache over the page cache for three test cases are 10.98%,

11.56%, and 11.43%, respectively. Second, as shown in Figure 5-16(c), the

NUMA-aware cache improves individual transaction latencies of read requests.

For example, in the 9:1 case, the latency of 89.08% read requests under the

NUMA-aware cache is below 1 ms, while with the page cache, fewer (about

83.90%) read requests achieve a similar performance.

5.5.3 Decentralized Event Processing Evaluation with YCSB

We use YCSB and MongoDB to evaluate the performance of our decentralized

event processing model. The iSER target exports block devices to MongoDB

server. MongoDB uses the mapped memory call, mmap, to synchronize data

between memory and block device. During runtime, if the storage block is

not mapped into MongoDB’s process memory space or is evicted from main

memory, the OS generates a page fault to fetch data from the iSCSI/iSER storage

system. In data-intensive workloads, the page fault handling is critical to the

97

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 2 4 8 16 32 64

R
eq

ue
st

 P
er

 S
ec

on
d

of Parallel MongoDB Clients

Decentralized Event Model
Standard iSCSI

Figure 5-17: Throughput of YCSB workloads over MongoDB which in turn

retrieve data from iSER target. Each MongoDB instance contains 200,000 key-

value pairs, and each client operate on an independent Mongodb instance. The

YCSB clients operates on the dataset for 5 minutes following uniform access

pattern. The 1 client to 16 clients are in a single host. The 32 clients are in two

hosts. The 64 clients are in four hosts.

overall performance of the storage system.

In the data loading phase, the YCSB clients insert 200,000 key-value pairs,

each of which contains a 512-byte value. We use Linux control groups to limit

the size of mapped memory for the MongoDB process during runtime to be 20

mega-bytes. We deploy 1, 2, 4, 8, and 16 YCSB clients in a single physical host,

32 clients in two hosts, and 64 clients in four hosts. The MongoDB instance

resides at the same physical server that also host the YCSB clients.

Figure 5-17 shows the performance comparison between the decentralized

solution and the standard solution. First, with concurrent 2, 4, 8 clients, the

decentralized solution outperforms the standard solution by up to 24%. The

decentralized solution provide parallel event processing capability, and can im-

proves the performance on page fault handling. Second, with 16 and 32 clients,

the MongoDB and Java-based YCSB benchmark have resource contentions at

the initiator. Therefore, the target server is not the bottleneck in this testbed

configuration. Third, we use 64 clients to generate many page faults from four

physical hosts, and the decentralized solutions shows 28.8% performance gains

98

comparing to the standard solution.

5.6 Summary

In this chapter, we have shown that an inefficient NUMA remote memory access

becomes a bottleneck to achieving high throughput and low latency in state-of-

the-art SANs. We resolved the inefficiency problem and implemented a NUMA-

aware cache for iSCSI-based storage area networks. Our NUMA-aware cache

was already integrated into the Linux SCSI target software. Here we detailed

the implementation details, including software structure, cache organization,

and I/O request interpretation and processing. To tackle the scalability prob-

lem on small I/O request processing, we design and implement a decentralized

I/O event processing model for multi-core and NUMA systems. We evaluated

our solution on a 4-node NUMA testbed, and showed its sizeable performance

improvement with both synthetic and real-life workloads. During the synthetic

workload evaluation, the average processing time for individual I/O requests in

an underutilized iSCSI system decreased by about 13% to 23% for large requests

(256 KB and 512 KB), and the NUMA-aware cache and the default page cache

achieved a compatible processing time for small I/O requests (4 KB to 64 KB).

For the applications of handling bulk data in a busy iSCSI system, the aggregate

throughput was improved by up to 80% with I/O request size ranging from 128

KB to 1024 KB. In real-life workloads, the NUMA-aware cache achieved up to

43.2% throughput improvement in the PostMark benchmark, and up to 12.8%

throughput improvement for the read-dominant workloads in YCSB over Mon-

goDB tests.

In summary, the NUMA-aware techniques proposed in this chapter provided

a viable alternative to the standard OS page cache, and can greatly enhance the

performance of iSCSI protocols over ultra high-speed networks. The decen-

tralized event processing model further improved the software scalability on

99

intensive small requests processing.

100

Chapter 6

RDMA-Based NUMA-Aware

End-to-End Performance

Optimization

Data-intensive applications place stringent requirements on the performance of

both back-end storage systems and front-end network interfaces. However, for

ultra high-speed data transfer, for example, at 100 Gbps and higher, the effects

of multiple bottlenecks along a full end-to-end path, have not been resolved

efficiently. In this section, we describe our implementation of an end-to-end

data transfer software at such high-speeds.

6.1 Introduction

Various data-intensive applications require ultra high-speed data transfer capa-

bility, such as those in data centers, cloud-computing environments, and dis-

tributed scientific computing. They frequently need data transfer software to

support true end-to-end data and file delivery, i.e., between the storage systems

attached to the source and the destination hosts. The Department of Energy’s

(DOE’s) Magellan cloud data centers [4] are interconnected by the 100 Gbps

101

links of the DOE’s Advanced Network Initiative (ANI). Such an architectural

layout is often found in the DOE’s National Laboratories, for example, three

leadership computing facilities hosted at Argonne National Laboratory, Oak

Ridge National Laboratory, and the National Energy Research Scientific Com-

puting Center, respectively, and the tier-1 Large Hadron Collider computing fa-

cilities at Brookhaven National Laboratory and Fermilab that play a vital role in

searching through petascale to exascale experimental data for scientific insights

and discoveries [5]. The science programs (climate simulation, astrophysics,

high-energy physics, material science, and system biology) at these DOE Lab-

oratories frequently rely on high-performance supercomputers and server clus-

ters, along with back-end storage systems encompassing hundreds of petabyte

disk and tape storage, to run computing and data intensive applications, and to

move data from experiments and simulations between computing and storage

infrastructures and frequently across wide-area networks. Our primary goal is

to design and deliver an efficient, extremely high-performance data transfer tool

for these computing facilities that share an infrastructural layout similar to that

depicted in Figure 1-1. To scale up data transfer to 100 Gbps and higher, we

must overcome at least three different types of bottlenecks along the end-to-end

paths that consist of hosts, networks, and storage systems.

First, to overcome the processing bottleneck of individual hosts, multi-core

hosts often are employed for ultra high-speed data transfers. As the number

of CPU sockets and cores per CPU die grows in the multi-core architecture

of modern computer hosts, it becomes increasingly difficult and inefficient to

have the same latency in memory access across all CPU cores. A state-of-the-

art CPU architecture integrates a memory controller as a core component within

the CPU die, and discards the external memory controller hub, a component that

might become a bottleneck in a multi-core architecture [13]. Memory banks in

different locations of a motherboard are attached to their corresponding CPUs.

Therefore, the access latencies from a specific CPU core to different memory

102

banks are no longer same. With green computing restricting volume and power

consumption, vendors turn to the Non-uniform Memory Access (NUMA) model

to achieve higher resource density [15–17]. Although the high-speed connec-

tivity between CPUs greatly facilitates arbitrary memory access, for example

QuickPath Interconnect [13] and Hyper Transport [14], an application tuned for

local memory access always performs much better than those that are not.

Second, advanced network technologies and protocols are employed to fully

utilize the bare-metal bandwidth of ultra high-speed networks, at 100 Gbps and

higher, and to eliminate network performance bottlenecks. Remote direct mem-

ory access (RDMA) [8] is one of these promising technologies because it can

boost the performance of high-speed networks significantly. By enabling net-

work adapters to transfer bulk application memory blocks to or from remote

ones, and eliminating data copies in protocol stacks, RDMA achieves low la-

tency and high bandwidth. InfiniBand [9, 10], the original RDMA implemen-

tation, dominates the technology market of intra-data center interconnections,

while RDMA over Converged Ethernet (RoCE) [11] extends RDMA’s capa-

bilities to the networks between data centers that might be thousands of miles

apart. Consequently, RDMA offers an opportunity to assure that large data syn-

chronization and movement within or between data centers for applications to

accomplish their routine tasks in a highly efficient manner.

Third, back-end storage systems within a server often become a severe bot-

tleneck due to the low bandwidth of traditional magnetic disks or even recent

flash solid-state disks (SSDs). One alternative to overcome this bottleneck of

back-end storage systems is to build storage area networks wherein one assem-

bles multiple storage components to provide aggregated bandwidth commen-

surate with a host’s processing speed and its bare-metal network bandwidth.

To configure and adapt high-performance RDMA networking technology into

storage area networks, researchers [40] implemented an iSCSI extension for

RDMA (iSER) [37], to enable SCSI commands and objects to be transferred

103

over RDMA-based networks, such as InfiniBand and RoCE.

In this section, we describe the design, tuning, and performance evaluation

of a novel high-speed data transfer system for delivering data at 100 Gbps in

an end-to-end fashion. The system utilizes a pair of multi-core front-end hosts

(sender and receiver). Our research includes the follows. First, our back-end

storage systems use the standard iSER protocol that is configured for high-speed

data access. The protocol enables InfiniBand based data delivery from the back-

end storage systems to the front-end hosts. This design allows us to eliminate

the back-end storage bottleneck with the scalable InfiniBand. Second, between

the front-end hosts with multiple network connections, we integrate our RDMA-

based file transfer protocol, RFTP [21, 22, 24], into the end-to-end data transfer

system, and optimize its performance to maximize bandwidth throughput and

minimize host processing overhead. Third, for all hosts along an end-to-end

path, we optimize their performance via NUMA tuning. Thus, we minimize the

impact of host processing overhead. We note in the current implementation of

iSER or RFTP, the NUMA factor is not considered, and we have observed the

performance benefit of simple NUMA tuning in this chapter. To summarize,

our design is the first to achieve 100 Gbps and higher end-to-end real data file

transfers between one pair of commodity hosts, and to do so, we have overcome

several aforementioned bottlenecks. We evaluate our system comprehensively,

using the testbeds that closely resemble the production environments, common

in large national laboratories and commercial cloud computing providers. Fur-

thermore, more tests were performed with inter-data center data transfers along

long-haul high bandwidth links of over 4000 miles long.

The rest of this Chapter is organized as follows. In Section 6.2, we present

the background information, and the motivations of our research. We describe

our system design in Section 6.3, and comprehensively evaluate the entire end-

to-end system in Section 6.4. Finally, we offer our conclusions and highlight

our contributions.

104

6.2 Background

In this section, we present evidences to show that the advances in hardware tech-

nology improve bare-metal performance, but existing software is not developed

to take advantage of these advances. Consequently, multiple bottlenecks and is-

sues still exist along end-to-end data transfer paths. Among them, special efforts

are needed to improve the efficiency of memory access in multi-core systems,

along with techniques for hardware acceleration to maximize the capacity of

network protocols. A clear understanding of these advances and a subsequent

holistic approach to tackle these new issues are necessary since they are not

available in the existing software systems.

6.2.1 Memory Access in NUMA Multi-core Systems

The stubborn speed disparity between the CPU and memory, named the “Mem-

ory Wall”, common in the previous single-core architecture era, will continue

to exist and even deteriorate with multi-core architecture. As detailed in [3],

latency in memory access will be a major bottleneck in the computer system.

Pursuing higher CPU frequency is not sustainable due to the power wall: in-

creasing transistor current leakage leads to uncontrollable power consumption

and generates excessive heat that is hard to dissipate. From system architec-

ture aspect, memory latency might partially negate a high CPU clock rate and

the associated computing power. As a result, chip designers might well turn to

exploring multi-core architectures and pack more cores into a single CPU die.

Consequently, the speed imbalance between fast-growing number of CPU cores

and memory will become more severe in the multi-core architecture.

The state-of-the-art NUMA architecture introduces a non-uniform hierar-

chy of memory latency. Most operating systems often provide only standard

scheduling methods and shift to applications the burden of NUMA-related schedul-

ing and tuning. Within this paradigm, applications with high performance re-

105

quirements must be aware of the physical locations of main memory and even

peripheral devices, and implement location-aware mapping functions to co-

schedule CPU cores, memory, and devices for application threads with the

overall goal of reducing the latency and increasing bandwidth in memory ac-

cess. The NUMA architecture is not proposed to overcome the memory wall

problem. However, it offers applications a hardware platform so as to improve

their aggregate performance in a multi-core environment via a suitable policy of

memory allocation.

6.2.2 Protocol Offloading

Another technological advance is the hardware protocol offloading to reduce

the processing cost of network protocols in computers. For example, there are

at least two memory copies for each data packet sent/received by TCP/IP ap-

plications. One is between applications and operating system (kernel), and the

other is between operating system (kernel) and network interfaces. For high

performance computing, data copies limit a system’s overall performance due

to inefficient utilization of memory bandwidth and high CPU consumption. Re-

cently, the bandwidth for a single network adapter has reached 40, 56, or even

100 Gbps [76]. Furthermore, a high-end server is often equipped with multi-

ple adapters for load balancing and fault tolerance. Thus, traditional TCP/IP

applications may hit the memory wall problem due to the performance penalty

resulted from multiple data copies long before reaching the limit of bare-metal

network bandwidth. Consequently, adding network capacity does not improve

the actual data transfer performance.

For end-to-end data-transfer systems, both back-end storage network and

front-end data movement components must reduce data copy operations and

avoid the associated performance penalties. The RDMA protocol and its zero-

copy techniques efficiently satisfy this requirement since it offloads network

106

protocol processing directly into hardware and avoids data copies from/to the

kernel space. For example, to build a back-end storage system using SAN,

Dalessandro et al. [40] implemented iSCSI extensions for RDMA (iSER) [37].

6.2.3 A Motivating Experiment

To illustrate the importance of the aforementioned technology advances to data

transfer applications, we describe a simple experiment carried out in our testbed

with multi-core NUMA technology. Two IBM X3650 M4 hosts are connected

by three pairs of 40 Gbps RoCE connections (RDMA over Converged Ether-

net). Each RoCE adapter is installed into an eight-lane Peripheral Component

Interconnect (PCI) Express 3.0 slot. The theoretical maximum bandwidth of the

bi-directional network of such a system is 240 Gbps.

First, we measured the maximum memory bandwidth of our hosts. We

compiled STREAM [69], the de facto memory bandwidth benchmark, with

the OpenMP option enabled to support multi-threaded test. The Triad func-

tion showed that the peak memory bandwidth for two NUMA nodes is 50 GB/s,

or 400 Gbps. For socket-based network applications, there are two data copies

for each network operation at each end of a TCP/IP session. Therefore, the

maximum TCP/IP bandwidth that the system can support is 200 Gbps.

Then, we tested TCP/IP stack performance via iperf [61] to assess the max-

imum bi-directional end-to-end bandwidth offered by this testbed. With the

default setting, iperf uses only a small chunk of memory, and reuses the same

data in the memory chunk. Since the data is always cached within CPU, and

it avoids one memory read access. Under these conditions, the result of iperf’s

performance matches that of RDMA-based data transfer because it has the same

number of memory accesses as RDMA. However, such a test does not reflect

real data transfer applications that need to continuously refill data from memory

and back-end storage. To eliminate this cache effect, we purposely enlarged the

107

sender’s buffer to exceed the size of the CPU cache. Since iperf is lightweight

in user space, and it only transfers memory data to or receives it from network

interfaces, most CPU cycles are spent on processing the TCP/IP protocol stack

in the kernel space. We captured the percentage of CPU cycles in the kernel

through perf [77], a Linux kernel profiling tool. During a ten-minute test with

the Linux default scheduling policy, the average aggregate bandwidth was 83.5

Gbps. The kernel space and the user space memory copy routines, viz., the

copy user generic string, consumed about 35% of the overall CPU usage.

For comparison, we optimized “iperf” by tuning the NUMA locality, and

repeated this same test. The aggregate bandwidth increased to 91.8 Gbps, about

10% higher than the previous iperf test with the default Linux scheduler.

The experiment and results afford two observations. First, the TCP/IP pro-

tocol stack requires multiple data copies and incurs a significant amount of pro-

cessing overhead that further complicates multi-core memory access, and in-

creases the severity of the memory wall problem. Consequently, the bottleneck

of an end-to-end path is host processing operations, rather than network band-

width. Second, the NUMA memory access incurs additional hardware (CPU

cores) cost; for example, latency for synchronization with remote cores can fur-

ther aggravate the ensuing bottleneck.

The main objective of our work thus is to carefully design an end-to-end data

transfer system to eliminate the bottlenecks along a data path. These bottlenecks

can comprise transferring hosts, back-end storage systems, and front-end host-

to-host network communication channels. We have designed, implemented,

and evaluated our RDMA-based system for wide-area data intensive applica-

tions [21, 22]. We are aware of several other studies [33, 64, 78] on integrating

the RDMA capability into data-transfer applications and evaluating the resulted

systems. However, those studies have not yet been validated along the entire

end-to-end path, including high performance back-end systems and wide-area

network links.

108

6.3 Characterization of System Design and Network

Application

In this section, we describe the design of our end-to-end data transfer system. It

encompasses one back-end storage system designed as a storage area network,

one pair of sending and receiving front-end hosts, and a data transfer applica-

tion over the entire infrastructure. We detail each component and analyze their

performance.

6.3.1 Back-End Storage Area Network Design

We use the iSER protocol for data communication between a pair of the front-

end client and back-end storage server within a storage area network. In this

protocol, we follow the definitions in the iSCSI architecture, and call this pair

of client and server “initiator” and “target”, respectively. An initiator starts the

data transfer process by sending I/O requests to the target that then proactively

transfers the data. For example, to handle a read block I/O request sent by the

initiator, the target will compose an RDMA Write work request to send data to

the initiator, while a write I/O request triggers an RDMA Read from the target

to fetch data from the initiator.

The default target process has a multi-threaded implementation that takes

advantages of multi-core architecture to handle multiple I/O requests simultane-

ously to assure a high throughput. However, with the default setting, the NUMA

factor and locations of the Peripheral Component Interconnect (PCI) devices are

not considered. There are two possible methods to integrate the NUMA tech-

nology into a target. One is to use the numactl utility to bind a dedicated target

process to each logical NUMA node; the other is to integrate the libnuma [71]

programming interface into the target implementation. The former needs an ex-

plicit, static NUMA policy, while the latter relies on scheduling algorithm for

109

PCI Express

Disk

Socket

InfiniBand Switch

InfiniBand
Adapter 1

Target Host

IMC

 Core

 Memory

 Memory

IO Controller IO Controller

Initiator Initiator Initiator Initiator

 Core

 Core Core

Socket

IMC

 Core Core

 Core Core

InfiniBand

Adapter 2 Disk Disk Disk

Figure 6-1: iSER tuning in NUMA architecture with multiple adapters.

each I/O request. Redesign of iSCSI with the libnuma API and libraries is be-

yond the scope of this chapter. We only implement the former solution and here

present its effect on NUMA.

We use Linux tmpfs as the back-end storage in our prototype system. By ad-

justing the location of the memory file with the mpol and remount options [79],

we pin each file into a specified NUMA node memory. Thereafter, we assign

each NUMA node to a dedicated target process to handle local I/O requests.

Therefore, all NUMA nodes have low latency in accessing local memory, and

thereby, the best throughput performance. For a system with multiple adapters,

as shown in Figure 6-1, this choice of design ensures that different I/O requests

are handled via different links, hence resulting in the best aggregate perfor-

mance. The effectiveness of this design will be evaluated by our experiments

later.

110

Data Source

Data Sink

Data Loading Transmission

Time

Propagation Transmission Data Offloading

Figure 6-2: Data block transfer delay breakdown.

6.3.2 RDMA Application Protocol: Cost Analysis and Imple-

mentation

Three major components are involved in an end-to-end data transfer application:

Data loading, data transmission, and data offloading. Figure 6-2 shows these

components at data source and data sink. Depending on the type of data storage

(such as local disks and SANs) and transmission networks (LAN and WAN),

the throughput and latency of each component may vary. Any one of the three

components can become a bottleneck.

We use our RDMA-based file-transfer protocol, RFTP, to move data within

our system. RFTP supports pipelining and parallel operations and configures

itself efficiently to utilize system resources and raw network bandwidth. To

confirm the benefits of RFTP’s performance, we break down its cost and com-

pare it with the traditional TCP-based data transfer protocols.

To gain insights into the performance of data transfer applications and the

efficiency of protocol offloading, we undertake a five-minute test in our local

test environment. The data source loads data from /dev/zero, and then trans-

fers it over a 40 Gbps RoCE link to the data sink. The latter will dump data

into /dev/null, i.e., simply discard the received data. Both RDMA-based RFTP

and TCP-based iperf accomplish this task at the transfer rate of 39 Gbps. To

attain RFTP’s the resource usage of each data transfer thread, we call Linux

getrusage interface on both the client side and server side. We again analyze

111

 0

 50

 100

 150

 200

 250

 300

 350

 400

RDM
A data source

RDM
A data sink

TCP data source

TCP data sink

C
P

U
 u

til
iz

at
io

n
(%

)

data loading
data offloading
protocol processing
data copy

Figure 6-3: The breakdown of data transfer cost at 40 Gbps rate.

the cost of iperf data transfer using the Linux perf tool.

As shown in Figure 6-3, our RDMA based solution consumes a total of

122% CPU, among which the user space protocol processing uses 56%. 1 In

contrast, TCP needs a total of 642% CPU consumption; its kernel space proto-

col processing accounts for 311%. RDMA’s data-copy overhead is 0% because

of zero-copy, while TCP pays 213% on copying data between user space and

kernel space. Since the data sources load data from /dev/zero, the kernel must

flush the user memory block with 0s without involving any DMA. In both the

RDMA-based and TCP cases, the data sources require about 70% CPU cycles

of one core to accomplish the task. Dumping data into /dev/null involves less

than 1% overhead for the RFTP, while iperf does not offload data. In both cases,

the overhead from offloading can be omitted in this experiment. To summarize,

through this cost evaluation, RDMA demonstrates its efficient protocol offload-

ing and zero-copy in high-speed data transfer environment.

1Note, we use absolute CPU time in the measurement, for example, 122% CPU consumption

means the total CPU usage is equivalent to 1.22 × one fully utilized CPU core.

112

IBM X3650 M4

HP DL380

IB FDR IB FDR

HP DL380

IB FDR IB FDR

Mellanox SX6018 56Gb Infiniband Switch

IB FDR IB FDR

Mellanox SX1036 40Gb Ethernet Switch

IBM X3650 M4

IB FDR IB FDR

RoCE RoCE RoCE RoCE RoCE RoCE

iSER target iSER target

iSER initiator iSER initiator

RFTP

source

RFTP

sink

Figure 6-4: RDMA-based end-to-end system connectivity in LAN.

6.4 Experimental Results

In this section, we validated the end-to-end data throughput of our software and

its CPU consumption, and experimentally confirmed the effectiveness and effi-

ciency of our innovation of NUMA awareness and RDMA hardware offloading.

We undertook comprehensive experiments on both the LAN and WAN testbeds.

We first describe the testbed’s configurations that consist of the RDMA imple-

mentation with both InfiniBand and RoCE interconnection. We evaluated our

developed system in three different scenarios: First, the back-end system’s per-

formance with NUMA-aware tuning; second, the application performance in an

end-to-end LAN setting; and third, the network performance over a 40 Gbps

RoCE long distance path in wide-area networks.

6.4.1 Testbed Setup

As shown in Figure 6-4, the LAN experimental system consists of back-end

and front-end sections. At the back-end, each initiator or target has two Mel-

lanox InfiniBand adapters, each of which is fourteen data rate (FDR, 56 Gbps)

and connected to a Mellanox FDR InfiniBand switch. Therefore, the maximum

113

ANI 100Gbps

Network

NERSC

100G

Router

ANL

100G

Router

40G RoCE

40G RoCE

Figure 6-5: The DOE’s ANI 40 Gbps RoCE WAN between NERSC and ANL.

This 4000-mile link is a loopback network from NERSC to ANL and then back

to NERSC. The RTT of the link is about 95 milliseconds.

bandwidth for loading and offloading data is 112 Gbps. At the front-end, three

pairs of quad data rate (QDR) 40 Gbps RoCE network cards connect the RFTP

client and server with a maximum aggregate bandwidth of 120 Gbps.

In our iSER software setup, we deployed open-iscsi utility version 2.0-

872.41 at the initiator host, and SCSI target daemon with version 1.0.31 on

the target host. As discussed in the previous section, the target incurs the largest

fraction of the cost of the iSER protocol processing among all the hosts in our

iSER configuration. We first investigated the characteristics of the processes in

the target host, including the impact of the NUMA’s binding configuration and

the block size of I/O requests.

Initially, we attempted to set up a back-end storage based on Fusion IO’s

PCI-based SSD flash drives. However, we found that when applications read or

wrote 100 gigabytes data or more continuously to the SSD drive, the thermal-

throttling technology of SSDs proactively took actions to throttle the system’s

performance to prevent overheating the on-board circuits. These preventive op-

erations degraded the I/O’s performance to about 500MB/s, a severe bottleneck

that made our performance evaluation impossible at the speed of 100 Gbps.

Thus, in our experiments, we built back-end storage in the main memory of tar-

get hosts that dissipates heat much quickly, and so performs consistently over a

114

Table 6.1: End-to-end testbed configuration
Front-end

LAN

Back-end

LAN

Front-end

WAN

CPU * Cores

Intel Xeon

E5-2660

2.20GHz

16 Cores

Intel Xeon

E5-2650

2.00GHz

16 Cores

Intel Xeon

E5-2670

2.90GHz

12 Cores

NUMA nodes 2 2 2

Mem(GBytes) 128 384 64

Network Adapters
40 Gbps

RoCE QDR

56 Gbps

IB FDR

40 Gbps

RoCE QDR

OS CentOS 6.3 CentOS 6.3
Fedora

release 17

Kernel Version 2.6.32-279 2.6.32-279 3.4.3-1

OFED Version
MLNX OFED

1.5.3-3.1.0

MLNX OFED

1.5.3-3.1.0
OFED 1.5.4

TCP Congestion

Control Algorithm
cubic cubic cubic

MTU Size
9000

(RoCE link)

65520

(IB link)
9000

RTT(ms) 0.166 0.144 95

wider range (from air-conditioned data centers to laboratory environment with

normal temperature) of operational temperature. We created six logical units

(LUNs) with on the target host, split and load-balanced all I/O requests between

the two available InfiniBand links. Each LUN’s size was 50 gigabytes, and the

total size of the dataset was 300 gigabytes. The large size memory (we bor-

rowed 768G byte dual in-line memory modules from HP vendors for building

the high performance backend storage in our testbed) can be formatted to host

any data files and represent a real-world storage solution with low latency and

high throughput.

In addition to the testbed configuration within the local network, we also uti-

lized the WAN testbed provided by the DOE’s Advanced Networking Initiative

(ANI). For these tests, the DOE’s ANI supplied a 40 Gbps RoCE wide-area net-

work to evaluate data transfer with RFTP over a long-haul 40 Gbps link. This

4000-mile link is a loopback network from the National Energy Research Sci-

115

entific Computing Center (NERSC) in Oakland, CA to Argonne National Lab-

oratory near Chicago, IL and then back to the NERSC. As shown in Figure 6-5,

the two hosts are connected to wide area networks by a 100 Gbps router, the

Alcatel-Lucent Model SR 7750 border. The corresponding routing records on

NERSC router are configured as a loopback via ANL’s 100 Gbps router [80].

Table 6.1 lists the detailed configurations for all the hosts, in both the LAN and

WAN testbeds described.

6.4.2 Evaluation of Memory-Based Storage System Perfor-

mance

In this set of experiments, we evaluated the improvement in the iSER’s perfor-

mance with our NUMA-aware tuning policy and compared it with the Linux’s

default scheduling policy.

The iSCSI target host (the back-end storage) is based on Linux tmpfs file

system created out of the system’s main memory to eliminate the inefficient

magnetic disk or SSD bottleneck. The system’s memory is large enough (300

GB) to be comparable to a regular SAS disk in terms of the volume, whilst

offering a performance a hundred of times faster than that of a magnetic disk.

We created six logical units to spread parallel IO requests into different banks

of the main memory. To minimize the overhead from the file system, the target

exported the back-end memory file as raw devices to allow the initiator to choose

any type of file systems as appropriate. We choose the flexible I/O tester [32],

fio, as the benchmark software, and each test case lasted five minutes.

Figures 6-6 and 6-7, respectively, show the bandwidth and CPU consump-

tion, in these tests. In each figure, we separately illustrate the data read and

data write performance. To achieve the best performance, multiple I/O threads

run simultaneously against each LUN. The gain in performance levels off once

the number of threads reaches a certain threshold. Beyond that, too many I/O

116

 0

 2

 4

 6

 8

 10

 12

 14

64 256 512 1024 4096 8192

B
an

dw
id

th
(G

B
yt

es
)

Block Size (KBytes)

system default scheduling
NUMA-aware tuning

(a) Read bandwidth

 0

 2

 4

 6

 8

 10

 12

 14

64 256 512 1024 4096 8192

B
an

dw
id

th
(G

B
yt

es
)

Block Size (KBytes)

system default scheduling
NUMA-aware tuning

(b) Write bandwidth

Figure 6-6: iSER bandwidth comparison between default scheduling and

NUMA-tuning.

threads would introduce more contention, and impact the overall performance.

In our testbed, we found that the optimal configuration is to use four threads for

each LUN.

For read operations, the bandwidth improvement is merely 7.6% with NUMA

binding, and neither is the saving on CPU consumption significant. However,

for write operations, we observed an improvement in bandwidth up to 19% for

the block size larger than 4 megabytes, and using the default Linux binding pol-

icy increases CPU consumption threefold. We argue that the main reason of this

disparity between read and write operations is the significant overhead of cache

coherency and synchronization that is needed for write operations. We note

that we performed the read and write operations on a memory-based tmpfs file

system. A write request essentially is a memory-write operation, and if it is exe-

cuted without NUMA-aware tuning, one such operation will invalidate all other

data copies in the caches at other NUMA nodes. With NUMA-aware tuning,

this invalidation occurs only locally and thus, the overhead is low. When read

requests are executed, with or without NUMA-aware tuning, the data copies are

always “cached” or “shared” instead of “modified”, and hence, the overhead

from cache coherency is minimal.

We also notice that the bandwidth performance of serving read requests out

of iSER is slightly better by 7.5% than that of serving write requests. We believe

117

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 256 512 1024 4096 8192

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (KBytes)

system default scheduling
NUMA-aware tuning

(a) Read CPU utilization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 256 512 1024 4096 8192

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (KBytes)

system default scheduling
NUMA-aware tuning

(b) Write CPU utilization

Figure 6-7: iSER CPU utilization comparison between default scheduling and

NUMA-tuning.

this reflects the better performance of RDMA Write (used by read requests) than

RDMA Read (used by write requests). This difference in performance between

RDMA Read and Write was revealed in a previous study [22]. When an iSER

initiator sends a read request to a target, the target would use RDMA write to

write (send) data directly to the memory of the initiator for the actual transfer of

data; thus, the observed performance of a read request has a better bandwidth.

6.4.3 End-to-End Data Transfer Performance

In this section, we describe our tests and our validation of data-transfer appli-

cations in an integrated testbed environment and gather its performance with an

end-to-end perspective. Our goal is to gain insight into how our application can

be adapted to day-to-day real transfer scenarios.

In mimicking a realistic data transfer scenario, we adopted one wherein a

transfer application first interacts with file systems via the POSIX interfaces

rather than via raw devices. The details of implementing the functions of differ-

ent file systems are hidden by the POSIX interfaces. Furthermore, our prelim-

inary tests in our testbed demonstrated that the throughput differences among

the raw block devices exported by target via the iSER protocol, Linux universal

ext4 file system, and the XFS [81] built over the exported block devices via the

118

 0

 20

 40

 60

 80

 100

B
an

dw
id

th
(G

bp
s)

Time

RFTP
GridFTP

Figure 6-8: Throughput of end-to-end data transfer over 25 minutes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

RFTP source

GridFTP source

RFTP sink

GridFTP sink

C
P

U
 u

til
iz

at
io

n
(%

)

user
sys
wait

Figure 6-9: CPU utilization breakdown for RFTP and GridFTP.

iSER protocol, are comparable. Since the XFS file system particularly is effi-

cient for parallel I/O and better aligned with our testing requirements, without

losing generality, we chose XFS over other file types and formatted the exported

block device with XFS from the initiator side.

We combined the back-end system and front-end system to show the end-to-

end performance between RFTP and GridFTP, a widely used data transfer tool

in high performance computing. To assure a fair comparison between GridFTP

and RFTP, and to assure the achievement of the best performance of both appli-

cations, and minimize the penalty of remote memory access for each of them,

119

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

B
an

dw
id

th
(G

bp
s)

Time

RFTP
GridFTP

Figure 6-10: Throughput of bi-directional end-to-end data transfer over 50 min-

utes.

we used numactl to bind the RFTP and GridFTP processes to a specified NUMA

node. Figure 6-8 shows the two applications’ performance during 25-minute-

long tests. Our prior “fio” tests revealed that the narrowest section along the

end-to-end data transfer path resides on file I/O write operation; its performance

is 94.8 Gbps. Therefore, the best performance of the testbed for end-to-end data

transfer is 94.8 Gbps. RFTP achieved 91 Gbps, i.e., 96% of the effective band-

width of the overall system, while GridFTP obtained 29 Gbps, i.e., only 30%

of the bandwidth for the following reasons. First, TCP stack processing incurs

a substantial overhead, such as data copy between kernel space and user space

and interrupt handling for an I/O-intensive application. The high “sys” CPU in

GridFTP, shown in Figure 6-9, reveals the high TCP/IP stack-processing cost of

GridFTP. Second, GridFTP has a single-threaded design that causes the network

to be in an idle state when this thread performs I/O request with long waiting

time. Consequently, GridFTP is not able to fully utilize the resources of the

whole I/O system. Running multiple processes simultaneously may alleviate

this problem, but at the price of higher CPU consumption. Third, without sup-

port for direct I/O, GridFTP suffers the I/O cache effect at the front-end sender

and receiver hosts.

To further clarify the best end-to-end host performance in terms of band-

120

 0

 500

 1000

 1500

 2000

 2500

 3000

RFTP GridFTP

C
P

U
 u

til
iz

at
io

n
(%

)

user
sys
wait

Figure 6-11: CPU utilization breakdown for RFTP and GridFTP bi-directional

test.

width and CPU consumption, we performed bi-directional data transfer tests

with RFTP and GridFTP. In this experiment, we initiated data transfer simulta-

neously from each end of the end-to-end path to the other end. The configura-

tions are the same as in the previous experiment. We expected that the aggregate

bandwidth in the bi-directional tests would have been twice the performance in

the unidirectional experiment due to the full duplex property of each component

in the transfer path. However, the experimental results did not match with our

expectation. Contention for resources increased for bi-directional tests because

of more intensive parallel I/O requests to the back-end hosts, memory copies,

and higher protocol processing overhead at the front-end hosts.

As shown in Figure 6-10, our RFTP demonstrated an impressive 83% band-

width improvement in the bi-directional experiments versus the unidirectional

ones, and almost doubles the unidirectional performance (17% less). On the

other hand, GridFTP demonstrated only about a 33% improvement due to its

high CPU contention, as shown in Figure 6-11.

121

 35

 36

 37

 38

 39

 40

1 2 4 8 16
 35

 36

 37

 38

 39

 40

B
an

dw
id

th
 (

G
bp

s)

Block Size (MBytes)

1 stream
2 streams
4 streams
8 streams

16 streams

Figure 6-12: RFTP bandwidth with various block sizes and numbers of streams.

6.4.4 Experimental Results over 40 Gbps WAN RoCE Link

Long-haul fat links introduce much higher latency than local area networks, and

have a large bandwidth delay product (BDP). It is challenging for traditional

network protocols (between front-end hosts) to fill up the network pipe at the

speed of 100 Gbps and beyond. Here, we evaluate the effectiveness of RFTP in

eliminating this bottleneck effect. We ran RFTP over a RoCE link in DOE’s ANI

testbed. This link has an RTT of about 95 milliseconds, and the BDP is close

to 500 megabytes. We cannot relocate our entire testbed system to the point

of presence (POP) site of the DOE’s ANI testbed for a suite of full WAN tests

due to the restriction in testbed management and administration in a remote data

center. We had to leverage the existing end systems provided by the DOE’s ANI

testbed. For our experiments now, we only can conduct memory-to-memory

data transfers (between front-end hosts) to show that our RFTP affords a good

solution to support end-to-end data transfers in the wide-area networks. We

expect that if RFTP performs well over the RoCE link, then our full end-to-end

data transfer system would perform equally well if it were deployed in the ANI

testbed.

Figure 6-12 shows the bandwidth performance of RFTP when we use dif-

ferent numbers of parallel data streams. The x-axis shows the block size of

122

 0

 20

 40

 60

 80

 100

1 2 4 8 16

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (MBytes)

1 stream
2 streams
4 streams

8 streams
16 streams

(a) RFTP sending side CPU utilization

 0

 20

 40

 60

 80

 100

1 2 4 8 16

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (MBytes)

1 stream
2 streams
4 streams

8 streams
16 streams

(b) RFTP receiving side CPU utilization

Figure 6-13: RFTP CPU utilization with various block sizes and numbers of

streams.

data transferred, while the y-axis shows the actual payload data transfer band-

width, excluding the protocol overhead. We verify that RFTP utilizes 97% of

the raw bandwidth of the testbed link due to its efficient design (including the

use of proactive feedbacks and asynchronous control message exchanges [22]).

A small processing overhead is needed for control messages (for example creat-

ing RDMA channels and passing credit tokens), and this overhead decreases in

a direct relation to increase in the message block size. The overhead reduction

also is reflected by the lower CPU consumption as shown in Figure 6-13(a) for

the sender, and in Figure 6-13(b) for the receiver.

As we noted earlier that this wide area data transfer did not involve storage

area networks due to the difficulty of deploying and managing them remotely

at the NERSC. Our prior experiments show that we can get the maximum per-

formance along each segment of end-to-end LAN and WAN data transfers, i.e.,

back-end data upload to the front-end system, data transfer over networks, and

data offload to the back-end storage system again.

Furthermore, the performance of network data transfer is unaffected by long

latency. Based on these observations, we conclude that our RFTP easily can

scale up the performance that is commensurate with full-fledged end-to-end

distributed testing or production infrastructures consisting of large-scale stor-

age area networks with hundreds or thousands of target servers and long latency

inter-data center network links. These infrastructures often are found at the

123

DOE’s National Laboratories and cloud data centers with intensive data transfer

requirements.

6.5 Conclusions

Modern data centers of scientific computing must transfer and synchronize a

large amount of data continuously either locally within themselves or remotely

with other data centers for visualization, analysis, and disaster recovery. Ac-

cordingly, end-to-end high performance data transfer software must combine

efficient design and performance tuning, to eliminate any potential bottlenecks

within storage systems, at front-end hosts, and along network communication

paths. In this chapter we have described a novel design of such a system that

integrates RDMA protocol implementation, multi-core NUMA tuning, and an

optimized back-end storage area network.

To demonstrate the efficiency of our solution, we set up testbeds in both

LANs and WANs. We studied the processing cost of TCP/IP stack and our

RDMA based protocol. We demonstrated the performance benefits of an RDMA

based solution adopted by both our RFTP and iSER. We also compared our so-

lution with the high performance GridFTP software in various end-to-end con-

figurations. Our performance evaluation demonstrated that our solution is three

times faster than GridFTP. We also validated our protocol design in a 4000-mile

network path provided by the Department of Energy’s ANI testbed. These eval-

uations and studies verified that our solution can achieve remarkable bandwidth

utilization of 97% and fully utilize the available hardware capabilities.

124

Chapter 7

Related Work

This chapter surveys the research efforts and real system implementations that

are related to this dissertation. We first introduce the literature of software archi-

tectures and frameworks for processing tasks with high concurrency. Then we

discuss existing RDMA-based and TCP-based high performance data transfer

software. We also review recent works on storage caching management.

7.1 Software Architecture for Highly Concurrent

and Asynchronous Data Processing

Asynchronous I/O is widely used in high performance computing (HPC) to re-

duce communication overheads and latencies and Major Operating System and

software utilities support asynchronous I/O: for example, Linux OS has been of-

fering a set of system calls for asynchronous I/O since the early Linux version.

Recently, Linux started to distribute OpenFabrics [82] that implements and sup-

ports asynchronous network transport. Several recent research and development

efforts aim at supporting asynchronous direct file system I/O. For example, Ora-

cle supports both asynchronous I/O and direct I/O and allows the caller function

to continue processing while sending non-blocking I/Os requests. Such a con-

125

current processing leads to a higher I/O performance [83] than a synchronous

one.

Recently, asynchronous network I/O gained popularity beyond HPC appli-

cations. For example, Mitchell, et al. utilized asynchronism and zero-copy

kernel bypass of RDMA to implement an efficient key-value store called Pi-

laf [84]. To ensure a good trade-off between the high-performance RDMA op-

erations and the complexity of memory synchronization, Pilaf restricts clients

to only use RDMA for read-only get operations and bypasses the server’s CPU.

Clients need to explicitly submit/post the put operations, and the server sequen-

tially handles each write operation in the same way as a regular key-value store

does. The separate processes of get and put clearly improve the read perfor-

mance in terms of operations/sec per core when get is the dominant workload.

In [56], a high performance RSA and a SSL proxy (called SSLShader) of-

fload computing-intensive cryptographic operations to graphics processing units

(GPUs). This enables multiple threads for cryptographic operations to work

in parallel and achieve 92K operations/sec for 1024-bit RSA and 13 Gbps en-

crypted data streaming throughput with a single GPU card. GPU is optimized

for the computing-intensive tasks of access-once-process-many (i.e. CPU-bound),

its throughput is limited by the PCI bus and the high communication overheads

between the GPU and its main processor and memory. The newest GPU card

(NVIDIA TESLA K80 GPU ACCELERATOR) supports 16-lanes PCI Express

gen3 connection which has a maximum theoretical speed of 120 Gbps [85]. Ac-

tual performance is much lower than that because of the high communication

overhead over PCI bus, as shown in [56].

Asynchronism implemented with an event-driven architecture is particularly

attractive to the web service design because event-driven asynchronous comput-

ing processes a large number concurrent requests and enables high throughput.

SEDA (a staged event-driven architecture) was proposed in [59] to provide effi-

cient, scalable I/O interfaces and adaptive resource scheduling. The architecture

126

was implemented with two use cases: a high performance HTTP server and a

packet router for the peer-to-peer file-sharing network of Gnutella [86]. SEDA

demonstrated higher throughput and better stability than those traditional de-

signs. The authors in [87] presented another portable Web server architecture,

asymmetric multi-process event-driven (AMPED), and its implementation of a

flash web server. The flash server outperformed Zeus Web server by up to 30%,

and Apache by up to 50% with real web workloads.

Several research efforts studied the merits and shortcomings of event-based

concurrency and thread-based concurrency for the web applications with high

concurrency requirements [88–90]. These efforts concentrated on programming

language and OS support. The performance improvement in peripheral devices

recently gave rise to the new opportunities of developing suitable asynchronous

and concurrent methods and harnessing the abundant throughput. Nevertheless,

we expect that no single policy fits and integrates all types of I/O behaviors and

computation functions, and a hybrid method is needed to entail a wide range of

hardware advances.

7.2 High Performance Data Transfer Protocol and

Software

The remarkable performance advantages of RDMA technology for data cen-

ter networks and high performance computing have attracted a great amount of

interests from academia and industry. The original RDMA system, known as

InfiniBand (IB) [9], supports a top-down RDMA message service with its own

implementation of layer two to layer four protocol (sometimes including layer-

1) of the OSI stack. It provides a message passing service to applications and

offloads all protocol processing operations to specialized hardware. Different

from the best-effort frame delivery service in Ethernet, the link layer of Infini-

127

Band offers reliability and maintains packet order through its credit-based flow

control and virtual lane mechanism. However, extending IB to WAN requires

proprietary hardware to encapsulate IB in an Ethernet frame. This limitation

restricted its wide adoption in today’s Internet.

Two other implementations, Internet Wide Area RDMA Protocol (iWARP)

and RDMA over Converged Ethernet (RoCE), were proposed to extend the ad-

vantages of RDMA to the ubiquitous IP/Ethernet-based networks and Internet.

iWARP offloads the whole TCP/IP stack to the network adapter. The Direct Data

Placement (DDP) layer of the iWARP stack implements and supports zero-copy

and kernel-bypass; it transfers data in the user-space buffer directly to the ap-

plication memory on the remote server. iWARP enables RDMA to seamlessly

and transparently run over the best effort IP networks, a.k.a., the Internet. RoCE

supports the IB transport protocol over Ethernet and offers the advantages of IB,

such as high bandwidth and low latency IB, in an Ethernet environment. RoCE

is a natural extension of message-based data transfer, and therefore, of the two

alternatives to IB (iWARP and RoCE), offers better efficiency [11], and is in-

creasingly adopted by modern data centers to consolidate and converge hetero-

geneous networks for storage, supercomputer interconnects, and cluster/cloud

communication fabrics.

One objective of our design is to support applications across all these RDMA

architectures. In RDMA architecture, a verb defines how an application re-

quests action from the messaging service [91]. We build our system with the

common Verb Application Programming Interface (API) of the OpenFabrics

Enterprise Distribution (OFED) [82] that is a unified, cross-platform, transport-

independent software stack for RDMA. OFED offers a uniform application pro-

gramming interface, known as native IB verbs, to access various RDMA ar-

chitectures and functionalities. Applications mainly use the libibverbs and li-

brdmacm libraries. OFED software also offers several middleware packages,

such as IP over IB [92] and Sockets Direct Protocol (SDP) [10], to allow the

128

socket-based applications to run over the RDMA devices without the tedious

reimplementation of their original software programs. Other studies [93, 94]

chose to use the User Direct Access Programming Library (uDAPL) [95] that

provides simple APIs to manage and control the RDMA capabilities. Neverthe-

less, these extensions introduce additional overhead and performance penalties

compared to the native RDMA IB verbs [64].

Lai [64] implemented an RDMA-enabled FTP application based on the two-

sided zero-copy operation of IB networks. However, the two-sided SEND/RECEIVE

operations, originally proposed for delivering small control messages, can not

maximize the full throughput capacity of the new generation RDMA networks

shown in Figure 2-3. The one-sided RDMA READ/WRITE is a better choice

for high-speed large-scale data transfer because it decouples the data transfer

(data plane) entirely from the OS kernel software (control plane). Other re-

searchers [96, 97] demonstrated that although there are some benefits of using

RDMA over LAN and WAN with short latency, it is still challenging to at-

tain good RDMA performance in WAN with a long latency because RDMA

READ operation is sensitive to packet loss and latency. Based on these prior

studies [31, 96, 97], our middleware is designed to exploit the full benefit of

RDMA, in particular RDMA WRITE operation, yielding better performance

and lower communication cost for synchronizing senders and receivers than ex-

isting RDMA applications.

Tian et al. [33] implemented a RDMA extension driver for GridFTP to uti-

lize high-speed InfiniBand. Similar to our approach, they employed RDMA

WRITE to transfer large blocks of data. However, their design is not fully

optimized. In their design, data source needs one RTT to get transfer credits

(tokens for available buffers at destination) from data destination. This fea-

ture forces source to wait in idle, and potentially slows down data transfer in

WAN that often has a large RTT. Moreover, Compared to their protocol, our im-

plementation explicitly enforces flow control between the two communicating

129

parties, and tries to maximally parallelize RDMA operations. Subramoni [78]

also presented another driver to incorporate the capability of InfiniBand into the

GridFTP framework. Panda et al., extended the RDMA technology to Message

Passing Interface (MPI) [94, 98, 99] and to enable parallel applications of tak-

ing advantage of RDMA’s low latency and high speed communication. This is

work-in-progress as its scalability and performance need to be tested and vali-

dated in the newly available 40Gbps/100Gbps InfiniBand and Ethernet network

environments.

7.3 Hardware and Software Accelerated Key Value

Stores

Key-value stores and caches become popular in large data centers for serving

data directly from memory. They often provide a simple set of interfaces, such

as GET, PUT, and DELETE, for applications to improve I/O performance by keep-

ing user data in low latency RAM. TCP-based solutions are common and ma-

ture, such as Memcached [100], Redis [101], and MongoDB [102]. Their design

focuses on two topics: server indexing data structure and network data transmis-

sion based on TCP. However, these general purpose solutions often suffer long

latency and low throughput as a result of the excessive network stack overhead.

The problem deteriorates especially for serving a large number of small key-

value pairs.

As the TCP/IP network stack is often the bottleneck, many research efforts

have been focusing on bringing the zero-copy network stack into design. They

often holistically consider the data indexing structure and network protocol to-

gether: server expose data index (i.e., memory locations to “value”) to clients

and client use RDMA READ/WRITE, along with supplied memory addresses

to fetch/update remote memory blocks directly. The entire key-value process

130

itself follows exactly the native communication protocol of RDMA. Pilaf [84]

proposed using one-sided RDMA operations to get key-value object from server

directly. It requires two RDMA read operations: one for metadata and the other

for data. Herd [103] improves the key-value performance by employing op-

erations within only one round trip time to obtain a key-value pair. It uses

one-sided RDMA write to send a request over reliable connections, and uses

two-sided send/receive to send back the response. In addition, it uses unreliable

data transmission to save the on-board address translation table. Mica [104]

explores the zero-copy capability of Intel network interface for small network

package transmissions.

While this dissertation focus on the design and implementation of zero-copy

network protocol for wide area network, the protocol itself can be applied to

key value stores that target intra-data-center workloads. The I/O caching opti-

mization at the lower layer in this dissertation also provides noticeable benefit

to key-value stores at the upper layer.

7.4 Storage Cache Performance Optimization

In Section 2.3 and Chapter 5, we introduced the NUMA architecture and pre-

sented its research challenges. Several research efforts, including ours, proposed

parallel implementations to harness multi-core for improving storage through-

put and reducing latency.

Joglekar et al. proposed two optimization methods to improve iSCSI target

performance: replacing the old cyclic redundancy check (CRC) algorithm with

a new one, and eliminating data copy overheads between the iSCSI layer and

the TCP layer [105]. Zheng et al. designed a parallel page cache approach to

partition global cache into many independent page sets and to eliminate locking

contentions in a multi-core system [106]. A hybrid access mode was proposed

for storage area networks (SAN) to cache I/O traffic on a metadata server, and

131

to avoid traffic between client and data servers if the requested data is already

cached by the metadata server [107]. Studies on performance impacts under

different workloads to the iSCSI protocol and comparisons between iSCSI and

NFS revealed that the two protocols are comparable for data-intensive work-

loads, while iSCSI outperforms NFS by a factor of 2 or more for meta-data

intensive workloads [108–110].

132

Chapter 8

Conclusions and Future Work

Technology advances in state-of-the-art computer hardware provide both op-

portunities and challenges. To achieve bare-metal performance and fully uti-

lize these hardware advances, data I/O systems and middleware must undertake

careful new design and performance tuning, to tackle various scalability prob-

lems along the entire end-to-end data path, and to eliminate any potential bot-

tleneck inside storage systems, at front-end hosts, and along network commu-

nication paths. In this dissertation, we detail our solution on scalable systems

design and implementation, including zero-copy based data transfer protocol

over WAN and NUMA-aware caching solution for iSCSI/iSER systems over

high-speed Interconnects. This chapter concludes our research and contribu-

tions, and proposes the future directions based on the thesis work.

8.1 Conclusions

Modern data centers transfer and synchronize an unprecedented amount of data

either locally inside themselves or remotely to other data centers for visualiza-

tion, analysis, and disaster recovery. This new trend engenders the need for

scalable data I/O solutions. In this dissertation we demonstrated the system

design for scalable end-to-end data I/O including RDMA-based data transfer

133

protocol for high performance networks, multi-core NUMA-aware tuning along

the whole data path, and highly optimized NUMA-aware caching for storage

area network.

We presented the Asynchronous Concurrent Event-driven Staged (ACES)

software architecture for high throughput data I/O systems. It divided the data

path into stages, connected these stages with explicit queues, and orchestrated

hardware resources by keeping track of each stage’s status. Then we described a

scalable RDMA-based data transfer protocol for WAN. To ensure a high-degree

zero-copy in data transfer, we adopted the memory-centric design principle. To

cope with the complexity of the design, we introduced finite state machine to

model the memory status, and reserved dedicated control path to deliver control

messages and to synchronize memory status between the communication par-

ties. We also elaborated the connection management and the metadata format

for data transfer. We designed an end-to-end data transfer software, RFTP, on

top of this protocol, and implemented the software system based on the ACES

software architecture.

For storage I/O, we studied the scalability of iSCSI/iSER serving cached

data. We analyzed the I/O cost, latency and throughput, of the iSCSI/iSER

protocol with and without NUMA-aware tuning. We designed and implemented

a userspace NUMA-aware cache to replace the default OS page cache for high

performance storage systems. Furthermore, we introduced a decentralized event

processing model and scaled up its performance of processing many small-scale

requests. We designed the caching-layer optimization for accessing data blocks

to be universal so to expedite more application with cache, such as file systems

and databases.

To demonstrate the efficiency of our solution, we set up testbeds in both

LANs and WANs. We studied the processing cost of conventional TCP/IP stack

and our RDMA based protocol. We demonstrated the performance benefits of

RDMA that was adopted by RFTP and iSCSI/iSER. We also compared RFTP

134

with the high performance GridFTP software in various end-to-end configura-

tions. Our performance evaluation demonstrated that our solution was 2× faster

than GridFTP. We also validated our protocol design in a wide area network net-

work path belonging to the Department of Energy’s ANI testbed. These evalu-

ations and studies verified that our solution achieved a remarkable 97% utiliza-

tion of bare-metal network bandwidth, and fully utilized the available hardware

capabilities. In addition, we evaluated our NUMA-aware cache solution on a

4-node NUMA testbed, and showed its sizeable performance improvement over

OS page cache for both synthetic and real-life workloads.

8.2 Future Work

In this section, we present future directions for high-speed data I/O that are

inspired by our research work.

8.2.1 Efficient I/O for High Speed Parallel Hardware Accel-

erator

PCI-based (Peripheral Component Interconnect) computing accelerators, such

as GPGPU and Intel Coprocessor, extend single server processing capacity by

partitioning data/tasks into small chunks and offloading them to many parallel

cores of accelerator. These cores often need to directly exchange data and syn-

chronize with other servers that are connected by high performance networks

in a distributed system. In this work, we focuses on the data that reside in

main memory. However, the data I/Os by offloaded computing involve on-board

RAM, and require special fine-grained accesses to eliminate data copies be-

tween main memory and device RAM. For example, the GPUDirect technology

bypasses main memory, and exposes accelerator’s onboard RAM to network

adaptor directly. The new technology enables new research in mitigating the

135

severe I/O bottleneck in the computation by coprocessors and improving data

processing throughput in distributed systems. This future work can leverage our

network protocol design and software architecture to move data among many of-

floading computing cores of cluster nodes within a data center and even across

data centers.

In addition, the ACES software architecture also offloads some computa-

tion intensive tasks to coprocessors to harness their parallel processing capa-

bility. For example, we plan to investigate and design parallel algorithms for

computation-intensive public/private key cryptography and data integrity assur-

ance on Nvidia GPGPU and Intel Coprocessors, and integrate them into the

ACES software architecture.

8.2.2 Asynchronous I/O Event Scheduling

Traditional event-driven software design consists of non-blocking routines (call-

back functions) that correspond to various events. There are many types of

events: probing event for I/O device availability (readable/writable), I/O error,

timeout, and system call interruption. To achieve better processing through-

put, applications often need a scalable event scheduling algorithm for handling

different types of events efficiently. Several factors need to be considered for

design the scheduling algorithm: fairness, efficiency, non-blocking, and fine

granularity. The optimization on I/O event scheduling will improve data in-

tensive applications such as the data transfer software and the storage server

applications presented in this dissertation.

8.2.3 Memory-based Data Backup over SAN

The memory capacity in a single Intel server increases to terabyte level recently.

For example, An Intel Xeon 8800 processor connects up to 12 Terabyte main

memory and the NUMA architecture further scales up the total memory capa-

136

bility linearly with the number of processors in a single system. Storage servers

often use a large amount of memory for caching “hot data” and buffering write

data. Buffering write data always causes the problem of consistency, potentially

damages data integrity, undermines server stability, and even triggers service

outage. On the other hand, synchronous write operation without buffering in-

curs much longer latency for clients. A careful trade-off is needed to reduce I/O

latency while attaining data reliability. For example, I/O mirroring-on-write as-

sures necessary redundancy, i.e., instead of writing data directly into persistent

storage media, we can replicate data into the main memory of other servers by

background threads and hardware offloading with RDMA. The server can safely

respond to application once data replications to other servers complete success-

fully. Future research can focus on sorting the memory copies of buffered data

and writing to their nearest persistent storage media in an optimized order. Any

single point of failure will not lose buffered write data. This design assures bet-

ter performance in terms of I/O latency and throughput than does the standard

persistent I/O. Many cloud storage systems, such as, Google File System [111]

and its open-source version of Hadoop Distributed File System [112], adopt

this mirroring mechanism. However, they focus on reliability instead of perfor-

mance, and do not utilize the highly efficient off-loading by RDMA.

8.3 Summary

Scalable data I/O systems, including data transfer protocol and storage caching

system, are essential components in data centers. Because the bare-metal ca-

pacity of computer hardware improved significantly in the last decade, software

design must cope with the hardware characteristics to ensure line-speed perfor-

mance and scalability. This dissertation details the research efforts of designing

and implementing the scalable end-to-end data I/O system, the RDMA-based

data transfer protocol for wide area networks, and the NUMA-aware cache sys-

137

tem for iSCSI/iSER servers. We build real systems to incorporate these research

outcomes and to show their advantages in the high performance network envi-

ronment.

138

Bibliography

[1] Youngjae Kim, Scott Atchley, Geoffroy R. Vallée, and Galen M. Ship-

man. Lads: Optimizing data transfers using layout-aware data schedul-

ing. In 13th USENIX Conference on File and Storage Technologies (FAST

15), pages 67–80, Santa Clara, CA, February 2015. USENIX Associa-

tion.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Com-

mun. ACM, 53(4):50–58, April 2010.

[3] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: impli-

cations of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24,

March 1995.

[4] The Magellan report on cloud computing for science. Technical report,

2011.

[5] Dennis Overbye. Physicists find elusive particle seen as key to universe,

July 2012.

[6] Krste Asanovic. Firebox: A hardware building block for 2020

warehouse-scale computers. Keynote presentation given at the 12th

Usenix Conference on File and Storage Technologies, 2014.

[7] The ASCAC Subcommittee on Exascale Computing. The opportunities

and challenges of exascale computing. 2010.

[8] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A remote direct

memory access protocol specification. RFC 5040 (Proposed Standard),

October 2007.

[9] InfiniBand Trade Association. InfiniBand Architecture Specification. Re-

lease 1.2.1, 2006.

[10] IBTA. Infiniband Trade Association. http://www.infinibandta.org/, 2010.

139

[11] David Cohen, Thomas Talpey, Arkady Kanevsky, Uri Cummings,

Michael Krause, Renato Recio, Diego Crupnicoff, Lloyd Dickman, and

Paul Grun. Remote Direct Memory Access over the Converged Enhanced

Ethernet fabric: Evaluating the options. In 2009 17th IEEE Symposium

on High Performance Interconnects (HOTI), pages 123–130, 2009.

[12] R. Tecio, P. Culley, D. Garcia, and J. Hilland. An RDMA protocol speci-

fication. RDMA Consortium, October 2002.

[13] An introduction to the Intel QuickPath Interconnect, January 2009.

[14] HyperTransport I/O technology overview, June 2004.

[15] Ulrich Drepper. What every programmer should know about memory.

September 2007.

[16] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,

and Bill Hughes. Cache hierarchy and memory subsystem of the AMD

Opteron processor. IEEE Micro, pages 16–29, 2010.

[17] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Am-

dahl’s Law through EPI throttling. In Proceedings of the 32nd annual in-

ternational symposium on Computer Architecture, pages 298–309, May

2005.

[18] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Em-

mett Witchel, and Mark Silberstein. Gpunet: Networking abstractions

for gpu programs. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), pages 201–216, Broomfield, CO,

October 2014. USENIX Association.

[19] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The

operating system is the control plane. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pages 1–16,

Broomfield, CO, October 2014. USENIX Association.

[20] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. Ix: A protected dataplane operating

system for high throughput and low latency. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14), pages 49–

65, Broomfield, CO, October 2014. USENIX Association.

[21] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas Robertazzi.

Middleware support for rdma-based data transfer in cloud computing.

In Proceedings of the 2012 IEEE 26th International Parallel and Dis-

tributed Processing Symposium Workshops & PhD Forum, IPDPSW ’12,

140

pages 1095–1103, Washington, DC, USA, 2012. IEEE Computer Soci-

ety.

[22] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

Brian L. Tierney, and Eric Pouyoul. Protocols for wide-area data-

intensive applications: design and performance issues. In Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’12, pages 34:1–34:11, Los Alamitos,

CA, USA, 2012. IEEE Computer Society Press.

[23] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas Robertazzi.

Design and performance evaluation of numa-aware rdma-based end-to-

end data transfer systems. In Proceedings of SC13: International Confer-

ence for High Performance Computing, Networking, Storage and Analy-

sis, SC ’13, pages 48:1–48:10, New York, NY, USA, 2013. ACM.

[24] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas Rober-

tazzi. Design and testbed evaluation of rdma-based middleware for high-

performance data transfer applications. Journal of Systems and Software,

86(7):1850 – 1863, 2013.

[25] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. Thread and

memory placement on numa systems: Asymmetry matters. In 2015

USENIX Annual Technical Conference (USENIX ATC 15), pages 277–

289, Santa Clara, CA, July 2015. USENIX Association.

[26] ESnet. Energy Sciences Network: http://www.es.net/, 2012.

[27] Tan Li, Yufei Ren, Dantong Yu, and Shudong Jin. Resources-conscious

asynchronous high-speed data transfer in multicore systems: Design, op-

timizations, and evaluation. In Parallel and Distributed Processing Sym-

posium (IPDPS), 2015 IEEE International, pages 1097–1106, May 2015.

[28] Globus Group. GridFTP online page:

http://www.globus.org/toolkit/docs/latest-stable/gridftp/, 2012.

[29] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas Robert azzi.

Design, implementation, and evaluation of a numa-aware cache for iscsi

storage servers. IEEE Transactions on Parallel & Distributed Systems,

26(2):413–422, 2015.

[30] Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, and Thomas Rober-

tazzi. Characterization of input/output bandwidth performance models

in NUMA architecture for data intensive applications. In Proceedings

of the 2013 International Conference on Parallel Processing, ICPP ’13,

2013.

141

[31] Philip W. Frey and Gustavo Alonso. Minimizing the hidden cost of

RDMA. In Proceedings of IEEE International Conference on Distributed

Computing Systems (ICDCS), June 2009.

[32] Jens Axboe. Flexible I/O Tester: http://freecode.com/projects/fio, 2012.

[33] Yuan Tian, Weikuan Yu, and Jeffrey Vetter. RXIO: Design and imple-

mentation of high performance RDMA-capable GridFTP, 2011.

[34] Open MP. Openmp: http://openmp.org/wp/, 2014.

[35] Linux. Kernel asynchronous i/o (aio) support for linux:

http://lse.sourceforge.net/io/aio.html, 2014.

[36] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexan-

dra Fedorova. A case for numa-aware contention management on

multicore systems. In Proceedings of the 2011 USENIX conference

on USENIX annual technical conference, USENIXATC’11, pages 1–1,

Berkeley, CA, USA, 2011. USENIX Association.

[37] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah, and P. Thaler. In-

ternet Small Computer System Interface (iSCSI) Extensions for Remote

Direct Memory Access (RDMA). RFC 5046 (Proposed Standard), Octo-

ber 2007.

[38] Fujita Tomonori and Mike Christie. tgt: Framework for storage target

drivers. In Proceedings of the Linux Symposium, LinuxSymposium’06,

pages 303–312, 2006.

[39] Fujita Tomonori and Ogawara Masanori. Analysis of iscsi target soft-

ware. In Proceedings of the international workshop on Storage network

architecture and parallel I/Os, SNAPI ’04, pages 25–32, New York, NY,

USA, 2004. ACM.

[40] Dennis Dalessandro, Ananth Devulapalli, and Pete Wyckoff. iSER stor-

age target for object-based storage devices. In Proceedings of Fourth In-

ternational Workshop on Storage Network Architecture and Parallel I/Os,

September 2007.

[41] Xubin He, Qing Yang, and Ming Zhang. A caching strategy to improve

iscsi performance. In Local Computer Networks, 2002. Proceedings.

LCN 2002. 27th Annual IEEE Conference on, pages 278 – 285, nov. 2002.

[42] Jun Wang, Xiaoyu Yao, C. Mitchell, and Peng Gu. A new hierarchical

data cache architecture for iscsi storage server. Computers, IEEE Trans-

actions on, 58(4):433 –447, april 2009.

142

[43] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction based cache place-

ment for storage caches. In in USENIX Annual Technical Conference.

Usenix, 2003.

[44] Yuanyuan Zhou, Z. Chen, and K. Li. Second-level buffer cache man-

agement. Parallel and Distributed Systems, IEEE Transactions on,

15(6):505–519, 2004.

[45] Theodore M. Wong and John Wilkes. My cache or yours? making stor-

age more exclusive. In Proceedings of the General Track of the annual

conference on USENIX Annual Technical Conference, ATEC ’02, pages

161–175, Berkeley, CA, USA, 2002. USENIX Association.

[46] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni

Schiefer. Empirical evaluation of multi-level buffer cache collaboration

for storage systems. In Proceedings of the 2005 ACM SIGMETRICS in-

ternational conference on Measurement and modeling of computer sys-

tems, SIGMETRICS ’05, pages 145–156, New York, NY, USA, 2005.

ACM.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-

cessing on large clusters. In Proceedings of the 6th Conference on Sym-

posium on Opearting Systems Design & Implementation - Volume 6,

OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Associa-

tion.

[48] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st

edition, 2009.

[49] Ian Foster and Carl Kesselman, editors. The Grid 2, Second Edition:

Blueprint for a New Computing Infrastructure (The Elsevier Series in

Grid Computing). Elsevier, Nov 2003.

[50] HTCondor. Computing with htcondor:

http://research.cs.wisc.edu/htcondor/, 2014.

[51] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 5th edition, 2011.

[52] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided

rdma reads to build a fast, cpu-efficient key-value store. In Proceed-

ings of the 2013 USENIX Conference on Annual Technical Conference,

USENIX ATC’13, pages 103–114, Berkeley, CA, USA, 2013. USENIX

Association.

[53] The OpenBSD Project. Openssh: http://www.openssh.org, 2014.

143

[54] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,

G. Henry, A.G. Shet, G. Chrysos, and P. Dubey. Design and implementa-

tion of the linpack benchmark for single and multi-node systems based on

intel Xeon Phi coprocessor. In Parallel Distributed Processing (IPDPS),

2013 IEEE 27th International Symposium on, pages 126–137, May 2013.

[55] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike

Houston, John Owens, Mark Segal, Matthew Papakipos, and Ian Buck.

GPGPU: General-purpose computation on graphics hardware. In Pro-

ceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06,

New York, NY, USA, 2006. ACM.

[56] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo

Park. Sslshader: Cheap ssl acceleration with commodity processors.

In Proceedings of the 8th USENIX Conference on Networked Systems

Design and Implementation, NSDI’11, pages 1–1, Berkeley, CA, USA,

2011. USENIX Association.

[57] D. Demidov, K. Ahnert, K. Rupp, and P. Gottschling. Programming cuda

and opencl: A case study using modern c++ libraries. SIAM Journal on

Scientific Computing, April 2013. Accepted.

[58] The OpenSSL Project. Openssl: http://www.openssl.org, 2014.

[59] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for

well-conditioned, scalable internet services. In Proceedings of the Eigh-

teenth ACM Symposium on Operating Systems Principles, SOSP ’01,

pages 230–243, New York, NY, USA, 2001. ACM.

[60] Ganglia. Ganglia monitoring system: http://ganglia.info/, 2014.

[61] NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool,

2003.

[62] HPN-SSH:http://www.psc.edu/index.php/hpn-ssh/640, 2012.

[63] Mellanox. RDMA aware networks programming user manual, Jan 2010.

[64] Ping Lai, Hari Subramoni, Sundeep Narravula, Amith Mamidala, and

Dhabaleswar K. Panda. Designing efficient FTP mechanisms for high

performance data-transfer over InfiniBand. In Proceedings of Interna-

tional Conference on Parallel Processing (ICPP), September 2009.

[65] Performance tuning guidelines for Mellanox network adapters, March

2012.

144

[66] Globus Group. GT 4.0 GridFTP Glossary:

http://www.globus.org/toolkit/docs/4.0/data/gridftp/gridftp glossary.html,

2012.

[67] Globus Developer Group. GridFTP Threaded Flavors:

http://www.globus.org/toolkit/docs/5.0/5.0.0/data/gridftp/admin/, 2012.

[68] Nigel Griffiths. nmon performance: A free tool to analyze AIX and Linux

performance: http://www.ibm.com/developerworks/aix/library/au-

analyze aix/, Feb 2006.

[69] John D. McCalpin. STREAM: Sustainable memory bandwidth in high

performance computers. Technical report, University of Virginia, Char-

lottesville, Virginia, 1991-2007. A continually updated technical report.

http://www.cs.virginia.edu/stream/.

[70] Mark Wagner. Achieving top network performance. March 2012.

[71] Andi Kleen. An NUMA API for linux, August 2004.

[72] Will Reese. Nginx: The high-performance web server and reverse proxy.

Linux J., 2008(173), September 2008.

[73] George Kingsley Zipf. Relative frequency as a determinant of phonetic

change. Harvard Studies in Classical Philology, 40:pp. 1–95, 1929.

[74] Jeffrey Katcher. Postmark: A new file system benchmark. 1997.

[75] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10,

pages 143–154, New York, NY, USA, 2010. ACM.

[76] New mellanox interconnect to break 100g throughput, June 2012.

[77] perf : Linux profiling with performance counters, 2012.

[78] H. Subramoni, P. Lai, R. Kettimuthu, and D. K. Panda. High performance

data transfer in grid environment using GridFTP over InfiniBand. In Int’l

Symposium on Cluster Computing and the Grid (CCGrid), May 2010.

[79] NUMA memory allocation policy for tmpfs, 2006.

[80] Brian Tierney, Ezra Kissel, Martin Swany, and Eric Pouyoul. Efficient

data transfer protocols for big data. In Proceedings of the 8th Interna-

tional Conference on eScience, October 2012.

145

[81] Adam Sweeney. Scalability in the XFS file system. In Proceedings of

USENIX Annual Technical Conference, pages 1–14, 1996.

[82] OpenFabrics. OpenFabrics Alliance: http://www.openfabrics.org/, 2012.

[83] ORACLE BASE. Direct and asynchronous i/o: http://www.oracle-

base.com/articles/misc/direct-and-asynchronous-io.php, 2014.

[84] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided

rdma reads to build a fast, cpu-efficient key-value store. In Proceed-

ings of the 2013 USENIX Conference on Annual Technical Conference,

USENIX ATC’13, pages 103–114, Berkeley, CA, USA, 2013. USENIX

Association.

[85] NVIDIA. TESLA K80 GPU ACCELERATOR .

http://images.nvidia.com/content/pdf/kepler/tesla-k80-boardspec-

07317-001-v05.pdf, 2015.

[86] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can heterogeneity make

gnutella scalable? In In Proceedings of the first International Workshop

on Peer-to-Peer Systems, pages 94–103, 2002.

[87] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient

and portable web server. In Proceedings of the Annual Conference on

USENIX Annual Technical Conference, ATEC ’99, pages 15–15, Berke-

ley, CA, USA, 1999. USENIX Association.

[88] John Ousterhout. Why threads are a bad idea (for most purposes). Presen-

tation given at the 1996 Usenix Annual Technical Conference, 5, 1996.

[89] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.

Douceur. Cooperative task management without manual stack manage-

ment. In Proceedings of the General Track of the Annual Conference

on USENIX Annual Technical Conference, ATEC ’02, pages 289–302,

Berkeley, CA, USA, 2002. USENIX Association.

[90] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad

idea (for high-concurrency servers). In Proceedings of the 9th Conference

on Hot Topics in Operating Systems - Volume 9, HOTOS’03, pages 4–4,

Berkeley, CA, USA, 2003. USENIX Association.

[91] Paul Grun. Introduction to infinibandfor end users. 2010.

[92] The Internet Engineering Task Force (IETF). RFC 4392 - IP over Infini-

Band (IPoIB) Architecture, April 2006.

146

[93] Anthony Danalis, Aaron Brown, Lori Pollock, and Martin Swany. Intro-

ducing gravel: An MPI companion library. In Proceedings of IEEE In-

ternational Symposium of Parallel and Distributed Processing (IPDPS),

Miami, Florida USA, April 2008.

[94] Anthony Danalis, Aaron Brown, Lori Pollock, Martin Swany, and John

Cavazos. Gravel: A communication library to fast path MPI. In Euro

PVM/MPI 2008, October 2008.

[95] DAT Collaborative. uDAPL: User Direct Access Programming Library.

http://www.datcollaborative.org/udapl doc 062102.pdf, June 2002.

[96] Nageswara S. V. Rao, Weikuan Yu, William R. Wing, Stephen W. Poole,

and Jeffrey S. Vetter. Wide-area performance profiling of 10GigE and

InfiniBand technologies. In Proceedings of International Conference for

High Performance Computing, Networking, Storage and Analysis (SC),

November 2008.

[97] Weikuan Yu, Nageswara S.V. Rao, Pete Wyckoff, and Jeffrey S. Vette.

Performance of RDMA-capable storage protocols on wide-area network.

In Proceedings of Petascale Data Storage Workshop, November 2008.

[98] M. Luo, S. Potluri, P. Lai, Emilio, P. Mancini, H. Subramoni, K. C. Kan-

dalla, S. Sur, and D. K. Panda. High performance design and implemen-

tation of nemesis communication layer for two-sided and one-sided MPI

semantics in MVAPICH. In Proceedings of the 2010 39th International

Conference on Parallel Processing Workshops, 2010.

[99] Hari Subramoni, Ping Lai, Miao Luo, and Dhabaleswar K. Panda.

RDMA over Ethernet: A preliminary study. In Proceedings of Cluster

Computing Workshops, CLUSTER’09, August 2009.

[100] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,

2004(124):5–, August 2004.

[101] Josiah L. Carlson. Redis in Action. Manning Publications Co., Green-

wich, CT, USA, 2013.

[102] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide

to MongoDB: The NoSQL Database for Cloud and Desktop Computing.

Apress, Berkely, CA, USA, 1st edition, 2010.

[103] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using rdma

efficiently for key-value services. In Proceedings of the 2014 ACM Con-

ference on SIGCOMM, SIGCOMM ’14, pages 295–306, New York, NY,

USA, 2014. ACM.

147

[104] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-

sky. Mica: A holistic approach to fast in-memory key-value storage.

In 11th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 14), pages 429–444, Seattle, WA, April 2014. USENIX

Association.

[105] Abhijeet Joglekar, Michael E. Kounavis, and Frank L. Berry. A scalable

and high performance software iscsi implementation. In Proceedings of

the 4th conference on USENIX Conference on File and Storage Tech-

nologies - Volume 4, FAST’05, pages 20–20, Berkeley, CA, USA, 2005.

USENIX Association.

[106] Da Zheng, Randal Burns, and Alexander S. Szalay. A parallel page

cache: Iops and caching for multicore systems. In Proceedings of the

4th USENIX conference on Hot Topics in Storage and File Systems, Hot-

Storage’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX Association.

[107] A. Singh, S. Gopisetty, K. Voruganti, D. Pease, and Ling Liu. A hy-

brid access model for storage area networks. In Mass Storage Systems

and Technologies, 2005. Proceedings. 22nd IEEE / 13th NASA Goddard

Conference on, pages 181 – 188, april 2005.

[108] Peter Radkov, Li Yin, Pawan Goyal, Prasenjit Sarkar, and Prashant

Shenoy. A performance comparison of nfs and iscsi for ip-networked

storage. In Proceedings of the 3rd USENIX Conference on File and Stor-

age Technologies, FAST ’04, pages 101–114, Berkeley, CA, USA, 2004.

USENIX Association.

[109] S. Aiken, D. Grunwald, A.R. Pleszkun, and J. Willeke. A performance

analysis of the iscsi protocol. In Mass Storage Systems and Technolo-

gies, 2003. (MSST 2003). Proceedings. 20th IEEE/11th NASA Goddard

Conference on, pages 123 – 134, april 2003.

[110] Yingping Lu and D.H.C. Du. Performance study of iscsi-based storage

subsystems. Communications Magazine, IEEE, 41(8):76 – 82, aug. 2003.

[111] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google

file system. In Proceedings of the Nineteenth ACM Symposium on Oper-

ating Systems Principles, SOSP ’03, pages 29–43, New York, NY, USA,

2003. ACM.

[112] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The hadoop dis-

tributed file system. In Mass Storage Systems and Technologies (MSST),

2010 IEEE 26th Symposium on, pages 1–10, May 2010.

148

	List of Figures
	List of Tables
	Acknowledgements
	Publications
	Introduction
	Research Motivation
	Big Data Needs Efficient Movement
	Hardware Exposes Opportunities and Challenges
	Limitations in Existing Solutions

	Research Challenges and Research Goals
	Achieve Zero-Copy In An End-to-End Data Path
	Scale Zero-Copy Based Network Protocol In WANs
	Caching Locality in Large-Scale NUMA Systems
	Towards Scalable End-to-End Data I/O Systems

	Dissertation Contributions
	Dissertation Overview

	Background
	RDMA and Zero-Copy Techniques
	RDMA Semantics and Performance Analysis
	OS Kernel Zero-Copy Techniques

	Asynchronous High Throughput Computing and Thread-based Concurrency
	RDMA Asynchronous Programming Model
	Asynchronous Storage I/O

	NUMA Architecture
	SMP and NUMA Architecture
	Asymmetric Memory Layout

	iSCSI/iSER and Storage Caching System
	iSCSI and iSER
	Caching Layer in iSCSI/iSER

	Summary

	ACES Software Architecture
	Introduction
	Existing High Throughput Solutions
	Memory-Centric Asynchronous Design
	Design Goals
	End-to-end Staged Asynchronous Software Architecture
	Stage Implementation
	Uncertainty and Determinism
	Memory Centric Design and Memory State Transition

	Evaluation
	Experimental Setup
	RDMA Asynchronous I/O Evaluation
	ACES-FTP End-to-End Evaluation

	Conclusion

	Scalable RDMA-based Data Transfer Protocol
	Protocol Overview
	Finite State Machines Modeling
	Connection Management and Message Format
	Discussion on Scalability
	Scalability to Next Generation High Speed Networks
	Scalability to Wide Area Networks

	Evaluation
	Testbed Setup
	Parameter Configuration and Tuning
	Experimental Results over LAN
	Experimental Results over WAN

	Summary

	NUMA-Aware Cache for Storage Area Networks
	I/O Cost Analysis with iSCSI
	Processing Time and Throughput Modeling
	The Impact of Queuing Delay
	Cost Analysis with Our Testbed System

	NUMA-aware Cache Design and Implementation
	Software Overview
	Cache Organization
	Routing I/O Tasks to NUMA Nodes
	Placement of the I/O Interpreting Function
	Discussions on Overhead and Scalability

	Decentralized Event Processing
	Scalability Limitations in Standard iSCSI/iSER Servers
	Events Categories in iSCSI/iSER Servers
	Decentralized Event Processing Model
	RDMA Network Events Processing

	Evaluation with Synthetic Workloads
	System Setup
	Evaluation of Request Processing Time
	Random Access on Fully Cached Data
	Decentralized Event Processing Evaluation
	Queuing Delay Analysis

	Evaluation with Real-life Workloads
	The PostMark Workload
	The YCSB Workload
	Decentralized Event Processing Evaluation with YCSB

	Summary

	RDMA-Based NUMA-Aware End-to-End Performance Optimization
	Introduction
	Background
	Memory Access in NUMA Multi-core Systems
	Protocol Offloading
	A Motivating Experiment

	Characterization of System Design and Network Application
	Back-End Storage Area Network Design
	RDMA Application Protocol: Cost Analysis and Implementation

	Experimental Results
	Testbed Setup
	Evaluation of Memory-Based Storage System Performance
	End-to-End Data Transfer Performance
	Experimental Results over 40 Gbps WAN RoCE Link

	Conclusions

	Related Work
	Software Architecture for Highly Concurrent and Asynchronous Data Processing
	High Performance Data Transfer Protocol and Software
	Hardware and Software Accelerated Key Value Stores
	Storage Cache Performance Optimization

	Conclusions and Future Work
	Conclusions
	Future Work
	Efficient I/O for High Speed Parallel Hardware Accelerator
	Asynchronous I/O Event Scheduling
	Memory-based Data Backup over SAN

	Summary

