
MONITORING-AS-A-SERVICE IN THE CLOUD

A Thesis
Presented to

The Academic Faculty

by

Shicong Meng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
May 2012

MONITORING-AS-A-SERVICE IN THE CLOUD

Approved by:

Professor Ling Liu, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Leo Mark
School of Computer Science
Georgia Institute of Technology

Professor Calton Pu
School of Computer Science
Georgia Institute of Technology

Professor Lakshmish Ramaswamy
School of Computer Science
University of Georgia

Professor Karsten Schwan
School of Computer Science
Georgia Institute of Technology

Professor Francisco Hernandez
Department of Computing Science
Umeå University, Sweden

Date Approved: 12 March 2012

To Tina, Mom and Dad.

iii

ACKNOWLEDGEMENTS

I gratefully acknowledge the support and encouragement provided by my advisor, Professor

Ling Liu, during the time I spent at Georgia Tech. I feel extremely fortunate to have

crossed paths with her and to have had the opportunity to work with her so closely for

many years. She has been a most valued friend and mentor during tough times. She has

cultivated me with her fantastic taste of research problems while allowing me the freedom

of pursuing the problems I found most interesting; at the same time, in critical moments,

she has always been available to provide sincere and determined opinions, helping me make

the right decisions.

I would like to acknowledge the feedback received from members of my thesis com-

mittee: Professor Calton Pu, Professor Karsten Schwan, Professor Leo Mark, Professor

Lakshmish Ramaswamy and Professor Francisco Hernandez. I would like to thank them

for interesting discussions and inspiring suggestions on my research which helped me look

at my work in a much broader context. Special thanks are also due to Professor Calton

Pu and Professor Karsten Schwan for thought-provoking conversations on distributed sys-

tem and Cloud Computing research. Their rapid ideas, unusual associations and amazing

ability of finding connections between seemingly disparate problems have always been

inspirational for me.

The friendship, companionship and support of my colleagues in the DiSL research

group, Systems lab and Databases lab would be hard to replace. A big thanks to all my

collaborators at IBM T.J. Watson Research Center and VMware. Special thanks are due

to Arun Iyengar, Isabelle Rouvellou, Chitra Venkatramani at T.J. Watson Research Center

and Ravi Soundararajan at VMware.

Finally, I would like to dedicate this work to my wife and my parents, whose love and

iv

patience have been my constant source of inspiration, without which this accomplishment

would have been impossible. My success is also theirs.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xv

I INTRODUCTION . 1

1.1 Technical Challenges . 2

1.2 Dissertation Scope and Contributions . 4

1.2.1 Monitoring Infrastructure . 4

1.2.2 Monitoring Functionalities to Meet Unique Cloud Monitoring Re-
quirements . 5

1.2.3 State Monitoring Enhanced Cloud Management [77] 6

1.3 Organization of the Dissertation . 7

II RESOURCE-AWARE APPLICATION STATE MONITORING 11

2.1 Introduction . 11

2.2 System Overview . 15

2.2.1 Application State Monitoring . 15

2.2.2 The Monitoring System Model 16

2.2.3 Monitoring Overhead and Monitoring Planning 17

2.2.4 Challenges in Monitoring Planning 19

2.3 The Basic REMO Approach . 22

2.3.1 Partition Augmentation . 23

2.3.2 Resource-aware Evaluation . 26

2.3.3 Discussion . 29

2.4 Runtime Topology Adaption . 30

2.4.1 Efficient Adaptation Planning . 30

vi

2.4.2 Cost-Benefit Throttling . 32

2.5 Optimization . 33

2.5.1 Efficient Tree Adjustment . 33

2.5.2 Ordered Resource Allocation . 35

2.6 Extensions . 36

2.6.1 Supporting In-Network Aggregation 37

2.6.2 Reliability Enhancements . 38

2.6.3 Supporting Heterogeneous Update Frequencies 39

2.7 Experimental Evaluation . 40

2.7.1 Result Analysis . 41

2.8 Related Work . 56

III A SELF-SCALING MANAGEMENT SYSTEM FOR VIRTUALIZED CLOUD
DATACENTERS . 58

3.1 Introduction . 58

3.2 Background . 61

3.2.1 vSphere Datacenter Management System 62

3.2.2 Management Workloads . 63

3.3 Tide Overview . 64

3.3.1 The Architecture of Tide . 65

3.3.2 Challenges of Delivering Self-Scaling 67

3.4 Fast and Efficient Provisioning . 68

3.4.1 Speedup-Guided Provisioning 69

3.4.2 Performance Analysis . 72

3.4.3 Optimization . 74

3.5 Maximizing Instance Utilization with Workload Dispatching 75

3.5.1 Workload Dispatching in Tide 76

3.5.2 An Online Dispatching Algorithm 77

3.6 Prototype Implementation . 78

3.6.1 Master Nodes . 79

vii

3.6.2 The Management Layer . 80

3.6.3 The Shared Storage Layer . 81

3.7 Discussion . 82

3.8 Experimental Evaluation . 83

3.8.1 Experiment Setup . 84

3.8.2 Results . 84

3.9 Related Work . 91

IV STATE MONITORING IN CLOUD DATACENTERS 94

4.1 Introduction . 94

4.1.1 State Monitoring . 96

4.1.2 Overview of Our Approach . 98

4.1.3 Outline . 100

4.2 Preliminaries . 100

4.2.1 The Instantaneous State Monitoring 101

4.2.2 The Window-based State Monitoring 101

4.2.3 Problem Definition . 102

4.3 WISE Monitoring System . 105

4.3.1 Architecture and Deployment . 106

4.3.2 WISE Monitoring Approach . 107

4.4 The Monitoring Algorithm . 110

4.4.1 Algorithm Description . 110

4.4.2 Correctness . 113

4.4.3 Communication Efficiency . 114

4.5 Scalable Parameter Tuning . 115

4.5.1 Modeling Communication Cost 115

4.5.2 Centralized Parameter Tuning . 119

4.5.3 Drawbacks of Centralized Tuning 120

4.5.4 Distributed Parameter Tuning . 121

4.6 Performance Optimization . 123

viii

4.6.1 Staged global polls . 123

4.6.2 Termination messages . 125

4.7 Experimental Evaluation . 126

4.7.1 Experiment Settings . 127

4.7.2 Results . 130

4.8 Related Work . 139

V VOLLEY: VIOLATION LIKELIHOOD BASED STATE MONITORING FOR
DATACENERS . 143

5.1 Introduction . 143

5.2 Problem Definition . 146

5.2.1 A Motivating Example . 148

5.2.2 Overview of Our Approach . 151

5.3 Accuracy Controlled Dynamic Sampling 152

5.3.1 Violation Likelihood Estimation 152

5.3.2 Violation Likelihood Based Adaptation 155

5.3.3 Window Based State Monitoring 156

5.4 Distributed Sampling Coordination . 158

5.4.1 Task-Level Monitoring Accuracy 158

5.4.2 Optimizing Monitoring Cost . 159

5.5 Evaluation . 160

5.5.1 Experiment Setup . 161

5.5.2 Results . 164

5.6 Related Work . 169

VI RELIABLE STATE MONITORING IN CLOUD DATACENTERS 171

6.1 Introduction . 171

6.2 Problem Definition . 173

6.2.1 Preliminary . 173

6.2.2 Reliable State Monitoring and Challenges 174

6.3 Reliable State Monitoring . 178

ix

6.3.1 Messaging Dynamics . 179

6.3.2 Detection Window . 180

6.3.3 Accuracy Estimation . 181

6.3.4 Accuracy-Oriented Adaptation 187

6.3.5 Discussion . 189

6.4 Evaluation . 189

6.4.1 Experiment Setup . 190

6.4.2 Results . 190

6.5 Related Work . 195

VII AN EFFICIENT PREDICTION-BASED MULTI-TIER CLOUD APPLICA-
TION PROVISIONING PLANNING METHOD 197

7.1 Introduction . 197

7.2 Prism: Performance Prediction based Cloud Application Provisioning . . . 200

7.2.1 The Prediction Method . 201

7.2.2 A Concrete Example . 205

7.2.3 Capturing Cross-Deployment Workload Changes 210

7.3 Supporting Request-Mix Awareness . 211

7.3.1 Efficient Training of Request-Mix-Aware Models 212

7.3.2 Provisioning Planning . 216

7.4 Evaluation . 217

7.5 Related Work . 220

VIIICONCLUSIONS AND FUTURE WORK 223

8.1 Ongoing Research, Related Work and Open Problems 225

REFERENCES . 231

VITA . 240

x

LIST OF TABLES

1 Examples of State Monitoring . 172

2 Virtual Machines in SCE . 217

xi

LIST OF FIGURES

1 A High-Level System Model . 16

2 CPU Usage vs Increasing Message Number/Size 18

3 An Example of Monitoring Planning . 19

4 Motivating examples for the topology planning problem. 21

5 Comparison of Attribute Set Partition Schemes under Different Workload
Characteristics . 43

6 Comparison of Attribute Set Partition Schemes under Different System
Characteristics . 44

7 Comparison of Tree Construction Schemes under Different Workload and
System Characteristics . 46

8 Comparison of Average Percentage Error 47

9 Performance Comparison of Different Adaptation Schemes Given Increas-
ing Task Updating Frequencies . 49

10 Speedup of Optimization Schemes . 52

11 Comparison between Resource Allocation Schemes 53

12 Performance of Extension Techniques . 55

13 A High Level View of A Virtualized Datacenter 62

14 Burstiness of Management Workload . 64

15 Block Diagram of our Design. The master nodes do auto-scaling of the
management layer, which consists of vSphere VMs that store data in the
global persistence layer. The managed hosts and application VMs are not
shown in this diagram, but communicate with the management server/management
VMs. 65

16 Instance Provisioning: (a)Throughput Improvement with Increasing In-
stances; (b)The Speedup Rate Curve . 69

17 Performance Trace During Self-Scaling: (a) Throughput Trace; (b) In-
stance Number Trace . 85

18 Convergence Time under Different Workload Characteristics: (a) Increas-
ing Workload Scale; (b) Increasing Workload Weight 86

19 Convergence Time under Different Types of Bursts 87

20 Overall Performance/Efficiency . 87

xii

21 Performance Trace of Different Workload Dispatching Schemes 89

22 Throughput under Different Workload and Infrastructure 90

23 Utilization under Different Workload and Infrastructure 91

24 A Motivating Example . 102

25 WISE Monitoring System . 106

26 Filtering Windows and Skeptical Windows. 112

27 Independent and Continuous Global Polls 117

28 Comparison of Communication Efficiency in Terms of Message Volume . . 129

29 Comparison of Communication Efficiency in Terms of Message Number . . 131

30 Effectiveness of Optimization Techniques in Enhanced WISE(Message Vol-
ume) . 133

31 Communication Cost Breakup of WISE (Message Volume and Message
Number) . 134

32 Scalability (Message Volume and Number) 135

33 Comparison of Communication Efficiency in Terms of Message Volume . . 136

34 Effectiveness of Optimization Techniques in Enhanced WISE(Message Vol-
ume) . 138

35 Scalability of Different Parameter Tuning Schemes 139

36 Communication Cost Breakup Between WISE with Centralized and Dis-
tributed Tuning Scheme . 140

37 A Motivating Example . 147

38 Violation Likelihood Based Adaptation 156

39 Distributed Sampling Coordination . 158

40 Experiment Setup . 162

41 Monitoring Overhead Saving under Different Error Allowance and State
Alert Rates . 163

42 CPU Utilization . 166

43 Window Based Model . 166

44 Distributed Coordination . 166

45 Actual Mis-Detection Rates . 167

46 A Motivating Example . 176

xiii

47 Detection Window . 180

48 Out-of-order Global Polls . 184

49 State Violation Detection Rate: (a)under increasing level of delay; (b) un-
der increasing level of message loss;(c)under increasing level of mixed
message delay and loss; (d) with increasing number of problem monitors . . 186

50 Errors in State Violation Detection: (a) comparison of false positive; (b)
comparison of false negative; . 193

51 Accuracy Improvement Breakup: (a) with increasing message loss and de-
lay levels; (b) with increasing percentage of problem monitors. 193

52 Impact on cloud application auto-scaling: (a) comparison of response time;
(b) comparison of timeouts. 194

53 The Overall Flow of the Method . 199

54 The Work Flow of the Prediction Process 203

55 The Work Flow of the Automatic Experiment 205

56 Training Per-Tier Models . 208

57 Illustration of The Prediction Process . 210

58 Performance Prediction Accuracy . 217

59 CDF of Performance Prediction Error . 218

60 Performance Prediction Accuracy . 219

61 Performance Prediction Accuracy . 219

xiv

SUMMARY

State monitoring is a fundamental building block for Cloud services. The demand

for providing state monitoring as services (MaaS) continues to grow and is evidenced by

CloudWatch from Amazon EC2, which allows cloud consumers to pay for monitoring a

selection of performance metrics with coarse-grained periodical sampling of runtime states.

One of the key challenges for wide deployment of MaaS is to provide better balance among

a set of critical quality and performance parameters, such as accuracy, cost, scalability and

customizability.

This dissertation research is dedicated to innovative research and development of an

elastic framework for providing state monitoring as a service (MaaS). We analyze limi-

tations of existing techniques, systematically identify the need and the challenges at dif-

ferent layers of a Cloud monitoring service platform, and develop a suite of distributed

monitoring techniques to support for flexible monitoring infrastructure, cost-effective state

monitoring and monitoring-enhanced Cloud management. At the monitoring infrastructure

layer, we develop techniques to support multi-tenancy of monitoring services by exploring

cost sharing between monitoring tasks and safeguarding monitoring resource usage. To

provide elasticity in monitoring, we propose techniques to allow the monitoring infrastruc-

ture to self-scale with monitoring demand. At the cost-effective state monitoring layer,

we devise several new state monitoring functionalities to meet unique functional require-

ments in Cloud monitoring. Violation likelihood state monitoring explores the benefits of

consolidating monitoring workloads by allowing utility-driven monitoring intensity tun-

ing on individual monitoring tasks and identifying correlations between monitoring tasks.

Window based state monitoring leverages distributed windows for the best monitoring ac-

curacy and communication efficiency. Reliable state monitoring is robust to both transient

xv

and long-lasting communication issues caused by component failures or cross-VM perfor-

mance interferences. At the monitoring-enhanced Cloud management layer, we devise a

novel technique to learn about the performance characteristics of both Cloud infrastructure

and Cloud applications from cumulative performance monitoring data to increase the cloud

deployment efficiency.

xvi

CHAPTER I

INTRODUCTION

Cloud computing and its pay-as-you-go economic model not only enable application devel-

opers and application service providers to perform on-demand utility computing, but also

push the evolution of datacenter technologies to become more open and more consumer-

driven. Typically, in addition to rent virtual server instances and pay for certain middleware

services based on their usage, such as load balancing in EC2, Cloud consumers also need

to monitor the performance of their applications in response to unexpected peaks of service

requests or performance degradation in their multi-tier application frameworks. Similarly,

Cloud providers need to monitor the large number of computing nodes in their datacenters

in response to virtual machine failures or performance degradation of virtual machines,

ensuring the level of service quality agreement demanded by the Cloud consumers.

Today’s Cloud datacenters are complex composition of large-scale servers, virtual ma-

chines, physical and virtual networks, middleware, applications, and services. Their grow-

ing scale and complexity challenge our ability to closely monitor the state of various enti-

ties, and to utilize voluminous monitoring data for better operation. Providing Monitoring-

as-a-Service(MaaS) to Cloud administrators and users brings a number of benefits to both

Cloud providers and consumers.

First, MaaS minimizes the cost of ownership by leveraging the state of the art moni-

toring tools and functionalities. MaaS makes it easier for users to deploy state monitoring

at different levels of Cloud services compared with developing ad-hoc monitoring tools or

setting up dedicated monitoring hardware/software.

1

Second, MaaS enables the pay-as-you-go utility model for state monitoring. This is es-

pecially important for users to enjoy full-featured monitoring services based on their mon-

itoring needs and available budget. Third, MaaS also brings Cloud service providers the

opportunity to consolidate monitoring demands at different levels (infrastructure, platform,

and application) to achieve efficient and scalable monitoring.

Finally, MaaS pushes Cloud service providers to invest in state of the art monitoring

technology and deliver continuous improvements on both monitoring service quality and

performance. With the consolidated services and monitoring data, Cloud service providers

can also develop value-add services for better Cloud environments and creating new rev-

enue sources.

We conjecture that monitoring-as-a-service paradigms will become dominating trend

for on-demand computing in future Cloud datacenters. This dissertation research tackles

the emerging research theme of providing advanced monitoring functionalities as Cloud

services to help users to manage Cloud and harness its power.

1.1 Technical Challenges

Despite the attractiveness of MaaS, providing monitoring-as-a-service also involves big

challenges at different levels.

Cloud-scale monitoring infrastructure. MaaS requires a Cloud-scale monitoring in-

frastructure with strict performance and scalability requirements. How can we collect a

massive set of live information from hundreds of thousands of, even millions of manage-

able instances in a Cloud datacenter? Due to the on-demand provisioning nature of Cloud,

monitoring demands can also change significantly over time. Hence, the monitoring infras-

tructure should not only achieve high scalability, but also embrace changes in monitoring

demands. Furthermore, the monitoring infrastructure must also provide good multi-tenancy

support to ensure a massive number of users enjoy Cloud monitoring services at the same

time.

2

Advanced monitoring functionalities. Cloud monitoring needs vary heavily from task

to task, and many monitoring tasks requires the support of advanced monitoring techniques

to achieve communication efficiency, flexible tradeoff between accuracy and sampling cost

as well as reliable distributed monitoring. For instance, Cloud service rate limiting re-

quires intensive monitoring of per-user access rates across a large number of distributed

servers which may be located in different continents. Such monitoring tasks require highly

efficient monitoring-related communication. As another example, some monitoring tasks

such as network traffic monitoring incur high monitoring data collection (sampling) cost.

Achieving accurate yet efficient monitoring for these tasks is difficult. Furthermore, fail-

ures and malfunctions are the norm rather than the exception in large-scale distributed

environments. As a result, monitoring data are almost always error-prone or incomplete.

How can we prevent such data from generating misleading monitoring results? Or how can

we maximize the utility of monitoring data with the presence of possible disruptions from

different levels?

Utilization of monitoring data. Cloud datacenter monitoring generates tremendous

amounts of data which often yield little usage besides simple event detection. For example,

Amazon EC2’s monitoring service CloudWatch[1] provides continuous web application

performance and resource usage monitoring for simple dynamic server provisioning (auto-

scaling), which also produces considerable monitoring data. Can we leverage such data to

offer intelligent functionalities to further simplify Cloud usage? For instance, performance-

driven Cloud application provisioning is difficult due to the large number of candidate

provisioning plans (e.g., different types of VMs, different cluster configurations, different

hourly renting cost, etc.). Is it possible to utilize Cloud application performance monitoring

data to simplify the provisioning planning process or even liberate Cloud users from the

details of application provisioning and meet their performance goal at the same time? If it

is possible, what techniques should we develop to support such functionalities?

3

1.2 Dissertation Scope and Contributions

This dissertation research tackles the above problems with a layered approach that system-

atically addresses monitoring efficiency, scalability, reliability and utility at the monitoring

infrastructure level, the monitoring functionality level and the monitoring data utility level.

We analyze key limitations of existing techniques, and develop new techniques to offer

more effective Cloud monitoring capabilities in this layered design. In addition, we built

systems that help Cloud developers and users to access, process and utilize Cloud mon-

itoring data. Specifically, this dissertation makes the following contributions in order to

address the challenges described in the previous section.

1.2.1 Monitoring Infrastructure

At the monitoring infrastructure level, we propose REMO [79, 78] and Tide [81] which

contribute to a Cloud-scale monitoring infrastructure that ensures the efficiency, scalability

and multi-tenancy support of Cloud monitoring.

Monitoring Topology Planning [79, 78]. Large-scale monitoring can incur signifi-

cant overhead on distributed nodes participating in collection and processing of monitoring

data. Existing techniques that focus on monitoring task level efficiency often introduce

heavily skewed workload distributions on monitoring nodes and cause excessive resource

usage on certain nodes. We developed REMO, a resource-aware monitoring system that

considers node-level resource constraints, e.g. monitoring-related CPU utilization should

less than 5%, as the first-class factor for scheduling multiple monitoring tasks collectively.

REMO optimizes the throughput of the entire monitoring network without causing exces-

sive resource consumption on any participating node, which ensures performance isolation

in multi-tenent monitoring environments. It also explores cost sharing opportunities among

tasks to optimize monitoring efficiency. We prototyped REMO on Sysem S, a large-scale

distributed stream processing system built at IBM TJ Watson Lab. Through resource-aware

planning, REMO achieves 35%-45% error reduction compared to existing techniques.

4

Self-Scaling Monitoring Infrastructure [81]. From traces collected in production

datacenters, we found that monitoring and management workloads in Cloud datacenters

tend to be highly volatile due to their on-demand usage model. Such workloads often

makes the management server a performance bottleneck. To address this problem, we de-

veloped Tide, a self-scaling management system which automatically scales up or down its

capacity according to the observed workloads. We built the prototype of Tide by modify-

ing VMware’s vSphere management server and leveraging non-SQL Hadoop based HBase

for scalable state persistence. The experimental results show that Tide provides consistent

performance even with extreme volatile management workloads through self-scaling.

1.2.2 Monitoring Functionalities to Meet Unique Cloud Monitoring Requirements

At the monitoring functionality level, we aim at providing new monitoring techniques to

meet the unique and diverse Cloud monitoring needs, and we propose WISE [83, 82], Vol-

ley [76] and CrystalBall [80] which deliver accurate, cost-effective and reliable monitoring

results by employing novel distributed monitoring algorithms to process error-prone Cloud

environments.

Efficient Continuous State Violation Detection [82][83]. Most existing works on

distributed state monitoring employ an instantaneous monitoring model, where the state is

evaluated based on the most recent collected results, to simplify algorithm design. Such a

model, however, tends to introduce false state alerts due to noises and outliers in monitoring

data. To address this issue, we proposed WISE, window based state monitoring which

utilizes temporal windows to capture continuous state violation in a distributed setting.

WISE not only delivers the same results as those of a centralized monitoring system with

a distributed implementation, but also decouples a global monitoring task into distributed

local ones in a way that minimizes the overall communication cost.

Violation-Likelihood based Monitoring [76]. Asynchronized monitoring techniques

such as periodical sampling often introduce cost-accuracy dilemma, e.g., frequent polling

5

state information may produce fine-grained monitoring data but may also introduce high

sampling cost for tasks such as deep packet inspection based network monitoring. To ad-

dress this issue, we proposed Volley, a violation likelihood based approach which dynam-

ically tunes monitoring intensity based on the likelihood of detecting important results.

More importantly, it always safeguards a user-specified accuracy goal while minimizing

monitoring cost. Volley also coordinates sampling over distributed nodes to maintain the

task-level accuracy, and leverages inter-task state correlation to optimize multi-task sam-

pling scheduling. When deployed in a testbed datacenter environment with 800 virtual

machines, Volley reduces monitoring overhead up to 90% with negligible accuracy loss.

Fault-Tolerant State Monitoring [80]. While we often assume monitoring results are

trustworthy and monitoring services are reliable, such assumptions do not always hold,

especially in large scale distributed environments such as datacenters where transient de-

vice/network failures are the norm rather than the exception. As a result, distributed state

monitoring approaches that depend on reliable communication may produce inaccurate re-

sults with the presence of failures. We developed CrystalBall, a robust distributed state

monitoring approach that produces reliable monitoring results by continuously updating

the accuracy estimation of the current results based on observed failures. It also adapts

to long-term failures by coordinating distributed monitoring tasks to minimize accuracy

loss caused by failures. Experimental results show that CrystalBall consistently improves

monitoring accuracy even under severe message loss and delay.

1.2.3 State Monitoring Enhanced Cloud Management [77]

At the monitoring data utility level, we study intelligent techniques that utilize monitoring

data to offer advanced monitoring management capabilities. As an initial attempt, we pro-

pose Prism [77] which offers an innovative application provisioning functionality based on

knowledge learned from cumulative monitoring data. We aim at utilizing multi-tier Cloud

application performance data to guide application provisioning. Prism is a prediction-based

6

provisioning framework that simplifies application provisioning by using performance pre-

diction to find a proper provisioning plan for a performance goal in a huge space of can-

didate plans. As its unique feature, Prism isolates and captures the performance impact of

different provisioning options, e.g., virtual machine types and cluster configurations, from

performance monitoring data with off-the-shelf machine learning techniques. This tech-

nique avoids exploring the huge space of candidate provisioning plans with experiments.

As a result, Prism can quickly find the most cost-effective plan with little cost for training

performance prediction models.

1.3 Organization of the Dissertation

This dissertation is organized as a series of chapters each addressing one of the problems

described above. Each chapter presents the detail of the problem being addressed, provides

basic concepts and then describes the development of a solution followed by the evaluation

of the proposed solution. Related work is described along with each chapter. Concretely,

the dissertation is organized as follows.

Chapter 2 and Chapter 3 introduce two systems designed to support multi-tenancy and

self-scaling of the monitoring infrastructure. In Chapter 2, we present REMO, a REsource-

aware application state MOnitoring system, to address the challenge of monitoring over-

lay construction. REMO distinguishes itself from existing works in several key aspects.

First, it jointly considers inter-task cost sharing opportunities and node-level resource con-

straints. Furthermore, it explicitly models the per-message processing overhead which can

be substantial but is often ignored by previous works. Second, REMO produces a forest

of optimized monitoring trees through iterations of two phases. One phase explores cost-

sharing opportunities between tasks, and the other refines the tree with resource-sensitive

construction schemes. Finally, REMO also employs an adaptive algorithm that balances

the benefits and costs of overlay adaptation. This is particularly useful for large systems

with constantly changing monitoring tasks. Moreover, we enhance REMO in terms of both

7

performance and applicability with a series of optimization and extension techniques. We

perform extensive experiments including deploying REMO on a BlueGene/P rack running

IBMs large-scale distributed streaming system - System S Using REMO in the context of

collecting over 200 monitoring tasks for an application deployed across 200 nodes results

in a 35%-45% decrease in the percentage error of collected attributes compared to existing

schemes.

In Chapter 3, we study the problem of achieving self-scaling in datacenter management

middleware. Enabling self-scaling in management middleware involves two challenges.

First, the self-scaling process should take minimum time during workload bursts to avoid

task execution delays. Second, it should utilize as few resources as possible to avoid re-

source contention with application usage. To meet these two goals, we propose Tide, a

self-scaling framework for virtualized datacenter management. Tide is a distributed man-

agement server that can dynamically self-provision new management instances to meet

the demand of management workloads. Tide achieves responsive and efficient self-scaling

through a set of novel techniques, including a fast capacity-provisioning algorithm that

supplies just-enough capacity and a workload dispatching scheme that maximizes task ex-

ecution throughput with optimized task assignment. We evaluate the effectiveness of Tide

with both synthetic and real world datacenter management traces. The results indicate that

Tide significantly reduces the task execution delay for bursty management workloads. Fur-

thermore, it also minimizes the number of dynamically provisioned management instances

by fully utilizing provisioned instances.

Chapter 4, Chapter 5 and Chapter 6 describe techniques that offer unique Cloud moni-

toring capabilities to meet highly diverse Cloud monitoring needs. In Chapter 4, we present

a WIndow-based StatE monitoring framework (WISE) for efficiently managing applica-

tions in Cloud datacenters. Window-based state monitoring reports alerts only when state

violation is continuous within a specified time window. Our formal analysis and exper-

imental evaluation of WISE both demonstrate that window-based state monitoring is not

8

only more resilient to temporary value bursts and outliers, but also can save considerable

communication when implemented in a distributed manner. Experimental results show

that WISE reduces communication by 50%-90% compared with instantaneous monitoring

approaches and simple alternative schemes.

In Chapter 5, we aim at addressing this problem by presenting Volley, a violation likeli-

hood based approach for efficient distributed state monitoring in datacenter environments.

Volley achieves both efficiency and accuracy with a flexible monitoring framework which

uses dynamic monitoring intervals determined by the likelihood of detecting state viola-

tions. Our approach consists of three techniques. First, we devise efficient node-level

adaptation algorithms that minimize monitoring cost with controlled accuracy for both ba-

sic and advanced state monitoring models. Second, Volley employs a distributed scheme

that coordinates the monitoring on multiple monitoring nodes of the same task for opti-

mal monitoring efficiency. Finally, Volley enables cost reduction with minimum accuracy

loss by exploring state correlation at the multi-task level, which is important for addressing

workload issues in large-scale datacenters. We perform extensive experiments to evalu-

ate our approach on a testbed Cloud datacenter environment consisting of 800 VMs. Our

results on system, network and application level monitoring show that Volley can reduce

considerable monitoring cost and still deliver user specified monitoring accuracy under

various monitoring scenarios.

In Chapter 6, we introduce a new state monitoring approach that addresses this issue by

exposing and handling communication dynamics such as message delay and loss in Cloud

monitoring environments. Our approach delivers two distinct features. First, it quantita-

tively estimates the accuracy of monitoring outputs to capture uncertainties introduced by

messaging dynamics. This feature helps users to distinguish trustworthy monitoring re-

sults from ones heavily deviated from the truth, and is important for large-scale distributed

monitoring where temporary communication issues are common. Second, our approach

9

also adapts to non-transient messaging issues by reconfiguring distributed monitoring al-

gorithms to minimize monitoring errors. Our experimental results show that, even under

severe message loss and delay, our approach consistently improves monitoring accuracy,

and when applied to Cloud application auto-scaling, outperforms existing state monitoring

techniques in terms of the ability to correctly trigger dynamic provisioning.

Chapter 7 presents Prism, a provisioning planning method which finds the most cost-

effective provisioning plan for a given performance goal by searching the space of can-

didate plans with performance prediction. Prism employs a set of novel techniques that

can efficiently learn performance traits of applications, virtual machines and clusters from

cumulative monitoring data to build models to predict the performance for an arbitrary pro-

visioning plan. It utilizes historical performance monitoring data and data collected from a

small set of automatic experiments to build a composite performance prediction model that

takes application workloads, types of virtual server instances and cluster configuration as

input, and outputs predicted performance.

In Chapter 8, We conclude this dissertation with an overview of contributions of this

dissertation research. We also discuss open problems and potential future research direc-

tions.

10

CHAPTER II

RESOURCE-AWARE APPLICATION STATE MONITORING

2.1 Introduction

Recently, we have witnessed a fast growing set of large-scale distributed applications rang-

ing from stream processing [53] to applications [48] running in Cloud datacenters. Corre-

spondingly, the demand for monitoring the functioning of these applications also increases

substantially. Typical monitoring of such applications involves collecting values of met-

rics, e.g. performance related metrics, from a large number of member nodes to determine

the state of the application or the system. We refer to such monitoring tasks as application

state monitoring. Application state monitoring is essential for the observation, analysis

and control of distributed applications and systems. For instance, data stream applica-

tions may require monitoring the data receiving/sending rate, captured events, tracked data

entities, signature of internal states and any number of application-specific attributes on

participating computing nodes to ensure stable operation in the face of highly bursty work-

loads [15][23]. Application provisioning may also require continuously collecting perfor-

mance attribute values such as CPU usage, memory usage and packet size distributions

from application-hosting servers [90].

One central problem in application state monitoring is organizing nodes into a certain

topology where metric values from different nodes can be collected and delivered. In many

cases, it is useful to collect detailed performance attributes at a controlled collection fre-

quency. As an example, fine-grained performance characterization information is required

to construct various system models and to test hypotheses on system behavior [53]. Sim-

ilarly, the data rate and buffer occupancy in each element of a distributed application may

be required for diagnosis purposes when there is a perceived bottleneck [15]. However,

11

the overhead of collecting monitoring data grows quickly as the scale and complexity of

monitoring tasks increase. Hence, it is crucial that the monitoring topology should ensure

good monitoring scalability and cost-effectiveness at the same time.

While a set of monitoring-topology planning approaches have been proposed in the

past, we find that these approaches often have the following drawbacks in general. First

of all, existing works either build monitoring topologies for each individual monitoring

task (TAG [71], SDIMS [123], PIER [50], join aggregations [33], REED [10], operator

placement [102]), or use a static monitoring topology for all monitoring tasks [102]. These

two approaches, however, often produce sub-optimal monitoring topologies. For example,

if two monitoring tasks both collect metric values over the same set of nodes, using one

monitoring tree for monitoring data transmission is more efficient than using two, as nodes

can merge updates for both tasks and reduce per-message processing overhead. Hence,

multi-monitoring-task level topology optimization is crucial for monitoring scalability.

Second, for many data-intensive environments, monitoring overhead grows substan-

tially with the increase of monitoring tasks and deployment scale [123][87]. It is important

that the monitoring topology should be resource sensitive, i.e. it should avoid monitoring

nodes spending excessive resources on collecting and delivering attribute values. Unfortu-

nately, existing works do not take node-level resource consumption as a first-class consid-

eration. This may result in overload on certain nodes which eventually leads to monitoring

data loss. Moreover, some assumptions in existing works do not hold in real world scenar-

ios. For example, many works assume that the cost of update messages is only related with

the number of values within the message, while we find that a fixed per-message overhead

is not negligible.

Last but not the least, application state monitoring tasks are often subject to change

in real world deployments [64]. Some tasks are short-term by nature, e.g. ad-hoc tasks

submitted to check the current system usage [62]. Other tasks may be frequently modified

for debugging, e.g. a user may specify different attributes for one task to understand which

12

attribute provides the most useful information [64]. Nevertheless, existing works often con-

sider monitoring tasks to be static and perform one-time topology optimization [10][102].

With little support for efficient topology adaptation, these approaches would either produce

sub-optimal topologies when using a static topology regardless of changes in tasks, or in-

troduce high adaptation cost when performing comprehensive topology reconstruction for

any change in tasks [79].

In this chapter, we present REMO, a resource-aware application state monitoring sys-

tem, that aims at addressing the above issues. REMO takes node-level available resources

as the first class factor for building a monitoring topology. It optimizes the monitoring

topology to achieve the best scalability and ensures that no node would be assigned with

excessive monitoring workloads for their available resources.

REMO employs three key techniques to deliver cost-effective monitoring topologies

under different environments. we first introduced a basic topology planning algorithm.

This algorithm produces a forest of carefully optimized monitoring trees for a set of static

monitoring tasks. It iteratively explores cost-sharing opportunities among monitoring tasks

and refines the monitoring trees to achieve the best performance given the resource con-

straints on each node. One limitation of the basic approach is that it explores the entire

search space for an optimal topology whenever the set of monitoring tasks is changed.

This could lead to significant resource consumption for monitoring environments where

tasks are subject to change. We then present an adaptive topology planning algorithm

which continuously optimizes the monitoring topology according to the changes of tasks.

To achieve cost-effectiveness, it maintains a balance between the topology adaptation cost

and the topology efficiency, and employs cost-benefit throttling to avoid trivial adapta-

tion. To ensure the efficiency and applicability of REMO, we also introduce a set of op-

timization and extension techniques. These techniques further improve the efficiency of

resource-sensitive monitoring tree construction scheme, and allow REMO to support pop-

ular monitoring features such as in-network aggregation and reliability enhancements.

13

We undertake an experimental study of our system and present results including those

gathered by deploying REMO on a BlueGene/P rack (using 256 nodes booted into Linux)

running IBM’s large-scale distributed streaming system - System S [15]. The results show

that our resource-aware approach for application state monitoring consistently outperforms

the current best known schemes. For instance, in our experiments with a real application

that spanned up to 200 nodes and about as many monitoring tasks, using REMO to collect

attributes resulted in a 35%-45% reduction in the percentage error of the attributes that

were collected.

To our best knowledge, REMO is the first system that promotes resource-aware method-

ology to support and scale multiple application state monitoring tasks in large-scale dis-

tributed systems. We make three contributions in this chapter:

• We identify three critical requirements for large-scale application state monitoring:

the sharing of message processing cost among attributes, meeting node-level re-

source constraints, and efficient adaptation towards monitoring task changes. Ex-

isting approaches do not address these requirements well.

• We propose a framework for communication-efficient application state monitoring.

It allows us to optimize monitoring topologies to meet the above three requirements

under a single framework.

• We develop techniques to further improve the applicability of REMO in terms of

runtime efficiency and supporting new monitoring features.

Compared with recent works [118, 66] that study flexible architectures for tradeoff

between monitoring/analysis costs and the benefits of monitoring/analysis results, we con-

sider primarily CPU resource consumption related to monitoring communication or data

collection and focus on developing concrete distributed monitoring algorithms that min-

imizes monitoring communication or data collection for a specific form of monitoring

(state monitoring). In contrast, these works consider monitoring cost in terms of capital

14

cost of dedicated monitoring hardware or software and aim at designing a flexible mon-

itoring/analysis architecture. Furthermore, although our problem bears a superficial re-

semblance to distributed query optimization problems [63], our problem is fundamentally

different since in our problem individual nodes are capacity constrained.

The rest of the chapter is organized as follows. Section 4.2 identifies challenges in ap-

plication state monitoring. Section 6.3 illustrates the basic monitoring topology construc-

tion algorithm, and Section 2.4 introduces the adaptive topology construction algorithm.

We optimize the efficiency of REMO and extend it for advanced features in Section 2.5

and 2.6. We present our experimental results in Section 4.7. Section 6.5 describes related

works.

2.2 System Overview

In this section, we introduce the concept of application state monitoring and its system

model. We also demonstrate the challenges in application state monitoring, and point out

the key questions that an application state monitoring approach must address.

2.2.1 Application State Monitoring

Users and administrators of large-scale distributed applications often employ application

state monitoring for observation, debugging, analysis and control purposes. Each applica-

tion state monitoring task periodically collects values of certain attributes from the set of

computing nodes over which an application is running. We use the term attribute and met-

ric interchangeably in this chapter. As we focus on monitoring topology planning rather

than the actual production of attribute values [74], we assume values of attributes are made

available by application-specific tools or management services. In addition, we target at

datacenter-like monitoring environments where any two nodes can communicate with sim-

ilar cost (more details in Section 2.3.3). Formally, we define an application state monitoring

task t as follows:

15

Management Core

M
o

n
it
o

ri
n

g
T

a
s
k
s

Monitoring Planner

Cost

Estimator

T
a

s
k

M
a

n
a

g
e

r

Reliability

Handler

Result Processor

Failure

Handler

Application States

App | CPU Usage | Throughput

xxx xx;xx;xx;xx; xx;xxx;x

xx x;xx;x;xx; x;xxx;x

xxx xx;xx;xx;xx; xx;xxx;x

D
e

-d
u

p
lic

a
te

d

ta
s
k
s

Monitoring Nodes

Data Collector

Planned Monitoring

Topology
Monitoring Data

Figure 1: A High-Level System Model

Definition 1 A monitoring task t = (At, Nt) is a pair of sets, where At ⊆
∪

i∈Nt
Ai is a set

of attributes and Nt ⊆ N is a set of nodes. In addition, t can also be represented as a list

of node-attribute pairs (i, j), where i ∈ Nt, j ∈ At.

2.2.2 The Monitoring System Model

Figure 1 shows the high level model of REMO, a system we developed to provide applica-

tion state monitoring functionality. REMO consists of several fundamental components:

Task manager takes state monitoring tasks and removes duplication among moni-

toring tasks. For instance, monitoring tasks t1 = ({cpu utilization}, {a, b}) and t2 =

({cpu utilization}, {b, c}) have duplicated monitored attribute cpu utilization on node

b. With such duplication, node b has to send cpu utilization information twice for each

update, which is clearly unnecessary. Therefore, given a set of monitoring tasks, the

task manager transforms this set of tasks into a list of node-attribute pairs and eliminates

all duplicated node-attribute pairs. For instance, t1 and t2 are equivalent to the list {a-

cpu utilization, b-cpu utilization} and {b-cpu utilization, c-cpu utilization} respec-

tively. In this case, node-attribute pair {b-cpu utilization} is duplicated, and thus, is elim-

inated from the output of the task manager.

Management core takes de-duplicated tasks as input and schedules these tasks to run.

One key sub-component of the management core is the monitoring planner which deter-

mines the inter-connection of monitoring nodes. For simplicity, we also refer to the over-

lay connecting monitoring nodes as the monitoring topology. In addition, the management

16

core also provides important support for reliability enhancement and failure handling. Data

collector provides a library of functions and algorithms for efficiently collecting attribute

values from the monitoring network. It also serves as the repository of monitoring data and

provides monitoring data access to users and high-level applications. Result processor

executes the concrete monitoring operations including collecting and aggregating attribute

values, triggering warnings, etc.

In this chapter, we focus on the design and implementation of the monitoring planner.

We next introduce monitoring overhead in application state monitoring which drives the

design principles of the monitoring planner.

2.2.3 Monitoring Overhead and Monitoring Planning

On a high level, a monitoring system consists of n monitoring nodes and one central node,

i.e. data collector. Each monitoring node has a set of observable attributes Ai = {aj|j ∈

[1,m]}. Attributes at different nodes but with the same subscription are considered as at-

tributes of the same type. For instance, monitored nodes may all have locally observable

CPU utilization. We consider an attribute as a continuously changing variable which out-

puts a new value in every unit time. For simplicity, we assume all attributes are of the same

size a and it is straightforward to extend our work to support attributes with different sizes.

Each node i, the central node or a monitoring node, has a capacity bi (also referred to

as the resource constraint of node i) for receiving and transmitting monitoring data. In this

chapter, we consider CPU as the primary resource for optimization. We associate each mes-

sage transmitted in the system with a per-message overhead C, and, the cost of transmitting

a message with x values is C + ax. This cost model is motivated by our observations of

monitoring resource consumption on a real world system which we introduce next.

Our cost model considers both per-message overhead and the cost of payload. Although

other models may consider only one of these two, our observation suggests that both costs

17

should be captured in the model. Figure 2 shows how significant the per-message process-

ing overhead is. The measurements were performed on a BlueGene/P node which has a

4-core 850MHz PowerPC processor. The figure shows an example monitoring task where

nodes are configured in a star network where each node periodically transmits a single fixed

small message to a root node over TCP/IP. The CPU utilization of the root node grows

roughly linearly from around 6% for 16 nodes (the root receives 16 messages periodically)

to around 68% for 256 nodes (the root receives 256 messages periodically). Note that this

increased overhead is due to the increased number of messages at the root node and not

due to the increase in the total size of messages. Furthermore, the cost incurred to receive

a single message increases from 0.2% to 1.4% when we increase the number of values in

the message from 1 to 256. Hence, we also model the cost associated with message size as

a message may contain a large number of values relayed for different nodes.

5.9
11.55

24.9
42.1 52.8 67.7

0.4 0.4 0.5 0.6 0.75
1.3

0.1

1

10

100

16 32 64 128 184 256

Num. of nodes = Num. of messages at star-root
and Message Size [x 'a']

C
P

U
 u

s
a

g
e

 (
lo

g
s

c
a

le
)

num-messages message-size

Figure 2: CPU Usage vs Increasing Message Number/Size

In other scenarios, the per-message overhead could be transmission or protocol over-

head. For instance, a typical monitoring message delivered via TCP/IP protocol has a

message header of at least 78 bytes not including application-specific headers, while an

integer monitoring data is just 4 bytes.

As Figure 3 shows, given a list of node-attribute pairs, the monitoring planner organizes

monitoring nodes into a forest of monitoring trees where each node collects values for a

set of attributes. The planner considers the aforementioned per-message overhead as well

as the cost of attributes transmission (as illustrated by the black and white bar in the left

monitoring tree) to avoid overloading certain monitoring nodes in the generated monitoring

18

Monitoring

Planner
Root

Same

node

Same

node

Root

Data Collector

Figure 3: An Example of Monitoring Planning

topology. In addition, it also optimizes the monitoring topology to achieve maximum mon-

itoring data delivery efficiency. As a result, one monitoring node may connect to multiple

trees (as shown in Figure 3 and 4(c)). Within a monitoring tree T , each node i periodically

sends an update message to its parent. As application state monitoring requires collecting

values of certain attributes from a set of nodes, such update messages include both values

locally observed by node i and values sent by i’s children, for attributes monitored by T .

Thus, the size of a message is proportional to the number of monitoring nodes in the sub-

tree rooted at node i. This process continues upwards in the tree until the message reaches

the central data collector node.

2.2.4 Challenges in Monitoring Planning

From the users’ perspective, monitoring results should be as accurate as possible, suggest-

ing that the underlying monitoring network should maximize the number of node-attribute

pairs received at the central node. In addition, such a monitoring network should not cause

the excessive use of resource at any node. Accordingly, we define the monitoring planning

problem (MP) as follows:

Problem Statement 1 Given a set of node-attribute pairs for monitoring Ω = {ω1, ω2, . . . , ωp}

where ωq = (i, j), i ∈ N , j ∈ A, q ∈ [1, p], and resource constraint bi for each associated

node, find a parent f(i, j), ∀i, j, where j ∈ Ai such that node i forwards attribute j to node

f(i, j) that maximizes the total number of node-attribute pairs received at the central node

and the resource demand of node i, di, satisfies di ≤ bi,∀i ∈ N .

19

NP-completeness. When restricting all nodes to only monitor the same attribute j, we

obtain a special case of the monitoring planning problem where each node has at most one

attribute to monitor. As shown by Kashyap, et. al. [58], this special case is an NP-complete

problem. Consequently, the monitoring planning problem (MP) is an NP-Complete prob-

lem, since each instance of MP can be restricted to this special case. Therefore, in REMO,

we primarily focus on efficient approaches that can deliver reasonably good monitoring

plan.

We now use some intuitive examples to illustrate the challenges and the key questions

that need to be addressed in designing a resource-aware monitoring planner. Figure 4 shows

a monitoring task involving 6 monitoring nodes where each node has a set of attributes to

deliver (as indicated by alphabets on nodes). The four examples (a)(b)(c)(d) demonstrate

different approaches to fulfill this monitoring task. Example (a) shows a widely used topol-

ogy in which every node sends its updates directly to the central node. Unfortunately, this

topology has poor scalability, because it requires the central node to have a large amount

of resources to account for per-message overhead. We refer to the approach used in exam-

ple (a) as the star collection. Example (b) organizes all monitoring nodes in a single tree

which delivers updates for all attributes. While this monitoring plan reduces the resource

consumption (per-message overhead) at the central node, the root node now has to relay up-

dates for all node-attribute pairs, and again faces scalability issues due to limited resources.

We refer to this approach as one-set collection. These two examples suggest that achieving

certain degree of load balancing is important for a monitoring network.

However, load balance alone does not lead to a good monitoring plan. In example (c),

to balance the traffic among nodes, the central node uses three trees, each of which delivers

only one attribute, and thus achieves a more balanced workload compared with example

(b) (one-set collection) because updates are relayed by three root nodes. However, since

each node monitors at least two attributes, nodes have to send out multiple update messages

instead of one as in example (a) (star collection). Due to per-message overhead, this plan

20

Central Node

abc

ac

ac
bc

bc

abc

a,c a,c

a,b,c

(a) Star collection

Central Node

abc

ac

ac
bc

bc

abc

a,b,c

(b) One-Set collection

Central Node

a c

a c
b c

b c

a cb

b ca

a

b

c

(c) Singleton-Set col-
lection

Central Node

a c

a c
b c

b c

ab c

cab

a,b

c

(d) Optimal collec-
tion

STAR CHAIN

MIXED

(e) Different Trees

Figure 4: Motivating examples for the topology planning problem.

21

leads to higher resource consumption at almost every node. As a result, certain nodes may

still fail to deliver all updates and less resources will be left over for additional monitoring

tasks. We refer to the approach in example (c) as singleton-set collection.

The above examples reveal two fundamental aspects of the monitoring planning prob-

lem. First, how to determine the number of monitoring trees and the set of attributes on

each? This is a non-trivial problem. Example (d) shows a topology which uses one tree to

deliver attribute a,b and another tree to deliver attribute c. It introduces less per-message

overhead compared with example (c) (singleton-set collection) and is a more load-balanced

solution compared with example (b) (one-set collection). Second, how to determine the

topology for nodes in each monitoring tree under node level resource constraints? Con-

structing monitoring trees subject to resource constraints at nodes is also a non-trivial prob-

lem and the choice of topology can significantly impact node resource usage. Example (e)

shows three different trees. The star topology (upper left), while introducing the least re-

laying cost, causes significant per-message overhead at its root. The chain topology (upper

right), on the contrary, distributes the per-message overhead among all nodes, but causes

the most relaying cost. A “mixed” tree (bottom) might achieve a good trade-off between

relaying cost and per-message overhead, but it is determine its optimal topology.

2.3 The Basic REMO Approach

The basic REMO approach promotes the resource aware multi-task optimization frame-

work, consisting of a two phase iterative process and a suite of multi-task optimization

techniques. At a high level, REMO operates as a guided local search approach, which

starts with an initial monitoring network composed of multiple independently constructed

monitoring trees, and iteratively optimizes the monitoring network until no further im-

provements are possible. When exploring various optimization directions, REMO employs

cost estimation to guide subsequent improvement so that the search space can be restricted

to a small size. This guiding feature is essential for the scalability of large-scale application

22

state monitoring systems.

Concretely, during each iteration, REMO first runs a partition augmentation procedure

which generates a list of most promising candidate augmentations for improving the cur-

rent distribution of monitoring workload among monitoring trees. While the total number

of candidate augmentations is very large, this procedure can trim down the size of the candi-

date list for evaluation by selecting the most promising ones through cost estimation. Given

the generated candidate augmentation list, the resource-aware evaluation procedure further

refines candidate augmentations by building monitoring trees accordingly with a resource-

aware tree construction algorithm. We provide more details to these two procedures in the

following discussion.

2.3.1 Partition Augmentation

The partition augmentation procedure is designed to produce the attribute partitions that

can potentially reduce message processing cost through a guided iterative process. These

attribute partitions determine the number of monitoring trees in the forest and the set of

attributes each tree delivers. To better understand the design principles of our approach, we

first briefly describe two simple but most popular schemes, which essentially represent the

state-of-the-art in multiple application state monitoring.

Recall that among example schemes in Figure 4, one scheme (example (c)) delivers

each attribute in a separate tree, and the other scheme (example (b)) uses a single tree

to deliver updates for all attributes. We refer to these two schemes as the Singleton-set

partition scheme (SP) and the One-set partition (OP) scheme respectively. We use the term

“partition” because these schemes partition the set of monitored attributes into a number of

non-overlapping subsets and assign each subsets to a monitoring tree.

Singleton-Set Partition (SP). Specifically, given a set of attributes for collection A,

singleton-set partition scheme divides A into |A| subsets, each of which contains a distinct

attribute in A. Thus, if a node has m attributes to monitor, it is associated with m trees. This

23

scheme is widely used in previous work, e.g. PIER [50], which constructs a routing tree for

each attribute collection. While this scheme provides the most balanced load among trees,

it is not efficient, as nodes have to send update messages for each individual attribute.

One-Set Partition (OP). The one-set partition scheme uses the set A as the only parti-

tioned set. This scheme is also used in a number of previous work [102]. Using OP, each

node can send just one message which includes all the attribute values, and thus, saves

per-message overhead. Nevertheless, since the size of each message is much larger com-

pared with messages associated with SP, the corresponding collecting tree can not grow

very large, i.e. contains limited number of nodes.

2.3.1.1 Exploring Partition Augmentations

REMO seeks a middle ground between these extreme solutions - one where nodes pay

lower per-message overhead compared to SP while being more load-balanced and con-

sequently more scalable than OP. Our partition augmentation scheme explores possible

augmentations to a given attribute partition P by searching for all partitions that are close

to P in the sense that the resulting partition can be created by modifying P with certain

predefined operations.

We define two basic operations that are used to modify attribute set partitions.

Definition 2 Given two attribute sets AP
i and AP

j in partition P , a merge operation over

AP
i and AP

j , denoted as AP
i ◃▹ AP

j , yields a new set AP
k = AP

i ∪ AP
j . Given one attribute

set AP
i and an attribute α, a split operation on AP

i with regard to α, denoted as AP
i � α,

yields two new sets AP
k = AP

i − α.

A merge operation is simply the union of two set attributes. A split operation essentially

removes one attribute from an existing attribute set. As it is a special case of set difference

operation, we use the set difference sign (−) here to define split. Furthermore, there is no

restriction on the number of attributes that can be involved in a merge or a split operation.

Based on the definition of merge and split operations, we now define neighboring solution

24

as follows:

Definition 3 For an attribute set partition P , we say partition P ′ is a neighboring solution

of P if and only if either ∃AP
i , A

P
j ∈ P so that P ′ = P − AP

i − AP
j + (AP

i ◃▹ AP
j), or

∃AP
i ∈ P, α ∈ AP

i so that P ′ = P − AP
i + (AP

i � α) + {α}.

A neighboring solution is essentially a partition obtained by make “one-step” modification

(either one merge or one split operation) to the existing partition.

Guided Partition Augmentation. Exploring all neighboring augmentations of a given

partition and evaluating the performance of each augmentation is practically infeasible,

since the evaluation involves constructing resource-constrained monitoring trees. To mit-

igate this problem, we use a guided partition augmentation scheme which greatly reduces

the number of candidate partitions for evaluation. The basic idea of this guided scheme is

to rank candidate partitions according to the estimated reduction in the total capacity usage

that would result from using the new partition. The rationale is that a partition that pro-

vides a large decrease in capacity usage will free up capacity for more attribute value pairs

to be aggregated. Following this, we evaluate neighboring partitions in the decreased or-

der of their estimated capacity-reduction so that we can find a good augmentation without

evaluating all candidates.

To estimate the gain of a candidate augmentation, we first need to understand how the

resource consumption would change after applying an augmentation m. Change in the total

resource consumption resulting from an augmentation m can be contributed by the change

in the relay cost and that in the per-message overhead cost, as m may change the number

of trees and the structure of trees. Therefore, let g(m) be the overall reduction in resource

consumption of an augmentation m, ∆cp(m) be the estimated difference in overhead cost

due to m and ∆cr(m) be the estimated difference in relay cost due to m. We then have

g(m) = ∆cp(m) + ∆cr(m). We estimate g(m) assuming that following an augmentation,

the tree construction procedure is able to assign all the attribute-value pairs that were in the

affected partitions using a star topology. Assuming a topology is necessary to be able to

25

estimate ∆cr(m). Recall that C is the per-message overhead and a is the cost of a message

of unit size. Also let NAi
denote the number of nodes associated with attribute set Ai. We

then have:

∆cp(m) =


(−1) · C · |NAi ∩NAj | m : Ai ◃▹ Aj = Ak

C · |NAj ∩NAk
| m : Ai �Aj = Ak

∆cr(m) =


a · |NAi∪Aj −NAi∩Aj | m : Ai ◃▹ Aj = Ak

(−1) · a · |NAi −NAi∩Aj | m : Ai �Aj = Ak

Intuitively, when we merge two attribute sets, the per-message overhead cost reduces as

nodes associated with both sets need to send fewer messages for an update. However, the

corresponding relaying cost may increase since the merged tree may be higher than the pre-

vious two trees, which in turn makes messages travel more hops to reach the root node. On

the contrary, when we split an attribute set, the per-message overhead cost increases and the

relaying cost decreases. The above equations capture these two changes and make the esti-

mation possible. This guided local-search heuristic is essential to ensuring the practicality

of our scheme.

2.3.2 Resource-aware Evaluation

To evaluate the objective function for a given candidate partition augmentation m, the

resource-aware evaluation procedure evaluates m by constructing trees for nodes affected

by m and measures the the total number of node-attribute value pairs that can be collected

using these trees. This procedure primarily involves two tasks. One is constructing a tree

for a given set of nodes without exceeding resource constraints at any node. The other is

for a node connected to multiple trees to allocate its resources to different trees.

26

2.3.2.1 Tree Construction

The tree construction procedure constructs a collection tree for a given set of nodes D

such that no node exceeds its resource constraints while trying to include as many nodes

as possible into the constructed tree. Formally, we define the tree construction problem as

follows:

Problem Statement 2 Given a set of n vertices, each has xi attributes to monitor, and

resource constraint bi, find a parent vertex p(i),∀i, so that the number of vertices in the

constructed tree is maximized subject to the following constraints where ui is the resource

consumed at vertex i for sending update messages to its parent:

1. For any vertex i in the tree,
∑

p(j)=i uj + ui ≤ bi

2. Let yi be the number of all attribute values transmitted by vertex i. We have yi =

xi +
∑

p(j)=i xj .

3. According to our definition, ui ≤ C + yi · a

The first constraint requires that the resource spent on node i for sending and receiving

updates should not exceed its resource constraint bi. The second constraint requires a node

to deliver its local monitored values as well as values received from its children. The last

constraint states that the cost of processing an outgoing message is the combination of per-

message overhead and value processing cost. The tree construction problem, however, is

also NP-Complete [58] and we present heuristics for the tree-construction problem.

To start with, we first discuss two simple tree construction heuristics:

Star. This scheme forms “star”-like trees by giving priority to increasing the breadth

of the tree. Specifically, it adds nodes into the constructed tree in the order of decreased

available capacity, and attaches a new node to the node with the lowest height and sufficient

available capacity, until no such nodes exist. STAR creates bushy trees and consequently

27

pays low relay cost. However, owing to large node degrees, the root node suffers from

higher per-message overhead, and consequently, the tree can not grow very large.

Chain. This scheme gives priority to increasing the height of the tree, and constructs

“chain”-like trees. CHAIN adds nodes to the tree in the same way as STAR does except that

it tries to attach nodes to the node with the highest height and sufficient available capacity.

CHAIN creates long trees that achieve very good load balance, but due to the number of

hops each message has to travel to reach the root, most nodes pay a high relay cost.

STAR and CHAIN reveal two conflicting factors in collection tree construction – re-

source efficiency and scalability. Minimizing tree height achieves resource efficiency, i.e.

minimum relay cost, but causes poor scalability, i.e. small tree size. On the other hand,

maximizing tree height achieves good scalability, but degrades resource efficiency. The

adaptive tree construction algorithm seeks a middle-ground between the STAR and CHAIN

procedures in this regard. It tries to minimize the total resource consumption, and can trade

off overhead cost for relay cost, and vice versa, if it is possible to accommodate more nodes

by doing so.

Before we describe the adaptive tree construction algorithm, we first introduce the con-

cept of saturated trees and congested nodes as follows:

Definition 4 Given a set of nodes N for tree construction and the corresponding tree T

which contains a set of nodes N ′ ⊂ N , we say T is saturated if no more nodes d ∈ (N−N ′)

can be added to T without causing the resource constraint to be violated for at least one

node in T . We refer to nodes whose resource constraint would be violated if d ∈ (N −N ′)

is added to T as congested nodes.

The adaptive tree construction algorithm iteratively invokes two procedures, the construc-

tion procedure and the adjusting procedure. The construction procedure runs the STAR

scheme which attaches new nodes to low level existing tree nodes. As we mentioned ear-

lier, STAR causes the capacity consumption at low level tree nodes to be much heavier

than that at other nodes. Thus, as low level tree nodes become congested we get a saturated

28

tree, the construction procedure terminates and returns all congested nodes. The algorithm

then invokes the adjusting procedure, which tries to relieve the workload of low level tree

nodes by reducing the degree of these nodes and increasing the height of the tree(similar to

CHAIN). As a result, the adjusting procedure reduces congested nodes and makes a satu-

rated tree unsaturated. The algorithm then repeats the constructing-adjusting iteration until

no more nodes can be added to the tree or all nodes have been added.

2.3.3 Discussion

REMO targets at datacenter-like environments where the underlying infrastructure allows

any two nodes in the network can communicate with similar cost, and focuses on the re-

source consumption on computing nodes rather than that of the underlying network. We

believe this setting fits for many distributed computing environments, even when comput-

ing nodes are not directly connected. For instance, communication packets between hosts

located in the same rack usually pass through only one top-of-rack switch, while commu-

nication packets between hosts located in different racks may travel through longer com-

munication path consisting of multiple switches or routers. The corresponding overhead

on communication endpoints, however, is similar in these two cases as packet forwarding

overhead is outsourced to network devices. As long as networks are not saturated, REMO

can be directly applied for monitoring topology planning.

when the resource consumption on network devices needs to be considered, e.g. net-

works are bottleneck resources, REMO cannot be directly applied. Similarly, for envi-

ronments where inter-node communication requires nodes to actively forward messages,

e.g. peer-to-peer overlay networks and wireless sensor networks, the assumption of similar

cost on communication endpoints does not hold as longer communication paths also incur

higher forwarding cost. However, REMO can be extended to handle such changes. For

example, its local search process can incorporate the forwarding cost in the resource evalu-

ation of a candidate plan. We consider such extension for supporting such networks as our

29

future work.

2.4 Runtime Topology Adaption

The basic REMO approach works well for a static set of monitoring tasks. However, in

many distributed computing environments, monitoring tasks are often added, modified or

removed on the fly for better information collection or debugging. Such changes necessitate

the adaptation of monitoring topology. In this section, we study the problem of runtime

topology adaptation for changes in monitoring tasks.

2.4.1 Efficient Adaptation Planning

One may search for an optimal topology by invoking the REMO planning algorithm every

time a monitoring task is added, modified or removed, and update the monitoring topology

accordingly. We refer to such an approach as REBUILD. REBUILD, however, may incur

significant resource consumption due to topology planning computation as well as topology

reconstruction cost (e.g. messages used for notifying nodes to disconnect or connect),

especially in datacenter-like environments with a massive number of mutable monitoring

tasks undergoing relatively frequent modification.

An alternative approach is to introduce minimum changes to the topology to fulfill the

changes of monitoring tasks. We refer to such an approach as DIRECT-APPLY or D-A for

brevity. D-A also has its limitation as it may result in topologies with poor performance

over time. For instance, when we continuously add attributes to a task for collection, D-A

simply instructs the corresponding tree to deliver these newly added attribute values until

some nodes become saturated due to increased relay cost.

To address such issues, we propose an efficient adaptive approach that strikes a balance

between adaptation cost and topology performance. The basic idea is to look for new

topologies with good performance and small adaptation cost (including both searching and

adaptation-related communication cost) based on the modification to monitoring tasks. Our

approach limits the search space to topologies that are close variants of the current topology

30

in order to achieve efficient adaptation. In addition, it ranks candidate adaptation operations

based on their estimated cost-benefit ratios so that it always performs the most worthwhile

adaptation operation first. We refer to this scheme as ADAPTIVE for brevity.

When monitoring tasks are added, removed or modified, we first applies D-A by build-

ing the corresponding trees with the tree building algorithm introduced in Section 6.3 (no

changes in the attribute partition). We consider the resulting monitoring topology after

invoking D-A as the base topology, which is then optimized by our ADAPTIVE scheme.

Note that the base topology is only a virtual topology plan stored in memory. The ac-

tual monitoring topology is updated only when the ADAPTIVE scheme produces a final

topology plan.

Same as the algorithm in Section 6.3, the ADAPTIVE scheme performs two operations,

merging and splitting, over the base topology in an iterative manner. For each iteration, the

ADAPTIVE scheme first lists all candidate adaptation operations for merging and splitting

respectively, and ranks the candidate operations based on estimated cost-effectiveness. It

then evaluates merging operations in the order of decreasing cost-effectiveness until it finds

a valid merging operation. It also evaluates splitting operations in the same way until it

finds a valid splitting operations. From these two operations, it chooses one with the largest

improvement to apply to the base topology.

Let T be the set of reconstructed trees. To ensure efficiency, the ADAPTIVE scheme

considers only merging operations involving at least one tree in T as candidate merging

operations. This is because merging two trees that are not in T is unlikely to improve the

topology. Otherwise, previous topology optimization process would have adopted such a

merging operation. The evaluation of a merging operation involves computationally ex-

pensive tree building. As a result, evaluating only merging operations involving trees in T

greatly reduces the search space and ensures the efficiency and responsiveness (changes of

monitoring tasks should be quickly applied) of the ADAPTIVE scheme. For a monitoring

topology with n trees, the number of possible merging operations is C2
n = n(n−1)

2
, while

31

the number of merging operations involving trees in T is |T | · (n − 1) which is usually

significantly smaller than n(n−1)
2

as T << n for most monitoring task updates. Similarly,

the ADAPTIVE scheme considers a splitting operation as a candidate operation only if the

tree to be split is in T .

The ADAPTIVE scheme also minimizes the number of candidate merging/splitting

operations it evaluates for responsiveness. It ranks all candidate operations and always

evaluates the one with the greatest potential gain first. To rank candidate operations, the

ADAPTIVE scheme needs to estimate the cost-effectiveness of each operation. We esti-

mate the cost-effectiveness of an operation based on its estimated benefit and estimated

adaptation cost. The estimated benefit is the same as g(m) we introduced in Section 6.3.

The estimated adaptation cost refers to the cost of applying the merging operation to the

existing monitoring topology. This cost is usually proportional to the the number of edges

modified in the topology. To estimate this cost, we use the lower bound of the number of

edges that would have to be changed.

2.4.2 Cost-Benefit Throttling

The ADAPTIVE scheme must ensure that the benefit of adaption justifies the correspond-

ing cost. For example, a monitoring topology undergoing frequent modification of moni-

toring tasks may not be suitable for frequent topology adaptation unless the corresponding

gain is substantial. We employ cost-benefit throttling to apply only topology adaptations

whose gain exceeds the corresponding cost. Concretely, when the ADAPTIVE scheme

finds a valid merging or splitting operation, it estimates the adaptation cost by measuring

the volume of control messages needed for adaptation, denoted by Madapt. The algorithm

considers the operation cost-effective if Madapt is less than a threshold defined as follows,

Threshold(Am) = (Tcur −min{Tadj,i, i ∈ Am}) · (Ccur − Cadj)

32

, where Am is the set of trees involved in the operation, Tadj,i is the last time tree i being

adjusted, Tcur is the current time, Ccur is the volume of monitoring messages delivered in

unit time in the trees of the current topology, and Cadj is the volume of monitoring messages

delivered in unit time in the trees after adaptation. (Tcur−min{Tadj,i, i ∈ Am}) essentially

captures how frequently the corresponding trees are adjusted, and (Ccur − Cadj) measures

the efficiency gain of the adjustment. Note that the threshold will be large if either the

potential gain is large, i.e. (Ccur − Cadj) is large, or the corresponding trees are unlikely

to be adjusted due to monitoring task updates, i.e. (Tcur − min{Tadj,i, i ∈ Am}) is large.

Cost-benefit throttling also reduces the number of iterations. Once the algorithm finds that

a merging or splitting is not cost-effective, it can terminate immediately.

2.5 Optimization

The basic REMO approach can be further optimized to achieve better efficiency and per-

formance. In this section, we present two techniques, efficient tree adjustment and ordered

resource allocation, to improve the efficiency of REMO tree construction algorithm and its

planning performance respectively.

2.5.1 Efficient Tree Adjustment

The tree building algorithm introduced in Section 6.3 iteratively invokes a construction

procedure and an adjusting procedure to build a monitoring tree for a set of nodes. One

issue of this tree building algorithm is that it generates high computation cost, especially

its adjusting procedure. To increase the available resource of a congested node dc, the

adjusting procedure tries to reduce its resource consumption on per-message overhead by

reducing the number of its branches. Specifically, the procedure first removes the branch

of dc with the least resource consumption. We use bdc to denote this branch. It then tries

to reattach nodes in bdc to other nodes in the tree except dc. It considers the reattaching

successful if all nodes of bdc is attached to the tree. As a result, the complexity of the

adjusting procedure is O(n2) where n is the number of nodes in the tree.

33

We next present two techniques that reduces the complexity of the adjusting procedure.

The first one, branch based reattaching, reduces the complexity to O(n) by reattaching

the entire branch bdc instead of individual nodes in bdc . It trades off a small chance of

failing to reattaching bdc for considerable efficiency improvement. The second technique,

Subtree-only searching, reduces the reattaching scope to the subtree of dc, which consid-

erably reduces searching time in practice (the complexity is still O(n)). The subtree-only

searching also theoretically guarantees the searching completeness.

2.5.1.1 Branch Based Reattaching

The above adjusting procedure breaks branches into nodes and moves one node at a time.

This per-node-reattaching scheme is quite expensive. To reduce the time complexity, we

adopts a branch-based reattaching scheme. As its name suggests, this scheme removes a

branch from the congested node and attaches it entirely to another node, instead of breaking

the branch into nodes and performing the reattaching. Performing reattaching in a branch

basis effectively reduces the complexity of the adjusting procedure.

One minor drawback of branch-based reattaching is that it diminishes the chance of

finding a parent to reattach the branch when the branch consists of many nodes. However,

the impact of this drawback is quite limited in practice. As the adjusting procedure removes

and reattaches the smallest branch first, failing to reattaching the branch suggests that nodes

of the tree all have limited available resource. In this case, node based reattaching is also

likely to fail.

2.5.1.2 Subtree-Only Searching

The tree adjusting procedure tries reattaching the pruned branch to all nodes in the tree

except the congested node denoted as dc. This adjustment scheme is not efficient as it

enumerates almost every nodes in the tree to test if the pruned branch can be reattached

to the node. It turns out that testing nodes outside dc’s subtree is often unnecessary. The

following theorem suggests that testing nodes within dc’s subtree is sufficient as long as the

34

resource demand of the node failed to add is higher than that of the pruned branch.

Theorem 1 Given a saturated tree T outputted by the construction procedure, df the node

failed to add to T , a congested node dc and one of its branches bdc , attaching bdc to any

node outside the subtree of dc causes overload, given that the resource demand of df is no

larger than that of bdc , i.e. udf 6 ubdc

Proof If there exists a node outside the subtree of dc, namely do, that can be attached with

bdc without causing overload, then adding df to do should have succeeded in the previous

execution of the construction procedure, as udf 6 ubdc
. However, T is a saturated tree

when adding df , which leads to a contradiction. �

Hence, we improve the efficiency of the original tree building algorithm by testing all

nodes for reattaching only when the resource demand of the node failed to add is higher

than that of the pruned branch. For all other cases, the algorithm performs reattaching test

only within the subtree of dc.

2.5.2 Ordered Resource Allocation

For a node associated with multiple trees, determining how much resource it should assign

to each of its associated trees is necessary. Unfortunately, finding the optimal resource

allocation is difficult because it is not clear how much resource a node will consume until

the tree it connects to is built. Exploring all possible allocations to find the optimal one is

clearly not an option as the computation cost is intractable.

To address this issue, REMO employs an efficient on-demand allocation scheme. Since

REMO builds the monitoring topology on a tree-by-tree sequential basis, the on-demand

allocation scheme defers the allocation decision until necessary and only allocates capacity

to the tree that is about to be constructed. Given a node, the on-demand allocation scheme

assigns all current available capacity to the tree that is currently under construction. Specif-

ically, given a node i with resource bi and a list of trees each with resource demand dij , the

available capacity assigned to tree j is bi −
∑j−1

k=1 dij . Our experiment results suggest that

35

our on-demand allocation scheme outperforms several other heuristics.

The on-demand allocation scheme has one drawback that may limit its performance

when building trees with very different sizes. As on-demand allocation encourages the

trees constructed first to consume as much resource as necessary, the construction of these

trees may not invoke the adjusting procedure which saves resource consumption on parent

nodes by reducing their branches. Consequently, resources left for constructing the rest of

the trees is limited.

We employ a slightly modified on-demand allocation scheme that relieves this issue

with little additional planning cost. Instead of not specifying the order of construction, the

new scheme constructs trees in the order of increasing tree size. The idea behind this mod-

ification is that small trees are more cost-efficient in the sense that they are less likely to

consume much resource for relaying cost. By constructing trees from small ones to large

ones, the construction algorithm pays more relaying cost for better scalability only after

small trees are constructed. Our experiment results suggest the ordered scheme outper-

forms the on-demand scheme in various settings.

2.6 Extensions

Our description of REMO so far is based on a simple monitoring scenario where tasks

collect distributed values without aggregation or replication under a uniform value updat-

ing frequency. Real world monitoring, however, often poses diverse requirements. In this

section, we present three important techniques to support such requirements in REMO.

The in-network-aggregation-aware planning technique allows REMO to accurately esti-

mate per-node resource consumption when monitoring data can be aggregated before being

passed to parent nodes. The reliability enhancement technique provides additional protec-

tion to monitoring data delivery by producing topologies that replicate monitoring data and

pass them through distinct paths. The heterogeneous-update-frequency supporting tech-

nique enables REMO to plan topologies for monitoring tasks with different data updating

36

frequencies by correctly estimating per-node resource consumption of such mixed work-

loads. These three techniques introduce little to no extra planning cost. Moreover, they

can be incorporated into REMO as plugins when certain functionality is required by the

monitoring environment without modifying the REMO framework.

2.6.1 Supporting In-Network Aggregation

In-network aggregation is important to achieve efficient distributed monitoring. Compared

with holistic collection, i.e. collecting individual values from nodes, In-network aggre-

gation allows individual monitoring values to be combined into aggregate values during

delivery. For example, if a monitoring task requests the SUM of certain metric m on a set

of nodes N , with in-network aggregation, a node can locally aggregate values it receives

from other nodes into a single partial sum and pass it to its parent, instead of passing each

individual value it receives.

REMO can be extended to build monitoring topology for monitoring tasks with in-

network aggregation. We first introduce a funnel function to capture the changes of resource

consumption caused by in-network aggregation. Specifically, a funnel function on node i,

fnlmi (gm, nm), returns the number of outgoing values on node i for metric m given the in-

network aggregation type gm and the number of incoming values nm. The corresponding

resource consumption of node i in tree k for sending update message to its parent is,

uik = C +
∑

m∈Ai∩AP
k

a · fnlmi (gm, nm) (1)

where Ai ∩ AP
k is the set of metrics node i needs to collect and report in tree k, a is

the per value overhead and C is the per message overhead. For SUM aggregation, the

corresponding funnel function is fnlmi (SUMm, nm) = 1 because the result of SUM ag-

gregation is always a single value. Similarly, for TOP10 aggregation, the funnel function

is fnlmi (TOP10m, nm) = min{10, nm}. For holistic aggregation we discussed earlier,

37

fnlmi (HOLISTICm, nm) = nm. Hence, Equation 1 can be used to calculate per-node re-

source consumption for both holistic aggregation and in-network aggregation in the afore-

mentioned monitoring tree building algorithm. Note that it also supports the situation where

one tree performs both in-network and holistic aggregation for different metrics.

Some aggregation functions such as DISTINCT, however, are data dependent in terms

of the result size. For example, applying DISTINCT on a set X of 10 values results in a

set with size ranging from 1 to 10, depending how many repeated values A contains. For

these aggregations, we simply employ the funnel function of holistic aggregation for an

upper bound estimation in the current implementation of REMO. Accurate estimation may

require sampling based techniques which we leave as our future work.

2.6.2 Reliability Enhancements

Enhancing reliability is important for certain mission critical monitoring tasks. REMO

supports two modes of reliability enhancement, same source different paths(SSDP) and

different sources different paths(DSDP), to minimize the impact of link and node failure.

The most distinct feature of the reliability enhancement in REMO is that the enhancement is

done by rewriting monitoring tasks and requires little modification to the original approach.

The SSDP mode deals with link failures by duplicating the transmission of monitored

values in different monitoring trees. Specifically, for a monitoring task t = (a,Nt) requir-

ing SSDP support, REMO creates a monitoring task t′ = (a′, Nt) where a′ is an alias of a.

In addition, REMO restricts that a and a′ would never occur in the same set of a partition P

during partition augmentation, which makes sure messages updating a and a′ are transmit-

ted within different monitoring trees, i.e. different paths. Note that the degree of reliability

can be adjusted through different numbers of duplications.

When a certain metric value is observable at multiple nodes, REMO also supports the

DSDP mode. For example, computing nodes sharing the same storage observe the same

storage performance metric values. Under this mode, users submit monitoring tasks in the

38

form of t = (a,Nidentical) where Nidentical = N(v1), N(v2), . . . , N(vn). N(vi) denotes the

set of nodes that observe the same value vi and Nidentical is a set of node groups each of

which observes the same value. Let k = min{|N(vi)|, i ∈ [1, n]}. REMO rewrites t into k

monitoring tasks so that each task collects values for metric a with a distinct set of nodes

drawn from N(vi), i ∈ [1, n]. Similar to SSDP model, REMO then constructs the topology

by avoiding any of the k monitoring tasks to be clustered into one tree. In this way, REMO

ensures values of metrics can be collected from distinct sets of nodes and delivered through

different paths.

2.6.3 Supporting Heterogeneous Update Frequencies

Monitoring tasks may collect values from nodes with different update frequencies. REMO

supports heterogeneous update frequencies by grouping nodes based on their metric col-

lecting frequencies and constructing per-group monitoring topologies. When a node has

a single metric a with the highest update frequency, REMO considers the node as having

only one metric to update as other metrics piggyback on a. When a node has a set of met-

rics updated at the same highest frequencies, denoted by Ah, it evenly assigns other metrics

to piggyback on metrics in of Ah. Similarly, REMO considers the node as having a set of

metrics Ah to monitor as other metrics piggyback on Ah. We estimate the cost of updating

with piggybacked metrics for node i by ui = C+a ·
∑

j freqj/freqmax where freqj is the

frequency of one metric collected on node i and freqmax is the highest update frequency

on node i.

Sometimes metric piggybacking cannot achieve the precise update frequency defined

by users. For example, if the highest update frequency on a node is 1/5 (msg/sec), a metric

updated at 1/22 can at best be monitored at either 1/20 or 1/25. If users are not satisfied

with such an approximation, our current implementation separates these metrics out and

builds individual monitoring trees for each of them.

39

2.7 Experimental Evaluation

We undertake an experimental study of our system and present results including those

gathered by deploying REMO on a BlueGene/P rack (using 256 nodes booted into Linux)

running IBM’s large-scale distributed streaming system - System S.

Synthetic Dataset Experiments. For our experiments on synthetic data, we assign a

random subset of attributes to each node in the system. For monitoring tasks, we generate

them by randomly selecting |At| attributes and |Nt| nodes with uniform distribution, for a

given size of attribute set A and node set N . We also classify monitoring tasks into two

categories - 1) small-scale monitoring tasks that are for a small set of attributes from a

small set of nodes, and 2) large-scale monitoring tasks that either involves many nodes or

many attributes.

To evaluate the effectiveness of different topology construction schemes, we measure

the percentage of attribute values collected at the root node with the monitoring topology

produced by a scheme. Note that this value should be 100% when the monitoring workload

is trivial or each monitoring node is provisioned with abundant monitoring resources. For

comparison purposes, we apply relatively heavy monitoring workloads to keep this value

below 100% for all schemes. This allows us to easily compare the performance of dif-

ferent schemes by looking at their percentage of collected values. Schemes with higher

percentage of collected values not only achieve better monitoring coverage when monitor-

ing resources are limited, but also have better monitoring efficiency in terms of monitoring

resource consumption.

Real System Experiments. Through experiments in a real system deployment, we also

show that the error in attribute value observations (due to either stale or dropped attribute

values) introduced by REMO is small. Note that this error can be measured in a meaningful

way only for a real system and is what any “user” of the monitoring system would perceive

when using REMO.

System S is a large-scale distributed stream processing middleware. Applications are

40

expressed as dataflow graphs that specify analytic operators interconnected by data streams.

These applications are deployed in the System S runtime as processes executing on a dis-

tributed set of hosts, and interconnected by stream connections using transports such as

TCP/IP. Each node that runs application processes can observe attributes at various levels

such as at the analytic operator level, System S middleware level, and the OS level. For

these experiments, we deployed one such System S application called YieldMonitor [107],

that monitors a chip manufacturing test process and uses statistical stream processing to

predict the yield of individual chips across different electrical tests. This application con-

sisted of over 200 processes deployed across 200 nodes, with 30-50 attributes to be mon-

itored on each node, on a BlueGene/P cluster. The BlueGene is very communication rich

and all compute nodes are interconnected by a 3D Torus mesh network. Consequently,

for all practical purposes, we have a fully connected network where all pairs of nodes can

communicate with each other at almost equal cost.

2.7.1 Result Analysis

We present a small subset of our experimental results to highlight the following observa-

tions amongst others. First, REMO can collect a larger fraction of node-attribute pairs

to serve monitoring tasks presented to the system compared to simple heuristics (which

are essentially the state-of-the-art). REMO adapts to the task characteristics and outper-

forms each of these simple heuristics for all types of tasks and system characteristics, e.g.

for small-scale tasks, a collection mechanism with fewer trees is better while for large-

scale tasks, a collection mechanism with more trees is better. Second, in a real application

scenario, REMO also significantly reduces percentage error in the observed values of the

node-attribute pairs required by monitoring tasks when compared to simple heuristics.

Varying the scale of monitoring tasks. Figure 5 compares the performance of dif-

ferent attribute set partition schemes under different workload characteristics. In Figure

5(a), where we increase the number of attributes in monitoring tasks, i.e. increasing |At|,

41

our partition augmentation scheme(REMO) performs consistently better than singleton-

set(SINGLETON-SET) and one-set(ONE-SET) schemes. In addition, ONE-SET outper-

forms SINGLETON-SET when |At| is relatively small. As each node only sends out one

message which includes all its own attributes and those received from its children, ONE-

SET causes the minimum per-message overhead. Thus, when each node monitors rela-

tively small number of attributes, it can efficiently deliver attributes without suffering from

its scalability problem. However, when |At| increases, the capacity demand of the low

level nodes, i.e. nodes that are close to the root, increases significantly, which in turn

limits the size of the tree and causes poor performance. In Figure 5(b), where we set

|At| = 100 and increase |Nt| to create extremely heavy workloads, REMO gradually con-

verges to SINGLETON-SET, as SINGLETON-SET achieves the best load balance under

heavy workload which in turn results in the best performance.

Varying the number of monitoring tasks. We observe similar results in Figure 5(c)

and 5(d), where we increase the total number of small-scale and large-scale monitoring

tasks respectively.

Varying nodes in the system. Figure 6 illustrates the performance of different attribute

set partition schemes with changing system characteristics. In Figure 6(a) and 6(b), where

we increase the number of nodes in the system given small and large scale monitoring tasks

respectively, we can see SINGLETON-SET is better for large-scale tasks while ONE-SET

is better for small-scale tasks, and REMO performs much better than them in both cases,

around 90% extra collected node-attribute pairs.

Varying per-message processing overhead. To study the impact of per-message over-

head, we vary the C/a ratio under both small and large-scale monitoring tasks in Figure

6(c) and 6(d). As expected, increased per-message overhead hits the SINGLETON-SET

scheme hard since it constructs a large number of trees and, consequently, incurs the largest

overhead cost while the performance of the ONE-SET scheme which constructs just a sin-

gle tree degrades more gracefully. However having a single tree is not the best solution as

42

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Average Number of Attributes Per Task

SINGLETON-SET
ONE-SET

REMO

(a) Increasing |At|

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Average Number of Nodes Per Task

SINGLETON-SET
ONE-SET

REMO

(b) Increasing |Nt|

 10

 20

 30

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140 160

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Number of Tasks

SINGLETON-SET
ONE-SET

REMO

(c) Increasing Small-scale Tasks

 0

 5

 10

 15

 20

 25

 30

 35

 40 60 80 100 120 140 160

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Number of Tasks

SINGLETON-SET
ONE-SET

REMO

(d) Increasing Large-scale Tasks

Figure 5: Comparison of Attribute Set Partition Schemes under Different Workload Char-
acteristics 43

 20

 30

 40

 50

 60

 70

 80

 90

 100 150 200 250 300 350 400

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Number of Nodes

SINGLETON-SET
ONE-SET

REMO

(a) Increasing Nodes(Small-scale)

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Number of Nodes

SINGLETON-SET
ONE-SET

REMO

(b) Increasing Nodes(Large-scale)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

C/a

SINGLETON-SET
ONE-SET

REMO

(c) Increasing C/a(Small-scale)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

C/a

SINGLETON-SET
ONE-SET

REMO

(d) Increasing C/a(Large-scale)

Figure 6: Comparison of Attribute Set Partition Schemes under Different System Char-
acteristics 44

shown by REMO which outperforms both the schemes as C/a is increased, because it can

reduce the number of trees formed when C/a is increased.

Comparison of tree-construction schemes. In Figure 7, we study the performance of

different tree construction algorithms under different workloads and system characteristics.

Our comparison also includes a new algorithm, namely MAX AVB, a heuristic algorithm

used in TMON [58] which always attaches new node to the existing node with the most

available capacity. While we vary different workloads and system characteristics in the four

figures, our adaptive tree construction algorithm(ADAPTIVE) always performs the best in

terms of percentage of collected values. Among all the other tree construction schemes,

STAR performs well when workload is heavy, as suggested by Figure 7(a) and 7(b). This

is because STAR builds trees with minimum height, and thus, pays minimum cost for

relaying, which can be considerable when workloads are heavy. CHAIN performs the

worst in almost all cases. While CHAIN provides good load balance by distributing per-

message overhead in CHAIN-like trees, nodes have to pay high cost for relaying, which

seriously degrades the performance of CHAIN when workloads are heavy (performs the

best when workloads are light as indicated by the left portions of both Figure 7(a) and

7(b)). MAX AVB scheme outperforms both STAR and CHAIN given small workload,

as it avoids over stretching a tree in breadth or height by growing trees from nodes with

the most available capacity. However, its performance quickly degrades with increasing

workload as a result of relaying cost.

Real-world performance. To evaluate the performance of REMO in a real world ap-

plication. we measure the average percentage error of received attribute values for syn-

thetically generated monitoring tasks. Specifically, we measure average percentage error

between the snapshot of values observed by our scheme and compare it to the snapshot of

“actual” values (that can be obtained by combining local log files at the end of the exper-

iment). Figures 8(a) compares the achieved percentage error between different partition

45

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Average Number of Attributes Per Task

STAR
CHAIN

MAX_AVB
ADAPTIVE

(a) Increasing |At|

 20

 30

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140 160

P
e
rc

e
n
ta

g
e
 o

f
C

o
lle

c
te

d
 V

a
lu

e
s

Number of Tasks

STAR
CHAIN

MAX_AVB
ADAPTIVE

(b) Increasing Small-scale Tasks

Figure 7: Comparison of Tree Construction Schemes under Different Workload and Sys-
tem Characteristics

46

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e
 E

rr
o
r

Number of Nodes

SINGLETON-SET
ONE-SET

REMO

(a) Increasing Workload

 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 40 60 80 100 120 140 160

A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e
 E

rr
o
r

Number of Tasks

SINGLETON-SET
ONE-SET

REMO

(b) Increasing Tasks

Figure 8: Comparison of Average Percentage Error

47

schemes given increasing number of nodes. Recall that our system can deploy the applica-

tion over any number of nodes. The figure shows that our partition augmentation scheme in

REMO outperforms the other partition schemes. The percentage error achieved by REMO

is around 30%-50% less than that achieved by SINGLETON-SET and ONE-SET. Interest-

ingly, the percentage error achieved by REMO clearly reduces when the number of nodes

in the system increases. However, according to our previous results, the number of nodes

has little impact on the coverage of collected attributes. The reason is that as the number of

nodes increases, monitoring tasks are more sparsely distributed among nodes. Thus, each

message is relatively small and each node can have more children. As a result, the monitor-

ing trees constructed by our schemes are “bushier”, which in turn reduces the percentage

error caused by latency. Similarly, we can see that REMO gains significant error reduction

compared with the other two schemes in Figure 8(b) where we compare the performance

of different partition schemes under increasing monitoring tasks.

Runtime Adaptation. To emulate a dynamic monitoring environment with a small

portion of changing tasks, we continuously update (modify) the set of running tasks with

increasing update frequency. Specifically, we randomly select 5% of monitoring nodes and

replaces 50% of their monitoring attributes. We also vary the frequency of task updates to

evaluate the effectiveness of our adaptive techniques.

We compare the performance and cost of four different schemes: 1) DIRECT-APPLY

(D-A) scheme which directly applies the changes in the monitoring task to the monitoring

topology. 2) REBUILD scheme which always performs full-scale search from the initial

topology with techniques we introduced in Section 6.3. 3) NO-THROTTLE scheme which

searches for optimized topology that is close to the current one with techniques we intro-

duced in Section 2.4. 4) ADAPTIVE scheme is the complete technique set described in

Section 2.4, which improves NO-THROTTLE by applying cost-benefit throttling to avoid

frequent topology adaptation when tasks are frequently updated.

Figure 9(a) shows the CPU time of running different planning schemes given increasing

48

Update Frequency
C

P
U

 T
IM

E
 (

se
co

nd
s)

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12
D−A
REBUILD
NO−THROTTLE
ADAPTIVE

(a) CPU Time Consumption

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

Update Frequency

A
dp

t C
os

t (
%

 o
ve

r
T

ot
al

 C
os

t) D−A
REBUILD
NO−THROTTLE
ADAPTIVE

(b) Adaptation Cost

1 1.5 2 2.5 3 3.5 4
85

90

95

100

105

Update Frequency

T
ot

al
 C

os
t (

%
 o

ve
r

D
−A

)

REBUILD
NO−THROTTLE
ADAPTIVE

(c) Total Cost

1 1.5 2 2.5 3 3.5 4
100

110

120

130

140

150

160

170

Update Frequency

C
ol

le
ct

ed
 V

al
ue

s
(%

 o
ve

r
D

−A
) REBUILD

NO−THROTTLE
ADAPTIVE

(d) Percentage of Collected Values

Figure 9: Performance Comparison of Different Adaptation Schemes Given Increasing
Task Updating Frequencies

49

task updating frequency. The X-axis shows the number of task update batches within a

time window of 10 value updates. The Y-axis shows the CPU time (measured on a Intel

CORE Duo 2 2.26GHz CPU) consumed by each scheme. We can see that D-A takes less

than 1 second to finish since it performs only a single round tree construction. REBUILD

consumes the most CPU time among all schemes as it always explores the entire searching

space. When cost-benefit throttling is not applied the NO-THROTTLE scheme consumes

less CPU time. However, its CPU time grows with task update frequency which is not

desirable for large-scale monitoring. With throttling, the adaptive schemeincurs even less

CPU time (1-3s) as it avoids unnecessary topology optimization for frequent updates. Note

that while the CPU time consumed by ADAPTIVE is higher than that of D-A, it is fairly

acceptable.

Figure 9(b) illustrates the percentage of adaptation cost over the total cost for each

scheme. Here the adaptation cost is measured by the total number of messages used to

notifying monitoring nodes to change monitoring topology (e.g. one such message may

inform a node to disconnect from its current parent node and connect to another parent

node). Similarly, the total cost of a scheme is the total number of messages the scheme

used for both adaptation and delivering monitoring data. REBUILD introduces the highest

adaptation cost because it always pursues the optimal topology which can be quite differ-

ent from the current one. Similar to what we observed in Figure 9(a), NO-THROTTLE

achieves much lower adaption cost compared with REBUILD does. ADAPTIVE further

reduces adaptation cost which is very close to that of D-A, because cost-benefit throttling

allows it to avoid unnecessary topology optimization when task updating frequency grows.

Figure 9(c) shows the scheme-wise difference of the total cost (including both adap-

tation and data delivery messages). The Y-axis shows the ratio (percentage) of total cost

associated with one scheme over that associated with D-A. REBUILD initially outperforms

D-A as it produces optimized topology which in turn saves monitoring communication

50

cost. Nevertheless, as task updating frequency increases, the communication cost of adap-

tation messages generated by REBUILD increases quickly, and eventually the extra cost in

adaptation surpasses the monitoring communication cost it saves. NO-THROTTLE shows

similar growth of total cost with increasing task updating frequency. ADAPTIVE, however,

consistently outperforms D-A due to its ability to avoid unnecessary optimization.

Figure 9(d) shows the performance of schemes in terms of collected monitoring at-

tribute values. The Y-axis shows the percentage of collected values of one scheme over

that of D-A. Note that the result we show in Figure 9(c) is the generated traffic volume. As

each node cannot process traffics beyond its capacity, the more traffic generated, the more

likely we observe miss-collected values. With increasing task updating frequency, the per-

formance of REBUILD degrades faster than that of D-A due to its quickly growing cost in

topology optimization (see Figure 9(b) and 9(c)). On the contrary, both NO-THROTTLE

and ADAPTIVE gain an increasing performance advantage over D-A. This is because the

monitoring topology can still be optimized with relatively low adaptation cost with NO-

THROTTLE and ADAPTIVE, but continuously degrades with D-A, especially with high

task updating frequency.

Overall, ADAPTIVE produces monitoring topologies with the best value collection

performance (Figure 9(d)), which is the ultimate goal of monitoring topology planning. It

achieves this by minimizing the overall cost of the topology (Figure 9(c)) by only adopting

adaptations whose gain outweighs cost. Its searching time and adaptation cost, although

slighter higher than schemes such as D-A, is fairly small for all practical purposes.

Optimization. Figure 10(a) and 10(b) show the speedup of our optimization techniques

for the monitoring tree adjustment procedure, where the Y-axis shows the speedup of one

technique over the basic adjustment procedure, i.e. the ratio between CPU time of the basic

adjustment procedure over that of an optimized procedure. Because the basic adjustment

procedure reattaches a branch by first breaking up the branch into individual nodes and

performing a per-node-based reattaching, it takes considerably more CPU time compared

51

0 2 4 6 8 10 12

50

100

150

200

Speedup (over Per−Node−Adjusting)

N
um

be
r

of
 N

od
es

Per−Branch
Per−Branch + Subtree−Only

(a) Increasing Nodes

0 2 4 6 8 10 12

50

100

150

200

Speedup (over Per−Node−Adjusting)

N
um

be
r

of
 T

as
ks

Per−Branch
Per−Branch + Subtree−Only

(b) Increasing Tasks

Figure 10: Speedup of Optimization Schemes

52

50 100 150 200
0

10

20

30

40

50

Number of Nodes

C
ol

le
ct

ed
 V

al
ue

s(
%

)

UNIFORM
PROPORTIONAL
ON−DEMAND
ORDERED

(a) Increasing Nodes

50 100 150 200
20

40

60

80

100

Number of Tasks

C
ol

le
ct

ed
 V

al
ue

s(
%

)

UNIFORM
PROPORTIONAL
ON−DEMAND
ORDERED

(b) Increasing Tasks

Figure 11: Comparison between Resource Allocation Schemes

with our branch-based reattach and subtree-only reattach techniques. With both techniques

combined, we observe a speedup at up to 11 times, which is especially important for large

distributed systems. We also find that these two optimization techniques introduce little

performance penalties in terms of the percentage of values collected from the resulting

monitoring topology(< 2%).

Figure 11(a) and 11(b) compare the performance of different tree-wise capacity alloca-

tion schemes, where UNIFORM divides the capacity of one node equally among all trees

it participates in, PROPORTIONAL divides the capacity proportionally according to the

size of each tree, ON-DEMAND and ORDERED are our allocation techniques introduced

in Section 2.5.2. We can see that both ON-DEMAND and ORDERED consistently out-

perform UNIFORM and PROPORTIONAL. Furthermore, ORDERED gains an increasing

53

advantage over ON-DEMAND with growing nodes and tasks. This is because large num-

ber of nodes and tasks cause one node to participate into trees with very different sizes,

where ordered allocation is useful for avoiding improper node placement, e.g. putting one

node as root in one tree (consuming much of its capacity) while it still needs to participate

in other trees.

Extension. Figure 12(a) compares the efficiency of basic REMO with that of extended

REMO when given tasks that involves in-network aggregation and heterogeneous update

frequencies. Specifically, we apply MAX in-network aggregation to tasks so that one node

only needs to send the largest value to its parent node. In addition, we randomly choose

half of the tasks and reduce their value update frequency by half. The Y-axis shows values

collected by REMO enhanced with one extension technique, normalized by values col-

lected by the basic REMO. Note that collected values for MAX in-network aggregation

refer to values included in the MAX aggregation, and are not necessarily collected by the

root node.

The basic REMO approach is oblivious to in-network aggregation. Hence, it tends to

overestimate communication cost of the monitoring topology, and prefers SINGLETON-

SET-like topology where each tree delivers one or few attributes. As we mentioned ear-

lier, such topologies introduce high per-message overhead. On the contrary, REMO with

aggregation-awareness employs funnel functions to correctly estimate communication cost

and produces more efficient monitoring topology. We observe similar results between the

basic REMO and REMO with update-frequency-awareness. When both extension tech-

niques are combined, they can provide an improvement close to 50% in terms of collected

values.

Figure 12(b) compares the efficiency of REMO with replication support and two al-

ternative techniques. The SINGLETON-SET-2 scheme uses two SINGLETON-SET trees

to deliver values of one attribute separately. The ONE-SET-2 scheme creates two ONE-

SET trees, each of which connects all nodes and delivers values of all attributes separately.

54

Number of Tasks

C
o

lle
ct

ed
 V

al
u

es
 (

%
 o

ve
r

B
as

ic
)

25 50 75 100
0

50

100

150

200

Aggregation−Aware
Frequency−Aware
Both

(a) Advanced Tasks

50 100 150 200
0

20

40

60

80

100

Number of Tasks

C
o

lle
ct

ed
 V

al
u

es
(%

)

ONE−SET−2
SINGLETON−SET−2
REMO−2

(b) Replication Support

Figure 12: Performance of Extension Techniques

55

REMO-2 is our Same-Source-Different-Path technique with a replication factor of 2, i.e.

values of each attribute are delivered through two different trees. Compared with the two

alternative schemes, REMO-2 achieves both replication and efficiency by combining mul-

tiple attributes into one tree to reduce per-message overhead. As a result, it outperforms

both alternatives consistently given increasing monitoring tasks.

2.8 Related Work

Much of the early work addressing the design of distributed query systems mainly focuses

on executing single queries efficiently. As the focus of our work is to support multiple

queries, we omit discussing these work. Research on processing multiple queries on a

centralized data stream [125, 64, 68, 72] is not directly related with our work either, as

the context of our work is distributed streaming where the number of messages exchanged

between the nodes is of concern.

A large body of work studies query optimization and processing for distributed databases

(see [63] for a survey). Although our problem bears a superficial resemblance to these

distributed query optimization problems, our problem is fundamentally different since in

our problem individual nodes are capacity constrained. There are also much work on

multi-query optimization techniques for continuous aggregation queries over physically

distributed data streams [72, 51, 100, 122, 125, 64, 68, 22]. These schemes assume that

the routing trees are provided as part of the input. In our setting where we are able to

choose from many possible routing trees, solving the joint problem of optimizing resource-

constrained routing tree construction and multi-task optimization provides significant ben-

efit over solving only one of these problems in isolation as evidenced by our experimental

results.

Several work studies efficient data collection mechanisms. CONCH [98] builds a span-

ning forest with minimal monitoring costs for continuously collecting readings from a sen-

sor network by utilizing temporal and spatial suppression. However, it does not consider

56

the resource limitation at each node and per-message overhead as we did, which may limit

its applicability in real world applications. PIER [50] suggests using distinct routing trees

for each query in the system, in order to balance the network load, which is essentially

the SINGLETON-SET scheme we discussed. This scheme, though achieves the best load

balance, may cause significant communication cost on per-message overhead.

Most recently, Wang, Kutare and et. al. [118, 66] proposed a flexible architecture

that enables the tradeoff between monitoring/analysis costs and the benefits of monitor-

ing/analysis results for web application performance analysis and virtual machine cluster-

ing. The architecture utilizes reconfigurable software overlays (Distributed Computation

Graphs (DCGs)) which undertakes monitoring data collection, exchange and processing.

While this work considers monitoring cost in terms of capital cost of dedicated monitoring

hardware or software, our approach considers primarily CPU resource consumption related

to monitoring communication or data collection. Furthermore DCGs focus on designing

a flexible monitoring/analysis architecture. In contrast, we aim at developing concrete

distributed monitoring algorithms that minimizes monitoring communication or data col-

lection for a specific form of monitoring (state monitoring).

57

CHAPTER III

A SELF-SCALING MANAGEMENT SYSTEM FOR VIRTUALIZED

CLOUD DATACENTERS

3.1 Introduction

Datacenter virtualization has attracted great attention in recent years due to various benefits

it offers. It saves total cost of ownership by consolidating virtual servers[114] and virtual

desktops[115]. It also provides high availability to applications that are not designed with

this feature through live state replication at the virtual machine level[113]. Live virtual

machine migration[112, 30] not only unifies servers of a datacenter into a single resource

pool, but also saves power[110] during non-peak hours by consolidating virtual machines

into few servers and shutting down the rest. More recently, virtualization also enables

the proliferation of cloud computing platforms such as Amazon’s EC2[12] where virtual

machines in a datacenter can be rent based on usage.

Most virtualized datacenters today rely on management middleware to perform routine

operations. In general, these middleware systems[75, 59, 28, 7, 116, 6, 5] provide unified

management of physical hosts, virtual machines as well as other manageable entities such

as network storage in the datacenter infrastructure. They continuously monitor all manage-

able entities to provide up-to-date datacenter runtime status[83, 79]. They also provide a

wide range of functions such as task execution, configuration management and policy en-

forcement by performing complex control logic, maintaining persistent state and schedul-

ing management jobs on individual manageable entities. Cloud applications often rely on

these functions for various system supports such as resource provisioning, load balancing,

performance tuning, etc. Take load balancing for example, the management system can

perform live VM migration to move VMs from heavily loaded hosts to lightly loaded ones

58

so that user applications inside VMs do not suffer performance degradation[30]. Hence,

the performance of the management system has a direct impact on cloud application per-

formance and cloud user satisfaction[101, 81].

However, while there has been a large body of work on the performance of individ-

ual virtualized hosts, the performance of management systems has been given much less

attention. In fact, there are two trends suggesting that virtualized datacenter management

will become increasingly critical. First, the number of manageable entities grows one to

two orders of magnitude when virtualizing a physical datacenter, as each physical host runs

from a few tens to hundreds of virtual machines that are directly manageable. This number

will continue to grow in the coming many-core era as a single host will be able to support

more and more virtual machines. Second, many virtualized datacenters are multi-tenant.

These datacenters provide public or private cloud to an increasing number of individual or

organizational customers who have entirely different yet overlapping requirements in cloud

management and maintenance.

These two trends significantly increase the management workload in virtualized data-

centers and intensify peak workloads due to multi-tenancy. Our observation[101] based on

production datacenter management traces suggests that management workloads in virtual-

ized datacenters tend to be bursty, with extremely high peak workload. Such workloads

can cause considerable latencies in management task execution, which eventually hurts

cloud application performance. In the load balancing example we mentioned earlier, user

applications running on an overloaded host may experience performance issues if the cor-

responding virtual machines can not be migrated to lightly loaded hosts in a timely manner.

The management system therefore should minimize the impact of the bursty workloads.

However, finding an efficient and effective solution to this issue is challenging, because

provisioning the management system based on regular workloads or peak workloads would

either introduce high task execution latency during peak workloads, or make significant

datacenter resources unavailable to customers, which eventually raises cost of ownership

59

and causes resource contention. We argue that one possible solution to efficiently handle

management workload bursts is to make the management system self-scaling, which allows

the management system to automatically boost its capacity during peak workloads.

In this chapter, we introduce Tide, a prototype management system with dynamic ca-

pacity that scales with management workloads. Tide uses VMware’s vSphere management

server as building blocks. It consists of a primary management server and a number of vir-

tual management server instances that are powered off during normal workloads. To deal

with delayed task execution caused by bursty workloads, Tide can dynamically power on

virtual management server instances to boost overall throughput.

Self-scaling has two fundamental requirements. First, management instances provi-

sioning should be fast, and the number of provisioned instances should be reasonably small.

Second, provisioned instances should be fully utilized to maximize the overall task execu-

tion throughput. Tide employs two sets of novel techniques to meet these requirements on

two different levels. On the instance provision level, we devise a novel provisioning al-

gorithm that can quickly provision just enough server instances to the management system

for the current workload. The algorithm considers the management system as a black-box

and requires no performance modeling of server instances or workload profiling. We apply

formal analysis to show the effectiveness of this algorithm. In addition, we also introduce

two optimization techniques that further reduce latencies of the provision process. On the

workload dispatching level, we propose a simple yet effective scheme for workload dis-

patching which maximizes the utilization of instances by avoiding costly task rebalancing

among instances.

To the best of our knowledge, Tide is the first work dedicated to the design and imple-

mentation of the self-scaling feature in virtualized datacenters management systems. Com-

pared with recent work on flexible monitoring/management architecture [66] that adopts a

clean slate approach, we build Tide with VMware’s vSphere server, a widely used com-

merical virtualized datacenter management system. Using multiple vSphere servers as a

60

dynamic component, however, brings several challenges. Through careful implementation,

we address problems such as long instance startup time and consistency in distributed task

execution. These low level techniques are critical to the performance of Tide. To evaluate

the effectiveness of Tide, we perform extensive experiments with both synthetic and real

world management workload collected from several virtualized datacenters. Our experi-

ment results show that Tide can quickly react to workload bursts and minimize task execu-

tion latencies caused by workload bursts. It also consumes much less resource compared

with systems implemented with simple alternative provisioning and workload dispatching

techniques.

The rest of the chapter is organized as follows. Section 3.2 introduces the background of

virtualization management systems. Section 3.3 presents an overview of Tide. We describe

the provisioning algorithm of Tide in Section 3.4, and introduce workload dispatching tech-

niques in Section 3.5. We describe the implementation details of Tide in Section 3.6. We

discuss important features such as fault tolerance and state consistency of Tide in Section

3.7. Section 4.7 presents our experiment results. We discuss related work in Section 6.5.

3.2 Background

Virtualization has been a major enabler of cloud computing. Many commercially-available

cloud computing solutions are based on virtual machines running in datacenters[12, 106].

These datacenters may contain thousands of servers and tens of thousands of virtual ma-

chines, and these numbers will continue to grow with increasing cloud users. Managing

these servers and their virtual machines individually with low-level tools is difficult. Hence,

management middlewares are designed and built for centralized and efficient management

of virtualized datacenters. We next introduce virtualized datacenter management systems

based on a representative system vSphere from VMware. We also discuss other systems in

Section 6.5.

61

�� �� �� �� �� �� �� ��

�� �� �� ���� �� �� ��

�� �� �� ��

���������	
��
���

���������	
��
���

���������	
��
���

���������	
��
������������	
��
���

��������	
��

����
��
�

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�����	�	��

����	��

���������	
��
���

���������	
��
���

���������	
��
������������	
��
���

���������	
��
���

���������	
��
���

Figure 13: A High Level View of A Virtualized Datacenter

3.2.1 vSphere Datacenter Management System

Figure 13 shows a high level view of a virtualized datacenter. vSphere provides three key

management functionalities. First, it executes various manual or automatic management

tasks. For example, an administrator may create 100 virtual machines for new remote users.

vSphere itself may continuously balance server workload via VM live migration[30]. Sec-

ond, it maintains a management connection to each virtualized host(ESX host). Through

this connection, it monitors the runtime status of each physical server as well as virtual ma-

chines hosted on it. Third, it maintains configuration information of the datacenter such as

detailed hardware information, virtual machine and virtual network configuration. It also

enforces various management policies across the datacenter. This focus of this study is on

the performance of management task execution.

vSphere can execute multiple tasks at the same time. It has a pool of task-execution

threads. When receives a management task, it picks one thread to execute the task if at

least one thread is available. If all threads are busy, it puts the task in a FIFO queue and

waits for threads to become available.

Executing management tasks often causes intensive resource consumption on the man-

agement system due to the complexity of virtualization, configuration and datacenter topol-

ogy. Consider, for example, a task that selects the optimal host to power on a virtual

62

machine[110]. It demands a series of computation involving load examining on hosts and

determining the compatibility matrix between different VMs and hosts. The CPU and

memory cost of such computation grows with the number of hosts and VMs. Performing

such a computation for a large number of VMs at once can be quite resource-intensive.

3.2.2 Management Workloads

From management traces collected from several virtualized datacenters, we observe that

management workloads in virtualized datacenters tend to be bursty[101]. Figure 14 shows

the CDF of management task rates within a 10-minute time window for one datacenter

trace. While the average workload is fairly small, the peak workload can be nearly 200

times higher than the average workload. There are many examples of such bursty work-

loads. Companies using massive virtual machines as remote desktops often perform large

amount of virtual machine cloning and reconfiguration tasks during a short time window.

Furthermore, they also generate a large amount of virtual machine powering on opera-

tions when employees start to work in the morning. There are many other examples, such

as large-scale virtual machine provisioning for software-as-a-service, live migration based

datacenter-scale load balancing, massive security patching, etc. In general, the burstiness

in management workloads is inherited from the massive use of virtual machines and au-

tomatic management. We also expect this workload burstiness to grow in the near future,

because the increase of cloud users eventually leads to the growing of virtual machines in

datacenters, and the use of many-core will also significantly increase the number of virtual

machines running on a single host.

When receives a large number of tasks during a workload burst, the management sys-

tem often has to put most of the tasks in the waiting queue, which introduces considerable

latency to task execution. Unfortunately, execution delays can cause various availabil-

ity and performance issues to applications running in the datacenter. For example, if a

63

Percentage of Workload

T
as

k
R

at
e(

#/
10

 m
in

s)

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Average Workload

Peak Workload

Figure 14: Burstiness of Management Workload

customer needs to spawn hundreds of virtual web servers within a short time period to ac-

commodate flash crowd[13], delay of VM creation would very likely to cause performance

degradation and even SLA violation to the customer application. Similarly, failing to per-

form live-migration-based load balance on time would also introduce resource contention

to customer applications. Therefore, we believe the bursty workload issue is an urgent

problem for the management system.

3.3 Tide Overview

We argue that one possible way to address the bursty workload problem in virtualized dat-

acenters is to allow the management system to dynamically provision new management

instances to itself during workload bursts. We refer to such a feature as self-scaling. Self-

scaling has the potential to significantly reduce task execution latencies during workload

bursts. Consider, for example, powering on 3000 VMs within a customer-specified 10-

minute maintenance window. As VM power on tasks involve compatibility and placement

computations, such workload can easily saturate a single management server. But if we

can dynamically provision additional management instances, we can parallelize task exe-

cution and minimize execution latencies. Compared with static provisioning based on peak

workload (e.g. always keep 30 management servers running instead of 1), self-scaling

provisions resources only at peak workloads, and thus, can save considerable resources as

well as maintenance cost in the long run. Following this idea, we develop Tide, a prototype

self-scaling management middleware for virtualized datacenters.

64

Shared Storage Layer

Management Layer

H H

Management

VM

Management

Server

Master

Management

VM

Master

H

Management

VM

Figure 15: Block Diagram of our Design. The master nodes do auto-scaling of the man-
agement layer, which consists of vSphere VMs that store data in the global persistence
layer. The managed hosts and application VMs are not shown in this diagram, but commu-
nicate with the management server/management VMs.

3.3.1 The Architecture of Tide

Figure 15 illustrates the high level architecture of Tide. In our prototype, we split the task

of management into 3 software components: master nodes, the management layer and the

shared-storage layer. The basic principles behind the design of Tide are as follows. First,

we want to create a management layer that is small but expandable. This allows Tide to

occupy small footprint of resources for normal management workloads and dynamically

increase its capacity only during bursty workloads. Second, we want to make the manage-

ment nodes as stateless as possible. This is important for building a expandable manage-

ment layer with low dynamic provisioning complexity and fast provisioning speed. Third,

separating management nodes from the data they manipulate is necessary. Management

related data should be stored in a globally-accessible storage layer so that distributed man-

agement nodes share the same global view of the entire datacenter. Finally, when scaling

out, the management layer can be scaled independently from the storage layer. This means

that we do not pay the price of allocating storage just by virtue of creating new management

nodes. We present implementation details of these three components in Section 3.6.

Master Nodes. Tide employs a set of master nodes to present a single well-known IP

65

address to clients. A master node decides when to increase or decrease management nodes

at the management layer. It also creates a mapping between management nodes and the

hosts that they are managing. When a client needs to perform an operation on a given host,

it first communicates with the master node to determine which management node to speak

to. The client then caches this mapping so it can communicate directly with the appropriate

management node on subsequent requests. The cache is invalidated as required if a host is

moved. Due to the importance of the management node, master nodes can be replicated for

high availability. However, the system is still functional even with the temporary absence

of the master nodes.

The Management Layer consists of the collection of management nodes that are

managing the entire infrastructure. Each management node is a virtual machine running

vSphere (modified version), VMware’s virtualized datacenter management server. This

set of VMs provides equivalent functionality to a single centralized vSphere server or a

Linked-vSphere server[111]. Rather than providing a single vSphere server or a small set

of vSphere servers and asking the user to statically partition the hosts among the vSphere

servers, we automatically determine the number of vSphere servers necessary to manage

the infrastructure for good performance. For the rest of the chapter, we use the term man-

agement nodes, management instances and management VMs interchangeable. As the

infrastructure grows or as the management workload increases, the management VMs au-

tomatically spawn more management VMs to accommodate the added management load.

Under the coordination of the master node, these management VMs automatically repar-

tition the physical hosts to provide scalable management. As the management workload

decreases, the master node can suspend or remove these additional management VMs and

again repartition the hosts among the remaining managers.

We place the vSphere management server within VMs instead of physical machines for

several reasons. First, VMs can easily be created and destroyed on-the-fly. This allows

our approach to easily scale with the management load. Furthermore, virtual machines

66

can achieve near-native performance, due to recent processors with hardware support for

virtualization and advances in hypervisor software. Second, the VMs can easily be moved

in case of node failure, and can be placed in a preconfigured, suspended state for quick

resumption in case of management load.

The Shared Storage Layer consists of an implementation of a globally-shared HBase[17],

an open source incarnation of Google’s Bigtable[26]. In a typical vSphere installation, each

vSphere server is connected to its own database. When a managed object like a host must

be moved from one vSphere server to another, the object’s information must be read out of

the first vSphere’s database and then stored in the second vSphere’s database. In contrast,

with a globally-shared database, it is faster to move managed objects between vSphere in-

stances because the data does not have to be moved: both instances can share the same

backend data. With globally-shared semantics, it is also easier to implement replication of

data for high availability as well as the potential for caching across geographies for spatial

locality of requests. In the current implementation of Tide, the shared storage layer is stat-

ically provisioned. As the shared storage layer rarely becomes bottlenecks, we simply use

a static deployment regardless of the size of the management layer. We leave dynamic pro-

visioning of the shared storage layer, a.k.a. self-scaling of the storage layer, as our future

work.

3.3.2 Challenges of Delivering Self-Scaling

Delivering self-scaling has two fundamental challenges. First, self-scaling should provision

an appropriate number of virtual instances based on received workload in a short time.

Provisioning speed and efficiency are both important because they determine task execution

delay and the overall management cost. Achieving this is nontrivial as workloads and

virtual instance performance are difficult to model. Second, self-scaling requires all virtual

instances to be fully-utilized for maximizing throughput. The solution to this goal is also

not straightforward as it involves scheduling of distributed virtual instances. In the rest of

67

the chapter, we discuss our approach for these two challenges in detail.

3.4 Fast and Efficient Provisioning

Directly estimating the appropriate number of management instances for a given workload

is difficult. First of all, the resource consumption of management tasks is hard to predict.

Different tasks consume CPU and IO quite differently. E.g., a VM power-on task involves

computation for choosing the best host to run a VM, while cloning a VM is disk-intensive.

Even tasks of the same type vary heavily in execution cost due to task heterogeneity. Sec-

ond, the performance of a management instance is also different when it runs on different

hosts(e.g. different CPUs). Capturing these uncertainties with performance modeling is

not only hard but also makes provisioning system-dependent.

One possible solution is to use iterative schemes which repeatedly add new instances

into the system until doing so does not improve throughput. For such schemes, one diffi-

culty is to determine the number of instances to add at each iteration, a.k.a the step size,

and straightforward schemes often do not work well. For instance, A scheme that adds a

constant number k of instances each time faces a speed-efficiency dilemma. If k is small,

the scheme may take a long time to provision sufficient instances. If k is large, it may un-

necessarily provision a large amount of instances for small workload bursts, which causes

resource contention between management and applications.

In Tide, we devise a novel adaptive approach that can quickly provision just enough

instances for a workload burst. It is system-independent as it does not rely on specific

workload or system performance models. The key technique in our approach is monitoring

throughput speedup to decide the right amount of instances to add in the next iteration.

We also show that our approach has guaranteed convergence property even under varying

workloads. We next present details of this approach.

68

3.4.1 Speedup-Guided Provisioning

Figure 16(a) shows the relations between the number of management instances, denoted

by N , and the task execution throughput. Here, we ran a workload trace collected from a

production datacenter on Tide multiple times, with an increasing number of management

instances each time. More details on setup can be found in Section 4.7.

Instances

T
h

ro
u

g
h

p
u

t(
/m

in
)

0 20 40 60 80 100 120
0

200

400

600

800

1000
Steady State Overshooting

(a)

Speedup

Rate

Instances

P0

P1

P2

P3

P4
P5

N1N2 N3 N4 N5

(b)

Figure 16: Instance Provisioning: (a)Throughput Improvement with Increasing Instances;
(b)The Speedup Rate Curve

As N increases, the throughput increases to a point, where the throughput of the system

matches the workload. After that, the throughput levels off even with larger N , because

the gain in throughput is limited but the cost of coordinating management instances con-

tinues to grow. We refer to the throughput increment after adding one or more instances

as throughput speedup, and the state where the throughput levels off as steady state. In

addition, we refer to the situation of provisioning after steady state as overshooting. Over-

shooting is clearly undesirable as it wastes resources. Ideally, we should stop provisioning

new instances when the system enters the steady state. The next question is, how to reach

69

this state as quickly as possible without causing overshooting?

A key observation here is that, as the throughput approaches to steady state, the change

rate of speedup in throughput decreases. Tide uses the change rate information to guide

the provisioning process. It iteratively adds a certain number of instances to the manage-

ment system based on previous speedup change rate. This feature allows us to quickly

approximate the steady state.

We use T (N) to represent the throughput given N instances. Since speedup is a func-

tion of instance number N , we use f(N) to denote the speedup of N instances. Note that

f(N) is the throughput increment of the system from N − 1 instances to N instances, i.e.

f(N) = T (N)− T (N − 1). Figure 16(b) shows the curve of f(N) generated from Figure

16(a). Clearly, the system enters the steady state when f reaches the X axis, i.e. f(Ns) = 0

where Ns is the instance number of the system at steady state. Thus, the estimation of the

steady state can be formulated as a root-finding problem.

Our provisioning algorithm is based on Secant method[104] which is a widely used

root-finding technique in numerical analysis. The algorithm combines the root-finding

process with the provisioning process. It also inherits several good properties from Secant

method as we show later in Section 3.4.2.

For the first iteration, we measure the initial speedup by adding one instance, i.e. f(N0)

where N0 = 1. Clearly, f(N0) = T (1)−T (0) where T (0) is the throughput of the primary

vSphere server. The value of f(N0) is shown by the P0 in Figure 16(b). Similarly, we then

add a fixed small amount of instances to make the total instance number to N1 and measure

the speedup at N1, i.e. f(N1) = T (N1)− T (N1 − 1), as shown by the point P1. Based on

P0 and P1, we find the number of instance to provision in the next iteration, N2 as follows.

We generate a linear function S = g(N) which passes the point P0 and P1. The root of

g(N), as shown by N2 in Figure 16(b), is the number of instances to provision in the next

iteration. Formally, given Ni, Ni−1, f(Ni), f(Ni−1), we generate the number of instances

70

to provision in (i+ 1)-th iteration as follows,

Ni+1 = Ni −
Ni −Ni−1

f(Ni)− f(Ni−1)
f(Ni) (2)

The provisioning process repeats the above iteration by using two previous provisioning

points to determine the next one. It terminates when the speedup improvement rate between

the two most recent provisioning is below a pre-defined threshold γ. Note that users can

set γ based on their performance requirements on Tide and the amount of resources they

can assign to Tide. In addition, we measure throughput based on multiple samples to avoid

incorrect step size estimation due to unstable readings.

To make our algorithm robust, we also apply three restrictions to our algorithm to pre-

vent faulty provisioning.

Restriction 1 Ni+1 > Ni if f(Ni) > 0 ensure Ni is a increasing series (dealing with

workload fluctuation)

Restriction 2 When f(Ni) = 0, gradually decreasing Ni (overshoot preventing)

Restriction 3 Ensure Ni+1 < Ni + m, where m is the maximum step size (dealing with

the divide-by-zero problem)

Note that restriction 2 is also the shrinking process in which Tide reduces its management

instances when workload bursts disappear. We show later in Section 3.4.2 that these re-

strictions allow our algorithm to work even under varying workload.

The speedup-guided provisioning algorithm takes advantage of the quantity informa-

tion in speedup to better approximate the steady state. As an example, if recent provi-

sioning leads to similar speedup, the algorithm would provision much more instances in

the next iteration (because the generated linear function g(N) has relatively small tangent

and, accordingly, has a relatively large root). Clearly, this feature is desirable as the sys-

tem can quickly approach steady state with more instances when the performance is more

predictable.

71

3.4.2 Performance Analysis

Overshooting in provisioning can cause inefficiency resource consumption and resource

competition between Tide and applications running in datacenters. The following theo-

rem shows that our provisioning algorithm is free from overshooting problem given non-

decreasing workload.

Theorem 2 Given that the received workload does not decrease during the provisioning

process, the speedup-guided provisioning algorithm does not cause overshoots.

Proof 1 Given non-decreasing workload, the speed up rate curve is a convex function in

which the speedup rate drops slower as the number of instances added. The number of

instances to provision determined by Equation 1 is bounded from right by the root. There-

fore, Ni generated from the Secant solver does not exceed the root. In other words, Ni can

not cause an overshoot.

Provisioning speed is also an important concern as slow provisioning can cause delayed

task execution. The following theorem shows that our approach can quickly converge to

the steady state.

Theorem 3 Given that the received workload is stable, the number of instances in Tide

super-linearly converges to the number of instances in the steady state.

Proof 2 Suppose Ni converges to Nm, there exists two positive constants, A and R > 1

such that limi→∞(Nm − Ni+1)/(Nm − Ni)
R = A Then Ni is said to converge super-

linearly with the order of convergence R. Secant method is widely known to have the order

of convergence equals to the golden ratio (1.618), which is slightly smaller than the order

of convergence of the Newton’s method but still larger than one. (We didn’t use Newton’s

method as it requires accurate estimation of the curve’s second order.) Thus, Tide super-

linearly converges to the ideal instance number in the steady state.

72

Real world workload often varies over time. An ideal provisioning algorithm should

still be able to provision correctly even when the incoming workload is not stable. The next

theorem shows that the speedup-guided algorithm has this feature. Our experiment results

also show that the proposed algorithm can quickly approaches steady state under real world

varying workloads.

Theorem 4 The proposed provisioning algorithm can eventually provision the right num-

ber of instances, even if the workload varies during the provisioning process.

Proof 3 Suppose before the workload changes we have computed the speedup information

f(Ni) and the next instance provision number Ni+1. As the workload varies, the speedup

curve changes from f to f ′ and the ideal provisioning number is also changed. We prove

the theorem from the following cases.

Case 1: the workload increases and f ′(Ni+1) < f(Ni). The next provisioning number

Ni+2 might be still smaller than the ideal number. We can always tell if this is true by

f ′(Ni+2). If true, we continue Secant solving process(Equation 1) until convergence. The

information prior to the workload change imposes no effect on the subsequent computation.

If not, then by Restriction 2, the provision number is gradually decreased until it reaches

the ideal value.

Case 2: the workload increases and f ′(Ni+1) > f(Ni). Using Secant method to com-

pute Ni+2 from f ′(Ni+1), f(Ni), Ni+1 and Ni give us a smaller result. By restriction 1,

this result is invalid if f ′(Ni+2) is still larger than zero. Thus, the algorithm will set Ni+2

to 1 +Ni+1 before assuming Secant solver for the next provisioning number. Therefore the

information prior to the workload change becomes obsolete.

Case 3: the workload decreases and f ′(Ni+1) = 0. In this case, an overshoot might

have already happened. By Restriction 2, the provision is gradually decreased.

Case 4: the workload decreases and f ′(Ni+1) > 0. Because we assume the workload

decreases, f ′(Ni+1) can only be less than f(Ni+1), i.e. the speedup is not as large as it

was before the workload decrease. In this case, the ideal provision number has not been

73

reached yet, so it is safe to continue the secant solver without triggering the overshoot

preventing mechanism.

The preceding discussion covers all cases when the proposed algorithm confronts a

workload fluctuation. We prove the robustness by showing that the right number of in-

stances can always be reached.

3.4.3 Optimization

Reducing Measurement Latencies. In the original algorithm, since we need to measure

both T (N) and T (N − 1) to get f(N), the algorithm measures throughput twice for each

iteration. This, however, limits provision speed as measurement takes time. We later find

that it is possible to improve this algorithm by performing only one measurement for each

iteration. Specifically, instead of calculating the speedup by f(Ni) = T (Ni) − T (Ni −

1), we let f(Ni) = f(Ni, Ni−1) = (T (Ni) − T (Ni−1))/(Ni − Ni−1). As a result, we

can approximate the speedup of the i-th iteration based on measured TNi
and previous

measurement TNi−1
. The following theorem shows that this optimization technique does

not change the properties of the provisioning algorithm.

Theorem 5 Theorem 1, 2 and 3 still hold when we substitute Equation 2 with the following

equation:

Ni+1 = Ni −
Ni −Ni−1

f(Ni, Ni−1)− f(Ni−1, Ni−2)
f(Ni)

, where f(Ni, Ni−1) =
T (Ni)−T (Ni−1)

Ni−Ni−1
.

Proof 4 Here f is reformulated to f that allow two variables Ni and Ni−1 which are

not necessarily close to each other. However, we will prove in the following that f is

still isomorphic to a single-valued function in our case. As previously discussed, T (N) is

monotonically increasing and T (N)/dN is monotonically decreasing. By the mean value

theorem, f(a, b) > f(b, c), for any positive integers a < b < c. Denote f(Ni, Ni−1) as Fi,

i.e. Fi = f(Ni, Ni−1), Fi+1 = f(Ni+1, Ni). {Fi} is a monotonic decreasing chain with

74

respect to the input sequence {Ni}. Therefore, the meeting point of {Fi} and the Ni axis

can be predicted by Secant method.

Virtual Instance Configuration. Provisioning a new virtual management instance

usually involves powering on the corresponding virtual machine, loading OS and starting

the vSphere management service. We refer to the time an instance takes to be ready to

accept workloads as ready time. Our second optimization technique reduces the ready time

to minimize the time one provisioning iteration takes.

We find that loading OS and starting vSphere service in a virtual machine takes consid-

erable time(about 2-3 minutes) as vSphere is not designed for frequent and quick startup.

To minimize this delay, we boot up virtual instances once after their initial creation, start

its vSphere service, and then suspend these virtual machines. During self-scaling, Tide

simply resumes a virtual instance when it needs one. Resuming a virtual machine means

loading the memory image of the virtual machine from disks. Hence, the length of re-

suming depends on the memory footprint of a virtual instance. The average ready time

of a 512MB-instance on a Dell PowerEdge 1850 with SCSI disks is 16 seconds, but in-

creases quickly to 76 and 203 seconds with 1GB-instance and 2GB-instance. Hence, we

set the memory size of a virtual instance to be 512MB, because the corresponding resum-

ing process is much faster than cold booting and starting vSphere service, and the instance

performs reasonably well with this much memory.

3.5 Maximizing Instance Utilization with Workload Dispatching

Driving management instances to high utilization is important for resource efficiency. If

provisioned instances are under-utilized, the provisioning algorithm has to provide addi-

tional management instances, which may cause unnecessary resource competition between

Tide and applications running in the datacenter. We next discuss how to achieve high uti-

lization through workload dispatching.

75

3.5.1 Workload Dispatching in Tide

Tide performs workload dispatching in a per-host basis. Specifically, management tasks are

associated with the corresponding virtualized hosts(ESX hosts). For example, a power-on

task of virtual machine V is associated with the ESX host running V , and the ESX host

may be associated with multiple tasks related with its virtual machines. During workload

dispatching, Tide assigns an ESX host to a virtual instance so that the instance can execute

all tasks on the ESX host. Tide employs host-based dispatching simply because each ESX

host can only be managed by one vSphere server at a time.

Dispatching a host to a virtual instances requires the consideration of two factors, the

available task-execution threads and the available entity space. A virtual instance has a

fixed number of task-execution threads and each thread can execute one management task

at a time. When all threads are busy, a virtual instance puts addition assigned tasks into

a waiting queue until one thread becomes available. We use the ratio of busy threads to

measure instance utilization. In addition, entity space is the maximum number of virtual

machines one instance can manage simultaneously. As an instance continuously maintains

both runtime status and configuration information of its managed virtual machines, the

entity space is a fixed number primarily determined by its memory size and CPU capacity.

Exceeding the entity space limit would lead to significant performance degradation.

Based on these two factors, ideal workload dispatching should keep high utilization on

instances and avoid exceeding entity space limits at the same time. Hence, we first imple-

mented an intuitive dispatching algorithm which eagerly reassigns hosts from overloaded

instances to lightly-loaded ones without exceeding space limits. Specifically, the algorithm

monitors the utilization, waiting tasks, and available space (i.e., the remaining number of

virtual machines one instance can manage) on all virtual instances. Whenever it finds a

host with all its tasks finished, it assigns the host back to the primary instance. This is

to maximize the available space on virtual instances. In addition, if it finds an instance

with available threads and entity space, it randomly assigns a host with waiting tasks to the

76

instance so long as doing so does not violate space limit.

However, the eager reassignment algorithm does not perform well as we show in Sec-

tion 4.7. There are two reasons. First, it eagerly rebalances workload among instances and

causes frequent instance-host reconnection, which is both expensive and time-consuming.

Second, eager workload rebalancing also minimizes the available space on instances at

all times. However, workload bursts often shifts from one set of hosts to a different set.

When it happens, the algorithm has to wait for virtual instances to finish all tasks associ-

ated with certain hosts and reassign the hosts back to the primary instance before it can

assign other hosts with new workload to virtual instances. This causes low utilization of

virtual instances.

3.5.2 An Online Dispatching Algorithm

Based on this observation, we believe a workload dispatching algorithm should reserve

some entity space to handel workload shifts. Following this idea, we propose an online

algorithm that dispatches workload based on the gain of host assignment. Specifically, we

define workload density of host h as ρh = Th

Vh
where Th and Vh are the number of waiting

tasks and the number of virtual machines on host h. Clearly, the higher ρh is, the more

worthwhile assigning h to a virtual instance is. Given a set of hosts H with waiting tasks at

any time t, the algorithm first finds the host h ∈ H with the highest ρh. If ρh > µ where µ

is a predefined gain threshold, it assigns h to a randomly selected instance i with available

space Si > Vh.

The next question is how to select a proper value for µ that maximizes instance utiliza-

tion. In fact, finding the best value for µ can be modeled as an online knapsack problem.

Consider a host h as an item with value Th and weight Vh, and an instance i ∈ I as a

knapsack with capacity Si where I is the set of all instances. The problem can be defined

as:

Given a knapsacks with capacity S =
∑

i∈I Si, an items h having a value Th and weight

77

Vh at each instant, put h into the knapsack iff ρh = Th

Vh
> µ and Vh 6 S. Find the best

value for µ so that the total value of items in the knapsack is maximized.1

To find the optimal µ, we use the theoretical results in [128] by setting

µ = (
Ue

L
)z(

L

e
)

, where L and U be the lower and upper bound of workload density for all hosts and

and z is the fraction of space filled over all instance space in I . Note that Equation 3

allows the dispatching algorithm to dynamically decide whether to assign a host based on

current workload and available space. When the available space is large (z → 0), µ → L

and the algorithm always assigns hosts to lightly loaded instances. Accordingly, when

z → 1, µ → U and the algorithm assigns only hosts with high workload density to virtual

instances. It can be also shown that setting µ based on Equation 3 achieves a total value

of at least 1/ ln(U
L
+ 1) of the optimal assignment[128]. As we show later, the online

dispatching algorithm achieves considerable higher instance utilization compared with the

eager algorithm.

3.6 Prototype Implementation

Before we describe implementation details of Tide, we first explain some terminology.

By infrastructure, we mean the entire set of ESX hosts and the VMs that are running on

them. When we discuss vSphere VMs, we mean VMs that are running somewhere in the

infrastructure and are running the vSphere service to manage other ESX hosts in that in-

frastructure. Note that these vSphere VMs reside within the same ESX hosts that comprise

the infrastructure.

1We consider all instances as a single knapsack for simplicity, although one item may not fit into any
instance but fits into the knapsack.

78

3.6.1 Master Nodes

The first task of the master nodes is to divide the ESX hosts among available vSphere

servers. One way to do this is to implement an auto-discovery module such that ESX hosts,

when come online, first communicate with a master node. This master node notifies the

appropriate vSphere server which then adds the host into its managed host list. The master

node also retains this mapping information. When the number of hosts per vSphere exceeds

a pre-determined threshold, new vSphere VMs are spawned to manage the new hosts. In

our design, we perform this mapping once at initial startup of the master node, and update

the mapping as new hosts come online.

The second task of the master nodes is to create new vSphere VMs or remove vSphere

VMs and re-distribute ESX hosts as the number of active tasks in the system increases or

decreases. We chose to do this by directing all task requests through a globally-shared

task queue. The master nodes can monitor this task queue and determine when more or

less vSphere VMs are needed. When more vSphere VMs are required, the master node

can create new nodes and assign the tasks appropriately, also redistributing ESX hosts as

needed. Another possible method (not implemented here) is to modify the API to allow

task stealing from vSphere servers.

In our prototype, we focused on auto-scaling the management layer when a burst of

tasks has been detected. All tasks are sent to the master nodes first. The master node

examines the depth of the task queue and then decides to spawn additional vSphere servers

to respond to this set of tasks. Since these vSphere servers are originally in a suspended

state, the master node issues commands to resume these vSphere VMs. The master node

then disconnects hosts from the pre-existing vSphere servers and connects them to the

newly-created vSphere servers. The add-host commands access state from the globally-

shared database in order to quickly start up the vSphere servers.

As noted above, the master node must make two important decisions: it must determine

how many vSphere servers to be spawned, and it must redistribute tasks and hosts/VMs

79

appropriately. It determines how many vSphere nodes to spawn by examining the available

CPU/memory capacity in the infrastructure and by examining the number of outstanding

tasks to be performed. If there is minimal excess capacity, the master node spawns fewer

additional vSpheres. Next, the master node examines the task queue and redistributes tasks

and hosts/VMs among vSphere servers so that all vSphere servers will complete tasks at

approximately the same time. Ideally, all of these decisions would be made dynamically. In

practice, for our testing, we pre-spawned a modest number of vSphere VMs and put them

in a suspended state so that they could be easily restarted and deployed as live vSphere

servers.

3.6.2 The Management Layer

In our prototype, the management layer is implemented using standard vSphere 4.0 servers

deployed in VMs. Each vSphere server is responsible for managing a subset of the ESX

hosts in the infrastructure. To allow vSphere VMs to be created quickly, we pre-deploy

initialized vSphere VMs in a suspended state throughout the infrastructure so that quick

deployment merely requires resuming from a suspended state rather than creation and ini-

tialization. Before putting the management VMs in a suspended state, we run the vSphere

process within each vSphere VM until the vSphere process has initialized itself and is

ready to manage hosts, but has no hosts connected. When handing a managed host to a

newly-resumed vSphere VM, we can simply ask the vSphere VM to connect to the man-

aged host. Another option is to perform fast cloning of vSphere VMs using techniques like

those described in SnowFlock[67].

The vSphere platform allows the user to divide a virtualized datacenter into clusters,

which are groups of hosts with similar configurations. The cluster is a unit of admission

control: before VMs are powered on, vSphere makes sure that there is sufficient capacity

in the cluster to turn on the VMs. This requires some synchronization that is cluster-

wide. If a cluster contains a large number of hosts and we wish to split it across vSphere

80

instances, then there must be some way to preserve the same synchronization semantics for

the cluster. For our prototype, we chose not to split clusters between management instances,

and instead ensure that all of hosts and VMs for a given cluster are managed by a single

vSphere instance. If it were necessary to split hosts within a cluster across management

instances, we could use a distributed lock model similar to Chubby locks[25]. Basically,

when an operation occurs to a host that is within a cluster, a distributed lock is required

to perform the operation. For our prototype, however, we chose to confine clusters to be

managed by single vSphere instance.

3.6.3 The Shared Storage Layer

The shared storage layer uses the HBase[17] implementation of Bigtable[26]. We use a

Bigtable-like approach because we wanted scalability and built-in redundancy for high-

availability. In HBase, data is addressed using a (row,column,version) tuple, and data is

stored in a column-oriented format. Because this addressing scheme is very different from

the addressing scheme used in a traditional relational database (used by vSphere), we im-

plemented an RPC module and a translation module to allow current vSphere servers to

communicate with HBase. The vSphere server issues its normal requests, which are con-

verted by the RPC server and translation module into HBase requests. In addition, the

translation module is capable of implementing various common RDBMS calls like joins in

terms of HBase primitives. In this manner, the current vSphere server code did not have

to be modified significantly to interact with HBase. In addition, as HBase continues to

evolve and include more and more SQL-like functionality, it will become feasible to use

that functionality and remove some of these translations from our translation module.

The performance of HBase depends on how data is distributed among different HBase

servers. To achieve the best performance, we split tables into small table regions (both

row-wise and column-wise) and distribute regions evenly across HBase servers. Using

small table regions enables us to even-out the workload among different HBase servers

81

and to maximize the level of parallel data processing for queries with a heavy workload

(e.g., multiple HBase servers can serve a query simultaneously based on their local table

regions).

Another complexity we faced in constructing our prototype is that a SQL database

has a single point of data consistency, while the HBase database replicates data across

multiple nodes. HBase is built upon the Hadoop File system (HDFS), in which a write is

not committed until it is guaranteed to be stored by multiple nodes. There are parameters

that control how many replications are required before a write returns. For our prototype

implementation, we chose a replication factor of 0 (i.e., no replication), but for ongoing

investigation in real environments, we would have to use replication to increase availability.

3.7 Discussion

Generality. While Tide is designed and implemented based on vSphere, a centralized

datacenter management system, we speculate that techniques used to achieve self-scaling

in Tide may also be useful for distributed management systems such as Eucalyptus[85].

Distributed management systems usually assign a subset of hosts to one management node

and scale out by adding more management nodes. Since workload bursts are common in

virtualized datacenters, they may cause certain management nodes to become “hotspots”.

In this case, Tide can be deployed on each management node and share a single resource

pool for provisioning virtual instances.

Consistency. Management task execution often requires consistency and synchroniza-

tion. For instance, multiple virtual network reconfiguration tasks could modify the config-

uration of a shared virtual network at the same time. As a result, vSphere provides several

types of lock services to support parallel execution of tasks on one management instance.

Tide extends the lock service to support tasks execution over distributed management in-

stances. Specifically, the primary instance runs the lock manager and all instances acquire

and release locks by communicating with the primary instance via network. However, the

82

downside is that lock operations have longer latencies compared with local lock operations

in vSphere.

Fault tolerance. Tide employs a simple failure model. First, we consider the fail-

ure of the primary management instance as the failure of the entire system. Second, the

fail-stop failure of one or more virtual management instances is tolerable. Here the term

tolerable means the consequence of such a failure could at most cause small degradation of

performance.

Tide detects the failure of a virtual instance through a simple heartbeat mechanism.

Periodically, a virtual instance sends a heartbeat message to the primary instance to indicate

it is alive. The primary instance considers a virtual instance as failed when it misses several

heartbeat messages. In case of a virtual instance failure, the primary instance starts a new

virtual instance, and assigns all tasks of the failed instance to the new one. The new instance

then connects to the corresponding hosts to execute the assigned tasks. Each host records

the identity of tasks executed in the past 24 hours. It executes a requested task only if it has

not seen the task identity before. This is to avoid re-executing tasks finished by the failed

instance.

3.8 Experimental Evaluation

We perform extensive experiments to evaluate the effectiveness of Tide based on both real

world workload traces and synthetic workloads. We highlight the key results from our

experiments in the following:

• Tide can quickly scale to meet the demand of various workload bursts. In addition,

our adaptive provisioning scheme has much lower resource demand compared to

fixed-step-provisioning.

• The workload dispatching algorithm of Tide can effectively drive up instance utiliza-

tion. Its performance is significantly better than eager dispatching and reasonably

close to that of the optimal dispatching.

83

3.8.1 Experiment Setup

Our setup includes a primary vSphere server, a total of 50 virtual vSphere servers, 300

hosts with a total of 3000 virtual machines running on them. The primary vSphere server

runs on a Dell PowerEdge 1850 with four 2.8GHz Xeon CPUs and 3.5GB of RAM. All

virtual machines installed with vSphere servers are deployed on a set of hosts. We installed

vSphere 4.0 on all management instances.

We conduct experiments based on both real world and synthetic workloads. The real

world workload is generated from traces we collected from several customer datacenters.

The trace data includes management tasks performed over thousands of virtual machines in

a three-year period. From this trace data, we generate two types of real world workloads.

The first models short-term workload bursts. We use this workload to evaluate the effective-

ness of Tide’s self-scaling feature. The second models long-term management workload,

which contains both regular and bursty workloads. We use this set of workloads to assess

the long-term performance of Tide and its resource efficiency. Note that the real world

workload trace we use represents the workload of a cloud hosting virtualized datacenters

of multiple enterprise users. This workload is heavier than that of an individual enterprise

datacenter in general. We also use synthetic workload to measure different aspects of our

algorithm, e.g. it allows us to create workload bursts with different characteristics and to

measure the impact.

3.8.2 Results

Instance Provisioning. Figure 17 shows the throughput and the number of instances traces

of Tide during a self-scaling process when using different provisioning schemes. Here

Secant refers to the speedup guided provisioning scheme we use in Tide and Fix-N is the

simple provisioning scheme that adds N instances to the system if it observes throughput

improvement in the previous iteration. The workload input for this figure is a period of

management workload bursts that lasts 200 seconds and we normalize all throughput by the

84

throughput of the primary instance. The speedup guided scheme has a better provisioning

speed compared with all fixed-step schemes. It adds a small number of instances at first

and gradually adds more instances in each iteration as it predicts the speedup change rate

better. Although Fix-10 performs reasonably well, as witnessed by our later results, it cause

significant resource consumption in the long run due to small and frequent workload bursts.

0 50 100 150 200
0

100

200

300

400

500

600

700

Time(Seconds)

T
hr

ou
gh

pu
t (

%
 o

ve
r

P
rim

ar
y)

Secant
Fix−1
Fix−5
Fix−10

(a)

0 50 100 150 200
0

10

20

30

40

50

Time(Seconds)

In

st
an

ce

Secant
Fix−1
Fix−5
Fix−10

(b)

Figure 17: Performance Trace During Self-Scaling: (a) Throughput Trace; (b) Instance
Number Trace

Figure 18 illustrates the convergence time of different provisioning schemes under dif-

ferent workload characteristics. The convergence time measures the time a scheme takes

to provision the desirable number of instances, i.e. reaching the stable state where adding

more instances improves little throughput. We use synthetic workload to control the work-

load characteristics. In Figure 18(a) we push the incoming rate of tasks from a base level

of 1x to 5x(5 times higher). It is clear that the speedup guided scheme consistently uses

less time to converge and its convergence time is barely effected by workload changes.

The convergence time of fixed-step schemes such as FIX-10, while smaller than that of

85

the speedup guided scheme under small workloads, degrades with increasing workloads.

This workload insensitive feature of our speedup guided scheme is particularly appealing

as management workloads may vary from time to time. In Figure 18(b), we evaluate differ-

ent schemes by increasing the workload weight. We rank different types of tasks by their

CPU consumption at the management instance. The heavier a workload, the more CPU-

intensive tasks it has. Similarly, the speedup guided scheme outperforms fix-step schemes

and is insensitive to workload changes.

1x 2x 3x 4x 5x
10

1

10
2

10
3

10
4

Workload Scale

C
on

ve
rg

en
ce

 T
im

e(
se

co
nd

s)
Secant
Fix−1
Fix−5
Fix−10

(a)

Cost Ratio

C
on

ve
rg

en
ce

 T
im

e(
se

co
nd

s)

light heavy
10

1

10
2

10
3

10
4

Secant
Fix−1
Fix−5
Fix−10

(b)

Figure 18: Convergence Time under Different Workload Characteristics: (a) Increasing
Workload Scale; (b) Increasing Workload Weight

In Figure 19, we study the convergence time of different provisioning schemes under

different types of workload bursts. Again, we use a synthetic workload as it allows us

to create workload bursts of different types. Figure 19(a) shows the convergence time

of different schemes under workload bursts whose task incoming rate increases from the

base level(1x) to a higher level(2x-5x). We can see that the speedup-guided approach

consistently achieves much shorter convergence time compared with other approaches. We

86

Algorithms

C
on

ve
rg

en
ce

 T
im

e(
se

co
nd

s)

Secant Fix−1 Fix−5 Fix−10
0

200

400

600

800

1000

1200 2x
3x
4x
5x

(a) Growing Bursts

Algorithms

C
on

ve
rg

en
ce

 T
im

e(
se

co
nd

s)

Secant Fix−1 Fix−5 Fix−10
0

100

200

300

400

500

600

700

800
2x
3x
4x
5x

(b) Declining Bursts

Figure 19: Convergence Time under Different Types of Bursts

0 10 20 30 40

Secant
Fix−1
Fix−5

Fix−10

Average # Instances

0 100 200 300 400 500

Secant
Fix−1
Fix−5

Fix−10

Delayed Tasks

Figure 20: Overall Performance/Efficiency

can observe similar results in Figure 19(b) where the workload bursts drop from a higher

level(2x-5x) to the base level(1x). The speedup guided approach has higher convergence

time in declining bursts as it relies on fixed-step instance reduction to handle overshooting

(Restriction 2). Nevertheless, reducing instances from the steady state does not cause task

execution latency.

Figure 20 shows the performance and efficiency of different schemes for long-term

workloads. We use real world workload traces for this experiment. The workload trace is a

87

combination of management traces from different datacenters and lasts about 1 hour. Here

we measure the performance with the accumulated number of tasks that are delayed more

than 50% of their normal execution time due to insufficient management capacity. For

efficiency, we measure the average number of instances used by different schemes during

self-scaling. Clearly, we can see that our scheme causes much smaller number of delayed

tasks and yet uses a relatively small number of instances. Compared with our approach,

fixed-step schemes either causes too many delayed tasks, e.g., Fix-1, or uses too many

instances, e.g., Fix-10. The long-term performance and efficiency results suggest that the

speedup-guided approach is cost-effective.

Workload Dispatching. Figure 21 shows the performance trace of different workload

dispatching schemes based on a real world workload trace that lasts 100 seconds. We com-

pare four different workload dispatching schemes. The first, Static, is the static workload

dispatching scheme which assigns hosts to instances in round-robin and never changes

the assignment during the execution. The second scheme, Eager, is the eager dispatching

scheme we discussed in Section 3.5. The eager scheme aggressively reassigns hosts with

waiting tasks to another instance with idle work threads and sufficient space. It repeats the

process until no such instance exists. The third scheme, Online, is the online dispatching

scheme we propose. It is the same to the eager scheme except that it reassigns a host only

when the workload density ρ of the host is sufficiently large. Finally, the fourth scheme,

Optimal, is essentially the eager scheme with future workload knowledge. It performs in

the same way as the eager scheme. However, it knows not only the current workload of

a host but also the future workload on a host. In our experiments, we feed the optimal

scheme with workload information from the current moment to 10 seconds in the future.

Note that the optimal scheme is not available in the real world. We use the optimal scheme

to evaluate how close the online scheme can reach the ideal performance.

Figure 21(a) suggests that the online scheme has a similar throughput to the optimal

scheme. Note that the optimal trace sometimes reaches a normalized throughput larger

88

Time(Seconds)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0 20 40 60 80
0.4

0.6

0.8

1

1.2

1.4
Static
Eager
Online
Optimal

(a) Throughput

Time(Seconds)

U
ti

liz
at

io
n

0 20 40 60 80
30

40

50

60

70

80

90

100

Static
Eager
Online
Optimal

(b) Utilization

Figure 21: Performance Trace of Different Workload Dispatching Schemes

than 1 because we use the average incoming task rate to normalize throughput and the

actual throughput may be higher than the average. The throughput of the static and the

eager schemes, however, is not only lower but also varies heavily. The static scheme does

not adjust host assignment, and thus, suffers from performance degradation when workload

shifts from one set of hosts to another set of hosts. The eager scheme, on the other hand,

aggressively reassigns hosts based on only current workload information and causes low

available space on all instances. As a result, when a host receives high workload later,

the eager scheme may miss the chance of finding a lightly loaded instance with sufficient

space to manage the host. In fact, the eager scheme performs even worse than the static

scheme due to reconnection latencies caused by host reassignment. Figure 21(b) shows the

average instance utilization of different schemes. It suggests that our online scheme has

similar performance as the optimal scheme, while the static and eager schemes result in

much lower instance utilization.

89

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution Skewness(Zipf)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Static
Eager
Online
Optimal

(a) Varying Workload

Standard Deviation(#VM per host)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Static
Eager
Online
Optimal

(b) Varying Host Footprints

Figure 22: Throughput under Different Workload and Infrastructure

We next evaluate the performance of these four schemes given different workloads (syn-

thetic) and infrastructure. In Figure 22(a), we vary the skewness in the workload distribu-

tion and examine the impact on workload dispatching schemes. Specifically, we distribute

tasks to hosts based on Zipf distribution and vary the skewness s from 0 (equivalent to uni-

form distribution) to 1. We can see that the throughput of the static and the eager scheme

degrades heavily as the skewness increases, while the online scheme consistently outper-

forms the static and eager schemes. This is because reservation made by the online scheme

leaves space for hosts with high workload at a later time, while the static scheme and the

eager scheme miss such opportunities.

In Figure 22(b), we vary the footprint size distribution between hosts. The footprint

size here refers to the number of virtual machines on a host. In our experiment, we vary the

standard deviation of footprint sizes from 0 to 45 (with a mean equals to 55). Clearly, the

online scheme has steady performance advantages over the static and eager schemes. Ac-

cordingly, we find that the utilization of the online dispatching scheme is also consistently

90

0 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

Distribution Skewness(Zipf)

U
ti

liz
at

io
n

Static
Eager
Online
Optimal

(a) Varying Workload

Standard Deviation(#VM per host)

U
ti

liz
at

io
n

0 10 20 30 40
30

40

50

60

70

80

90

100

Static
Eager
Online
Optimal

(b) Varying Host Footprints

Figure 23: Utilization under Different Workload and Infrastructure

higher than that of the static and eager schemes in Figure 23. Note that the performance of

the online scheme is also reasonably close to that of the optimal scheme.

3.9 Related Work

There are a number of management systems for virtualized environments. Usher[75]

is a modular open-source virtual machine management framework from UCSD. Virtual

Workspaces[59] is a Globus-based[43] system for provisioning workspaces (i.e., VMs),

which leverages several pre-existing solutions developed in the grid computing arena. The

Cluster-on-demand[28] project focuses on the provisioning of virtual machines for scien-

tific computing applications. oVirt[7] is a Web-based virtual machine management con-

sole. Several commercial virtualization management products are also available, including

vSphere[116] from VMware and System Center[6] from Microsoft. Enomalism[5] is a

commercial open-source cloud software infrastructure. Despite the large number of exist-

ing systems, few works have studied their performance.

91

The concept of auto-scaling is not new, but we extend it beyond application-level scal-

ing and apply it to the management workload. Application-level auto-scaling[13] dynami-

cally adjusts the number of server instances running an application according to application

usage. In fact, providing application-level auto-scaling to many applications may further

increase the intensity and burstiness of the management workload. For example, creating

many web server VMs to handle a flash crowd of HTTP requests requires fast execution

of a large number of management operations (clones and power ons). Therefore, we spec-

ulate that Tide may provide better support for application auto-scaling compared to man-

agement systems with fixed capacity. The problems in application-level auto-scaling are

also quite different from those we study. E.g., application workload dispatching is often

request-based and can be implemented with off-the-shelf techniques, while the workload

dispatching in Tide is host-based. Everest[84] is a transparent layer that allows data writ-

ten to an overloaded volume to be temporarily off-loaded into a short-term virtual store.

The storage performance scaling problem studied in this chapter is quite different from the

one we study in Tide. Recent works [118, 66] on flexible monitoring/management infras-

tructure study designs that allow users to deploy different monitoring/analysis approaches

under the same framework. In contrast, we propose Tide to enable automatic scaling of the

management/monitoring service.

Tide uses multiple small-footprint server instances to boost system throughput via par-

allel task execution. We choose to use small-footprint server instances because they enable

fast instantiation and minimum latency in each provisioning cycle. FAWN[16] is a cluster

architecture based on small footprint nodes with embedded CPUs and local flash storage.

It balances computation and I/O capabilities to enable efficient, massively parallel access

to data. However, the focus of FAWN is on energy-efficient computing.

The execution of management tasks in a virtualized datacenter involves both the man-

agement system and hosts running virtual machines. SnowFlock[67] studies rapid group-

instantiation of virtual machines on virtualized host side. This work is complementary to

92

ours as we focus on efficient task execution in the management system.

Several researchers have studied the problem of resource provisioning for meeting

application-level quality of service (QoS). Padala[89], et al proposed an resource control

scheme that dynamically adjusts the resource shares to individual tiers to meet QoS goals.

Their approach is based on control theory and requires performance modeling. Doyle and

et al.[41] studied a model-based resource provisioning approach for web services in shared

server clusters based on queuing theory. Compared with these approaches, the speedup-

guided approach in Tide does not require system-dependent performance modeling and

may adapt to different environments easier. In addition, we also study maximizing instance

utilization through distributed workload dispatching. In addition, while these approaches

do not seek to minimize provisioning latency, we try to reduce provisioning latency at both

the algorithmic level and the implementation level as it is essential to self-scaling.

The workload dispatching problem in Tide is quite different from traditional workload

dispatching in distributed systems such as MapReduce[36] where the assignment is per-

task. Instead, the assignment unit in Tide is a host, each of which observes a stream of

incoming management tasks. This fundamental difference makes static assignment less

useful as each host may observe a different workload over time. Our workload dispatching

algorithm is based on the online algorithm proposed by Zhou[128], et al. We adapted their

algorithm for our setting where the dispatching decisions are made continuously.

93

CHAPTER IV

STATE MONITORING IN CLOUD DATACENTERS

4.1 Introduction

Cloud datacenters represent the new generation of datacenters that promote on-demand pro-

visioning of computing resources and services. Amazon’s Elastic Computer Cloud(EC2)[14]

is an example of such cloud datacenters. A typical Cloud application in such Cloud data-

centers may spread over a large number of computing nodes. Serving Cloud applications

over multiple networked nodes also provides other attractive features, such as flexibility,

reliability and cost-effectiveness. Thus, state monitoring becomes an indispensable capa-

bility for achieving on-demand resource provisioning in Cloud datacenters. However, the

scale of Cloud datacenters and the diversity of application specific metrics pose signifi-

cant challenges on both system and data aspects of datacenter monitoring for a number of

reasons.

First, the tremendous amount of events, limited resources and system failures often

raise a number of system-level issues in datacenter monitoring:

• Event Capturing. Applications, OS, servers, network devices can generate formidable

amount of events, which makes directly storing and searching these events infeasible.

To address this issue, Bhatia et al. [21] proposed Chopstix, a tool that uses approx-

imate data collection techniques to efficiently collect a rich set of system-wide data

in large-scale production systems.

• Resource Consumption. Servers usually have limited resources available for mon-

itoring. Assigning monitoring tasks and organizing monitoring overlays without

considering this fact may lead to unreliable monitoring results. Jain et al.[54] pro-

posed a self-tuning monitoring overlay to trade precision and workload. Meng et

94

al. [79] studied the problem of monitoring network construction for multiple moni-

toring tasks without overloading member hosts.

• Reliability. Failures of server, network links can lead to inconsistent monitoring

results. Jain et al. [55] introduced and implemented a new consistency metric for

large-scale monitoring. The new metric indicates the precision of monitoring results,

and thus, can identify inconsistent results caused by system failures.

Second, large-scale monitoring often involves processing large amount of monitoring

data in a distributed manner. Such computing paradigm also introduces several challenges

at the data management level:

• Distributed Aggregation. The ability of summarizing information from voluminous

distributed monitored values is critical for datacenter monitoring. Previous work pro-

posed several efficient algorithms for different aggregation over distributed stream

values. Babcock et al. [19] studied the problem of monitoring top-k items over phys-

ically distributed streams. Olston et al. [86] introduced an efficient algorithm for

computing sums and counts of items over distributed streams. As its distinct feature,

the proposed algorithm can achieve efficiency by trading precision for communica-

tion overhead. Cormode et al.[34] proposed an approach for approximate quantile

summaries with provable approximation guarantees over distributed streams.

• Shared Aggregation. Different monitoring tasks may share some similarities. Run-

ning similar tasks in an isolated manner may lead to unnecessary resource consump-

tion. Krishnamurthy et al. [64] developed techniques for binding commonalities

among monitoring queries and sharing work between them.

In this chapter, we study state monitoring at Cloud datacenters, which can be viewed as

a Cloud state management issue, as it mainly involves collecting local state information

and evaluating aggregated distributed values against pre-defined monitoring criteria. A

95

key challenge for efficient state monitoring is meeting the two demanding objectives: high

level of correctness, which ensures zero or very low error rate, and high communication

efficiency, which requires minimal communication cost in detecting critical state violation.

4.1.1 State Monitoring

Despite the distributed nature of Cloud-hosted applications, application owners often need

to monitor the global state of deployed applications for various purposes. For instance,

Amazon’s CloudWatch [1] enables users to monitor the overall request rate on a web ap-

plication deployed over multiple server instances. Users can receive a state alert when

the overall request rate exceeds a threshold, e.g. the capacity limit of provisioned server

instances. In this case, users can deploy the web application on more server instances to

increase throughput.

As another example, service providers who offer software-as-a-service to organizations

often need to perform distributed rate limiting (DRL) to restrict each organization to use

the software within its purchased level (e.g. 100 simultaneous sessions). Because software

services are usually deployed over distributed servers in one or multiple datacenters, they

require DRL to check if the total number of running sessions from one organization at all

servers is within a certain threshold.

We refer to this type of monitoring as state monitoring, which continuously evaluates if

a certain aspect of the distributed application, e.g. the overall request rate, deviates from a

normal state. State monitoring is widely used in many applications. Examples also include:

EXAMPLE 1. Traffic Engineering: monitoring the overall traffic from an organization’s

sub-network (consists of distributed hosts) to the Internet.

EXAMPLE 2. Quality of Service: monitoring and adjusting the total delay of a flow

which is the sum of the actual delay in each router on its path.

EXAMPLE 3. Fighting DoS Attack: detecting DoS attack by counting SYN packets

96

arriving at different hosts within a sub-network.

EXAMPLE 4. Botnet Detection: tracking the overall simultaneous TCP connections

from a set of hosts to a given destination.

State monitoring in datacenters poses two fundamental requirements. First, given the

serious outcome of incorrect monitoring results, state monitoring must deliver correct mon-

itoring results[24]. A false state alert in the previous CloudWatch example would cause

provisioning of new server instances which is clearly unnecessary and expensive. Missing

a state alert is even worse as the application gets overloaded without new server instances,

which eventually causes potential customers to give up the application due to poor perfor-

mance. This correctness requirement still holds even if monitored values contain momen-

tary bursts and outliers.

Second, communication related to state monitoring should be as little as possible[70,

73, 69]. Datacenters usually run a large number of state monitoring tasks for application

and infrastructure management[14]. As monitoring communication consumes both band-

width and considerable CPU cycles[79], state monitoring should minimize communication.

This is especially important for infrastructure services such as EC2, as computing resources

directly generate revenues.

One intuitive state monitoring approach is the instantaneous state monitoring, which

triggers a state alert whenever a predefined threshold is violated. This approach, though

makes algorithm design easy, idealizes real world monitoring scenarios. As unpredictable

short-term bursts in monitored values are very common for Internet applications[37, 49,

99], instantaneous state monitoring may cause frequent and unnecessary state alerts. In

the previous example, momentary HTTP request bursts trigger unnecessary state alerts

whenever their rates exceed the threshold. Furthermore, since state alerts usually invoke

expensive counter-measures, e.g. allocating and deploying new web server instances, un-

necessary state alerts may cause significant resource loss. Surprisingly, we find most of the

97

existing work to date[39, 86, 60, 97, 11, 57] deals only with this type of state monitoring.

4.1.2 Overview of Our Approach

In this chapter, we introduce the concept of window-based state monitoring and devise

a distributed WIndow-based StatE monitoring (WISE) framework for Cloud datacenters.

Window-based state monitoring triggers state alerts only when observing continuous state

violation within a specified time window. It is developed based on the widely recognized

observation that state violation within a short period may simply indicate the dynamics

of the runtime system and it does not necessarily trigger a global state violation. Thus,

with the persistence checking window, window-based state monitoring gains immunity to

momentary monitoring value bursts and unpredictable outliers.

In addition to filtering unnecessary alerts, window-based state monitoring explores

monitoring time windows at distributed nodes to yield significant communication savings.

Although the window-based state monitoring approach was first introduced in [83], the fo-

cus of our earlier results was mainly on the basic approach to window-based state monitor-

ing with centralized parameter tuning to demonstrate and evaluate its advantage in monitor-

ing cost saving compared to instantaneous state monitoring. In this chapter, we identify that

this basic approach to window-based state monitoring may not scale well in the presence of

lager number of monitoring nodes. We present an improved window based monitoring ap-

proach that improves our basic approach along several dimensions. First, we present the ar-

chitectural design of the WISE system and its deployment options (Section 4.3.1). Second,

to address the scalability issue of the basic WISE, we develop a distributed parameter tun-

ing scheme to support large scale distributed monitoring (Section 4.5.4). This distributed

scheme enables each monitoring node to search and tune its monitoring parameters in a re-

active manner based on its observations of state update events occurred, without requiring

global information. It enables WISE to scale to a much larger number of nodes compared

98

with the centralized scheme. Third, we design two concrete optimization techniques, aim-

ing at minimizing the communication cost between a coordinator and its monitoring nodes.

The first optimization is dedicated to enhance the effectiveness of the global pull procedure

at the coordinator by reducing the communication cost for global pulls, while ensuring the

correctness of the monitoring algorithm. The second optimization aims at reducing unnec-

essary global polls by reporting more information of local violations at monitoring nodes

(Section 4.6). Finally, we have conducted extensive empirical studies on the scalability of

the distributed parameter tuning scheme compared to the centralized scheme appeared first

in [83], and evaluated the effectiveness of both the distributed WISE solution and the two

optimization techniques, compared to the basic WISE approach (Section 4.7.2).

In summary, this chapter makes three unique contributions. First, WISE employs a

novel distributed state monitoring algorithm that deploys time windows for message fil-

tering and achieves communication efficiency by intelligently avoiding collecting global

information. More importantly, it also guarantees monitoring correctness. Second, WISE

uses a distributed parameter tuning scheme to tune local monitoring parameters at each

distributed node and uses a sophisticated cost model to carefully choose parameters that

can minimize the communication cost. As a result, this scheme scales much better than

the centralized scheme presented in [83]. Last but not the least, we develop a set of opti-

mization techniques to optimize the performance of the fully distributed WISE. Compared

with other works using statistical techniques to avoid false positive results in runtime events

monitoring such as performance anomaly detection [119, 117], we focus on developing ef-

ficient distributed monitoring algorithms for simple, widely used filtering techniques such

as window based monitoring.

We conducted extensive experiments over both real world and synthetic monitoring

traces, and show that WISE incurs a communication reduction from 50% to 90% compared

with existing instantaneous monitoring approaches and simple alternative window based

schemes. We also compare the original WISE with the improved WISE on various aspects.

99

Our results suggest that the improved WISE is more desirable for large-scale datacenter

monitoring.

4.1.3 Outline

The rest of this chapter is organized as follows. Section 4.2 introduces the preliminaries

and defines the problem of window based state monitoring. Section 4.3 gives an overview

of our approach. Section 4.4 presents the detail of the WISE monitoring algorithm. Section

4.5 describes our scalable parameter setting scheme. We discuss optimization techniques

to further improve the performance of WISE in Section 4.6. Section 4.7 presents the ex-

perimental evaluation. Section 6.5 discusses the related work.

4.2 Preliminaries

We consider a state monitoring task involving a set N of nodes where |N | = n. Among

these n nodes, one is selected to be a coordinator which performs global operations such

as collecting monitored values from other nodes and triggering state alerts. For a given

monitoring task, node i locally observes a variable vi which is continuously updated at

each time unit. The value of vi at time unit t is vi(t) and we assume vi(t) is correctly

observed. When necessary, each monitor node can communicate with the coordinator by

sending or receiving messages. We consider that communication is reliable and its delay

is negligible in the context of datacenter state monitoring. As communication cost is of

concern, we are interested in the total number of messages caused by monitoring. We also

consider the size of messages in our experiment.

A state monitoring task continuously evaluates a certain monitored state is normal or

abnormal. Similar to previous work[39, 86, 60, 97, 11, 57], we distinguish states based on

sum aggregate of monitored values. For instance, we determine whether a web application

is overloaded based on the sum of HTTP request rates at different hosts. We use sum

aggregates because they are widely applied and also simplify our discussion, although our

approach supports any aggregate that linearly combines values from nodes.

100

4.2.1 The Instantaneous State Monitoring

The instantaneous state monitoring model[39, 86, 60, 97, 11, 57] detects state alerts by

comparing the current aggregate value with a global threshold. Specifically, given vi(t), i ∈

[1, n] and the global threshold T , it considers the state at time t to be abnormal and triggers

a state alert if
∑n

i=1 vi(t) > T , which we refer to as global violation.

To perform instantaneous state monitoring, the line of existing work decomposes the

global threshold T into a set of local thresholds Ti for each monitor node i such that∑n
i=1 Ti 6 T . As a result, as long as vi(t) 6 Ti, ∀i ∈ [1, n], i.e. the monitored value

at any node is lower or equal to its local threshold, the global threshold is satisfied because∑n
i=1 vi(t) 6

∑n
i=1 Ti 6 T . Clearly, no communication is necessary in this case. When

vi(t) > Ti on node i, it is possible that
∑n

i=1 vi(t) > T (global violation). In this case,

node i sends a message to the coordinator to report local violation with the value vi(t).

The coordinator, after receiving the local violation report, invokes a global poll proce-

dure where it notifies other nodes to report their local values, and then determines whether∑n
i=1 vi(t) 6 T . The focus of existing work is to find optimal local threshold values that

minimize the overall communication cost.

4.2.2 The Window-based State Monitoring

As monitored values often contain momentary bursts and outliers, instantaneous state mon-

itoring [49] is subject to cause frequent and unnecessary state alerts, which could further

lead to unnecessary counter-measures. Since short periods of state violation are often well

acceptable, a more practical monitoring model should tolerate momentary state violation

and capture only continuous one. Therefore, we introduce window-based state monitoring

which triggers state alerts only when the normal state is continuously violated for L time

units.

We study window-based state monitoring instead of other possible forms of state mon-

itoring for two reasons. First, we believe continuous violation is the fundamental sign of

101

Time
Units

Request Rate

Request Rate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time
Units

300

150

T1

T2
450

300

150

450

Web Server A

Web Server B

Figure 24: A Motivating Example

established abnormality. Second, window-based state monitoring tasks are easy to con-

figure, because the window size L is essentially the tolerable time of abnormal state, e.g.

degraded service quality, which is known to service providers.

4.2.3 Problem Definition

Our study focuses on finding efficient ways to perform distributed window-based state

monitoring, as this problem is difficult to solve and, to the best of our knowledge, has not

been addressed before. Formally, we define the distributed window-based state monitoring

problem as follows:

Problem Statement 3 Given the threshold T , the size L of the monitoring window, and

n monitor nodes with values vi(t), i ∈ [1, n] at time t, devise an algorithm that triggers

state alerts only when
∑n

i=1 vi(t − j) > T, ∀j ∈ [0, L − 1] at any t while minimizing the

associated communication cost.

Solving this problem, however, is challenging, as it requires careful handling of monitoring

windows at distributed nodes to ensure both communication efficiency and monitoring cor-

rectness. Simple solutions such as applying modified instantaneous monitoring approaches

either fail to minimize communication or miss state alerts. We next present a motivating

example to show the reason as well as some insights into the solution.

102

Figure 56 shows a snippet of HTTP request rate traces collected from two web servers

in a geographically distributed server farm[18], where time is slotted into 5-second units.

Let us first consider an instantaneous monitoring task which triggers state alerts when the

sum of request rates at two servers exceeds T = 600. For simplicity, we assume server A

and B have the same local thresholds T1 = T2 = T/2 = 300, as indicated by dashed lines.

A local violation happens when a bar raises above a dashed line, as indicated by bars with

red borders.

In the example, server A and B report local violation respectively at time unit 2,4,6,14,15,

and time unit 3-7, which generates 10 messages. When receives local violation reports, the

coordinator invokes global polls at time unit 2,3,5,7,14,15 to collect values from the server

that did not report local violation. No global poll is necessary at time unit 4 and 6 as the

coordinator knows local values of both servers from their local violation reports. Each

global poll includes one message for notification and one message for sending back a local

value, and all global polls generate 6× 2 = 12 messages. Thus, the total message number

is 10 + 12 = 22.

4.2.3.1 Applying Instantaneous Monitoring

Now we perform window-based state monitoring to determine whether there exists con-

tinuous global violation against T lasting for L = 8 time units. We start with the most

intuitive approach, –applying the instantaneous monitoring algorithm. Specifically, a mon-

itor node i still evaluates whether vi(t) > Ti and reports local violation to the coordinator

if it is true. The coordinator then invokes a global poll to determine if
∑

vi(t) > T . The

only difference is that the coordinator triggers state alerts only when observing continuous

global violation of 8 time units. As a result, the communication cost is the same as be-

fore, 22 messages. Note that 22 messages are generated for only 2 monitor nodes and all

messages have to be processed by the coordinator. Our experiment suggests that the total

message number in this scheme grows quickly with increasing monitor nodes. This can

103

cause significant bandwidth and CPU cycle consumption at the coordinator, which limits

the scalability of monitoring.

4.2.3.2 Saving Communication at The Coordinator

In fact, invoking a global poll for every local violation is not necessary. Since state alerts

require continuous global violation, the coordinator can delay global polls unless it ob-

serves 8 continuous time units with local violation. When it observes a time unit t with

no local violation, it can clear all pending global polls, as the violation is not continuous,

and thus, avoids unnecessary communication. This modified scheme avoids all 6 global

polls, as no local violation exists at time unit 8 and 16. Therefore, by avoiding unnecessary

communication at the coordinator side, the total message number is reduced to 10.

4.2.3.3 Saving Communication at Monitor Nodes

Reducing communication at monitor nodes is relatively more difficult. One may propose

to let each node report the beginning and the end of a continuous local violation period,

instead of reporting for each time unit with local violation. This scheme, which we refer

to as double-reporting, saves 3 messages on server B by reporting at time 3 and 7, but

performs poorly (8 messages) on server A as each violation period costs two messages, even

when it is short (e.g. time unit 2, 4, 6). The total message number is still 10. One may also

suggest monitor nodes to report only the end of violation period for less communication.

This end-reporting scheme, however, fails to ensure monitoring correctness. Assume server

A observes local violation throughout time unit 2-10 and
∑

vi(t) > T, ∀t ∈ [2, 10]. The

coordinator inevitably fails to trigger a state alert at time unit 9 without knowing that server

A has started to observe local violation at time unit 2.

4.2.3.4 Insights and Challenges

One solution is to lower the granularity of local violation reporting, as approximate infor-

mation on local violation is often adequate to rule out state alerts. Monitor nodes, after

104

reporting one local violation, can employ message filtering time windows with pre-defined

lengths to suppress subsequent local violation reporting messages. For instance, assume

both server A and B use 5-time-unit filtering windows. Server A reports local violation

at time unit 2, and then enters a filtering window, during which it avoids to report at time

unit 4 and 6. Similarly, it reports at time 14 and server B reports once at time 3. At the

coordinator side, as filtering windows span 5 time units, the worst case that one reported

local violation could imply is a local violation period of 5 time units. Thus, the worst case

scenario indicated by the three reports is global violation in time units 2-7 and 14-18, which

suggests no state alert exists. The resulting message number is 3, a 86.36% communication

reduction over 22 messages.

While the above approach seems promising, devising a complete solution requires an-

swers to several fundamental questions. Example questions include how to process re-

ported local violation and filtering windows at the coordinator side to guarantee monitor-

ing correctness? how to tune monitoring parameters, e.g. local threshold and filtering

window size, at each node to achieve minimum communication? and how to optimize dif-

ferent subroutines (e.g. global poll) to further reduce communication cost? In addition,

datacenter monitoring often requires many tasks, and each task could potentially involve

hundreds, even thousands, of monitor nodes. Thus, it is also important to address questions

such as what architecture should WISE employ to support such deployment, and how to

achieve high scalability for tasks with many monitor nodes? In the subsequent sections, we

present the design and development of WISE, a system that performs accurate and efficient

window-based state monitoring over a network of distributed monitor nodes.

4.3 WISE Monitoring System

We present an overview of the WISE monitoring system in this section. We first introduce

the architecture and deployment of WISE, and then, describe important components of

WISE.

105

Task A

Task B
Task C

Task D

Coordinator

Coordinator

Coordinator

Coordinator

M
o
n
it
o
ri
n
g
 T
a
s
k
s

T
a
s
k

M
a
n
a
g
e
r

WISE Monitoring System

Alert Collector

Failure

Handler
De-Duplication

Load

Balancer

A
le
rt

P
ro
c
e
s
s
o
r

CPT

Node 1

..
.

Global Poll

Staged Global Poll

Coordinator

v1

p1

DPT Distributed

Parameter Tuning

Skeptical Windows

Filtering Windows

Termination

Message

TM

DPT

TM

Reactions
State Alerts

Node 2

v2

p2

DPT

TM

Node n

vn

pn

DPT

TM

..
.

Local Violation Report

Notification/

Value Collecting

CPT
Centralized

Parameter Tuning

Figure 25: WISE Monitoring System

4.3.1 Architecture and Deployment

The WISE monitoring system takes the description of window-based monitoring tasks as

input, continuously watches the state changes over the nodes being monitored, and triggers

alerts when the state change meets the specified threshold. The description of a window-

based monitoring task specifies the following five conditions: (i) the metric to be monitored

at a node (e.g. incoming HTTP request rates), (ii) the set of nodes associated with the moni-

toring task (N), (iii) the global value threshold (T), (iv) the monitoring time window (L) and

(v) the counter-measures to take when a state alert is triggered. The left side of Figure 25

illustrates a sketch of the architectural design of the WISE system and a deployment exam-

ple of monitoring tasks. Given a set of monitoring tasks, the system first scans for identical

monitoring tasks and removes duplicated ones. It then deploys monitoring tasks on their

associated nodes. During the monitoring process, the system collects reported state alerts

from deployed monitoring tasks and processes these alerts according to specified counter-

measures. It also watches machine failures that may impact deployed monitoring tasks.

For instance, if one machine becomes unavailable, it identifies monitoring tasks involved

with the machine and marks the corresponding monitoring results as unreliable to prevent

false positive or negative results.

The deployment example in Figure 25 shows four monitoring tasks running over 12

hosts. One host may be involved with multiple monitoring tasks. The deployment may

involve load balancing and monitoring network construction[79]. For example, the system

106

may choose hosts involved with few monitoring tasks to be coordinators as coordinators

consume more CPU and bandwidth resources compared with monitor nodes. In the rest

of this chapter, we focus on developing efficient schemes for a single monitoring task. We

leave other problems such as multi-task optimization as our future work.

4.3.2 WISE Monitoring Approach

We now focus on the three technical developments that form the core of the WISE monitor-

ing approach: the WISE monitoring algorithm, the monitoring parameter tuning schemes

and performance optimization techniques. The right side of Figure 25 shows a high level

view of the WISE monitoring approach.

4.3.2.1 The Monitoring Algorithm

The idea behind the WISE monitoring algorithm is to report partial information on local

violation series at the monitor node side to save communication cost. The coordinator then

uses such partial information to determine whether it is possible to detect state alerts. The

coordinator collects further information only when the possibility of detecting state alerts

cannot be ruled out.

Specifically, the monitor node side algorithm employs two monitoring parameters, the

local threshold Ti and the filtering window size pi. When detects local violation(vi(t) >

Ti), a monitor node i sends a local violation report and starts a filtering window with size

pi during which it only records monitored values and does not send violation reports.

The coordinator considers a reported local violation at node i as possible continuous

local violation spanning pi time units, since it does not know the complete violation infor-

mation within the corresponding filtering window. It then “merges” possible continuous

local violation reported from different nodes into a potential global continuous violation

against T , namely skeptical window. The skeptical window holds a nature invariant that

no state alert is necessary as long as the length of the skeptical window does not exceed

L. The coordinator continuously maintains the skeptical window and tries to rule out the

107

possibility of state alerts based on this invariant. It invokes a global poll to collect complete

violation information only when the length of the skeptical window exceeds L.

Intuition. The WISE monitoring algorithm makes two effects to achieve communica-

tion efficiency. One is to avoid unnecessary global polls by optimistically delaying global

polls, because later observed time units with no local violation indicate that previous global

violation is not continuous. The other is to avoid frequent local violation reporting with

monitor node side filtering windows. Filtering windows, when their sizes are properly

tuned (Section 4.5), can save significant communication from frequently reporting local

violation without noticeably diminishing the chance of ruling out state alerts and avoiding

global polls. In addition, it ensures monitoring correctness as it always considers the worst

case based on received partial information.

4.3.2.2 Scalable Parameter Tuning

State monitoring environments are usually heavily diversified. They may involve moni-

toring tasks with very different monitoring threshold T and time window L, as well as

heterogeneous monitored value distributions across different nodes. As a result, moni-

toring parameters, i.e. Ti and pi, should be properly tuned towards the given monitoring

task and monitored value patterns for the best communication efficiency. For instance, if a

given state monitoring task tries to capture a very rare event, monitor nodes should employ

large filtering windows to deliver coarse information to maximally save communication.

As another example, if a node often observes higher monitored values compared with other

nodes, it should be assigned with relatively higher Ti accordingly.

To provide such flexibility, we proposed a centralized parameter tuning scheme. The

centralized tuning scheme runs at the coordinator and setting the parameters for all moni-

tor nodes based on collected information on monitored value distribution. The centralized

parameter tuning scheme has one drawback that it requires collecting of global informa-

tion and performs intensive computation on the coordinator. Given the scale of datacenter

108

monitoring and the exponential increasing nature of search space, the centralized tuning

scheme may cause significant resource consumption on the coordinator and fail to find

good parameters.

To address this issue, we develop a distributed parameter tuning scheme that avoids

centralized information collecting and parameter searching. The distributed scheme runs

at each monitor node. Each node tunes its local monitoring parameters based on observed

events in a reactive manner. This scheme may produce slightly less efficient parameters

compared with those generated by the centralized scheme because it tunes parameters based

on local information. Nevertheless, its features such as avoiding searching the entire so-

lution space and limited inter-node communication make it a desirable parameter tuning

scheme for large-scale monitoring tasks.

4.3.2.3 Performance Optimization

In addition to improve the basic WISE approach with distributed parameter tuning, we

also devise two novel performance optimization techniques, the staged global poll and the

termination message, to further minimize the communication cost between a coordinator

node and its monitoring nodes.

The staged global poll optimization divides the original global poll process into several

stages. Each stage tries to rule out or confirm state alerts based on a fraction of moni-

tored values that would be collected by the original global poll. Since later stages can be

avoided if a previous stage can decide whether a state alert exists, the staged global poll

reduces considerable communication. The termination message based optimization deals

with “over-reported” local violation periods, which only contain little local violation and

may increase the chance of invoking global poll. It tries to remove “over-reported” local

violation periods by sending an extra message at the end of a filtering window to indicate

real local violation.

In this chapter, we not only provide the algorithmic design but also provide correctness

109

analysis and usage model for both techniques.

4.4 The Monitoring Algorithm

We present the detail of WISE monitoring algorithm in this section. In addition, we also ex-

plain why WISE monitoring algorithm guarantees monitoring correctness and theoretically

analyze its communication efficiency.

4.4.1 Algorithm Description

WISE monitoring algorithm consists of two parts, the monitor node side algorithm and the

coordinator side algorithm:

4.4.1.1 The Monitor Node Side

A monitor node i reports partial information of local violation based on two monitoring

parameters, local threshold Ti and filtering window size pi. Local thresholds of different

nodes satisfy
∑n

i=1 Ti ≤ T . This restriction ensures the sum of monitored values at all

nodes does not exceed T if each value is smaller than its corresponding local threshold.

The filtering window size is the time length of a filtering time window and is defined

over [0, L]. Specifically, filtering windows are defined as follows.

Definition 5 A filtering window τ of node i is pi continuous time units during which node

i does not send local violation reports even if it observes vi(t) > Ti where t is a time unit

within τ . In addition, we use |τ | to represent the remaining length of a filtering window τ ,

ts(τ) and te(τ) to denote the start time and the end time of τ . If pi = 0, ts(τ) = te(τ) and

|τ | = 0.

When a node i detects vi(t) > Ti at time unit t and if it is currently not in a filtering

window(|τ | = 0), it sends a local violation report to the coordinator, and then enters a

filtering window by setting |τ | = pi. During a filtering window(|τ | > 0), it does not report

local violation and decreases |τ | by 1 in every time unit. Node i starts to detect and report

110

violation again only after |τ | = 0. For now, we assume Ti and pi are given for each node.

We will introduce techniques for selecting proper values for Ti and pi later.

4.4.1.2 The Coordinator Side

The coordinator side algorithm “reassembles” potential periods of local violation indicated

by local violation reports into a potential period of continuous global violation, which we

refer to as the skeptical window. The skeptical window essentially measures the length of

the most recent continuous global violation in the worst case. The coordinator considers

reported local violation from node i as continuous local violation lasting pi time units, i.e.

assuming filtering windows fully filled with local violation. It concatenates reported filter-

ing windows that overlap in time into the skeptical window, which is defined as follows:

Definition 6 A skeptical window κ is a period of time consisting of most recent overlapped

filtering windows related with reported local violation since last global poll. Initially, the

size of a skeptical window |κ| is 0. Given a set of filtering windows T = {τi|i ∈ [1, n]}

observed at time t, κ can be updated as follows:

ts(κ
′) ←


ts(κ) te(κ) ≥ t

t otherwise

(3)

te(κ
′) ←


t+ max

∀τi∈T
{te(κ)− t, |τi|} te(κ) ≥ t

max
∀τi∈T
{t, te(τi)} otherwise

(4)

where κ′ is the updated skeptical window, ts(·) and te(·) is the start and the end time of a

window. In addition, |κ| = te(κ) − ts(κ) + 1. In our motivating example, server A and B

with pA = pB = 5 report local violation at time 2 and 3 respectively. The corresponding

skeptical window covers both filtering windows as they overlap, and thus, spans from time

2 to time 7. Figure 26 shows an illustrative example of skeptical windows.

When t − ts(κ) = L, it indicates that there may exist continuous local violation for

the last L time units (which could lead to continuous global violation of L time units).

111

t1

p1
p2

p3

t1+p1-1 t3+p3-1

Timeline

local violation
sceptical window

filtering window

Coordinator

t1, p1 t3, p3t2, p2

Figure 26: Filtering Windows and Skeptical Windows.

Thus, the coordinator invokes a global poll to determine whether a state alert exists. The

coordinator first notifies all nodes about the global poll, and then, each node sends its

buffered vi(t− j), j ∈ [0, t′], where 0 < t′ 6 L, to the coordinator in one message. Here t′

depends on how many past values are known to the coordinator, as previous global polls and

local violation also provides past vi values. After a global poll, if the coordinator detects

continuous global violation of L time units, i.e.
∑n

i=1 vi(t − j) > T, ∀j ∈ [0, L − 1], it

triggers a state alert and set |κ| = 0 before continuing. Otherwise, it updates κ according to

received vi. Clearly, the computation cost of both monitor node and coordinator algorithms

is trivial.

Filtering windows greatly reduce communication on local violation reporting, but may

also cause overestimated local violation periods at the coordinator when filtering windows

cover time units with no local violation. This, however, rarely leads to less chance of ruling

out global polls and noteworthy increased cost in global polls. First, state alerts are usually

rare events. With filtering windows, the coordinator still finds enough “gaps”, i.e. time units

with no local violation, between reported filtering windows before skeptical window size

grows to L. Second, the parameter tuning schemes we introduce later set proper filtering

window sizes so that the saving in local violation reporting always exceeds the loss in global

polls. Last but not the least, we also develop a staged global poll procedure in Section 4.6

which significantly reduces communication cost in global polls.

112

4.4.2 Correctness

The WISE monitoring algorithm guarantees monitoring correctness because of two rea-

sons. First, the coordinator never misses state alerts (false negative), as the skeptical win-

dow represents the worst case scenario of continuous global violation. Second, the coor-

dinator never triggers false state alerts (false positive) as it triggers state alerts only after

examining the complete local violation information. Theorem 6 presents the correctness

guarantee of the WISE algorithm.

Theorem 6 Given a monitoring task (T, L,N), the WISE algorithm triggers a state alert

at time unit t if and only if
∑n

i=1 vi(t− j) > T, ∀j ∈ [0, L− 1].

Proof 5 In a filtering window of a node i, there may exist multiple periods of continuous

local violation. We use p
′1
i , p

′2
i , . . . , p

′k
i to denote these periods of local violation where k ∈

[1, pi]. Let p
′max
i = max{p′1

i , p
′2
i , . . . , p

′k
i } be the longest local violation period. Clearly,

the filtering window τi(|τi| = pi) contains p
′max
i , i.e. τi starts at least as early as p

′max
i and

ends at least as late as p
′max
i does. We denote this inclusion relation as pi < p

′max
i .

If constraints on T and L are violated, then there exists at least one series of local

violation periods which overlap with each other and the total length of the overlapped

period is L. For any one of such series p
′∗
i , consider any one of its local violation periods

p′i. If p′i is within one filtering window of node i, we have pi < p′i. If p′i spans multiple

filtering windows, denoted as p∗i , it is not hard to see p∗i < p′i. Since it is the same for all

p′i, all associated filtering windows, P ∗
i , must satisfy P ∗

i < p
′∗
i . As a result, a global poll

is invoked no later than the state alert. The global poll sets κ to the length of observed

p
′∗
i . Similarly, subsequent global polls will keep increasing κ to the length of observed p

′∗
i

until the last global poll which triggers the state alert at time t. The other direction can be

proved in a similar way.

113

4.4.3 Communication Efficiency

Consider a state monitoring task with n(n > 1) monitor nodes. Assume each Ti is perfectly

tuned in the sense that one local violation occurs if and only if a global violation exists.

Clearly, this is almost impossible in reality, as local violation does not always lead to global

violation and global violation may correspond to multiple local violation. We use these

“perfectly” tuned Ti to obtain the optimal performance of the instantaneous monitoring

algorithm, so that we can study the lower bound of communication saving of the WISE

algorithm. In addition, as Zipf distribution is often observed in distributed monitoring

values[129], we assume the number of continuous local violation across nodes follows a

Zipf distribution. Specifically, the probability of detecting continuous local violation of

i time units is Pr(x = i) = 1
HL+1

1
i+1

, where HL+1 is the (L + 1)th Harmonic number

defined by HL+1 =
∑L+1

j=1
1
j
. Using Zipf distribution here is to simplify our analysis. In

reality, continuous local violation needs not to follow this distribution. Furthermore, let the

communication cost of local violation be 1 and that of global polls be n.

Theorem 7 Given the above settings, let CI be the communication cost of running the in-

stantaneous monitoring algorithm with perfectly tuned Ti, and let CW be the communica-

tion cost of running the WISE algorithm, which uses the same Ti and simply sets pi = 1. The

resulting gain in communication cost, given by gain = CI

CW
, is n(1− 1

log(L+1)
)/(1+ n−2

log(L+1)
)

Proof 6 Since each local violation causes one global poll in the instantaneous triggering

algorithm, we have CI = n ·
∑L

i=1 Pr(x = i) = n − n
log(L+1)

. The communication

cost of WISE consists of two parts, one is local violation, the other is global poll. Thus,

CW =
∑L

i=1 Pr(x = i) + L · (n− 1) · Pr(x = L). Therefore, the gain of using WISE is

gain =
CI

CW

>
n− n

log(L+1)

1 + n−2
log(L+1)

∈ [1, n)

The above theorem suggests that WISE yields more gain given larger L and n. For instance,

when L = 15, gain > 3n
n+3

, the gain approximates to 3 when n is large enough. This

114

implies that WISE scales well, which is confirmed by our experiment results. Furthermore,

gain is a theoretical bound derived with the unoptimized WISE algorithm. The actual gain

is generally better (50% to 90% reduction in communication cost) with parameter tuning

and optimized subroutines.

4.5 Scalable Parameter Tuning

The performance of WISE monitoring algorithm also depends on the setting of local mon-

itoring parameters, i.e. Ti and pi. To achieve the best communication efficiency, local

monitoring parameters need to be tuned according to the given monitoring task and mon-

itored value distributions. We first propose a centralized parameter tuning scheme which

searches for the best parameters based on a sophisticated cost model. This scheme works

well when the number of monitor nodes is moderate. However, datacenter environments

often involve monitoring tasks running on a large number of nodes. The centralized scheme

suffers from scalability issues in such large-scale monitoring tasks. First of all, the parame-

ter space increases exponentially when the number of monitor nodes increases. As a result,

the searching process of the centralized scheme may take considerable time to complete.

Second, the centralized scheme requires the coordinator to collect monitored value distri-

bution from all monitor nodes, which puts heavy burden on the coordinator node, especially

with large-scale monitoring tasks.

To address these issues, we propose a scalable parameter tuning scheme which runs

distributedly at each monitor node, and avoids searching in the entire parameter space and

centralized data collection. In the rest of the section, we present detail of this distributed

parameter tuning scheme.

4.5.1 Modeling Communication Cost

To begin with, we first introduce a cost model which can predict the communication cost of

WISE monitoring algorithm given a set of monitoring parameters and the monitored value

distribution. This model is frequently used for the development of our parameter tuning

115

schemes.

4.5.1.1 Cost Analysis

Communication in the WISE algorithm consists of local violation reporting and global

polls. We use Cl and Pl(i) to denote the communication cost of sending a local violation

report and the probability of sending it at one time unit on node i. Since a local violation

report is of fixed size, we set Cl to 1. Pl(i) is the probability of vi(t) > Ti and no local

violation occurs during last pi time units, because otherwise node i is in a filtering window

during which it suppresses all violation reports.

Estimating the communication overhead for global polls is relatively complicated. To

ease our discussion, we first define independent and continuous global polls:

Definition 7 Given a global poll g occurring at time t, if there is no other global poll that

occurs during time [t−L+ 1, t− 1], we say this global poll is an independent global poll.

Otherwise, let g′ be a global poll that happens during [t − L + 1, t − 1], we say g′ and

g overlap with each other, denoted as g
 g′. In addition, given a set of global polls,

G = g1, g2, . . . , gk, we refer G as a continuous global poll if ∀g ∈ G,∃g′ ∈ G, g
 g′ and

∀g′ that g′
 g, g′ ∈ G.

Figure 27 shows an example of independent and continuous global polls. Intuitively,

independent global polls are separated global polls which collect vi values for L time units.

Continuous global polls are adjoined global polls that each may collect vi values for less

than L time units, except the first one. In the following discussion, we refer a global poll

which collects values for j time units as a j-windowed global poll. Clearly, j = L for a

independent global poll and j > L for a continuous global poll. We use Cj
g to represent the

cost associated with a j-windowed global poll. Since a j-windowed global poll requires all

nodes to upload their vi values of previous j time units, Cj
g = n · j. In addition, we define

P j
g be the probability of a j-windowed global poll, since the probability of a global poll is

also related with j.

116

Timeline

L L

L <L

Global
Poll

Independent Global Poll

Continuous Global Poll

Figure 27: Independent and Continuous Global Polls

Given the above settings, the communication cost of the WISE algorithm can be esti-

mated as follows:

C =
n∑

i=1

ClPl(i) +
∞∑
j=L

Cj
gP

j
g (5)

Note that C is essentially the expectation of communication cost for any time unit.

Based on this cost function, we now define our parameter tuning problem as follows.

Problem Statement 4 Given the global threshold T , monitoring window size L, and n

monitor nodes, determine the values of Ti, pi,∀i ∈ [1, n] so that the total communication

cost C, given by Equation 5, is minimized.

4.5.1.2 Determining Event Probabilities

We next present further detail on predicting the communication cost of WISE algorithm

based on the cost function given by Equation 5. Clearly, we need to determine the prob-

ability of local violation events, Pl(i), and the probability of global poll violation events,

P j
g , in order to compute C. Recall that Pl(i) is the probability that a local violation occurs

at time t and no local violation occurs during last pi time units. Let V t
i be the event of a

violation on node i at time t, and correspondingly, V t
i be the event of no violation on node

i at time t. We have,

Pl(i) = P [

pi∩
k=1

V t−k
i] · P [V t

i] (6)

Compared with ClPl(i), computing the cost for global polls is more complicated, as it

depends on the states of monitor nodes. P j
g is the probability that the size of a skeptical

window equals to j. It is also the probability that at least one filtering window exists for

117

each of the past j time units. Let W t represent the event of at least one filtering window

existing at t. Since W t is independent among different t , we have, P j
g = P [

∩j−1
k=0W

t−k] =

(P [W t])j . Denoting P [W t] by Pw, the cost of global polls is
∑∞

j=L C
j
gP

j
g = n

∑∞
j=L j ·P j

w.

The sum part of the result is a variant of infinite geometric series, which can be solved

via Taylor expansion. By solving this series, we have,

Cg(Pw) =
∞∑
j=L

Cj
gP

j
g = n

LPL
w − (L− 1)PL+1

w

(1− Pw)2

As the cost for global polls can be considered as a function of Pw, we use Cg(Pw) to

denote the cost of global polls. The value of Pw can be computed as,

Pw = 1− P [
n∩

i=1

pi∩
k=1

V t−k
i] (7)

This is because the probability of W t is the probability of at least one node existing in its

filtering window at time t. Up to this point, the only thing left unknown in both Equation

6 and 7 is the probability of V t
i , which depends on values of Ti, pi and the distribution of

vi. To further compute Pl(i) and Pw, we need to distinguish two types of stream values vi.

One is time independent values where vi observed at the current moment is independent

from those observed previously. The other type, time dependent values means vi observed

at the current moment is dependent from previous values. We next discuss the computation

of Pl(i) and Pw in both cases.

Time Independent vi assumes vi in different time units is i.i.d. In this case, P [V t
i] and

P [V t−1
i] are independent. Thus, Equation 6 can be written as,

Pl(i) = (P [vi 6 Ti])
pi(1− P [vi 6 Ti]) (8)

Similarly, Equation 7 now can be written as,

Pw = 1−
n∏

i=1

(P [vi 6 Ti])
pi (9)

Based on Equation 8 and 9, we only need the value of P [vi 6 Ti] to compute Pl(i) and

Pw. To obtain P [vi 6 Ti], each node maintains a histogram of the values that it sees over

118

time as Hi(x), x ∈ [0, T], where Hi(x) is the probability of node i observing vi = x. Given

Hi(x), P [vi 6 Ti] =
∑Ti

x=0 Hi(x).

Time Dependent vi. We choose discrete-time Markov process, i.e. Markov chain, for

modeling time dependent values, since it is simple and has been proved to be applicable to

various real world stream data. Under this model, the values of future vi and past vi are

independent, given the present vi value. Formally, P [vi(t+1) = x|vi(t) = xt, . . . , vi(1) =

x1] = P [vi(t + 1) = x|vi(t) = xt]. For simplicity, we use vi and v′i to denote the present

value and the value of the previous time unit respectively. Assuming vi is time dependent,

Equation 6 and 7 can be written as,

Pl(i) = P [vi 6 Ti](P [vi 6 Ti|v′i 6 Ti])
pi−1P [vi > Ti|v′i 6 Ti] (10)

Pw = 1−
n∏

i=1

P [vi 6 Ti](P [vi 6 Ti|v′i 6 Ti])
pi−1 (11)

To compute Pl(i) and Pw, each monitor node maintains a set of transition probabilities

P [vi = x|v′i = x′] where x ∈ [0, T]. Given these transition probabilities, P [vi 6 Ti] =∑T
y=0

∑Ti

x=0 P [vi = x|v′i = y], P [vi 6 Ti|v′i 6 Ti] =
∑Ti

y=0

∑Ti

x=0 P [vi = x|v′i = y] and

P [vi > Ti|v′i 6 Ti] = 1− P [vi 6 Ti|v′i 6 Ti].

Interestingly, looking for the best values for Ti and pi is essentially finding the best

tradeoff between local violation and global polls which leads to the minimal communica-

tion cost. When increasing(decreasing) Ti, we reduce(increase) Pl(i) which causes local

violation to reduce(increase). However, larger(smaller) Ti also leads to larger(smaller) Pw

which in turn increases(decreases) Cg(Pw). It is also the same case for increasing or de-

creasing pi.

4.5.2 Centralized Parameter Tuning

The centralized parameter tuning scheme is an intuitive development based on the above

cost model. To determine best values for Ti and pi, the centralized scheme adopts an

EM-style local search scheme which iteratively looks for values leading to less cost. This

119

scheme starts with two sets of initial values for Ti and pi. Iteratively, it fixes one set of

parameters and performs hill climbing to optimize the other set of parameters until reaching

local minimum. It then fixes the optimized set and tunes the other one. It repeats this

process until no better solution is found. To avoid local minimum, we run the scheme

multiple times with different initial Ti and pi values, and choose the best results.

4.5.3 Drawbacks of Centralized Tuning

The centralized scheme can find good local monitoring parameter values which minimizes

communication given small number of monitor nodes. However, we find that this scheme

suffers from scalability issues when this condition is not met.

First, as the centralized scheme holistically setting parameter for all nodes, the search

space grows exponentially as the number of monitor nodes increases. Consequently, the

search time of the centralized scheme also grows tremendously. Furthermore, when the

number of monitor nodes is large, the search process causes significant consumption of

CPU cycles at the coordinator, which could interfere with other jobs running on the coordi-

nator node. One trade-off technique we apply to lower computation complexity is to reduce

the search space by increasing the step size while performing hill climbing. This technique

enables the centralized scheme to work with relatively large-scale monitoring tasks at the

cost of less efficient parameters.

Second, the coordinator running the centralized scheme needs to collect the information

of monitored value distribution, i.e. histograms in the time independent case and transition

probabilities in the time dependent case, from all monitor nodes. This type of global in-

formation collecting is clearly not scalable and may consume considerable resources at

the coordinator side. To address these issues, we propose a distributed parameter tuning

scheme which allows each node to locally tune its monitoring parameters with minimal

inter-node communication.

120

4.5.4 Distributed Parameter Tuning

The distributed parameter tuning scheme relieves the coordinator of the computation and

communication burden by letting each node tune its monitoring parameters in a reactive

manner based on events it observes. The main challenge in distributed parameter tuning is

to effectively search for the best parameters at each monitor node without acquiring global

information. We next describe detail of this scheme.

For ease of discussion, we use Xi to denote the probability of not having local violation

at node i for both time dependent and independent vi by defining Xi as following.

Xi =


P [vi 6 Ti|v′i 6 Ti] if time dependent

P [vi 6 Ti] if time independent

By introducing Xi, Equation 5 can be written as follows

C =
n∑

i=1

ClX
pi−1
i (1−Xi) + Cg(1−

n∏
i=1

Xpi
i)

Since Xi is the probability of no local violation, we assume Xi > (1−Xi) for reasonable

monitoring applications. Thus,

C 6
n∑

i=1

ClX
pi
i + Cg(1−

n∏
i=1

Xpi
i)

Furthermore, Let αXi 6 min{Xi|∀i ∈ [1, n]}, where α can be predefined by user based

on observed distribution, we have,

C 6
n∑

i=1

ClX
pi
i + Cg(1− (αXi)

npi)

Let Yi = Xpi
i and βi = αnpi , this relation can be written as,

C 6
n∑

i=1

ClYi + Cg(1− βiY
n
i) (12)

Thus, instead of directly tuning values for Ti and pi, we can optimize values for Yi. In

fact, Yi can be considered as the area of a 2-D “suppression window” at node i. The height

121

of the window is controlled by Xi, which is determined by Ti, and the length of the window

is controlled by pi.

The distributed scheme adjusts Yi at the monitor nodes based on their observed local

violation reports and global poll events. Each local violation report from node i indicates

that the area of the suppression window of node i is possibly lower than the optimum.

Similarly, each global poll suggests the area of the suppression window is possibly higher

than the optimum. Algorithm 1 shows the detail of the reactive scheme.

Algorithm 1 The Distributed Reactive Scheme
> Invoked whenever received an event E

1: if E = local violation then
2: Yi ← αYi with probability min(1, 1

ρi
)

3: else {E = global poll}
4: Yi ← Yi

α
with probability min(1, ρi)

5: end if

Choosing a proper value for ρi is critical for the reactive scheme to converge. Similar to

the observation made in [57], the key point to achieve convergence is to make the scheme

moves towards the optimal Yi and stays at the optimal Yi values once it reaches them.

Assume the value of Yi is not optimal, then either Yi < Y opt
i , which leads to Pl(Yi) >

Pl(Y
opt
i) and Pw(Y) < Pw(Y

opt), or Yi > Y opt
i , which leads to Pl(Yi) < Pl(Y

opt
i) and

Pw(Y) > Pw(Y
opt), where Y opt

i is the optimal Yi, Y and Y opt stands for all Yi and all Y opt
i

respectively. In the first case, we have Pl(Yi)
Pw(Y)

>
Pl(Y

opt
i)

Pw(Y opt)
. By setting ρi =

Pw(Y opt)

Pl(Y
opt
i)

, we have

ρiPl(Yi) > Pw(Y), which means the value of Yi decreases. Similarly, we can see that the

value of Yi increases when Yi > Y opt
i . Thus, the reactive scheme reaches stable state when

Pl(Yi)
Pw(Y)

=
Pl(Y

opt
i)

Pw(Y opt)
.

While estimating the exact Y opt
i is infeasible, we can still approximate this value by

minimizing the upper bound of C based on Equation 12. More importantly, such computa-

tion can be done distributedly at each monitor node, as the right hand side of the equation

can be divided into n items and each is only related with node i itself. Once each monitor

node obtains its Y opt
i , it sends this value to the coordinator. The coordinator gathers Y opt

i

122

for all nodes and sends these values to all nodes. Each node then can compute its ρi based

on the received Yi values.

One remaining question is which component, Ti or pi, to change when Yi is updated.

We develop the following heuristics to handle this problem. When Yi is updated, node

i first computes the new T ′
i (p

′
i) for the updated Yi by using old pi(Ti). With probability

min{1,∆max
Ti

1
T ′
i−Ti
}, where ∆max

Ti
is the maximum step length for updating Ti, it updates pi

if p′i 6 L. If pi is not updated, it updates Ti if T ′
i 6 T . The rationale is that Ti is restricted

by the global threshold T , and thus, is updated only when the change is small.

To ensure correctness, when node i updates Ti, it sends T ′
i and p′i to the coordinator.

If T ′
i < Ti, the coordinator updates its slack S ← Ti − T ′

i . Otherwise, the coordinator

approves the update if S > (T ′
i − Ti). When S < (T ′

i − Ti), it notifies the node to update

its T ′
i to S if S > 0. If S = 0, it notifies the node to update pi instead. Note that the

above messages sent from monitor nodes can be combined with local violation reports or

global poll messages, as an update is necessary only when a local violation or a global poll

occurs.

4.6 Performance Optimization

The performance of WISE can be further optimized by improving the implementation of

its major subroutines. In this section, we describe two interesting optimization techniques

of this kind, one for enhancing the global poll procedure at the coordinator side and the

other for improving local violation reporting procedure at the monitor node side.

4.6.1 Staged global polls

In the global poll procedure we introduced earlier, each node i sends its buffered vi(t− j)

values, where j ∈ [0, L], to the coordinator for state alert verifying. However, as the coor-

dinator, more often than not, does not need all buffered values from all nodes to determine

whether a state alert exists, such a global poll procedure usually causes unnecessary com-

munication.

123

To further reduce the communication cost for global polls while still ensure the correct-

ness of the monitoring algorithm, we propose a novel staged global poll procedure as an

optimization technique. The staged global poll procedure divides the original global poll

process into three stages. In each stage, only part of the vi(t − j), j ∈ [0, L] values are

transmitted. In addition, if an early stage already rules out or triggers a state alert, then

the rest of the stages can be avoided. Even if all stages are required, the new procedure

transmits the same amount of vi data as the original one.

Stage One. Node i only sends those vi(t− j) values that satisfies vi(t− j) 6 Ti. Once

received all the data, the coordinator tries to rule out the state alert by looking for a time

unit t′ in which vi(t
′) 6 Ti, ∀i ∈ [1, n]. If such a time unit is found, it suggests that there

exists at least one gap, i.e. a slot without violations, between local violations, and thus, the

state alert can be ruled out.

Stage Two. If such gaps are not found, the global poll process enters the second stage,

where it tries to confirm the existence of a state alert without invoking further communi-

cation. Specifically, the coordinator computes a partial slack S ′(t) =
∑

i∈G(t) Ti − vi(t),

where G(t) = {i|vi(t) < Ti} for all time units associated with the global poll. This partial

slack S ′(t) is essentially the sum of “space”, Ti−vi(t) at nodes not having local violation at

time t. In addition, let O = {t|S ′(t) > |N −G(t)|} where N is the set of all monitor nodes

and N −G(t) is the set of nodes having local violations at time t. Note that |N −G(t)| is

the lower bound of the sum of “overflow”, vi(t)−Ti at nodes having local violation at time

t. The coordinator then triggers a state alert if O = ∅, because a state alert must exist if the

sum of “space” is smaller than the sum of “overflow” for all time units associated with the

global poll.

Final Stage. If the second stage does not trigger a state alert, the third, also the last,

stage begins, in which the coordinator notifies all nodes that detected local violation at

time units t ∈ O (can be inferred based on data received in the first stage) to send the rest

of their unsent vi data. Once the data is received, the coordinator triggers a state alert if

124

S ′(t) < ∆(t) for all t associated with the global poll, where ∆(t) =
∑

i∈N−G(t) vi(t)− Ti,

it terminates the global poll procedure otherwise.

The correctness proof of the staged global poll is straightforward. The first stage rules

out state alerts according to a sufficient condition of not having state alerts, i.e. the existence

of “gaps”. The second stage triggers state alerts according to a sufficient condition of

having state alerts, i.e. the sum of “space” is smaller than the sum of “overflow” at all

times units. Finally, the last stage collects all buffered values from all nodes, and thus, can

always make correct decisions.

The staged global poll reduces significant amount of communication cost compared

with the original global poll, as witnessed by our experiment results. The first and the

second stages has the capability of ruling out or triggering state alerts with only a subset of

buffered values in most cases. In the worse case, the staged global poll transmits the same

amount of buffered values as the original global poll does, since the last stage only collects

previously uncollected values.

4.6.2 Termination messages

In the original WISE algorithm, when a monitor node enters a filtering window, it no longer

reports any local violation until it leaves the window. Although the coordinator assumes

the node is experiencing local violations throughout its filtering window, it may not be

true, as vi may drop below Ti before the filtering window ends. While this scheme is very

communication efficient, it also reduces the chance of ruling out global polls, as filtering

windows may “exaggerate” the length of real local violation period and overlap with each

other undesirably.

Based on this observation, we optimize the violation reporting procedure by letting

node send a termination message which contains the information of un-violated time units

at the end of a filtering window when it helps the coordinator to avoid global polls. While

this modified scheme introduces extra communication at the end of filtering windows,

125

the corresponding termination message, when properly generated, may avoid unnecessary

global polls, and thus, reduces the total communication cost.

Specifically, a termination message of node i contains sequence numbers of time units

during which vi(t) 6 Ti. The sequence number here is associated with the previous viola-

tion report sent by node i, and thus, is defined over (0, pi−1]. When receiving a termination

message mt of a filtering window τ , the coordinator first updates τ by removing the time

units contained in mt, and then, use the updated filtering window to calculate its skeptical

window.

Due to lack of global information, it is difficult for a monitor node to locally determine

whether a termination message would help the coordinator to discover gaps between filter-

ing windows. Clearly, always sending termination messages at the end of filtering window

is not efficient. A termination message is beneficial only when the corresponding filtering

window contains sufficient un-violated time units, because the more un-violated time units

one termination message contains, the more likely the coordinator can avoid global polls.

Therefore, we use |mt|
pi

, where |mt| is the number of time units in the termination message

mt, to measure the likeliness of mt can reveal gaps in the skeptical window. In our exper-

iment, we restrict that a node i sends a termination message only when |mt|
pi

> 0.75. By

introducing this restriction, only nodes that observe adequate number of un-violated time

units within its filtering windows send out termination messages.

4.7 Experimental Evaluation

We performed extensive experiments over both real world and synthetic traces to evaluate

WISE. First, we evaluate the basic WISE with centralized parameter tuning. Our empirical

study shows several important observations:

• WISE achieves a reduction from 50% to 90% in communication cost compared with

instantaneous monitoring algorithm[57] and simple alternative schemes.

• The centralized parameter tuning scheme effectively improves the communication

126

efficiency.

• The optimization techniques further improve the communication efficiency of WISE.

Second, we evaluate the scalability of the WISE system with respect to different design

choices and optimizations, especially we compare WISE equipped with the two optimiza-

tions with the basic WISE, and compare the improved WISE, powered by the distributed

parameter tuning scheme, with the basic WISE using centralized tuning. We highlight the

experimental results we observed as follows:

• WISE scales better than the instantaneous algorithm in terms of communication over-

head. It scales even better with the distributed parameter tuning scheme.

• While the distributed parameter tuning scheme performs slightly worse than the cen-

tralized scheme, it scales better, and thus, is suitable for large scale distributed sys-

tems.

• The two optimization techniques continue to contribute additional communication

saving when running with the distributed parameter tuning scheme.

4.7.1 Experiment Settings

We consider our simulation scenario as detecting DDoS attacks for a set of distributed

web servers. Each server is equipped with a monitoring probe. In addition, a centralized

monitoring server watches the total number of HTTP requests received at different web

servers. When the total number of requests continuously stays above a predefined threshold

T for L time units, the monitoring server triggers a state alert.

We compare communication efficiency and scalability of the WISE algorithm, the in-

stantaneous monitoring algorithm, and simple alternative window-based schemes. We

choose the non-zero slack instantaneous monitoring algorithm[57] for comparison, as it

is the most recent instantaneous monitoring approach and is reported to achieve significant

communication reduction(6 60%) over previous approaches. The non-zero slack algorithm

127

employs a local value threshold at each monitor node and reports local violation whenever

the local value exceeds the local value threshold. It uses a set of optimization techniques to

set optimal local threshold values so that
∑

Ti − T > 0, a.k.a the slack may be positive.

We also use several simple alternative window based state monitoring schemes as eval-

uation baseline. These schemes include the aforementioned “double reporting” scheme and

WISE with naive parameter setting. Monitor nodes running the double reporting scheme

report both the beginning and the end of a local violation period and the coordinator de-

lays the global poll until necessary. The naive parameter setting simply sets Ti =
T
n

and

pi = max{L
n
, 2} for node i.

We measure communication cost by message volume (the total size of all messages)

and message number. By default, we use message volume for comparison. In addition, we

categorize messages into data messages and control messages. Data messages are those

containing monitored values, e.g. local violation reports. The size of data message is m

where m is the number of values encapsulated in the message. Control messages refer to

all the other messages and their size is 1.

Our trace-driven simulator runs over two datasets. One dataset, WorldCup, contains

real world traces of HTTP requests across a set of distributed web servers. The trace data

comes from the organizers of the 1998 FIFA Soccer World Cup[18] who maintained a

popular web site that was accessed over 1 billion times between April 30, 1998 and July 26,

1998. The web site was served to the public by 30 servers distributed among 4 geographic

locations around the world. Thus, the traces of WorldCup provide us a real-world, large-

scale distributed dataset. In our experiments, we used the server log data consisting of

57 million page requests distributed across 26 servers that were active during that period.

We set the length of time unit to 1 minute and invoke a reconfiguration every 1,000 time

units. Although results presented here are based on a 24-hour time slice (from 22:01:00

June 6th GMT to 22:00:00 June 7th GMT) of the system log data, we conducted a series

of experiments over log data that spanned different days and different hours of day and we

128

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

2000 2500 3000 3500 4000

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(a) WorldCup - Increasing T

L

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

10 15 20 25 30

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(b) WorldCup - Increasing L

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

20 30 40 50 60 70 80

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(c) Synthetic - Increasing T

L

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

5 10 15 20 25

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(d) Synthetic - Increasing L

Figure 28: Comparison of Communication Efficiency in Terms of Message Volume

observed very similar results.

The other dataset, Synthetic, contains randomly generated traces that give us the free-

dom of evaluating parameters cannot be controlled in real world traces. For instance, we

can increase the number of monitor nodes from 20 to 5000 for scalability evaluation. We

first generate a trace of aggregate values and then distribute values to different nodes based

on Uniform or Zipf distributions. Unless otherwise specified, the number of nodes is 20 and

129

Uniform distribution is applied. To track data distribution, we use equi-depth histograms

at each monitor node and we also employ exponential aging on histograms to make it re-

flecting recent observed values more prominently than older ones. For both datasets, the

parameter reconfiguration interval is 1000 time units.

4.7.2 Results

4.7.2.1 Comparison of communication efficiency.

Figure 28 and 29 compare the communication overhead of WISE enhanced by centralized

tuning(WISE-Cen) with that of the instantaneous monitoring algorithm(Instantaneous), the

double reporting scheme(Double Report) and WISE with naive parameter setting(WISE-

Naive) for the World Cup dataset and Synthetic dataset. We vary T and L in a way that

the total length of global violation takes up from 0% to 50% of the total trace length. By

default, we set T = 2500(20) and L = 15(10) for the WorldCup(Synthetic) dataset.

Figure 28(a) shows the total message volume generated by WISE is nearly a magnitude

lower than that of the instantaneous approach. Double Report and WISE-Naive, while

outperform the instantaneous approach as they delay global polls, generate more traffic

compared with WISE. Double Report suffers from frequent reporting for short violation

periods, especially when T is small. WISE-Naive fails to achieve better efficiency because

it does not explore different value change patterns at different nodes. Note that parameter

setting schemes using the time independent model(Ind) performs slightly better than those

using time dependent one(Dep). However, as the time dependent model associates higher

communication and computation cost, the time independent model is more desirable.

In Figure 28(b), while the instantaneous approach is not benefited from large values

of L, the WISE algorithm pays less and less communication overhead as L grows, since

nodes increase filtering window sizes and the coordinator rules out more global polls with

increasing L. Figure 28(c) and 28(d) show similar results for the Synthetic dataset. Fur-

thermore, as Figure 29 shows, WISE achieves even better efficiency advantage in terms

130

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 N
u

m
)

2000 2500 3000 3500 4000

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(a) WorldCup - Increasing T

L
C

o
m

m
u

n
ic

at
io

n
 O

ve
rh

ea
d

 (
M

sg
 N

u
m

)
10 15 20 25 30

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(b) WorldCup - Increasing L

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 N
u

m
)

20 30 40 50 60 70 80

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(c) Synthetic - Increasing T

L

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 N
u

m
)

5 10 15 20 25

10
4

10
5

Conventional
Double Report
WISE−Naive
WISE−Cen−Ind
WISE−Cen−Dep

(d) Synthetic - Increasing L

Figure 29: Comparison of Communication Efficiency in Terms of Message Number

of message number, as global polls in WISE collects multiple values, instead of a single

value in the instantaneous approach. Thus, WISE is even more favorable when per message

payload is insensitive to message sizes.

131

4.7.2.2 Effect of optimization techniques.

Figure 30(a) and 30(b) shows effect of termination messages(T) and staged global polls(S)

in terms of communication reduction, where the Y axis is the percentage of message vol-

ume saved over the instantaneous scheme for the WorldCup dataset. In Figure 30(a), the

WISE monitoring algorithm achieves 60% to 80% saving after optimization. However, the

saving of unoptimized ones reduces as T grows because of two reasons. First, the instan-

taneous scheme also causes less communication as T grows. Second, with growing T , the

portion of global poll communication increases(as suggested later by Figure 36(a)) due to

reduced local violation, and the original global poll is very expensive. Termination mes-

sages achieve relatively less saving compared with staged global polls. In Figure 30(b), the

saving increases when L grows, as larger L leads to larger pi. Figure 30(c) and 30(d) show

similar results for the Synthetic dataset.

4.7.2.3 Communication cost breakup analysis.

Figure 31 shows communication cost breakup of WISE with centralized tuning, where

communication overhead is divided into three parts: local violation reporting, global polls,

and control. The first part is the overhead for value reporting in local violations, i.e. mes-

sages sent by nodes during local violations. The second part is the overhead for value

reporting in global polls, which consists of messages with buffered stream values sent by

nodes during global polls and notification messages from the coordinator. All the rest of

the messages, most of which generated by the parameter tuning scheme, are classified as

control messages. Furthermore, the left bar in each figure shows the percentage of different

types of communication in message volume, and the right bar measures the percentage in

message number.

In Figure 31(a), as T grows, the portion of global poll communication steadily in-

creases, as local violation occurs less frequently. The portion of control communication

also increases, due to the reduction of local violation reporting and global polls. Similarly,

132

T

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

2000 2500 3000 3500 4000
0

20

40

60

80

100
WISE−Cen
WISE−Cen−T
WISE−Cen−T+S

(a) WorldCup - Increasing T

L

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

10 15 20 25 30
30

40

50

60

70

80

90

100
WISE−Cen
WISE−Cen−T
WISE−Cen−T+S

(b) WorldCup - Increasing L

T

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

20 30 40 50 60
30

40

50

60

70

80

90

100
WISE−Cen
WISE−Cen−T
WISE−Cen−T+S

(c) Synthetic - Increasing T

L

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

5 10 15 20 25
30

40

50

60

70

80

90

100
WISE−Cen
WISE−Cen−T
WISE−Cen−T+S

(d) Synthetic - Increasing L

Figure 30: Effectiveness of Optimization Techniques in Enhanced WISE(Message Vol-
ume)

Figure 31(b) observes the growth of the global poll portion along with increasing L, as

nodes increase pi to filter more reports. Figure 31(c) and 31(d) provide similar results for

the Synthetic dataset.

133

T

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

2000 2500 3000 3500 4000
0

20

40

60

80

100

Local
Global
Control

(a) WorldCup - Increasing T

L

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

10 15 20 25 30
0

20

40

60

80

100

(b) WorldCup - Increasing L

T

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

20 30 40 50 60
0

20

40

60

80

100

(c) Synthetic - Increasing T

L

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

5 10 15 20 25
0

20

40

60

80

100

(d) Synthetic - Increasing L

Figure 31: Communication Cost Breakup of WISE (Message Volume and Message Num-
ber)

134

4.7.2.4 Scalability.

Figure 32(a) and 32(b) evaluate the communication saving for WISE with centralized tun-

ing. For World Cup dataset, we distributed the aggregated requests randomly to a set of

20 to 160 monitor nodes by Uniform and Zipf distributions. For the Synthetic dataset, we

increased the number of nodes from 20 to 5000 nodes. When a Uniform distribution was

used, every node received a similar amount of requests. When a Zipf distribution was as-

sumed, a small portion of the nodes received most of the requests. For Zipf distribution,

we chose a random Zipf exponent in the range of 1.0 to 2.0. Same as before, we measure

communication cost in both message volume and message number.

Number of Nodes

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

20 40 60 80 100 120 140 160

88

90

92

94

96

98

WISE−Uni−Msg−Vol
WISE−Uni−Msg−Num
WISE−Zipf−Msg−Vol
WISE−Zipf−Msg−Num

(a) WorldCup - Increasing n

10
2

10
3

86

87

88

89

90

91

92

93

Number of Nodes

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

WISE−Uni−Msg−Vol
WISE−Uni−Msg−Num
WISE−Zipf−Msg−Vol
WISE−Zipf−Msg−Num

(b) Synthetic - Increasing n

Figure 32: Scalability (Message Volume and Number)

In Figure 32(a) and 32(b), the saving of WISE increases up to over 90% when the node

number increases, which indicates that WISE scales better than the instantaneous approach.

Interestingly, WISE performs better when Zipf distribution is used, because the parameter

tuning scheme can set higher Ti and pi to nodes observing higher values, which avoids

considerable local violation and global polls. Again, WISE achieves higher advantage in

communication reduction when we measure communication cost in number of messages

135

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

2000 2500 3000 3500 4000

10
4

10
5

Conventional
WISE−Cen−Ind
WISE−Cen−Dep
WISE−Dis−Ind
WISE−Dis−Dep

(a) WorldCup - Increasing T

L

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)
10 15 20 25 30

10
4

10
5

Conventional
WISE−Cen−Ind
WISE−Cen−Dep
WISE−Dis−Ind
WISE−Dis−Dep

(b) WorldCup - Increasing L

T

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

20 30 40 50 60 70 80

10
4

10
5

Conventional
WISE−Cen−Ind
WISE−Cen−Dep
WISE−Dis−Ind
WISE−Dis−Dep

(c) Synthetic - Increasing T

L

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
sg

 V
o

lu
m

e)

5 10 15 20 25

10
4

10
5

Conventional
WISE−Cen−Ind
WISE−Cen−Dep
WISE−Dis−Ind
WISE−Dis−Dep

(d) Synthetic - Increasing L

Figure 33: Comparison of Communication Efficiency in Terms of Message Volume

generated, as global polls in WISE collect values in multiple time units.

4.7.2.5 Distributed Tuning vs. Centralized Tuning

We now compare distributed tuning and centralized tuning in several different aspects. Fig-

ure 33 compares the communication efficiency achieved by the centralized tuning scheme

and the distributed one. The centralized parameter tuning scheme(Cen) generally performs

136

slightly better than the distributed one(Dis) does, as the centralized scheme has the com-

plete value distribution information. Note that the distributed scheme works as good as the

centralized scheme when T is relatively low, because violation is so frequent that there is

little space for parameter optimization. When T increases, the centralized scheme starts to

find better parameters than the distributed scheme does.

Another interesting observation is that the distributed scheme actually performs better

than the centralized scheme when L is relatively large. As the centralized scheme overes-

timates the communication overhead for global polls, it tends to assign small values to pi.

The distributed scheme does not suffer from this problem as it can reactively increase pi

when it observes more local violations than global polls. As later proved in Figure 36(b),

the centralized scheme pays much more local communication overhead than the distributed

scheme does.

Figure 34 compares the effectiveness of the two optimization techniques when WISE is

tuned by the centralized scheme and the distributed one respectively. In general, staged

global poll and termination message work with both tuning schemes, although staged

global poll achieves more communication reduction. Furthermore, as the distributed scheme

tends to use larger pi, WISE with distributed tuning encounters more global polls. Con-

sequently, the staged global poll often gains more communication reduction when works

with the distributed tuning scheme.

Figure 36 presents cost break(message volume) with centralized tuning scheme(left

bar) and distributed tuning scheme(right bar). In Figure 36(a) and 36(b), the centralized

scheme has a relatively larger portion of local violation overhead, as it overestimates the

communication cost for global poll. In both figures, the distributed scheme pays more

overhead in control, because it requires communication when adjusting local threshold Ti.

Figure 36(c) and 36(d) provide similar results for the Synthetic dataset.

Figure 35(a) and 35(b) compares the scalability of centralized and distributed tuning

schemes. The distributed scheme performs even better than the centralized scheme when

137

T

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

2000 2500 3000 3500 4000
0

20

40

60

80

100

WISE−Cen
WISE−Cen−T
WISE−Cen−T+S
WISE−Dis
WISE−Dis−T
WISE−Dis−T+S

(a) WorldCup - Increasing T

L

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

10 15 20 25 30
30

40

50

60

70

80

90

100

(b) WorldCup - Increasing L

T

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

20 30 40 50 60
30

40

50

60

70

80

90

100

(c) Synthetic - Increasing T

L

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

5 10 15 20 25
30

40

50

60

70

80

90

100

(d) Synthetic - Increasing L

Figure 34: Effectiveness of Optimization Techniques in Enhanced WISE(Message Vol-
ume)

the number of nodes is large. This is because we restrict the computation time used by the

centralized scheme given a large number of nodes, which degrades its performance. Note

that although computation and communication burden of the coordinator is not taken into

account in the above results, it could cause serious workload imbalance between monitor

nodes. For instance, in our experiment the CPU time consumed by the coordinator running

138

20 40 60 80 100 120 140 160

87

88

89

90

91

92

93

94

95

Number of Nodes

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

WISE−Cen−Uniform
WISE−Dis−Uniform
WISE−Cen−Zipf
WISE−Dis−Zipf

(a) WorldCup - Increasing n

10
2

10
3

86

88

90

92

94

Number of Nodes

%
 S

av
in

g
(O

ve
r

C
o

n
ve

n
ti

o
n

al
)

WISE−Cen−Uniform
WISE−Dis−Uniform
WISE−Cen−Zipf
WISE−Dis−Zipf

(b) Synthetic - Increasing n

Figure 35: Scalability of Different Parameter Tuning Schemes

the centralized scheme is an order of magnitude more than that consumed by a monitor node

under typical settings. Therefore, the distributed tuning scheme is a desirable alternative as

it provides comparable communication efficiency and better scalability.

4.8 Related Work

Distributed data stream monitoring has been an active research area in recent years. Re-

searchers have proposed algorithms for the continuous monitoring of top-k items[19], sums

and counts [86] and quantiles[34], Problems addressed by these work are quite different

from ours. While these work study supporting different operators, e.g. top-k and sums,

over distributed data streams with guaranteed error bounds, we aims at detecting whether

an aggregate of distributed monitored values violates constraints defined in value and time.

Recent work[39, 97, 60, 11, 57] on the problem of distributed constraint monitoring

proposed several algorithms for communication efficient detection of constraint violation.

They study a different problem by using an instantaneous monitoring model where a state

alert is triggered whenever the sum of monitored values exceeds a threshold. By checking

139

T

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

2000 2500 3000 3500 4000
0

20

40

60

80

100

Local
Global
Control

(a) WorldCup - Increasing T

L

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

10 15 20 25 30
0

20

40

60

80

100

(b) WorldCup - Increasing L

T

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

20 30 40 50 60
0

20

40

60

80

100

(c) Synthetic - Increasing T

L

%
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

 B
re

ak
u

p

5 10 15 20 25
0

20

40

60

80

100

(d) Synthetic - Increasing L

Figure 36: Communication Cost Breakup Between WISE with Centralized and Dis-
tributed Tuning Scheme

140

persistence, the window-based state monitoring model we study gains immunity to unpre-

dictable bursty behavior and momentary outlier data [37], and provides more space for

improving communication efficiency. In addition, the instantaneous model is a special case

of ours when L = 1.

The early work[39] done by Dilman et al. propose a Simple Value scheme which sets all

Ti to T/n and an Improved Value which sets Ti to a value lower than T/n. Jain et al.[52]

discusses the challenges in implementing distributed triggering mechanisms for network

monitoring and they use local constraints of T/n to detect violation. The more recent work

of Sharfman et al.[97] represents a geometric approach for monitoring threshold functions.

Keralapura et al.[60] propose static and adaptive algorithms to monitor distributed sum

constraints. Agrawal et al.[11] formulates the problem of selecting local constraints as an

optimization problem which minimizes the probability of global polls. Kashyap et al. [57]

proposes the most recent work in detecting distributed constraint violation. They use a

non-zero slack scheme which is close to the idea of Improved Value scheme in [39]. They

show how to set local thresholds to achieve good performance. We choose this non-zero

slack scheme for comparison purpose.

The work that is perhaps closest to ours is that of Huang et al.[49]. They consider a

variant of the instantaneous tracking problem where they track the cumulative amount of

“overflows” which is max{0,
∑

i vi − T}. This work makes two assumptions which may

not be true: (1) All local threshold values are equal, and (2) local values follow a Normal

distribution. In addition, it is unclear if the computed local thresholds in [49] optimize

total communication costs. WISE employs a sophisticated cost model to estimate the total

communication overhead and optimizes parameter setting based on this estimation. Fur-

thermore, while [49] allows missed detections, WISE guarantees monitoring correctness.

141

Our approach aims at reducing unnecessary state alerts triggered by transient moni-

toring data outliers and noises by using filtering monitoring windows to capture continu-

ous/stable violations. Wang and et. al. [119, 117] studied a series of entropy-based sta-

tistical techniques for reducing the false positive rate of detecting performance anomalies

based on performance metric data such as CPU utilization with potential data noises. Com-

pared with this work, our approach uses relatively simple noise filtering techniques rather

than sophisticated statistical techniques to reduce monitoring false positives, but focuses

on devising distributed window based state monitoring algorithms that minimize monitor-

ing related communication. Note that our approach may still be used to efficiently collect

monitoring data which are fed to statistical techniques for sophisticated application perfor-

mance monitoring data analysis.

This chapter makes four contributions. First, we present the architectural design and

deployment options for a WISE-enabled monitoring system. Second, we develop a novel

distributed parameter tuning scheme that offers considerable performance improvement in

terms of the scalability of the WISE framework. Third, we develop two concrete optimiza-

tion techniques to further reduce the communication cost between a coordinator and its

monitoring nodes. We show that both techniques guarantee the correctness of monitoring.

Finally, we conduct a series of new experiments with a focus on how the distributed param-

eter tuning scheme and the two optimization techniques contribute to the enhancement of

the scalability of WISE.

142

CHAPTER V

VOLLEY: VIOLATION LIKELIHOOD BASED STATE

MONITORING FOR DATACENERS

5.1 Introduction

To ensure performance and reliability of distributed systems and applications, administra-

tors often run a large number of monitoring tasks to continuously track the global state

of a distributed system or application by collecting and aggregating information from dis-

tributed nodes. For instance, to provide a secured datacenter environment, administrators

may run monitoring tasks that collect and analyze datacenter network traffic data to detect

abnormal events such as Distributed Denial of Service (DDoS) attacks [42]. As another

example, Cloud applications often rely on monitoring and dynamic provisioning to avoid

violations to Service Level Agreements (SLA). SLA monitoring requires collecting of de-

tailed request records from distributed servers that are hosting the application, and checks if

requests are served based on the SLA (e.g., whether the response time for a particular type

of requests is less than a given threshold). We refer to this type of monitoring as distributed

state monitoring [94, 57, 79, 83] which continuously checks if a certain global state (e.g.,

traffic flowing to an IP) of a distributed system violates a predefined condition. Distributed

state monitoring tasks are useful for detecting signs of anomalies and are widely used in

scenarios such as resource provisioning [27], distributed rate limiting [94], QoS mainte-

nance [81] and fighting network intrusion [65].

One substantial cost aspect in distributed state monitoring is the cost of collecting and

processing monitoring data, a common procedure which we refer to as sampling. First,

sampling operations in many state monitoring tasks are resource-intensive. For example,

sampling in the aforementioned DDoS attack monitoring involves both packet logging and

143

deep packet inspection over large amounts of datacenter network traffics [40]. Second,

users of Cloud datacenter monitoring services (e.g. Amazon’s CloudWatch) pay for mone-

tary cost proportional to the frequency of sampling. Such monitoring costs can account for

up to 18% of total operation cost [1]. Clearly, the cost of sampling is a major factor for the

scalability and effectiveness of datacenter state monitoring.

Many existing datacenter monitoring systems provide periodical sampling as the only

available option for state monitoring (e.g., CloudWatch [1]). Periodical sampling per-

forms continuous sampling with a user-specified, fixed interval. It often introduces a cost-

accuracy dilemma. On one hand, one wants to enlarge the sampling interval between two

consecutive sampling operations to reduce sampling overhead. This, however, also in-

creases the chance of mis-detecting state violations (e.g., mis-detecting a DDoS attack or

SLA violation), because state violations may occur without being detected between two

consecutive sampling operations with large intervals. On the other hand, while applying

small sampling intervals lowers the chance of mis-detection, it can introduce significantly

high resource consumption or monitoring service fees. In general, determining the ideal

sampling interval with the best cost and accuracy trade-off for periodical sampling is dif-

ficult without studying task-specific characteristics such as monitored value distributions,

violation definitions and accuracy requirements. It is even harder when such task-specific

characteristics change over time, or when a task performs sampling over a distributed set

of nodes.

We argue that one useful alternative to periodical sampling is a flexible monitoring

framework where the sampling interval can be dynamically adjusted based on how likely

a state violation will be detected. This flexible framework allows us to perform intensive

monitoring with small sampling intervals when the chance of a state violation occurring is

high, while still maintaining overall low monitoring overhead by using large intervals when

the chance of a state violation occurring is low. As state violations (e.g., DDoS attacks and

SLA violations) are relatively rare during the lifetime of many state monitoring tasks, this

144

framework can potentially save considerable monitoring overhead, which is essential for

Cloud state monitoring to achieve efficiency and high scalability.

In this chapter, we propose Volley, a violation likelihood based approach for distributed

state monitoring. Volley addresses three key challenges in violation likelihood based state

monitoring. First, we devise a sampling interval adaptation technique that maintains a

user-specified monitoring accuracy while continuously adjusting the sampling interval to

minimize monitoring overhead. Furthermore, this technique employs a set of low-cost

estimation methods to ensure adaptation efficiency, and can flexibly support both basic and

advanced state monitoring models. Second, for tasks that perform sampling over distributed

nodes, we develop a distributed coordination scheme that not only ensures the global task-

level monitoring accuracy, but also minimizes the total monitoring cost. Finally, we also

propose a novel a-periodical state monitoring technique that leverages state-correlation to

further reduce monitoring cost at the multi-task level.

We perform extensive experiments to evaluate the effectiveness of Volley with real

world monitoring traces in a testbed datacenter environment running 800 virtual machines.

Our results indicate that Volley reduces monitoring workload by up to 90% and still meets

users’ monitoring accuracy requirements at the same time.

To the best of our knowledge, Volley is the first violation-likelihood based state moni-

toring approach that achieves both efficiency and controlled accuracy. Compared with other

adaptive sampling techniques in sensor network [98, 29] and traffic monitoring [42, 96], our

approach is also fundamentally different. First, sampling techniques in sensor networks of-

ten leverage the broadcast feature, while our system architecture is very different from

sensor networks and does not have broadcast features. Second, while sensor networks usu-

ally run a single or a few tasks, we have to consider multi-task correlation in large-scale

distributed environments. Third, some works (e.g. [29]) make assumptions on value dis-

tributions, while our approach makes no such assumptions. Finally, sampling in traffic

monitoring is very different as these techniques perform packet/flow sampling to obtain a

145

partial state of the traffic, while sampling on metric values is atomic. Furthermore, Vol-

ley is complementary to traffic sampling as it can be used together to offer additional cost

savings by scheduling sampling operations.

5.2 Problem Definition

A distributed state monitoring task continuously tracks a certain global state of a distributed

system and raises a state alert if the monitored global state violates a given condition. The

global state is often an aggregate result of monitored values collected from distributed

nodes. For example, assume there are n web servers and the i-th server observes a timeout

request rate vi (the number of timeout requests per unit time). A task may check if the

total timeout request rate over all servers exceeds a given level T , i.e., check if
∑

vi > T is

satisfied. The general setting of a distributed state monitoring task includes a set of monitor

nodes (e.g., the n web servers) and a coordinator. Each monitor can observe the current

value of a variable (vi) through sampling, and the coordinator aggregates local monitor

values to determine if a violation condition is met (e.g., whether
∑

vi > T). We say a state

violation occurs if the violation condition is met.

We define states based on the monitored state value and a user-defined threshold, which

is commonly used in many different monitoring scenarios. The monitored state value can

be a single metric value (e.g., CPU utilization). It can also be a scalar output of a function

taking vector-like inputs, e.g., a DDoS detection function may parse network packets to es-

timate the likelihood of an attack. We assume that all distributed nodes have a synchronized

wall clock time which can be achieved with the Network Time Protocol (NTP) at an accu-

racy of 200 microseconds (local area network) or 10 milliseconds (Internet) [92]. Hence,

the global state can be determined based on synchronized monitored values collected from

distributed nodes.

Existing works on distributed state monitoring focus on dividing a distributed state

monitoring task into local tasks that can be efficiently executed on distributed nodes with

146

(a)

(b)

(c)

(d)

(e)

(f)

Figure 37: A Motivating Example

minimum inter-node communication [57, 83]. As a common assumption, a monitoring task

employs a user specified sampling interval that is fixed across distributed nodes and over

the entire task lifetime (more details in Section 6.5). In this chapter, we address a different

yet important problem in distributed state monitoring, how to achieve efficient and accurate

monitoring through dynamic sampling intervals.

147

5.2.1 A Motivating Example

DDoS attacks bring serious threats to applications and services running in datacenters.

To detect DDoS attacks, some techniques [40] leverage the fact that most existing DDoS

attacks lead to a growing difference between incoming and outgoing traffic volumes of the

same protocol. For example, a SYN flooding attack often causes an increasing asymmetry

of incoming TCP packets with SYN flags set and outgoing TCP packets with SYN and

ACK flags set [40]. State monitoring based on such techniques watches the incoming rate

of packets with SYN flags set Pi observed on a certain IP address, and the outgoing rate

of packets with SYN and ACK flags set Po observed on the same IP address. It then

checks whether the traffic difference ρ = Pi − Po exceeds a given threshold, and if true,

it reports a state alert. Such monitoring tasks collect network packets and perform deep

packet inspection [38] in repeated monitoring cycles. For brevity, we refer to each cycle of

packets collection and processing as sampling.

Periodical Sampling versus Dynamic Sampling. Sampling frequency plays a critical

role in this type of DDoS attack monitoring. First, the sampling cost in the DDoS attack

monitoring case is non-trivial. As we show later in the evaluation section, frequent collect-

ing and analyzing packets flowing to or from virtual machines running on a server leads

to an average of 20-34% server CPU utilization. As a result, reducing the sampling fre-

quency is important for monitoring efficiency and scalability. Second, sampling frequency

also determines the accuracy of monitoring. Figure 37 shows an example of a task which

monitors the traffic difference between incoming and outgoing traffic for a given IP. The

x-axis shows the time where each time point denotes 5 seconds. The y-axis shows the

traffic difference ρ. The dash line indicates the threshold. We first employ high frequency

sampling which we refer to as scheme A and show the corresponding trace with the curve

in Chart (a). Clearly, scheme A records details of the value changes and can detect the

state violation in the later portion of the trace where ρ exceeds the threshold. Nevertheless,

the high sampling frequency also introduces high monitoring cost, and most of the earlier

148

sampling yields little useful information (no violation). One may sample less frequently

to reduce monitoring cost. For example, scheme B (bar) reduces considerable monitoring

cost by using a relatively large monitoring interval. Consequently, as the curve in Chart (b)

shows, scheme B also misses many details in the monitored values, and worst of all, it fails

to detect the state violation (between the gap of two consecutive samples of scheme B). In

general, it is difficult to find a fixed sampling frequency for a monitoring task that achieves

both accuracy and efficiency.

One possible way to avoid this issue is to use dynamic sampling schemes where the

sampling frequency is continuously adjusted on the fly based on the importance of the

results. Ideally, such a scheme can use a low sampling frequency when the chance of

detecting a violation is small, but when the chance is high, it can sample more frequently

to closely track the state. Scheme C (circle) in Chart (c) gives an example of dynamic

sampling. It uses a low sampling frequency at first, but switches to high frequency sampling

when a violation is likely to happen.

While such an approach seems promising, realizing it still requires us to overcome sev-

eral fundamental obstacles. First, we must find a way to measure and estimate violation

likelihood before using it to adjust sampling intervals. The estimation should also be effi-

cient. Second, since sampling introduces a trade-off between cost and accuracy, a dynamic

sampling scheme should provide accuracy control by meeting a user-specified accuracy

goal, e.g., “I can tolerate at most 1% state alerts being missed”.

Advanced Monitoring Models. The previous example is based on an instantaneous

monitoring model, where an alert is reported whenever a violation is detected. This model,

however, often introduces unnecessary alerts with the presence of transient outliers and

noises in monitored values. To address this issue, many real world monitoring tasks [1]

use a window-based model where an alert is reported only when a period of continuous

violations are detected. For instance, an SLA of a web service may define violations based

on time windows, e.g., “the rate of timeout requests should not exceed 100 per second for

149

more than 5 minutes”. Chart (d) shows a window-based traffic monitoring example with 3

periods of violations. Although the first two violation periods last little time and are often

considered as not important [83], the instantaneous model would still report them as state

alerts. The window-based model, on the other hand, reports a state alert only for the last

violation period, as the first two are shorter than the monitoring window (brackets).

Providing dynamic sampling for window-based state monitoring requires further study.

Intuitively, under the instantaneous model, a state alert may happen when the monitored

value is close to the threshold, but under the window-based model, state alerts are possible

only when monitored values are continuously close to the threshold. Due to the differ-

ences in reporting conditions, the window-based model requires new violation likelihood

estimation methods.

Distributed State Monitoring. When the monitored object is a set of servers hosting

the same application, DDoS attack monitoring requires collecting traffic data of distributed

servers. For example, suppose the traces in Chart (a) and (d) show the traffic difference

on two distributed servers. The overall traffic difference on the two servers is the sum

of trace values (denoted as v1 and v2) in Chart (a) and (d), and the monitoring task now

checks if the overall traffic difference exceeds a global threshold T . For the sake of this

example, we assume T = 800. While one can collect all packets on both servers (monitors)

and send them to a coordinator which parses the packets to see if v1 + v2 > T , a more

efficient way is to divide the task into local ones running on each monitor to avoid frequent

communication. For example, we can assign monitors in Chart (a) and Chart (d) with local

threshold T1 = 400 and T2 = 400 respectively. As a result, as long as v1 < T1 and v2 < T2,

v1 + v2 < T1 + T2 = T and no violation is possible. Hence, each server can perform local

monitoring and no communication is necessary. We say a local violation occurs when a

local threshold is exceeded, e.g. v1 > T1. Clearly, the coordinator only needs to collect

values from both monitors to see if v1 + v2 > T (referred to as a global poll) when a local

violation happens.

150

The above local task based approach is employed in most existing state monitoring

works [60, 83]. By dividing a global task into local ones, it also introduces new challenges

for dynamic sampling. First, dynamic sampling schemes tune sampling intervals on indi-

vidual monitors for a monitor-level accuracy requirement. For a task involve distributed

monitors, how should we coordinate interval adjusting on each monitor to meet a task-level

accuracy requirement? Second, suppose such coordination is possible. What principle

should we follow to minimize the total monitoring cost? For instance, the trace in Chart (d)

causes more local violations than Chart (a). Should we enforce the same level of accuracy

requirement on both monitors?

State Correlation. Datacenter management relies on a large set of distributed state

monitoring tasks. The states of different tasks are often related. For example, suppose the

trace in Chart (e) shows the request response time on a server and the trace in Chart (f)

shows the traffic difference on the same server. If we observe growing traffic difference in

(f), we are also very likely to observe increasing response time in (e) due to workloads in-

troduced by possible DDoS attacks. Based on state correlation, we can selectively perform

sampling on some tasks only when their correlated ones suggest high violation likelihood.

For instance, since increasing response time is a necessary condition of a successful DDoS

attack, we can trigger high frequency sampling for DDoS attack monitoring only when the

response time is high to reduce monitoring cost. Designing such a state-correlation based

approach also introduces challenges. How to detect state correlation automatically? How

to efficiently generate a correlation based monitoring plan to maximize cost reduction and

minimize accuracy loss? These are all important problems deserving careful study.

5.2.2 Overview of Our Approach

Our approach consists of three dynamic sampling techniques at different levels. Monitor

Level Sampling scheme dynamically adjusts the sampling interval based on its estima-

tion of violation likelihood. The algorithm achieves controlled accuracy by choosing a

151

sampling interval that makes the probability of mis-detecting violations lower than a user

specified error allowance. Furthermore, we devise violation likelihood estimation methods

with negligible overhead for both the instantaneous and the window-based state monitor-

ing models. Task Level Coordination scheme is a lightweight distributed scheme that

adjusts error allowance allocated to individual nodes in a way that both satisfies the global

error allowance specified by the user, and minimizes the total monitoring cost. Multi-Task

Level State Correlation based scheme leverages the state correlation between different

tasks to avoid sampling operations that are least likely to detect violations across all tasks.

It automatically detects state correlation between tasks and schedules sampling for different

tasks at the datacenter level considering both cost factors and degree of state correlation.

Due to space limitation, we refer readers to our technical report[76] for details of the state-

correlation based monitoring techniques.

5.3 Accuracy Controlled Dynamic Sampling

A dynamic sampling scheme has several requirements. First, it needs a method to esti-

mate violation likelihood in a timely manner. Second, a connection between the sampling

interval and the mis-detection rate should be established, so that the dynamic scheme can

strive to maintain a certain level of error allowance specified by users. Third, the estimation

method should be efficient because it is invoked frequently to quickly adapt to changes in

monitoring data. We next address these requirements and present the details of our ap-

proach.

5.3.1 Violation Likelihood Estimation

The specification of a monitoring task includes a default sampling interval Id, which is the

smallest sampling interval necessary for the task. Since Id is the smallest sampling interval

necessary, the mis-detection rate of violations is negligible when Id is used. In addition,

we also use Id as our guideline for evaluating accuracy. Specifically, the specification

of a monitoring task also includes an error allowance which is an acceptable probability

152

of mis-detecting violations (compared with periodical sampling using Id as the sampling

interval). We use err to denote this error allowance. Note that err ∈ [0, 1]. For example,

err = 0.01 means at most 1 percent of violations (that would be detected when using

periodical sampling with the default sampling interval Id) can be missed.

Recall that the instantaneous state monitoring model reports state alerts whenever v >

T where v is the monitored value and T is a given threshold. Hence, violation likelihood is

defined naturally as follows,

Definition 8 Violation Likelihood (under the instantaneous monitoring model) at time t is

defined by P [v(t) > T] where v(t) is the monitored metric value at time t.

Before deriving an estimation method for violation likelihood, we need to know 1)

when to estimate and 2) for which time period the estimation should be made. For 1),

because we want the dynamic sampling scheme to react to changes in monitored values

as quickly as possible, estimation should be performed right after a new monitored value

becomes available. For 2), note that uncertainties are introduced by unseen monitoring

values between the current sampling and the next sampling (inclusive). Hence, estimation

should be made for the likelihood of detecting violations within this period.

Violation likelihood for the next (future) sampled value is determined by two factors:

the current sampled value and changes between two sampled values. When the current

sampled value is low, a violation is less likely to occur before the next sampling time, and

vice versa. Similarly, when the change between two continuously sampled values is large,

a violation is more likely to occur before the next sampling time. Let v(t1) denote the

current sampled value, and v(t2) denote the next sampled value (under current sampling

frequencies). Let δ be the difference between the two continuously sampled values when

the default sampling interval is used. We consider δ as a time-independent1 random vari-

able. Hence, the violation likelihood for a value v(t2) that is sampled i default sampling

1We capture the time-dependent factor with online statistics update which is described in Section 5.3.2.

153

intervals after v(t1) is,

P [v(t2) > T] = P [v(t1) + iδ > T]

To efficiently estimate this probability, we apply Chebyshev’s Inequality [45] to obtain its

upper bound. The one-sided Chebyshev’s inequality has the form P (X−µ > kσ) 6 1
1+k2

,

where X is a random variable, µ and σ are the mean and the variance of X , and k > 0. The

inequality provides an upper bound for the probability of a random variable “digressing”

from its mean by a certain degree, regardless of the distribution of X . To apply Chebyshev’s

inequality, we have

P [v(t1) + iδ > T] = P [δ >
T − v(t1)

i
]

Let kσ + µ = T−v(t1)
i

where µ and σ are the mean and variance of δ; we obtain k =

T−v(t1)−iµ
iσ

. According to Chebyshev’s inequality, we have

P [δ >
T − v(t1)

i
] 6 1/(1 + (

T − v(t1)− iµ

iσ
)2) (13)

When selecting a good sampling interval, we are interested in the corresponding proba-

bility of mis-detecting a violation during the gap between two continuous samples. There-

fore, we define the mis-detection rate for a given sampling interval I as follows,

Definition 9 Mis-detection rate β(I) for a sampling interval I is defined as P{v(t1+∆t) >

T,∆t ∈ [1, I]} where I(> 1) is measured by the number of default sampling intervals.

Furthermore, according to the definition of β(I), we have

β(I) = 1− P{
∩

i∈[1,I]

(v(t1) + iδ 6 T)}

Because δ is time-independent, we have

β(I) = 1−
∏

i∈[1,I]

(1− P (v(t1) + iδ > T)) (14)

According to Inequality 13, we have

β(I) 6 1−
∏

i∈[1,I]

(T−v(t1)−iµ
iσ

)2

1 + (T−v(t1)−iµ
iσ

)2
(15)

154

Inequality 15 provides the method to estimate the probability of mis-detecting a violation

for a given sampling interval I . We next present the dynamic sampling algorithm.

5.3.2 Violation Likelihood Based Adaptation

Figure 38 illustrates an example of violation likelihood based dynamic sampling. The

dynamic sampling algorithm adjusts the sampling interval each time when it completes a

sampling operation. Once a sampled value is available, it computes the upper bound of

the mis-detection rate β(I) according to inequality 15. We denote this upper bound with

β(I). As long as β(I) 6 β(I) 6 err where err is the user-specified error allowance,

the mis-detection rate is acceptable. To reduce sampling cost, the algorithm checks if

β(I) 6 (1− γ)err for p continuous times, where γ is a constant ratio referred as the slack

ratio. If true, the algorithm increases the current sampling interval by 1 (1 default sampling

interval), i.e. I ← I + 1. The slack ratio γ is used to avoid risky interval increasing.

Without γ, the algorithm could increase the sampling interval even when β(I) = err,

which is almost certain to cause β(I + 1) > err. Through empirical observation, we find

that setting γ = 0.2, p = 20 is a good practice, and we consider finding optimal settings

for γ and p as our future work. The sampling algorithm starts with the default sampling

interval Id, which is also the smallest possible interval. In addition, users can specify the

maximum sampling interval denoted as Im, and the dynamic sampling algorithm would

never use a sampling interval I > Im. If it detects β(I) > err, it switches the sampling

interval to the default one immediately. This is to minimize the chance of mis-detecting

violations when the distribution of δ changes abruptly.

Because we use the upper bound of violation likelihood to adjust sampling intervals

and the Chebyshev bound is quite loose, the dynamic sampling scheme is conservative

on employing large sampling intervals unless the task has very stable δ distribution or the

monitored values are consistently far away from the threshold. As sampling cost reduces

sub-linearly with increasing intervals (1 → 1
2
→ 1

3
· · ·), being conservative on using large

155

V1

V2δ

Threshold

Possible

Violation Next

Low Violation

Likelihood

Figure 38: Violation Likelihood Based Adaptation

intervals does not noticeably hurt the cost reduction performance, but reduces the chance

of mis-detecting important changes between sampling.

Since computing inequality 15 relies on the mean and the variance of δ, the algorithm

also maintains these two statistics based on observed sampled values. To update these

statistics efficiently, we employ an online updating scheme[61]. Specifically, let n be the

number of samples used for computing the statistics of δ, µn−1 denote the current mean

of δ and µn denote the updated mean of δ. When the sampling operation returns a new

sampled value v(t), we first obtain δ = v(t) − v(t − 1). We then update the mean by

µn = µn−1 +
δ−µn−1

n
. Similarly, let σn−1 be the current variance of δ and σn be the updated

variance of δ; we update the variance by σ2
n =

(n−1)σ2
n−1+(δ−µn)(δ−µn−1)

n
. Both updating

equations are derived from the definition of mean and variance respectively. The use of on-

line statistics updating allows us to efficiently update µ and σ without repeatedly scanning

previous sampled values. Note that sampling is often performed with sampling intervals

larger than the default one. In this case, we estimate δ̂ with δ̂ = (v(t)− v(t− I))/I , where

I is the current sampling interval and v(t) is the sampled value at time t, and we use δ̂ to

update the statistics. Furthermore, to ensure the statistics represent the most recent δ dis-

tribution, the algorithm periodically restarts the statistics updating by setting n = 0 when

n > 1000.

5.3.3 Window Based State Monitoring

Window based state monitoring is widely used in real world monitoring tasks [83] and

can even be the only monitoring model for some cloud monitoring services[1] due to its

ability to filter transient outliers. Recall that window based monitoring reports an alert

156

only when it detects a period of continuous violations lasting at least w default sampling

intervals Id where w > 1. While one may apply the techniques we developed above to

enable dynamic sampling in window based state monitoring, such an approach is not the

most efficient one. As the stricter alert condition in the window based model often results

in lower violation likelihood compared with that in the instantaneous model, an efficient

scheme should leverage this to further reduce cost.

When dynamic sampling causes the mis-detecting of an alert under the window based

monitoring model, a set of conditions have to be met. First, there must be a period of

continuous violations with a length of at least wId after the current sampling procedure.

Second, the following sampling procedure detects at most w − 1 continuous violations.

Otherwise, the algorithm would have detected the alert. Accordingly, the probability of

missing an alert Pmiss after a sampling operation at time t0 is,

Pmiss = P{|V | > w
∩

t0 6 ts(V) < te(V) 6 t0 + I + w − 1}

where V denotes a period of continuous violations, |V | is the length of the continuous

violations (measured by Id), and ts(V) and te(V) are the start time and end time of V .

To get a closed form, we could reuse Equation 14 and consider all possible situations that

could trigger a state alert event. However, doing so would cause expensive computation,

as it involves I − 1 cases of continuous violations with length w, each of which requires

further estimation of its probability. To avoid high estimation cost, we approximate Pmiss

with its upper bound. Let vi be the monitored value at time i; we have,

Pmiss 6 P{
∑

i∈[t0,t]

vi > wT, t = t0 + I + w − 1}

where T is the threshold of the monitoring task. The rationale is that for continuous vi-

olations of length w to occur, at least w sampling values should be larger than T . Since

v(i+ 1) = v(i) + δ, we have

Pmiss 6 P{(I + w − 1)(v0 + δ(I + w)/2) > wT}

157

r1 e1

r2 e2

r2 e2

-
+

-

Error allowance

Monitor

Coordinator

Figure 39: Distributed Sampling Coordination

, which leads to

Pmiss 6 P{δ > 2(wT − v0(I + w − 1))

(I + w)(I + w − 1)
} (16)

The righthand side of the inequality can be bounded with Chebyshev’s inequality based on

the mean and variance of δ similar to the estimation for the instantaneous model. Hence,

we can control the monitoring accuracy by choosing a monitoring interval I satisfying

Pmiss 6 err where err is the error allowance. We can simply substitute inequality 15 with

inequality 16 in the monitoring algorithm to support efficient window based monitoring.

Note that sampling in window based monitoring requires to collect values within the

current sampling interval I to measure the length of continuous violations. This is different

from sampling in instantaneous monitoring where only the value at the sampling time is

needed. As we show in the evaluation section, window-based violation estimation offers

more cost saving compared with instantaneous violation estimation does in window-based

monitoring when per-sampling (versus per-value) cost is dominant (e.g., cloud monitoring

services that charge based on sampling frequency [1] and high per-message overhead [79])

5.4 Distributed Sampling Coordination

A distributed state monitoring task performs sampling operations on multiple monitors

to monitor the global state. For dynamic sampling, it is important to maintain the user-

specified task-level accuracy while adjusting sampling intervals on distributed monitors.

5.4.1 Task-Level Monitoring Accuracy

Recall that a distributed state monitoring task involves multiple monitors and a coordinator.

Each monitor performs local sampling and checks if a local condition is violated. If true, it

158

reports the local violation to the coordinator which then collects all monitored values from

all monitors to check if the global condition is violated.

The local violation reporting scheme between monitors and the coordinator determines

the relation between local monitoring accuracy and global monitoring accuracy. When a

monitor mis-detects a local violation, the coordinator may miss a global violation if the

mis-detected local violation is indeed part of a global violation. Let βi denote the mis-

detection rate of monitor i and βc denote the mis-detection rate of the coordinator. Clearly,

βc 6
∑

i∈N βi where N is the set of all monitors. Therefore, as long as we limit the sum of

monitor mis-detection rates to stay below the specified error allowance err, we can achieve

βc 6
∑

i∈N βi 6 err.

5.4.2 Optimizing Monitoring Cost

For a given error allowance err, there are different ways to distribute err among monitors,

each of which may lead to different monitoring cost. For example, suppose trace (e) and

(f) in Figure 37 show values monitored by monitor 1 and 2. As (f) is more likely to cause

violations than (e), when evenly dividing err among monitor 1 and 2, one possible result

is that I1 = 4 (interval on monitor 1) and I2 = 1 (interval on monitor 2). The total cost

reduction is (1− 1/4) + (1− 1) = 3/4. When assigning more err to monitor 2 to absorb

frequent violations, we may get I1 = 3, I2 = 2 and the corresponding cost reduction is

2/3 + 1/2 = 7/6 > 3/4. Therefore, finding the optimal way to assign err is critical to

reduce monitoring cost.

Nevertheless, finding the optimal assignment is difficult. Brute force search is impracti-

cal (O(nm) where m is the number of monitors and n is the number of minimum assignable

units in err). Furthermore, the optimal assignment may also change over time when char-

acteristics of monitored values on monitors vary. Therefore, we develop an iterative scheme

that gradually tunes the assignment across monitors by moving error allowance from mon-

itors with low cost reduction yield (per assigned err) to those with high cost reduction

159

yield.

Figure 39 illustrates the process of distributed sampling coordination. The coordinator

first divides err evenly across all monitors of a task. Each monitor then adjusts its local

sampling interval according to the adaptation scheme we introduced in Section 5.3 to min-

imize local sampling cost. Each monitor i locally maintains two statistics: 1) ri, potential

cost reduction if its interval increased by 1 which is calculated as ri = 1− 1
Ii+1

; 2) ei, error

allowance needed to increase its interval by 1 which is calculated as ei = β(Ii)
1−γ

(derived

from the adaptation rule in Section 5.3.2).

Periodically, the coordinator collects both ri and ei from each monitor i, and computes

the cost reduction yield yi =
ri
ei

. We refer to this period as an updating period, and both ri

and ei are the average of values observed on monitors within an updating period. yi essen-

tially measures the cost reduction yield per unit of error allowance. After it obtains yi from

all monitors, the coordinator performs the following assignment err′i = err yi∑
i yi

, where

err′i is the assignment for monitor i in the next iteration. Intuitively, this updating scheme

assigns more error allowance to monitors with higher cost reduction yield. The tuning

scheme also applies throttling to avoid unnecessary updating. It avoids reallocating err to

a monitor i if erri < err where constant err is the minimum assignment. Furthermore, it

does not perform reallocation if max{yi/yj,∀i, j} < 0.1. We set the updating period to be

every thousand Id and err to be err
100

.

5.5 Evaluation

We deploy a prototype of Volley in a datacenter testbed consisting of 800 virtual machines

(VMs) and evaluate Volley with real world network, system and application level monitor-

ing scenarios. We highlight some of the key results below:

• The violation likelihood based adaptation technique saves up to 90% sampling cost

for both instantaneous and window based models. The accuracy loss is smaller or

close to the user specified error allowances.

160

• The distributed sampling coordination technique optimizes the error allowance allo-

cation across monitors and outperforms alternative schemes.

5.5.1 Experiment Setup

We setup a virtualized datacenter testbed containing 800 VMs in Emulab [120] to evalu-

ate our approach. Figure 40 illustrates the high-level setup of the environment. It consists

of 20 physical servers, each equipped with a 2.4 GHz 64bit Quad Core Xeon E5530 pro-

cessor, 12 GB RAM and runs XEN-3.0.3 hypervisor. Each server has a single privileged

VM/domain called Domain 0 (Dom0) which is responsible for managing the other un-

privileged VMs/user domains [47]. In addition, each server runs 40 VMs (besides Dom0)

configured with 1 virtual CPU and 256MB memory. All VMs run 64bit CentOS 5.5. We

implemented a virtual network to allow packet forwarding among all 800 VMs with XEN

route scripts and iptables.

We implemented a prototype of Volley which consists of three main components: agents,

monitors and coordinators. An agent runs within a VM and provides monitoring data.

Agents play an important role in emulating real world monitoring environments. De-

pending on the type of monitoring, they either generate network traffic according to pre-

collected network traces or provide pre-collected monitoring data to monitors when re-

quested (described below). For each VM, a monitor is created in Dom0. Monitors collect

monitoring data, process the data to check whether local violations exist and report local

violations to coordinators. In addition, they also perform local violation likelihood based

sampling adaptation described earlier. A coordinator is created for every 5 physical servers.

They process local violation reports and trigger global polls if necessary. Furthermore, we

also implement distributed sampling coordination on coordinators. We next present details

on monitoring tasks.

Network level monitoring tasks emulate the scenario of detecting distributed denial

of service (DDoS) attacks (Section 5.2.1) in a virtualized datacenter. We perform traffic

161

Virtual Network

Agent

Monitor

Coordinator
VM

Domain 0

Figure 40: Experiment Setup

monitoring on each server (Dom0), rather than network switches and routers, because only

Dom0 can observe communications between VMs running on the same server. For a task

involving a set V of VMs , their corresponding monitors perform sampling by collecting

and processing traffic associated with the VM v ∈ V (within a 15-second interval) to com-

pute the traffic difference ρv = Pi(v) − Po(v) where Pi(v) and Po(v) are the incoming

number of packets with SYN flags set and the outgoing number of packets with both SYN

and ACK flags set respectively. The sampling is implemented with tcpdump and bash

scripts and the default sampling interval is 15 seconds. When ρv exceeds the local thresh-

old, the monitor reports a local violation to its coordinator which then communicates with

monitors associated with other VMs V − v to check if
∑

v∈V ρv > T .

We port real world traffic observed on Internet2 network[2], a large-scale high-capacity

network connecting research centers, into our testbed environment. The traces are in net-

flow v5 format and contain approximately 42,278,745 packet flows collected from 9 core

routers in the Internet2 network. A flow in the trace records the source and destination IP

addresses as well as the traffic information (total bytes, number of packets, protocol, etc.)

for a flow of observed packets. We uniformly map addresses observed in netflow logs into

VMs in our testbed. If a packet sent from address A to B is recorded in the logs, VM X

(where A is mapped to) also sends a packet to VM Y (where B is mapped to). As netflow

does not record SYN and ACK flags, we set SYN and ACK flags with a fixed probability

p = 0.1 to each packet a VM sends. Note that ρ is not affected by the value of p as p has

162

���

���

���

���

���

���

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

��	
��
����
��

���
��
����
��

���
��
����
��

���
��
����
��

	��
��
����
��

���
��
����
��

���
��
����
���

�

��	

���

���

���

���

���

���

����	 ����� ����� ����� ���	� ����� �����

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

������������

�

��	
��
����
��

���
��
����
��

���
��
����
��

���
��
����
��

	��
��
����
��

���
��
����
��

���
��
����
���

(a) Network Level Monitoring

���

���

���

���

���

���

��	

��

�

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�
�

����
���������

����
���������

����
���������

��	�
���������

����
���������

����
���������

����
���������

�

���

���

���

���

���

���

���

��	

��

�

����� ����� ����� ����	 ����� ����� �����

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�
�

������������

�

����
���������

����
���������

����
���������

��	�
���������

����
���������

����
���������

����
���������

(b) System Level Monitoring

���

���

���

���

���

���
�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

��	
��
����
��

���
��
����
��

���
��
����
��

���
��
����
��

	��
��
����
��

���
��
����
��

���
��
����
���

�

��	

���

����	 ����� ����� ����� ���	� ����� �����

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

������������

�

(c) Application Level Monitor-
ing

Figure 41: Monitoring Overhead Saving under Different Error Allowance and State Alert
Rates

the same effect to both Pi and Po. In addition, let F denote the number of packets in a

recorded flow. We also scale down the traffic volume to a realistic level by generating only

F/n packets for this flow where n is the average number of addresses mapped to a VM.

System level monitoring tasks track the state of OS level performance metrics on VMs

running in our testbed. A system level task triggers a state alert when the average value of

a certain metric exceeds a given threshold, e.g. an alert is generated when the average

memory utilization on VM-1 to VM-10 exceeds 80%. To emulate VMs in a production

environment, we port a performance dataset[126] collected from hundreds of Planetlab[91]

nodes to our VMs. This dataset contains performance values on 66 system metrics includ-

ing available CPU, free memory, virtual memory statistics(vmstat), disk usage, network

usage, etc. To perform sampling, a monitor queries its assigned VM for a certain perfor-

mance metric value and the agent running inside the VM responds with the value recorded

in the dataset. The default sampling interval is 5 seconds.

163

Application level monitoring tasks watch the throughput state of web applications

deployed in datacenters. For example, Amazon EC2 can dynamically add new server in-

stances to a web application when the monitored throughput exceeds a certain level[1]. We

port traces of HTTP requests (> 1 billion) collected from a website hosted by a set of 30

distributed web servers[3]. Similar to system level monitoring, agents running on VMs

respond with web server access logs in the dataset when queried by monitors so that they

mimic VMs running a web application. The default sampling interval is 1 second.

Thresholds. Monitoring datasets used in our experiment are not labeled for identifying

state violations. Hence, for a state monitoring task on metric m, we assign its monitoring

threshold by taking (100 − k)-th percentile of m’s values. For example, when k = 1, a

network-level task reports DDoS alerts if ρ > Q(ρ, 99) where Q(ρ, 99) is the 99th per-

centile of ρ observed through the lifetime of the task. Similarly, when k = 10, a system-

level task report state alerts if memory utilization µ > Q(µ, 90). We believe this is a

reasonable way to create state monitoring tasks as many state monitoring tasks try to detect

a small percentage of violation events. In addition, we also vary the value of selectivity

parameter k to evaluate the impact of selectivity in tasks.

5.5.2 Results

Monitoring Efficiency. Figure 41(a) illustrates the results for our network monitoring ex-

periments where each task checks whether the traffic difference ρ on a single VM exceeds a

threshold set by the aforementioned selectivity k (we illustrate results on distributed moni-

toring tasks (multiple VMs) later in Figure 44). We are interested in the ratio of sampling

operations (y-axis) performed by Volley over those performed by periodical sampling (with

interval Id). We vary both the error allowance (x-axis) and the alert selectivity k in mon-

itoring tasks (series) to test their impact on monitoring efficiency. Recall that the error

allowance specifies the maximum percentage of state alerts allowed to be missed. An error

164

allowance of 1% means that the user can tolerant at most 1% of state alerts not being de-

tected. We see that dynamic sampling reduces monitoring overhead by 40%-90%. Clearly,

the larger the error allowance, the more sampling operations Volley can save by reducing

monitoring frequency. The alert state selectivity k also plays an important role, e.g. vary-

ing k from 6.4% to 0.1% can lead to 40% cost reduction. Recall that k = 6.4 means that

6.4% of monitored values would trigger state alerts. This is because lower k leads to fewer

state alerts and higher thresholds in monitoring tasks, which allows Volley to use longer

monitoring intervals when previous observed values are far away from the threshold (low

violation likelihood). Since real world tasks often have small k, e.g. a task with a 15-second

monitoring interval, generating one alert event per hour leads to a k = 1/240 ≈ 0.0042.

We expect Volley to save considerable overhead for many monitoring tasks.

Figure 41(b) shows the results for system level monitoring, where each monitoring task

checks if the value of a single metric on a certain VM violates a threshold chosen by the

aforementioned selectivity k. The results suggest that Volley also effectively reduces the

monitoring overhead, with relatively smaller cost saving ratios compared with the network

monitoring case. This is because changes in traffic are often less than changes in system

metric values (e.g. CPU utilization). This is especially true for network traffic observed at

night.

We show the results of application level monitoring in Figure 41(c) where each task

checks whether the access rate of a certain object, e.g. a video or a web page, on a certain

VM exceeds the k-determined threshold by analyzing the recent access logs on the VM.

We observe similar cost savings in this figure. The high cost reduction achieved in the

application level monitoring is due to the bursty nature of accesses. It allows our adaptation

to use large monitoring intervals during off-peak times. We believe that our techniques

can provide substantial benefits when this type of change pattern occurs in many other

applications (e.g. e-business websites) where diurnal effects and bursty request arrival are

common.

165

0 0.002 0.004 0.008 0.016 0.032

5

10

15

20

D
om

ai
n−

0
C

P
U

 U
til

iz
at

io
n

Error Allowance

Figure 42: CPU Utilization

����

���

����

���

����

���

����

���

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

�

����

���

����

���

����

���

����

���

����

���

� � � �	 ��

�
�
��
��
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

��
��������

��
��
�����������
��
��
�����������

��
��
����������� �
���������

�
��������� �
���������

Figure 43: Window Based
Model

���

����

���

����

���

����

���

�
�
�
��
�
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

�	�
����� �	�
�����

�

����

���

����

���

����

���

����

���

� ��� ��� ��� ��

�
�
�
��
�
�
�
�	
��

�
��

��
�
�
�
�
��
�
�

�
��
�
��
��
��

�
�
�

��
�
��

�

��
�����������
�����
���

�	�
����� �	�
�����

�	�
����� ����������

���������� ����������

Figure 44: Distributed Coor-
dination

Figure 42 uses box plots to illustrate the distribution of Dom0 CPU resource con-

sumption (percentage) caused by network-level monitoring tasks with increasing error al-

lowance. The upper and lower bound of boxes mark the 0.75 and 0.25 quantile. The line

inside the box indicates the median. The whiskers are lines extending from each end of the

box to show the extent of the rest of the utilization data. CPU resources are primarily con-

sumed by packet collection and deep packet inspection, and the variation in utilization is

caused by network traffic changes. When the error allowance is 0, our violation-likelihood

based sampling is essentially periodical sampling and introduces fairly high CPU utiliza-

tion (20-34%) which is prohibitively high for Dom0. This is because Dom0 needs to access

hardware on behalf of all user VMs, and IO intensive user VMs may consume lots of Dom0

166

����

����

����

����

����

����

���	

���

�
�
��
�
��
��
�
�	
	

�
�
��

��
�
��
��
�
�	 ����
���������

����
���������

����
���������

��	�
���������

����
���������

����
���������

����
���������

�

����

����

����

����

����

����

����

���	

���

����� ����� ����� ����	 ����� ����� �����

�
�
��
�
��
��
�
�	
	

�
�
��

��
�
��
��
�
�	

�������������
�

����
���������

����
���������

����
���������

��	�
���������

����
���������

����
���������

����
���������

Figure 45: Actual Mis-Detection Rates

CPU cycles. When Dom0 is saturated with monitoring and IO overhead, all VMs running

on the same server experience seriously degraded IO performance[47]. With increasing

error allowance, our approach quickly reduces the CPU utilization by at least a half and

substantially improves the efficiency and scalability of monitoring.

Although system/application level monitoring tasks incur less overhead compared with

the network monitoring case, Volley can still save significant monitoring cost when such

tasks are performed by monitoring services that charge users based on sampling frequency[1].

Furthermore, the aggregated cost of these tasks is still considerable for datacenter monitor-

ing. Reducing sampling cost not only relieves resource contention between application and

infrastructure management, but also improves the datacenter management scalability[81].

Monitoring Accuracy. Figure 45 shows the actual mis-detection rate (y-axis) of alerts

for the system-level monitoring experiments. We see that the actual mis-detection rate is

lower than the specified error allowance in most cases. Among different state monitoring

tasks, those with high alert selectivity often have relatively large mis-detection rates. There

are two reasons. First, high selectivity leads to few alerts which reduces the denominator

in the mis-detection rate. Second, high selectivity also makes Volley prefer low frequency

which increases the chance of missing alerts. We do not show the results on network and

application level monitoring as the results are similar.

Window-based Monitoring. The above experiments are performed under the instan-

taneous model. Figure 43 shows the performance of the estimation methods we introduced

in Section 5.3 over the Planetlab trace under the window based model, where the x-axis

167

marks the monitoring window size and the y-axis shows the ratio between the total num-

ber of sampling performed by one scheme and that performed by a periodical sampling

scheme with the default sampling frequency. Here “instantaneous-0.01” refers to the es-

timation method for instantaneous violations with an error allowance err = 0.01, and

“window-0.01” refers to the method for window based violations with err = 0.01. Recall

that instantaneous detection reports state alerts whenever the monitored value exceeds a

threshold while window based detection reports state alerts only when the monitored value

continuously exceeds the threshold within a time window. As the instantaneous estimation

method does not take window sizes into consideration, its corresponding cost reduction

remains the same. The window based estimation method achieves more cost reduction as

the window size increases (less likely to detect alerts), since larger window sizes lead to

smaller violation likelihood which in turn allows the scheme to employ larger sampling

intervals.

Distributed Sampling Coordination. Figure 44 illustrates the performance of dif-

ferent error allowance distribution schemes in network monitoring tasks. To vary the cost

reduction yield on monitors, we change the local violation rates by varying the local thresh-

olds. Initially, we assign a local threshold to each monitor so that all monitors have the

same local violation rate. We then gradually change the local violation rate distribution to

a Zipf distribution[129] which is commonly used to approximate skewed distributions in

many situations. The x-axis shows the skewness of the distribution, and the distribution is

uniform when skewness is 0. The y-axis shows the the ratio between the total number of

sampling performed by one scheme and that performed by a periodical sampling scheme

with the default sampling frequency (same as in Figure 43). We compare the performance

of our iterative tuning scheme (adapt) described in Section 5.4 with an alternative scheme

(even) which always divides the global error allowance evenly among monitors.

We see that the cost reduction of the even scheme gradually degrades with increasing

skewness of the local violation rate distribution. This is because when the cost reduction

168

yields on monitors are not the same, the even scheme cannot maximize the cost reduction

yield over all monitors. The adaptive scheme reduces cost significantly more as it continu-

ously allocates error allowance to monitors with high yields. Since a few monitors account

for most local violations under a skewed Zipf distribution, the adaptive scheme can move

error allowance from these monitors to those with higher cost reduction yield.

5.6 Related Work

Most existing works in distributed state monitoring [60, 57, 83] study the problem of em-

ploying distributed constraints to minimize communication cost of distributed state mon-

itoring. Earlier works [60, 57] focus on the instantaneous model where a state alert is

triggered whenever the sum of monitored values exceeds a threshold. Recent work[83]

studies efficient distributed triggers for the more practical window based model[1]. While

these works study the communication-efficient detection of state violations in a distributed

manner based on the assumption that monitoring data is always available (with no cost),

we study a lower level problem on collecting monitoring data. We investigate the funda-

mental relation between sampling intervals and accuracy, and propose violation likelihood

based dynamic sampling schemes to enable efficient monitoring with controlled accuracy.

In addition, while most of these works address only tasks using SUM aggregation, our ap-

proach can support different types of aggregation such as MAX and MIN, as long as the

local threshold is set in a way to ensure monitoring correctness.

Previous distributed stream monitoring works [86, 88] study efficient algorithms for

aggregating distributed data streams. Recent work by Jain et al.[55] proposes a set of basic

metrics for measuring the accuracy of distributed monitoring results. Problems studied in

these works are quite different from the ones we study in this chapter. While these works

assume all stream data are pushed to the algorithm, Volley is designed for asynchronous

monitoring where sampling operations are used to provide partial data (i.e. the information

between two consecutive samples is not available). Hence, the sampling interval is an

169

important factor for Volley, but is not as relevant to data streams.

A number of existing works in sensor networks use correlation to minimize energy con-

sumption on sensor nodes[98, 29]. Our work differs from these works in several aspects.

First, these works[98] often leverage the broadcast feature of sensor networks, while our

system architecture is very different from sensor networks and does not have broadcast

features. Second, we aim at reducing sampling cost while these works focus on reducing

communication cost to preserve energy. Third, while sensor networks usually run a single

or a few tasks, we have to consider multi-task correlation in large-scale distributed envi-

ronments. Finally, some works (e.g. [29]) make assumptions on value distributions, while

our approach makes no such assumptions.

Some scenarios such as network monitoring employ random sampling to collect a par-

tial snapshot for state monitoring (e.g., a random subset of packets [42, 96]). Volley is

complementary to random sampling as it can be used together with random sampling to

offer additional cost savings by scheduling sampling operations. In addition, when a com-

plete snapshot is required and random sampling is not suitable (e.g., random sampling may

miss considerable packets related with a DDoS attack when the overall traffic volume is

high, or a task may require a complete network snapshot to detect a certain interaction

pattern), Volley can be used to provide monitoring efficiency and scalability.

170

CHAPTER VI

RELIABLE STATE MONITORING IN CLOUD DATACENTERS

6.1 Introduction

Dependable state monitoring is a fundamental building block for many distributed applica-

tions and services hosted in cloud datacenters. State monitoring is widely used to determine

whether the aggregated state of a distributed application or service meets some predefined

conditions[82]. Examples of state monitoring are prevalent. A web application owner may

use state monitoring to check if the aggregated access observed at distributed application-

hosting servers exceeds a pre-defined level[94]. State monitoring can also be used to detect

DDoS attacks launched from platforms such as botnets[46].

Much existing state monitoring research efforts have been focused on minimizing the

cost and the performance impact of state monitoring. For example, a good number of state

monitoring techniques developed in this line of work focus on the threshold based state

monitoring by carefully partitioning monitoring tasks between local nodes and coordinator

nodes such that the overall communication cost is minimized [39, 94, 57, 79, 82]. Studies

along this direction often make strong assumptions on the dynamic nature of the moni-

toring environments, such as unlimited bandwidth at participating monitoring nodes and

100% availability/responsiveness. However, such assumptions often do not hold in real

deployment.

Unexpected performance anomalies and failures of computing nodes often introduce

message delay and loss to monitoring related communications. Monitoring approaches de-

signed without considering such messaging dynamics would inevitably produce unreliable

results. Even worse, users are left in the dark without knowing that the monitoring output is

no longer reliable. For instance, state monitoring approaches that rely on always-responsive

171

Table 1: Examples of State Monitoring
Applications Description

Content Delivery Monitoring the total access to a file mirrored at multiple
serversto decide if serving capacity is sufficient.

Rate Limiting[94] Limiting a user’s total access towards a cloud service
deployed at multiple physical locations.

Traffic Engineering[44] Monitoring the overall traffic from an organization’s
sub-network (consists of distributed hosts) to the Internet.

Quality of Service[95] Monitoring and Adjusting the total delay of a flow which is
the sum of the actual delay in each router on its path.

Fighting DoS Attack Detecting DoS Attack by counting SYN packets arriving at
different hosts within a sub-network.

Botnet Detection[46] Tracking the overall simultaneous TCP connections from a
set of hosts to a given destination.

nodes may wait for messages from failed nodes indefinitely. Similarly, approaches that as-

sume instantaneous message delivery may fail to report alerts on time when an important

monitoring message is delayed. In both cases, users are not aware of potential errors in the

monitoring results. Consequently, actions performed based on such unreliable results can

be harmful or even catastrophic[55]. In addition, some recent works [109] proposed to rank

monitoring alerts based on their false positive/negative rates. While this approach provides

useful prioritizing of monitoring alerts generated by a collection of performance monitor-

ing tasks, they do not consider monitoring error introduced by communication issues.

In this chapter, we present a new state monitoring framework that incorporates mes-

saging dynamics in terms of message delay and message losses into monitoring results

reporting and distributed monitoring coordination. Our framework provides two funda-

mental features for state monitoring. First, it estimates the accuracy of monitoring results

based on the impact of messaging dynamics, which provides valuable information for users

to decide whether monitoring results are trustworthy. Second, it minimizes the impact of

dynamics whenever possible, which allows the state monitoring system to continuously

adapt to changes in the system and to strive to produce reliable monitoring. These two

features are important for large-scale distributed systems where dynamics and failures are

the norm rather than the exception[36]. When combined, these two features shape a reli-

able state monitoring model that can tolerate communication dynamics and mitigate their

impact on monitoring results.

172

To the best of our knowledge, our approach is the first state monitoring framework that

explicitly handles messaging dynamics in large-scale distributed monitoring. We perform

extensive experiments, including both trace-driven and real deployment ones, to evaluate

our approach. The results suggest that our approach can produce good accuracy estimation

and minimize monitoring errors introduced by messaging dynamics via adaptation. Fur-

thermore, we also demonstrate its effectiveness by using our approach to support cloud

application auto-scaling[4] which dynamically provisions new server instances when mon-

itoring detects application workload bursts. Compared with existing techniques, our ap-

proach significantly reduces problematic monitoring results with the presence of messaging

dynamics, and improves application response time by up to 30%.

6.2 Problem Definition

In this section, we briefly introduce existing state monitoring techniques, and reveal how

messaging dynamics such as message delay and loss can impact the accuracy of monitor-

ing results. We then outlier fundamental requirements for reliable state monitoring and

challenges in meeting these requirements.

6.2.1 Preliminary

State monitoring is widely used for detecting anomalies in many distributed systems. For

example, service providers usually monitor the overall request rate on a web application

deployed over multiple hosts, as they want to receive a state alert when the overall request

rate exceeds a threshold, e.g. the capacity limit of provisioned hosts. We refer to this type

of monitoring as state monitoring, which continuously evaluates if a certain aspect of the

distributed application, e.g. the overall request rate, deviates from a normal state. Table 1

summaries some of the popular state monitoring scenarios.

Most existing state monitoring studies employ an instantaneous state monitoring model,

which triggers a state alert whenever a predefined threshold is violated. Specifically, the

173

instantaneous state monitoring model[39, 86, 60, 97, 11, 57] detects state alerts by compar-

ing the current aggregate value with a global threshold. Specifically, given the monitored

value on monitor i at time t, xi(t), i ∈ [1, n], and the global threshold T , it considers the

state at time t to be abnormal and triggers a state alert if
∑n

i=1 xi(t) > T , which we refer

to as global violation.

To perform instantaneous state monitoring, the line of existing work employs a dis-

tributed monitoring framework with multiple monitors and one coordinator (Figure 56).

The global threshold T is decomposed into a set of local thresholds Ti for each monitor i

such that
∑n

i=1 Ti 6 T . As a result, as long as xi(t) 6 Ti,∀i ∈ [1, n], i.e. the monitored

value at any node is lower or equal to its local threshold, the global threshold is satisfied

because
∑n

i=1 xi(t) 6
∑n

i=1 Ti 6 T . Clearly, no communication is necessary in this case.

When xi(t) > Ti on monitor i, it is possible that
∑n

i=1 xi(t) > T (global violation). In

this case, monitor i sends a message to the coordinator to report local violation with the

value xi(t). The coordinator, after receiving the local violation report, invokes a global poll

procedure where it notifies other monitors to report their local values, and then determines

whether
∑n

i=1 xi(t) 6 T . The focus of existing work is to find optimal local threshold

values that minimize the overall communication cost. For instance, if a monitor i often ob-

serves relatively higher xi, it may be assigned with a higher Ti so that it does not frequently

report local violations to the coordinator and trigger global polls.

6.2.2 Reliable State Monitoring and Challenges

Existing state monitoring work[39, 86, 60, 97, 11, 57, 82] often share the following as-

sumptions: 1) nodes involved in a monitoring task is perfectly reliable in the sense that

they are always online and responsive to monitoring requests; 2) a monitoring message

can always be reliably and instantly delivered from one node to another. These two as-

sumptions, however, do not always hold in cloud datacenter environments. First, cloud

applications and services are often hosted by a massive number of distributed computing

174

nodes. Failures, especially transient ones, are common for nodes of such large-scale dis-

tributed systems[36, 26]. Second, cloud datacenters often employ virtualization techniques

to consolidate workloads and provide management flexibilities such as virtual machine

cloning and live migration. Despite its benefits, virtualization also introduces a number of

challenges such as performance interferences among virtual machines running on the same

physical host. Such interferences could introduce serious network performance degrada-

tion, including heavy message delays and message drops[47, 93].

To provide robustness against messaging dynamics, recent work proposed by Jain et

al.[55] employs a set of coarse network performance metrics that are continuously updated

to reflex the status of monitoring communication. One example of such metrics is the

number of nodes that contributed to a monitoring task. The intention of providing these

metrics is to allow users to decide how trustworthy monitoring results are based on values of

these metrics. While this approach certainly has its metrics in certain monitoring scenarios,

it has a number limitations.

First, it considers the status of a monitor as either online or offline, and overlooks situa-

tions where message delays also play an important role. For instance, a monitor node may

appear online, but it may introduce considerable latencies to messages sent to or received

from it. Such message delays are as important as message loss caused by offline nodes,

because they may also lead to mis-detection of anomalies. In fact, anecdotal evidences[9]

suggest that communication latency in virtualized cloud datacenters can be a serious issue.

Second, and more importantly, it is difficult for users to interpret the impact of reported

network level issues on monitoring accuracy. If one of the nodes fails to report its local

monitoring data, does the corresponding monitoring result still reliable? The problem gets

aggravated in large-scale distributed monitoring where message delay or loss can be quite

common given the number of participating nodes, e.g. hundreds of web servers for large

cloud applications, and even thousands of servers for Hadoop clusters. On the one hand,

if we simply invalidate the monitoring results whenever message delay or loss occurs, we

175

Coordinator

A B C D E F

T = 300

[10-60] [10-60] [10-60] [10-60] [20-300][10-60]

TA = TB = TC = TD = TE = TF = 50

ΣXi ≤ T ?

Figure 46: A Motivating Example

would end up with frequent gaps in monitoring data and low monitoring utility. On the

other hand, if we choose to use such monitoring results, how should we perform accuracy

estimation for monitoring results given the observed message delay and loss?

Figure 56 shows a motivating example where a monitoring task involves one coordi-

nator and six monitors (A to F). The monitoring goal is to check if the aggregated request

rates observed on each monitor (xi) exceeds the global threshold T = 300. The num-

bers under each monitor indicate the range of values observed by the monitor. Such range

statistics can be obtained through long-term observations. For simplicity, we assume local

thresholds employed by all monitors have the same value 50, i.e. TA = TB = TC = TD =

TE = TF = 50.

Estimating monitoring accuracy based on messaging dynamics information is difficult.

Simply using the scope of message delay or loss to infer accuracy can be misleading. For

example, if monitor A, B, and C (50% of total monitors) all fail to response in a global

poll during a transient failure, one may come to the conclusion that the result of global poll

should be invalidated as half of the monitors do not contribute to the result. However, as

monitor A, B and C observe relatively small monitored values, the corresponding global

poll results may still be useful. For instance, if the global poll suggests that xD+xE+xF =

100, we can conclude that there is no global violation, i.e.
∑i={A...F}

i xi 6 300 with high

confidence, because the probability of
∑i={A...C}

i xi 6 180 is fairly high given observed

value ranges of A, B and C. On the contrary, if monitor F fails to response, even though F is

only one node, the uncertainty of monitoring results increases significantly. For example,

if
∑i={A...E}

i xi = 150, it is hard to tell whether a global violation exists due to the high

176

variance of F’s observed values.

An ideal approach should provide users an intuitive accuracy estimation such as “the

current monitoring result is correct with a probability of 0.93”, instead of simply reporting

the statistics of message delay or loss. Such an approach must address the challenge in

quantitatively estimating the accuracy of monitoring results based on messaging quality

information. It should be aware of state monitoring algorithm context as the algorithm has

two phases, the local violation reporting phase and global poll phase. It should also utilize

information on both messaging quality and per-monitor value distributions to offer the best

estimation possible.

Third, accuracy estimation alone is not enough to provide reliable monitoring and min-

imize the impact of messaging quality degradation. Resolving node failures may take time.

Network performance degradation caused by virtual machine interferences often lasts for

a while until one virtual machine is migrated to other hosts. As a result, messaging dy-

namics can last for some time. Without monitoring self-adaptation and minimizing the

corresponding accuracy loss, users may lose access to any meaningful monitoring result

during a fairly long period, This is clearly not acceptable to cloud users, especially for

those who pay for using commercial cloud monitoring services such as CloudWatch[1].

For instance, if node F continuously experiences message loss, local violation reports

sent from F are very likely to be dropped. Consequently, the coordinator does not trig-

ger global polls when it receives no local violation reports. If a true violation exists, e.g.

xA = 45, xB = 45, xC = 45, xD = 45, xE = 45, xF = 110 and
∑i={A...F}

i xi = 335, the

coordinator will mis-detect it.

One possible approach to reduce monitoring errors introduced by such messaging dy-

namics is to let healthy nodes, i.e. nodes not affected by messaging dynamics, to report

their local values at a finer granularity to compensate the information loss on problem

nodes. In the above example, if we reduce local thresholds on node A, B, C, D, E to 30.

the coordinator will receive local violations from node A, B, C, D and E, and trigger a

177

global poll. Even if F also fails to response to the global poll, the coordinator can find that∑i∈{A,...,E}
i xi = 225. For the sake of the example, suppose xF is uniformly distributed

over [20, 300]. The coordinator can infer that the probability of a global violation is high.

This is because a global violation exists if xF > 75 which is very likely (> 0.8) given

xF ’s distribution. Similarly, adaptation can also be used to rule out the possibility of global

violations. For instance, if node E is troubled by messaging dynamics, instead of wor-

rying whether E would cause coordinator fail to trigger global polls, we can increase E’s

local threshold to 70 so that the probability of detecting local violation on E is trivial. Cor-

respondingly, we also reduce the thresholds on the rest of the nodes to 45 to ensure the

correctness of monitoring (
∑

i Ti 6 T). As a result, as long as
∑i∈{A,...,D,F}

i xi < 230,

we can infer that there is no global violation with high probability, even though node E is

under the impact of messaging dynamics.

While this type of self-adaptation seems promising, designing such a scheme is diffi-

cult and relies on answers to a number of fundamental questions: how much should we

reduce the local threshold on E? For a more general case, how should we divide the global

thresholds when there are multiple problem nodes to minimize the possible error they may

introduce, especially when they observes different levels of message and delay? In the rest

of this chapter, we address these challenges in accuracy estimation and self-adaptation and

present details of our reliable state monitoring approach.

6.3 Reliable State Monitoring

State monitoring continuously checks whether a monitored system enters a critical pre-

defined state. Hence, state monitoring tasks usually generate binary results which indicate

either “state violation exists”(positive detection) or “no state violation exists”(negative de-

tection). Beyond this basic result, our reliable state monitoring approach also marks the

estimated accuracy of a monitoring result in the form of error probabilities. For positive

detections, the error probability is the probability of false positives. The error probability

178

is the probability of false negatives for negative detections.

To perform accuracy estimation, we design estimation schemes for both local violation

reporting and global poll processes respectively. These schemes leverage the information

on messaging dynamics and per-node monitored value distributions to capture uncertain-

ties caused by messaging dynamics. In addition, we also examine the unique problem of

out-of-order global polls caused by message delay. The final accuracy estimation results

synthesize the uncertainties observed at different stages of the state monitoring algorithm.

Besides accuracy estimation, our approach also minimizes errors caused by non-transient

messaging dynamics via two parallel directions of adjustments on distributed monitoring

parameters. One tries to minimize the chance that troubled nodes deliver local violation

reports to the coordinator. Since they may fail to deliver local violation reports, such ad-

justments essentially minimizes the uncertainties caused by them. The other direction of

adjustments is to configure healthy nodes to report their local monitored values more often.

This allows the coordinator to make better accuracy estimation which in turn helps to detect

or rule out a global violation with high confidence, e.g. “no global violation exists” with

an estimated false negative probability of 0.005 is very likely to be true.

6.3.1 Messaging Dynamics

Although a cloud datacenter may encounter countless types of failures and anomalies at

different levels (network/server/OS/etc.), their impact on monitoring related communica-

tion can often be characterized by message delay and message loss. For brevity, we use the

term messaging dynamics to refer to both message delay and loss. Depending on the seri-

ousness of messaging dynamics, the monitoring system may observe different difficulties

in inter-node communication, from slight message delay to complete node failure (100%

message loss rate or indefinite delay).

179

Detection Window

++++

Time

t-w t

violation

occurred

Invalid

detection

valid

detection

Figure 47: Detection Window

The focus of our study is utilizing message delay and loss information to provide re-

liable state monitoring functionalities via accuracy estimation and accuracy-driven self-

adaptation. Our approach obtains message delay and loss information in two ways. One

is direct observation in global polls, e.g. the coordinator knows whether it has received a

response from a certain monitor on time. The other is utilizing existing techniques such

as [55] to collect pair-wise message delay and loss information between a monitor and the

coordinator. Note that our approach is orthogonal to the messaging quality measurement

techniques, as it takes the output of the measurement to perform accuracy estimation and

self-adaptation. Our approach only requires basic messaging dynamics information. For

message delay, it requires a histogram that records the distribution of observed message

delays. For message loss, it takes the message loss rate as input.

6.3.2 Detection Window

We introduce the concept of detection window to allow users to define their tolerance level

of result delays. Specifically, a detection window is a sliding time window with length

w. We consider a global violation V detected at time t a correctly detected one if its

actual occurrence time to ∈ [t − w, t]. Note that multiple global violations may occur

between the current time t and t − w as Figure 47 shows. We do not distinguish different

global violations within the current detection window, as users often care about whether

there exists a global violation within the detection window instead of exactly how many

global violations are there. The concept of detection window is important for capturing the

dynamic nature of state monitoring in real world deployment.

180

6.3.3 Accuracy Estimation

Recall that the distributed state monitoring algorithm we introduced in Section 6.2.1 has

two stages, the local violation reporting stage and the global poll stage. As message delay

and loss have impact on both stages, our analysis on their accuracy impact needs to be

conducted separately. We next study the problem of accuracy estimation for the original

state monitoring algorithm by looking into the two stages separately.

When message delay or loss occurs during local violation reporting, the coordinator

may fail to receive a local violation report and trigger a global poll in time. Consequently,

it may mis-detect a global violation if one does exist, and introduce false negative results.

To estimate the monitoring accuracy at this stage, the coordinator continuously updates

the estimated probability of failing to receive one or more local violations based on the

current messaging dynamics situation and per-monitor value distribution. When message

delay or loss occurs during a global poll, the coordinator can not collect all necessary

information on time, which again may cause the coordinator to mis-detect global violation

and introduces false negatives. Hence, we estimate the probability of mis-detecting a global

violation based on collected values during the global poll and the value distribution of

troubled monitors.

Local Violation Reporting. To facilitate the accuracy estimation at the local violation

reporting stage, each monitor maintains a local histogram that records the distribution of

local monitored values. Much previous research[86, 97, 54, 57, 82] suggests that such

distribution statistics of recent monitored values provides good estimation on future values.

Specifically, each monitor maintains a histogram of the values that it sees over time as

Hi(x) where Hi(x) is the probability of monitor i taking the value x. We use equi-depth

histograms to keep track of the data distribution. For generality purposes, we assume that

the monitored value distribution is independent of messaging dynamics. To ensure that the

histogram reflects recently seen values more prominently than older ones, each monitor

continuously updates its histogram with exponential aging. A monitor also periodically

181

sends its local histogram to the coordinator.

We first look at the probability of monitor i fails to report a local violation which can

be computed as follows,

P (fi) = P (vi)P (mi)

, where P (vi) is the probability of detecting a local violation on monitor i, and P (mi) is

the probability of a message sent from monitor i failing to reach the coordinator due to

messaging dynamics. P (vi) = P (xi > Ti) where xi and Ti are the monitored value and

the local threshold on monitor i respectively. P (xi > Ti) can be easily computed based on

Ti and the distribution of xi provided by the histogram of monitor i. P (mi) depends on the

situation of message delay and loss. Let P (pi) be the probability of a message sent from

monitor i to the coordinator being dropped. Let P (di) be the probability of a reporting

message sent from monitor i to the coordinator being delayed beyond users’ tolerance, i.e.

the local violation report is delayed more than a time length of w (the detection window

size) so that the potential global violation associated with the delayed local violation report

becomes invalid even if detected. Given P (pi) and P (di), we have

P (mi) = 1− (1− P (pi))(1− P (di))

The rational here is that for a local violation report to successfully reach the coordinator,

it must not being dropped or heavily delayed at the same time. Both P (pi) and P (di) can

be easily determined based on the measurement output of messaging dynamics. P (pi) is

simply the message loss rate. P (di) can be computed as P (di) = P (li > w), where li is

the latency of messages sent from monitor i to the coordinator, and P (li > w) is easy to

obtain given the latency distribution of messages. Clearly, P (mi) grows with P (pi) and

P (di) and P (mi) = 0 when messaging dynamics do not exist.

During the local violation reporting phase, the overall probability of the coordinator

failing to receive local violations P (F) depends on all monitors. Therefore, we have

P (F) = 1−
n∏
i

(1− P (fi))

182

, where n is the number of monitors and we consider local violations on different monitors

are independent for generality. Clearly, P (F) grows with the number of problem monitors,

i.e. monitors experiencing delay or loss. With P (F), the probability of false negatives

caused by missing local violation reports Pl can be estimated as Pl = cP (F) where c

is referred as the conversion rate between local violations and global violations. The co-

ordinator maintains c based on its observations on previous local violations and global

violations.

Global Polls. Recall that in the original state monitoring algorithm, when the coordi-

nator receives a local violation report, it initiates the global poll process, where it requests

all monitors to report their current local monitored values. However, when message delay

and loss exist, the coordinator may receive a delayed report about a local violation that

actually occurs at an earlier time t. As a result, when the coordinator invokes a global poll,

it requests all monitors to report their previous local monitored values observed at time t.

To support this functionality, monitors locally keep a record of previous monitored values

observed within a sliding window with size w. Monitored values observed even earlier are

not required to keep as those are invalid if they are associated with a global poll.

Once the coordinator initiates the global poll process, our accuracy estimation also

enters the second stage, where we estimate the possibility of mis-detecting global violations

due to message delay and loss in the global poll process. The estimation starts when the

coordinator does not receive all responses on time. Since the coordinator does not report

anything until it receives all monitoring data, the probability of detecting a state violation

given the set of received monitored values is

P (V) = P{
∑
i∈K

xi > T −
∑
i∈K̄

xi} (17)

, where K is the set of monitors whose responses do not reach the coordinator, and K̄ are

the rest of the monitors. The right hand side of the equation can be determined based on

the value histogram of monitors. At any time point, the probability of detecting global

183

TimeCoordinator

Monitors

local violation reports

on-going global polls
P(V) = 0.67

P(V) = 0.15

Figure 48: Out-of-order Global Polls

violation is the probability of detecting global violation within the time window of delay

tolerance.

Out-of-Order Global Polls. Due to the existence of delay, local violation reports sent

from different monitors may arrive out-of-order. Accordingly, as new global poll processes

may start before previous global poll processes finish, the coordinator may be involved in

multiple ongoing global poll processes at the same time as Figure 48 shows.

When the coordinator receives local violation reports r, it first checks its timestamp tr

(local violation occurring time) to see if tr > t − w where t is the current time (report

receiving time) and w is the user-specified detection window size. If true, it ignores the

local violation report as the violation report is expired. Otherwise, it initiates a global poll

process and use tr as its timestamp. As each global poll may take different time to finish

(due to message delay or loss), the coordinator continuously checks the lifetime of global

polls and removes those with tr that tr > t− w.

For accuracy estimation, users are interested in whether there exists one or more global

violations within the time interval of [t − w, t]. When there are multiple ongoing global

polls, it means that there are multiple potential global violations requiring verification.

Accordingly, our accuracy estimation should be on whether there exists at least one ongoing

global poll leading to global violation.

Let Pj(V) be the probability of triggering global violation in global poll j. Pj(V) can

be determined based on Equation 17. The probability Pg of at least one global poll out of

M ongoing ones triggering global violation is

Pg = 1− ΠM
j=1(1− Pj(V))

184

Clearly, Pg increases quickly when the coordinator observes growing number of ongoing

global polls. If Pg is sufficiently high, our monitoring algorithm will report possible state

violation. This is particularly useful for situations with a few monitors suffering serious

message delay or loss, because no global polls can finish if these nodes can not send their

responses in time and the coordinator can never trigger global violation if running existing

state monitoring algorithms.

Combining Estimations of Both Stages. While we have considered the accuracy es-

timation problem for local violation reporting and global poll stages separately, a running

coordinator often experiences both local violation failures and incomplete global polls at

the same time. Hence, combining estimation on both stages is critical for delivering correct

accuracy estimation results. The overall probability of false negatives can be computed as

β = 1− (1−Pl)(1−Pg) where Pl and Pg are the probability of false negatives introduced

by failed local violation reporting and global polls respectively. Note that β ̸= Pl + Pg as

the event of miss-detecting a global violation due to failed local violation reporting, and

the event of miss-detecting a global violation due to failed global polls are not mutually

exclusive.

A Balanced State Monitoring Algorithm. The original state monitoring algorithm

invokes global polls only when receives local violation reports, and triggers state alerts

only after the coordinator collects responses from all monitors. When messaging dynamics

exist, such a deterministic algorithm has two issues. First, it may miss opportunities to

invoke global polls. Second, it never produces false positive results, but may introduce

many false negatives results. We introduce a balanced state monitoring algorithm that

minimizes the overall monitoring error. The balanced algorithm is obtained through two

revision on the original algorithm. First, when P (F), the probability of failing to receive

local violation reports at the coordinator, is sufficiently large (e.g. > 0.95), the algorithm

triggers a global poll. Second, if the estimated false negative probability β in the global poll

phase raises above 50%, the monitoring algorithm also reports state violation with a false

185

0 1 2 3 4
70

75

80

85

90

95

100

Delay Level

D
et

ec
te

d
 S

ta
te

 A
le

rt
s(

%
)

Oblivious
Est
Adpt
Est+Adpt

(a)

0 1 2 3 4
50

60

70

80

90

100

Loss Level
D

et
ec

te
d

 S
ta

te
 A

le
rt

s(
%

)

Oblivious
Est
Adpt
Est+Adpt

(b)

0 1 2 3 4
60

70

80

90

100

Mixed Delay and Loss Level

D
et

ec
te

d
 S

ta
te

 A
le

rt
s(

%
)

Oblivious
Est
Adpt
Est+Adpt

(c)

0 20 40 60 80
50

60

70

80

90

100

Percentage of Problem Nodes

D
et

ec
te

d
 S

ta
te

 A
le

rt
s(

%
)

Oblivious
Est
Adpt
Est+Adpt

(d)

Figure 49: State Violation Detection Rate: (a)under increasing level of delay; (b) under
increasing level of message loss;(c)under increasing level of mixed message delay and loss;
(d) with increasing number of problem monitors

positive probability 1 − β. The balanced algorithm is more likely detect global violations

compared with the original algorithm, especially when β is large.

186

6.3.4 Accuracy-Oriented Adaptation

Sometimes monitors may experience long-lasting message loss and delays. For instance, a

Xen-based virtual machine continuously generating intensive network IO may cause con-

siderable workload on domain 0, which further leads to constant packet queueing for other

virtual machines running on the same host[47, 93]. As a result, monitor processes running

on troubled virtual machines would experience continuous messaging dynamics until the

performance interference is resolved. For these situations, we argue that providing accu-

racy estimation alone is not enough. Reliable state monitoring should also adapt to such

non-transient messaging dynamics and minimize accuracy loss whenever possible.

The general idea of our approach is to minimize the error introduced by local violation

reporting through proper adjustment of local thresholds. We know that the distributed state

monitoring algorithm employs local thresholds to minimize the amount of local violation

reports sending to the coordinator. However, this technique introduces extra uncertainties

when messaging dynamics exist, because the coordinator cannot distinguish the case where

a monitor does not detect local violation from the case where a monitor fails to report a lo-

cal violation. Our approach minimizes such uncertainties through two simultaneous adjust-

ments. On one hand, it adjusts local thresholds on troubled monitors to reduce its chance

of detecting local violations, as the corresponding reports may not arrive the coordinator

which in turn introduces uncertainties. On the other hand, it also adjusts local thresholds

on healthy monitors to increase their local violation reporting frequencies to maximize the

information available to the coordinator so that it can provide good accuracy estimation.

The adjustment on healthy monitors is also important for monitoring correctness where we

ensure
∑n

i Ti 6 T .

Our motivating example in Section 6.2.2 shows two simple examples where a single

node (F/E) experiences messaging dynamics and adjustment of local thresholds leads to

confirm or rule out a global violation. Situations in real world monitoring environments,

however, are more complicated, e.g. multiple troubled monitors experiencing different

187

levels of messaging dynamics. As the impact of message delay and loss to local violation

reporting can be measured by the expected number of failed local violation reports E(fr),

we formulate the local threshold adjustment problem as a constrained optimization problem

as follows,

min E(fr) = Σn
i P (vi|Ti)P (mi)

s.t. Σn
i Ti 6 T

, where P (vi|Ti) is the conditional probability of reporting local violation on monitor i

given its local threshold Ti and P (mi) is the probability of failing to send a message to the

coordinator. One difficulty here is that we do not have a closed form for P (vi|Ti) = P (xi >

Ti) because we approximate the distribution of xi with histograms. While one could use

a brutal force approach to try all possible combinations of Ti, such an approach may not

scale well for large-scale distributed monitoring tasks with hundreds or even thousands

of monitors. To address this issue, we replace P (vi|Ti) with its upper bound P (vi|Ti) by

applying Markov’s inequality (Chebyshev’s inequality does not yield a closed form) where

P (|xi| > Ti) 6 E(|xi|)
Ti

. Since xi is positive in most scenarios and E(|xi|) can be obtained

through xi’s histograms, applying this approximation and Lagrange multiplier leads us to a

closed form solution. One remaining issue is that the above optimization often sets Ti too

high for troubled monitors due to the limited tightness of Markov bound. Hence, after we

obtain a solution, we limit Ti to µ+ 3σi where σi is the standard deviation of xi. Note that

healthy monitors are not involved in the above optimization. When Tres = T −
∑i ∈K

i Ti >

0 where K is the set of troubled monitors, we set Ti = Tres/|K|, where K is the set

of healthy nodes, to maintain local violation reporting efficiency whenever possible. We

find the resulting adjustments perform well in practice. In addition, we invoke adaptation

only when at least one node experiences relatively long-lasting (e.g. 5 minutes) messaging

dynamics to avoid frequent adaptation.

188

6.3.5 Discussion

Large-scale state monitoring tasks often employ hierarchical topologies where monitors

are organized into multi-level trees[54]. We developed techniques for supporting accuracy

estimation and self-adaptation in such hierarchical monitoring trees. In addition, certain

state monitoring tasks rely on advanced state monitoring models such as window based

models[82] to handel noisy data and outliers, we also devised schemes to support such

advanced state monitoring models. Due to space limitations, we leave details of these

techniques to our technical report[80].

We present our approach based on monitoring tasks defined over sum-aggregation and

upper bound threshold for brevity. Our approach also supports other types of tasks, such

as global violations defined by lower bound threshold, i.e. global violations triggered by∑n
i xi < Ti, and aggregations formed by linear combinations of xi, e.g. global violations

triggered by AV G(xi) > Ti. The required modification to our approach is trivial for these

tasks[80].

6.4 Evaluation

We implemented a prototype monitoring system with our reliable monitoring approach

and evaluated its performance with both monitoring traces collected from real systems and

cloud applications. We highlight key observations in our experiment as follows.

• Our reliable state monitoring approach detects up to 20% more state violations un-

der considerable messaging dynamics, compared with existing state monitoring ap-

proaches.

• By applying our techniques to cloud application auto-scaling, we can reduce applica-

tion response time and the number of timeout requests by up to 30% when monitoring

related messages are subject to delay and loss.

189

6.4.1 Experiment Setup

Our experiments consist of both trace-driven simulation and real system evaluation. The

trace-driven experiment evaluates the performance of our approach with access traces of

WorldCup 1998 official website hosted by 30 servers distributed across the globe[18]. We

used the server log data consisting of 57 million page requests distributed across servers.

We evaluate the monitoring accuracy achieved by our approach for a variety of messaging

dynamics in this set of experiments. The other part of our experiments leverages our mon-

itoring techniques to support auto-scaling of cloud applications where server instances can

be added to the resource pool of an application dynamically based on current workload[4].

We deploy a distributed RUBiS[8], an auction web application modeled after eBay.com

for performance benchmarking, and use state monitoring to trigger new server instance

provisioning. For the real system evaluation, we are interested in the impact of improved

monitoring accuracy on real world application performance. We provide more details of

experiment setup together with results in the rest of this section.

6.4.2 Results

Figure 49 shows the state violation detection percentage of different monitoring approaches

under different level and types messaging quality degradation. Here the y-axis is the per-

centage of state violation detected by the monitoring algorithm over state violation detected

by an oracle which can detect all violations in a given trace. In our comparison, we con-

sider four monitoring algorithms: 1) Oblivious, the existing instantaneous monitoring al-

gorithm which is oblivious to inter-node messaging quality; 2) Est, the instantaneous mon-

itoring algorithm enhanced with our accuracy estimation techniques; 3) Adpt, the instan-

taneous monitoring algorithm enhanced with our accuracy-oriented adaptation techniques;

4) Est+Adpt, the instantaneous monitoring algorithm enhanced with both estimation and

adaptation techniques.

We emulate a distributed rate limiting (Table 1) scenario and use a monitoring task that

190

triggers state violations whenever it detects the overall request rate (the sum of request rate

on all monitors) exceeds a global threshold (set to 3000 per second). The task involves 30

monitors, each of which monitors the request rate of one server by reading the correspond-

ing server request trace periodically. Furthermore, we set the detection window size to be

15 seconds, which means a state violation is considered as successfully detected if the time

of detection is at most 15 seconds later than the occurrence time of the state violation.

Figure 49(a) illustrates the performance of different algorithms under increasing mes-

sage delay. Here the x-axis shows the levels of injected message delay. For delay on level

k(k = 0, 1, 2, 3, 4), we pick 20 × k% of messages of a problem monitor and inject a de-

lay time randomly chosen from 5 to 60 seconds. By default, we randomly pick 10% of

monitors to be problem monitors. While there are many ways to inject message delays, we

use the above injection method for the sake of simplicity and interpretation. The detection

rate of the oblivious algorithm drops quickly as delay level increases, primarily because

its global poll process always waits until messages from all monitors arrive and the result-

ing delay on the violation reporting often exceeds the delay tolerance interval. The Est

algorithm performs much better as it is able to estimate the probability of a state violation

based on incomplete global poll results, which allows the Est scheme to report state vio-

lation when the estimated probability is high (above 0.9 in our experiment). For instance,

when an incomplete global poll yields a total request rate close to the global threshold, it

is very likely that a state violation exists even though responses from problem monitors

are not available. The Adpt scheme, however, provides limited improvement when used

alone. This is because accuracy-oriented adaptation by itself only reduces the chance of a

problem monitor reporting local violation. Without accuracy estimation, the Adpt scheme

still waits for all responses in global polls. With both accuracy estimation and adaptation,

the Est+Adpt scheme achieves significantly higher detection rate.

In Figure 49(b), we use different levels of message loss to evaluate the performance of

191

different algorithms. Similar to the injection of delay, we randomly pick 20 × k% mes-

sage of a problem node to drop for a k-level message loss. The relative performance of

the four algorithms is similar to what we observed in Figure 49(a), although the detection

rate achieved by each algorithm drops slightly compared with that in Figure 49(a) as de-

layed messages often still help to detect state violation compared with completely dropped

messages.

For the rest of the evaluation section, we inject mixed message delay loss, instead of

mess delay or loss alone, for comprehensive reliability evaluation. Similarly, the k level

delay and loss means that 10% messages are randomly chosen to drop and another 10%

messages are randomly chosen to add delays. Figure 49(c) shows the violation detection

performance of different algorithms given increasing levels of mixed message delay and

loss. We observe similar results in this figure and the performance achieved by our ap-

proach lies between those achieved in the two previous figures. In Figure 49(d), we vary

the scope of problem nodes from 20%(the default case) to 80%. The result suggests that our

approach consistently improves monitoring accuracy. Nevertheless, when problem moni-

tors becomes dominate, its performance is relatively worse that that in the three previous

figures.

Figure 50(a) shows the corresponding percentage of false positive (reporting state viola-

tion when none exist) produced. Recall that the default instantaneous monitoring algorithm

does not produce false positive as its global poll reports state violation only when the com-

pletely collected responses confirms the state violation, which, however, causes high false

negative rate (shown in Figure 50(b)). Figure 50(b) shows the false negative (reporting no

state violations when at least one exists) rates of all schemes. We can see that all of our

three schemes achieve fairly low false positive and false negative rates.

Figure 51 illustrates the three key efforts our approach makes to improve monitoring

accuracy and the corresponding portion of correctly reported state violations that are missed

by the default instantaneous monitoring algorithm. Here Adaptation refers to the effort of

192

1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

Mixed Delay and Loss Level

F
al

se
 P

o
si

ti
ve

(%
)

Oblivious
Est
Adpt
Est−Adpt

(a)

Mixed Delay and Loss Level

F
al

se
 N

eg
at

iv
e(

%
)

1 2 3 4
0

0.05

0.1

Oblivious
Est
Adpt
Est−Adpt

(b)

Figure 50: Errors in State Violation Detection: (a) comparison of false positive; (b) com-
parison of false negative;

Mixed Delay and Loss Level

%
 A

cc
u

ra
cy

 G
ai

n
 B

re
ak

u
p

1 2 3 4
0

20

40

60

80

100
Adaptation
Soft−Global−Poll
Estimated−Alert

(a)

Percentage of Problem Nodes

%
 A

cc
u

ra
cy

 G
ai

n
 B

re
ak

u
p

1 2 3 4
0

20

40

60

80

100
Adaptation
Soft−Global−Poll
Estimated−Alert

(b)

Figure 51: Accuracy Improvement Breakup: (a) with increasing message loss and delay
levels; (b) with increasing percentage of problem monitors.

193

Mixed Delay and Loss Level

R
es

p
. T

im
e

o
ve

r
O

b
liv

io
u

s(
%

)

1 2 3 4
50

60

70

80

90

100

Oblivious
Est
Adpt
Est−Adpt

(a)

Mixed Delay and Loss Level

#T
im

eo
u

ts
 o

ve
r

O
b

liv
io

u
s(

%
)

1 2 3 4
50

60

70

80

90

100

Oblivious
Est
Adpt
Est−Adpt

(b)

Figure 52: Impact on cloud application auto-scaling: (a) comparison of response time;
(b) comparison of timeouts.

reconfiguring local threshold, Soft-Global-Poll refers to the effort of triggering global polls

when the estimated local violation reporting probability is high (instead of receiving a

local violation), and Estimated-Alert refers to the effort of reporting state violation when

the estimated probability is sufficiently high. Note that multiple efforts may contribute to a

correctly reported state violation at the same time. Among the three efforts in both Figure

51(a) and Figure 51(b), Estimated-Alert clearly contributes the most as incomplete global

polls are the main reason for false negatives in the default monitoring algorithm.

Figure 52 shows the performance difference of RUBiS with auto-scaling enabled by

different monitoring schemes. We deploy a PHP version of RUBiS in Emulab[120] where

it has a set of web servers and a database backend. Each web server runs in a small footprint

XEN-based virtual machine (1 vCPU) and the database runs on a dedicated physical ma-

chine. This is to ensure database is not the performance bottleneck. To run the experiment,

we periodically introduce workload bursts to RUBiS’s default workload, and use state mon-

itoring to check if the total number of timeout requests on all web servers exceeds a given

194

threshold, i.e. one monitor runs on one web server to monitor local timeout requests. RU-

BiS initially runs with 5 web servers. When violations are detected, we gradually add new

web servers one by one to balance workloads until no violation is detected (auto-scaling).

Similarly, when no violations are detected for 1 minute, we gradually remove dynamically

added web servers one by one.

We introduce messaging delay and loss to monitor-coordinator communication in the

same way as that in the trace-driven experiments. The y-axis of Figure 52 shows the aver-

age response time and timeout request number of RUBiS requests which are normalized by

those of the oblivious scheme. Clearly, as our enhanced schemes detect more state viola-

tions, they can more reliability trigger auto-scaling when there is a workload burst, which

in turn reduces response time and request timeout by up to 30%. In addition, accuracy

estimation achieves higher detection rate compared with self-adaptation does. This is be-

cause monitors on load balanced web servers often observe similar timeouts and accuracy

estimation can often confirm global violations based on partial monitoring data.

6.5 Related Work

Most existing state monitoring works[39, 97, 60, 11, 57] study communication efficient

detection of constraint violation. This line of works adopt an instantaneous monitoring

model where a state alert is triggered whenever the sum of monitored values exceeds a

threshold. Meng et al.[] study a window-based state monitoring approach which captures

only continuous threshold-violation to provide robustness against transient value outliers.

Similarly, Huang et al.[49] propose a cumulative trigger to track the cumulative amount of

value “overflows”. These works do not consider the impact of messaging dynamics, and

thus, may deliver unreliable monitoring results under churn.

Jain and et al.[55] studies the impact of hierarchical aggregation, arithmetic filtering

and temporary batching in an unreliable network. They propose to gauge the degree of

195

inaccuracy based on the number of unreachable monitoring nodes and the number of dupli-

cated monitoring messages caused by DHT overlay maintenance. While this work provides

insight for understanding the interplay between monitoring efficiency and accuracy given

message losses, it also has several limitations as we mentioned in Section 6.2.2 such as not

considering delay and difficulties in gauging monitoring accuracy. Our work is comple-

mentary to [55] as we try to move forward the understanding of monitoring reliability by

studying accuracy estimation and self-adaptation in state monitoring.

Viswanathan and et. al. [109] recently proposed ranking windows of monitored metrics

based on their probability of occurrence computed based on the false positive/negative rates

for monitoring application performance anomalies. While this approach provides useful

prioritizing of monitoring alerts generated by a collection of performance monitoring tasks,

especially when administrators are overwhelmed by a large number of monitoring alerts,

our approach aims at improving the monitoring accuracy of each individual monitoring

task with the existence of data noises or communication issues.

196

CHAPTER VII

AN EFFICIENT PREDICTION-BASED MULTI-TIER CLOUD

APPLICATION PROVISIONING PLANNING METHOD

7.1 Introduction

Deploying a multi-tier web application to meet a certain performance goal with minimum

virtual instance renting cost is often the goal of many Infrastructure-as-a-Service (IaaS)

users. It is, however, difficult to achieve due to several reasons. First, a typical IaaS (e.g.,

Amazon’s EC2 and IBM’s SCE) offers a variety of virtual server instances with different

performance capacities and rental rates. Such instances are often marked with a high level

description of their hardware/software configuration (e.g. 1 or 2 virtual CPU) which offers

little information with regarding their performance for a particular application.

Second, multi-tier web applications often leverage clusters at different tiers to offer

features such as load balance, scalability and fault tolerance. The configuration of clusters

(e.g., the number of member nodes, how workloads are distributed among member nodes)

has a direct impact on application performance. However, the relation between cluster

configuration and performance is application-dependent, and often not clear to Cloud users.

To meet a given performance goal, users often over-provision a multi-tier web appli-

cation by renting high-end virtual server instances and employing large clusters. Over-

provisioning introduce high instance renting cost, which may make cloud deployment a

less desirable option compared with traditional deployment options. Unfortunately, man-

ually experimenting with different provisioning plans is often impractical given the huge

space of candidate provisioning plans.

We propose a prediction-based provisioning planning method which can find the most

cost-effective provisioning plan for a given performance goal by searching the space of

197

candidate plans with performance prediction. This invention employs a set of novel tech-

niques that can efficiently learn performance traits of applications, virtual machines and

clusters to build models to predict the performance for an arbitrary provisioning plan. It

utilizes historical performance monitoring data and data collected from a small set of au-

tomatic experiments to build a composite performance prediction model that takes appli-

cation workloads, types of virtual server instances and cluster configuration as input, and

outputs predicted performance.

Figure 53 shows the overall flow of the provisioning method. The proposed method

avoids exhaustively performing experiments on all candidate deployments to build a per-

formance prediction model by using a two-step performance prediction procedure. Instead

of directly predicting the performance of an arbitrary deployment (target), it first predicts

the performance on a known deployment (base) and then predicts the performance dif-

ferences between the target deployment and the base deployment. It combines the pre-

dicted base performance and the predicted performance changes to obtain the performance

on the target deployment. To achieve efficiency, the procedure predicts the performance

change based on the deployment difference between the base deployment and the target

deployment within each tier, rather than predicts the overall performance changes holisti-

cally cross multiple tiers. This avoids the need of exhaustively explores all deployments

that represent combinations of deployment changes cross tiers, because it considers each

tier independently. For instance, suppose we have an application consisting of 3 tiers and

each tier has 10 possible forms. Exhaustive search would explore all 103 = 1000 deploy-

ments to train a traditional performance prediction model, while our method only needs to

test 3 ∗ 10 = 30 deployments to obtain our two-step performance prediction model. Our

method also applies a multiplicative-delta learning technique (in capturing performance

changes introduced by different sizes of a tier) to further reduce the number of required

experiments for model training. In addition, our method includes techniques addressing

cross-tier workload characteristics changes that violates the inter-tier independence of our

198

Begin

Users specify the application, the

expected workload range and

the expected performance

Over-provisioning the application

to ensure the user-specified

performance goal is met

Monitoring and recording

application workloads and the

corresponding performance

Automatic Experiments

Monitoring and recording to

performance changes caused

by deployment change

Training the cross-tier

performance model

Training the per-tier differential

performance model

Predicting the performance of

all candidate plans

Output the suggested

provisioning plan

Done

Figure 53: The Overall Flow of the Method

performance model.

Here is a sample work flow:

1. An user submits a request to deploy a multi-tier Cloud application in an Infrastructure-

as-a-Service Cloud environment. The request also describes the expected range of

workloads and expected performance.

2. The application is first deployed in an over-provisioned setting.

3. While the application running in the Cloud infrastructure, its workloads and perfor-

mance are monitored and the corresponding monitoring data are stored.

4. The collected workloads and performance data are used to train a cross-tier perfor-

mance model.

5. The application is replicated for a set of automatic experiments which deploy the

199

application with different provisioning plans and measure the corresponding perfor-

mance with different workloads. The goal of the automatic experiments is to learn

the performance characteristics of different deployment options (e.g., virtual machine

types and the number of virtual machines in a cluster).

6. The workloads and performance data collected in the automatic experiments are used

to train a per-tier performance model.

7. The method explores all candidate provisioning plans and predicts the corresponding

performance (for the user specified workload range) using both the cross-tier and the

per-tier performance model.

8. Among all candidate provisioning plans, the one that meets the user-specified per-

formance goal and has the lowest virtual machine instance renting cost is selected as

the suggested deployment for the user.

7.2 Prism: Performance Prediction based Cloud Application Provision-
ing

We consider interactive Cloud applications such as web applications as the targeted ap-

plications in this invention. Such applications are request-driven and one request may be

served by multiple components at different tiers (e.g., web servers, application servers and

database servers). We use the request response time to measure the performance of appli-

cations, and use the request rate (throughput) to measure the workloads on applications.

We use the term deployment to refer to the choice of virtual machine type and cluster

configuration (the number of member nodes). Our planning method consist of three tech-

niques: 1) a prediction method that takes workloads and deployment as input, and output

the predicted application performance; 2) a method that captures the changes of perceived

workloads across different deployments; 3) a planning method that explores all candidate

provisioning plans and outputs the optimal one.

200

7.2.1 The Prediction Method

The general idea of our prediction techniques is to first predict the response time for a

given workload on an over-provisioned deployment (also referred to as the base deploy-

ment), and then modify the predicted response time considering changes introduced by the

difference between the over-provisioned deployment and the actual targeted deployment.

Correspondingly, we employ two performance models to accomplish this task, a cross-tier

performance model which captures the relation between workload and response time for

the base deployment, and a per-tier performance model that captures the relation between

deployment changes (to the base deployment) and corresponding changes of the response

time.

A cross-tier model has the following form,

Θc(w)→ r (18)

where w is the workload and r is the average response time of requests. The cross-tier

model takes workload as input and outputs the response time on the base deployment.

Note that while we use average response time to describe the techniques, our approach

also supports the prediction of quantile response time (e.g., 90-th percent response time

of requests). We use Kernel regression to train the cross-tier model. As a non-parametric

technique, it does not specify a certain relation (e.g., linear relation) between w and r, but

produces a non-linear relation between w and r that best fits the observed performance data.

This flexibility is important as the actual relation between w and r may vary at different

workload levels, or across different applications.

A per-tier model has the form of,

Θt
p(w, v, c)→ r∆ (19)

where t denotes the object tier, v is the virtual machine type, c is the cluster size, i.e. the

number of member nodes, and r∆ is the change of response time compared with the base

201

deployment. The per-tier model is actually a set of models where each model is trained

for a particular tier. Each per-tier model takes the workload, the type and the number of

virtual machine used at the object tier as input, and outputs the changes of response time

introduced by this tier over that of the base deployment. Same as the cross-tier model, we

also use Kernel regression to train the per-tier model.

To predict the response time for a target deployment and a given workload, we first

use the per-tier model estimate the differences of response time introduced at each tier due

to the deployment differences between the target deployment and the based deployment.

Specifically, the overall change of response time change R∆ is,

R∆ ←
∑
∀t

Θt
p(w, v(t), c(t)) (20)

where v(t) is the virtual machine type in tier t and c(t) is the number of virtual machines

in tier t. The final predicted response time r∗ is,

r∗ ← R∆ +Θc(w) (21)

where we apply the predicted response time changes to the predicted response time on the

base deployment. Figure 54 illustrates the work flow of the prediction process.

The cross-tier model and the per-tier model are trained separately in two steps. The

training of the cross-tier model requires only performance monitoring data on the base de-

ployment. Note that such data can be easily collected from the base deployment when it

serves user requests, which means no additional experiments are needed for data collec-

tion. Specifically, the training data set should include the request rates spanning from light

workloads to peak workloads and the corresponding average response time. Off-the-shelf

statistical tools can be used to train the cross-tier model (e.g. npreg() in R). Typically,

the base deployment is over-provisioned to ensure the request response time meets the

performance goal. However, our approach works on any based deployment. The base

deployment is also used as contrasts to generate training data for the per-tier model.

202

Begin

Using the cross-tier model

to predict the base

performance

Explored all

candidate

plans?

Use the per-tier differential

performance model to

predict the performance

change at the current tier

 Explored all

tiers?

Combining the predicted base

performance and the predicted

performance changes at all tiers

Output the candidate plan that

meets the performance goal with

the lowest cost

End

True

False

True False

Figure 54: The Work Flow of the Prediction Process

203

The per-tier models are trained in a tier-by-tier basis based on performance data col-

lected on a series of automatic experiments (Figure 55). Specifically, we first create a

duplicate of the based deployment and refer to this deployment as the background deploy-

ment. For a per-tier model on tier t, we vary the configuration of tier t on the background

deployment by changing the virtual machine type and the number of virtual machines,

and leave the configuration of other tiers unchanged (same as the configuration in the base

deployment). This leads to mn different background deployments where m is the total

number of virtual machine types and n is the maximum number of virtual machines in tier

t. For each resulting background deployment (with virtual machine type v(t) and virtual

machine number c(t) in tier t), we introduce different levels of workloads (from light level

to peak level just as those in the cross-tier model training dataset) to the deployment and

record the difference of response time r∆ between the background deployment and the base

deployment for each level of workload w. The workload can be generated by simple work-

load generation tools such as httperf. The resulting data points (w, v(t), c(t), r∆) are

used to train the per-tier model Θt
p. Similar to the cross-tier model, Off-the-shelf statistical

tools can be used to train the per-tier model.

One particularly time-consuming procedure in training the per-tier model is capturing

cluster performance changes with different number of virtual machines. The virtual ma-

chine provisioning time on most Cloud platforms ranges from a few minutes to 20 minutes.

As a result, adding virtual machines to a cluster one-by-one to capture the correspond-

ing performance changes can take substantial time, especially for large clusters with many

member nodes. To address this issue, we employ a multiplicative-delta learning technique

that selectively performs additional experiments. Instead of adding virtual machines one-

by-one, it doubles the virtual machines incremental number, if the per-tier model gives

good prediction on the performance of the current cluster. If the prediction accuracy drops

at certain point, it reduces the instance incremental number by half. The procedure finishes

until the maximum instance number is reached. The rationale behind this technique is that

204

Begin

Tested all

tiers?

Changing the type of virtual

machine

Tested all

VM types?

Tested all

sizes?

Changing the number of

VMs in the current tier

Use the base deployment

and make changes to only

one tier

Test the deployment with

different workloads and

measure performance

changes

End

True

False

True

False

False

True

Figure 55: The Work Flow of the Automatic Experiment

most clusters implement a load-balance scheme among their member instances. As a re-

sult, the performance curve can be learned with relatively small amount of training data.

Even if the cluster implements a complicated workload assignment scheme, the technique

can degenerate to the original cluster performance learning procedure which intensively

collects performance data points with many different size settings.

7.2.2 A Concrete Example

We now present a detailed example of deploying a web application in Smart Cloud Enter-

prise (SCE) to illustrate the advantage of our approach over existing techniques.

The Deployment Scenario. SCE provides 9 different types of pre-configured virtual

machine instances. The configuration is defined in terms of the number of virtual CPUs,

the size of virtual machine memory and the size of local storage. Different types of VMs

are also associated with different hourly (renting) rate. A user wants to deploy a web

application consisting of three tiers, the web server tier, the application server tier and a

database tier. To deploy the web application, the user needs to decide the deployment plan

205

for each tier which breaks down to 1) what types of VM instances to use at one tier; 2)how

many VM instances to use at one tier. For the sake of this example, we assume one tier

can at most utilize N = 20 VM instances. In addition, the user also has a performance

requirement of achieving an average request response time (measured in a 10-second time

window) less than 2 seconds, as long as the incoming requests rate is below a certain level,

e.g., 500 requests per second. The overall deployment goal is to achieve this performance

goal with minimum instance renting cost.

Experiment-based exploration. This line of methods[127] leverage the massive com-

puting power in a datacenter to run a large number of experiments to measure the perfor-

mance of an application under different deployments. While such methods may work well

for applications with relative small number of candidate deployments and environments

with massive (free) available computing resources, they may cause prohibitively high cost

for exploring candidate deployments for multi-tier applications. In our deployment sce-

nario, the total number of candidate deployments is (9 × 20)3 = 5832000. Even if each

experiment lasts only 1 minute and all instances are charged at the lowest rate, the overall

experiment would cost $1, 204, 308 to complete.

Rules of Thumb. One may use rules of thumb to predict the unobserved performance

of one deployment based on observed performance on another deployment. For instance,

suppose the workloads of the web application in our scenario are CPU bounded. If one

observes that a deployment consisting of only virtual machines with a single virtual CPU

satisfies the performance requirement for a request rate of 250 requests per second, one

may infer that a deployment consisting of only virtual machines with two virtual CPUs

should satisfies the performance requirement for a request rate of 500 requests per second.

Unfortunately, we find this is often not true through many experiments because the number

of virtual CPUs in a virtual machine is not a good indicator for CPU performance.

Prediction techniques based on queuing model or statistical regression. These tech-

niques are often used to train performance models for a fixed deployment and the trained

206

performance models can predict the performance for a given workload on the fixed deploy-

ment. However, a model trained for one deployment usually cannot be used for perfor-

mance prediction on another deployment. For instance, if we train a performance model

based on queuing models on a deployment consisting of only virtual machines with 2 vir-

tual CPUs, the same model is very likely to produce poor prediction results on another

deployment consisting of only virtual machines with 1 virtual CPU. This is because the

service time of a request usually changes across different deployments, which in turn inval-

idates the model on a new deployment. Regression based performance models have similar

issues as the performance-workload relation changes across different deployments. Train-

ing a performance model for all candidate deployments is clearly infeasible (same as the

case of experiment-based exploration).

Our approach. The central technique in our approach is building a performance

model that can produce accurate performance prediction for different deployments (versus

to single-deployment prediction model). First, we train a regression-based performance

model on an over-provisioned deployment which we refer to as the base deployment. On

SCE, such an over-provisioned deployment consists of only Platinum virtual machines (64-

bit VM with 16 virtual CPUs and 16GB memory) and each tier has 20 such VMs. The

training process involves feeding the base deployment with different levels of workloads

and measuring the corresponding performance. The resulting performance data (average

response time) and workloads are then used to train the performance model which we re-

fer to as the cross-tier model which can predict the average response time for a certain

workload on the base deployment.

Second, we train a set of models that captures the performance changes introduced by

using different VM types and different number of VMs at each tier. This process is per-

formed on a tier-by-tier basis with a outer loop and an inner loop. The outer loop deals

with one tier at a time and the inner loop captures the performance changes brought by de-

ployment changes at one tier. The outer loop first pick the web server tier for manipulation.

207

Figure 56: Training Per-Tier Models

Within the corresponding inner loop, we first change the types of VMs from Platinum to

64-bit Gold (8 virtual CPUs and 16GB memory) at the web server tier, and measure the

difference between performance on the new deployment and that on the base deployment

given different levels of workloads. We then reduce the number of VMs at the web server

tier one-by-one, and measure the difference between performance on the resulting deploy-

ment and the base deployment. Note that while we change the VM type and number at the

web server tier, the other two tiers, the application server tier and the database tier, are left

unchanged (same as those in the base deployment).

Similarly, we change the VM type to 64-bit Silver (4 virtual CPUs and 8GB memory)

and vary the number of VMs at the web server tier. For each resulting deployment, we

measure the difference between performance on the new deployment and that on the base

deployment given different levels of workloads. We repeat this process until we have tried

all VM types on the web server tier. The collected performance difference data allow us

to train a web server tier model (Equation 7.2.1) that predicts the performance changes

introduced by deployment changes (i.e., VM type and number) at the web server tier of the

base deployment. Up to now, the first round of the outer loop finishes. Figure 56 illustrates

the training process.

For the second round, we change the deployment of the application server tier. Note

that this time we keep the web server tier and the database tier the same as those in the

208

base deployment. We follow the same procedure to change the VM type and the VM

number and measure the corresponding performance difference. The generated data leads

to a application server tier model that predicts the performance changes introduced by

deployment changes at the application server tier of the base deployment. Similarly, the

final round works on the database tier and produces a database tier model that predicts the

performance changes introduced by deployment changes at the application server tier of

the base deployment. The three models trained are referred to as per-tier models.

We now can predict the performance of an arbitrary deployment based on the cross-tier

model and per-tier models. Suppose we want to know the average response time on a de-

ployment consisting of 5 Bronze VMs (2 virtual CPUs and 4GB memory) at the web server

tier, 10 Silver VMs (4 virtual CPUs and 8GB memory) at the application server tier and 20

Gold VMs (8 virtual CPUs and 16GB memory) at the database tier when given a workload

of 500 requests per second. We first use the cross-tier model to predict the average response

time for the given workload (500 request/second). Note that the predicted response time

which we refer to as the base response time is for the base deployment. Next, we apply the

web server tier model (a per-tier model) to predict the changes of response time contributed

by the deployment changes at the web server tier (compared with that of the base deploy-

ment). As 5 Bronze VMs have much less processing power compared with 20 Platinum

VMs in the base deployment. The predicted response time change is very likely to be a

positive value. Similarly, we also apply the application server tier model and the database

tier model to obtain the predicted response time changes at the corresponding tiers. Finally,

we sum up the base response time and the three predicted response time changes at differ-

ent tiers together to obtain the predicted response time for the given deployment. Figure

57 illustrates the prediction process. Note that this example does not show the detail of

handling cross-Deployment workload changes described in Section 7.2.3.

209

Cross-Tier

Model

Per-Tier

Models

Workload

Response Time

Per-Tier

VM Type

Per-Tier

Cluster Size

Base Response Time

Adjustment

Figure 57: Illustration of The Prediction Process

7.2.3 Capturing Cross-Deployment Workload Changes

The above prediction method makes an implicit assumption that the actual workloads per-

ceived at each tier do not change across different deployments. This assumption, however,

may not hold for many Cloud applications. The perceived workload at a tier may not be

the same as the workload introduced to the application due to prioritization, rate limiting

mechanisms implemented at different tiers. For instance, an application may drop cer-

tain low-priority requests when a certain tier becomes performance bottleneck, which in

turn causes the change of workload at other tiers. Even for applications without prioritiza-

tion mechanisms, a bottleneck tier may limit the overall system throughput and introduce

changes to the workload on other tiers.

Performance prediction without considering such workload changes may lead to sig-

nificant prediction accuracy loss. As another example, a database tier of a web application

configured with a single low-end virtual machine can be a performance bottleneck when

the web application is fed with a peak workload wp. As a result, the actual workloads per-

ceived at each tier w′ is often less than wp as a certain amount of requests are queued due

to database overloading. Clearly, using the data (wp, v, c, r∆) for training would introduce

error to the per-tier model. To address this issue, we introduce a throughput model Θt
h for

a tier t with the following form,

Θt
h(w, v, c)→ w′ (22)

210

where w′ is the actual workload perceived by all tiers. When making performance predic-

tions, we apply the throughput model to obtain the predicted workload at each tier, and

use the lowest predicted workload as the input of the per-tier model. Specifically, with the

throughput model, the per-tier model has the following form,

Θt
p(min

∀t
Θt

h(w, v(t), c(t)), v, c)→ r∆ (23)

where we replace the input workload w with the actual workload predicted by the through-

put model. We also use Kernel regression to train the throughput model. Note that the data

used for training the throughput model is (w, v, c, w′) and w′ can be easily measured by

counting the number of responses within a time window.

7.3 Supporting Request-Mix Awareness

Application workloads often consist of requests of different types and requests of different

types often introduce different processing overheads. For instance, for eBay-like appli-

cations, bidding requests usually incur higher costs than browsing requests do as bidding

often involves database transactions. As a result, even if two workloads have the same re-

quest rate, they may result in very different resource consumption and performance if the

composition of requests are very different, e.g., a 100 request/second workload with 20%

bidding requests and 80% browsing requests versus another 100 request/second workload

with 80% bidding requests and 20% browsing requests.

Performance oriented provisioning planning for application with heterogeneous per-

request costs requires fine-grain definition of workloads with information on the composi-

tion of requests. Accordingly, performance prediction should also consider the composition

of requests, a feature we refer to as request-mix awareness. We next describe the details of

supporting request-mix awareness in our performance models.

To support request-mix-aware prediction, we first introduce a set of new inputs which

describe the request composition of a workload. Specifically, we replace the workload w

(scalar) with a vector R = r1, r2, . . . , rk where ri is the rate of requests of type i. For the

211

brevity of discussion, we still predict the overall response time for all requests. Note that

our techniques can be directly used to predict the response time for a specific type, or a set

of types, of requests by simply using the corresponding response time (of the specific type,

or a set of type, of requests) to train models.

Recall that training a model that is oblivious to request composition requires only gen-

erating workloads with different request rates, i.e., the model input (request rate) is a

scalar. Training a request-mix-aware model, however, would require much more perfor-

mance measurement (training) data with different compositions of types of requests due

to the extra degrees of freedom introduced by per-request-type workloads, i.e. the model

input (per-type request rate) is a vector. As a result, this would significantly increase the

experiment time and make the model training process very expensive and infeasible. For

example, suppose we have 20 different types of requests and we measure request rates in

10 different levels (e.g., 0-100, 100-200, 200-300, etc.), the ideal training data would in-

clude all compositions of per-type request rates (1020 different workloads) which is clearly

impractical. Note that even though we often do not need the ideal set of data to achieve

reasonable prediction accuracy, e.g., a 10% subset of the ideal training data (randomly se-

lected) may be sufficient, a small percentage of such a large dataset (e.g., 10% of 1020) is

still practicaly infeasiable to generate.

7.3.1 Efficient Training of Request-Mix-Aware Models

We next describe a technique that can substantially reduce the needed experiment time. The

basic idea is to automatically find cost relationship between different requests, e.g., request

A and B have similar cost, or the cost of request A is about 2 times higher than that of

request B. Such cost relationships allow us to map the original workload vector into a new

workload vector with much smaller number of dimensions, which in turn greatly reduces

the amount of training data needed to reflex different workload compositions. For the

previous example, if we can group 20 different types of requests into 2 general types (e.g.,

212

transactional and non-transactional), we effectively reduce the number of compositions in

the ideal training dataset from 1020 to 102.

To illustrate the advantage of our technique, we first introduce two alternative tech-

niques. One technique is to remove requests with trivial overheads from the performance

model. For instance, HTTP requests such as home in RUBiS asking for a small static html

file (often cached) from the web server. However, this technique cannot substantially re-

duce the dimension of the model input vector as such low-cost requests often contribute to

a very limited portion of the overall workloads (e.g., < 1% in RUBiS). A slightly advanced

technique is to cluster requests into different groups where requests within the same group

have similar overheads. It reduces the diemsnion of the model input from the number of

request types to the number of clusters. Despites its intuitiveness, it has a serious drawback

due to the binary true-false relation it poses to pairs of request types. Consider a pair of

request types A and B. Requests of type A and B both cause the database server to per-

form the same SELECT operation and the only difference is that the SELECT operation is

executed once for A but twice for B, i.e. a request of type B is apprxomately two times

more expensive than a request of type A. If A and B are clustered into different groups with

fine clustering granularities, the total number of groups can be quite large as only requests

with very similar overhead are grouped together. However, if A and B are clustered into

the same group, different compositions of type A and B requests may lead to very different

workloads due to overhead difference between A and B, even if the total number of requests

of this general type may be the same.

Our technique flexibly captures the cost relation between different request types. Specif-

ically, for requests of the same group, we capture their relative overhead with a linear sys-

tem. For the previous example, the total workload introduced by requests of type A and

B WA,B = NA + 2NB where N(·) is the request number of a certain type. Formally, we

linearly project the original workload vector W⃗ defined in a high dimensional space into a

new workload vector W⃗∗ defined in a lower dimensional space.

213

The main difficulty in this projection process is to ensure that the new W⃗∗ can accu-

rately represent the true workload so that the our performance model can provide good

prediction. Achieving this goal, however, involves two challenges. First, how to evalu-

ate the quality of a projection π? Although it is possible to apply π to get W⃗∗ from W⃗ ,

and compare the prediction accuracy of the performance model trained with W⃗∗ and that

of the model trained with W⃗ , such an approach is also prohibitively expensive given the

computation cost of model training. Second, how to efficiently explore and evaluate dif-

ferent projections to find an optimal one? Brute force approaches that explore all possible

projections are clearly infeasible due to the countless number of possible projections.

7.3.1.1 Efficient Evaluation of A Projection

To address the first challenge, we must find an approach that can evaluate the quality of

a projection without actually training a performance model based on the projected model

input. We choose to use mutual information between the projected model input and the

corresponding response time as the metric for evaluation, i.e., I(R, W⃗∗) where R is the re-

sponse time and W⃗∗ is the projected model input. Mutual information[121] of two random

variables is a quality that measures the mutual dependence of the two random variables.

Formally, the mutual information of two discrete random variables X and Y can be defined

as,

I(X, Y) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (24)

Mutual information measures the information that X and Y share: it measures how much

knowing one of these variables reduces uncertainty about the other. For example, if X and

Y are independent, then knowing X does not give any information about Y and vice versa,

so their mutual information is zero. At the other extreme, if X and Y are identical then all

information conveyed by X is shared with Y: knowing X determines the value of Y and

vice versa.

Fano’s inequality suggests that we can find the optimal projection π by maximizing

214

I(R, W⃗∗). This result determines a lower bound to the probability of error when estimating

a discrete random variable R from another random variable W⃗∗ as

Pr(r ̸= r̂) ≥ H(R|W⃗∗)− 1

log(|R|)
=

H(R)− I(R, W⃗∗)− 1

log(|R|)
(25)

Hence, when the mutual information between R and W⃗∗ is maximized, the lower bound

on error probability is minimized. Therefore, mutual information serves as a good indica-

tor for the quality of projection, because the higher the mutual information is, the higher

predictability of the model built based on the projected model input is.

7.3.1.2 Efficient Search for An Ideal Projection

Since we use I(R, W⃗∗) to measure the quality of a projection and the ideal projection is

the one that maximizes I(R, W⃗∗), the search for an ideal projection can be formulated as

optimization problem defined as follows,

π = argmax
π

I(R, ⃗W ∗ (π)) (26)

where ⃗W ∗ (π) is the resulting model input generated by using projection π. As a result,

we can perform gradient ascent on I to find the optimal projection as follows,

πt+1 = πt + η
∂I

∂π
= πt + η

N∑
i=1

∂I

∂wi

∂wi

∂π
(27)

I(R, W⃗∗) can be written as,

I(R, W⃗∗) =
∑
r∈R

∫
w∗

p(r, w∗)log p(r, w∗)
p(r)p(w∗)

dw∗ (28)

We use the data collected on the base deployment to perform the search for the op-

timal projection. Since we use workload and performance data collected from the base

deployment during the actual application runtime, there is no additional cost in generating

training data for the searching of the optimal projection. In addition, as the cost relationship

between different types of requests is independent of deployments, we apply the learned π

to the training process of the reference model.

215

To determine the number of dimensions in the projected workload vector W⃗∗, we let

user choose the acceptable time length of automatic experiments and then use this informa-

tion to derive the dimensions of W⃗∗. For instance, suppose a user specifies that the experi-

ment of each deployment should not exceed 30 minutes. If the performance measurement

of a given workload can be done in 30 seconds, the total number of workload composi-

tions we can test on one deployment is 60 (60 × 1/2 = 30). If a 10% random sampling

of workload composition is good enough for model training and there are 5 diferent levels

for the request rate, we then have a total population of 600 (60/0.1 = 600) workload com-

positions which approximately correspones to a dimenion of 4 in W⃗∗ (54 = 625 ≈ 600).

Note that we can also let user specify a high level cost requirement for model building, e.g.,

the maximum time for experiment or even the total monetary cost for experiment, and we

then derive the dimension of W⃗∗ based on the above process, the number of deployments

needed to test for collecting data and the virtual instance pricing policy.

7.3.2 Provisioning Planning

With the prediction model described above, finding the optimal provisioning plan for an ap-

plication is straightforward. It requires only exploring all candidate provisioning plans and

estimating the cost (monetary cost such as virtual machine renting fee which can be easily

computed based on the pricing policy of a Cloud platform) and performance (obtained by

our prediction method) of each candidate plan. The optimal plan is the one with the lowest

cost and performance that satisfies the performance goal. As the cost estimation and per-

formance prediction introduces trivial computational cost, the overall search process can

often be completed within a few seconds. In addition, the performance prediction model,

once trained, can be repeated used for different planning tasks with different performance

goals.

216

Table 2: Virtual Machines in SCE
Name in SCE VM Type vCPU Memory(GB) Disk(GB) OS Hourly Rate

Copper32 A 1 2 60 RHEL32bit $0.19
Copper64 B 2 4 60 RHEL64bit $0.4
Gold32 C 4 4 350 RHEL64bit $0.5
Silver64 D 4 8 1024 RHEL64bit $0.61
Gold64 E 8 16 1024 RHEL64bit $0.94

Platinum64 F 16 16 2048 RHEL64bit $ 1.84

Figure 58: Performance Prediction Accuracy

7.4 Evaluation

We conduct our experiment in IBM’s Smart Cloud Enterprise (SCE), a production Infrastructure-

as-a-service platform similar to Amazon’s EC2. SCE offers a variety of virtual machines

with different capacities and hourly rates as shown in Table 2. We use a 3-tier RUBiS [8]

as our application benchmark.

Figure 58 shows the prediction accuracy of our approach where the x-axis is the ob-

served average response time and the y-axis is the predicted average response time. For

each data point, the x value is the observed average response time for a certain workload

and the y value is the predicted average response time for the same workload. We use

Absolute Percentage Error (APE) to measure the accuracy of prediction where APE =

|ObservedResponseT ime−PredictedResponseT ime|
ObservedResponseT ime

. The dashed lines indicate the 0.1 APE range.

Most data points in the figure are close to the line y = x, which indicates that the predicted

response time is close to the observed value. Overall, the average APE of all data points is

217

Figure 59: CDF of Performance Prediction Error

0.15371. Figure 59 shows the distribution of APE of all data points in Figure 58. About

80% of data points have APE less than 0.15.

We compare our approach with an utilization based approach in Figure 60 where differ-

ential denotes our approach and utilization represents the utilization based approach. The

utilization based prediction approach utilizes queuing theory and adopts a simple assump-

tion that the relationship between resource utilization and the response time is constant

across different deployments. This approach first trains workload-utilization models for

different types of virtual machines, and then trains a utilization-response time model on

one type of virtual machines. To predict response time for a given workload w, it first uses

the workload-utilization model to get the corresponding utilization which is then used to

predict the corresponding response time with the utilization-response time model. Clearly,

the utilization based approach achieves much worse prediction accuracy compared with our

differential prediction approach. About 60% of its predictions has an APE larger than 0.2.

To illustrate why the utilization based approach[103] does not perform well, we use

Figure 61 to show the relationship between response time and the corresponding CPU uti-

lization across different types of virtual machines runnning MySQL. The x-axis shows the

increasing utilization and the y-axis shows the average response time. The curves from

right to left represents virtual machines of type A, B, C, E, F (each type of VM has two

times more vCPUs than the previous one). While the CPU utilization of type A VM spans

218

Figure 60: Performance Prediction Accuracy

Figure 61: Performance Prediction Accuracy

from 20% to almost 100%, the CPU utilization of other types of VMs spans over smaller

and smaller ranges with increasing number of virtual CPUs. We find that the reason for this

reducing range of CPU utilization is the skewed distribution of CPU utilizatoin acorss vC-

PUs. For VMs with more than 1 vCPU, usually only the first vCPU is highly utilized while

the rest of vCPUs are under utilized. As a result, the assumption of constant utilization-

resonse time does not hold, which in turn leads to poor prediction performance of the

utilization based approach.

We also performed case study to evaluate the overall performance of our Cloud appli-

cation provisioning approach. We use a SLA defined as follows: For a maximum workload

of 2400 user sessions, 75% requests should have a response time less than 600ms. Our

approach produces a provisioning plan A2A2B4 (2 type A VMs running the web server,

219

2 type A VMs running the application server, 4 type B VMs running the database server)

which leads to an SLA violation ratio of 0.04% and an overall cost of $2.36 per hour. With

the utilization based approach, the resulting provisioning plan is E1E1E1 (1 type E VM

running the web server, 1 type E VM running the application server, 1 type E VM running

the database server) which leads an SLA violation ratio of 2.34% and an overall cost of

$2.82 per hour. Finally, we also evaluate the performance of an instance driven provision-

ing. It first uses a A1A1A1 deployment to test the maximum workloads such a deployment

can run without violating the SLA. It then simply increasing the number of instances at

each tier to reach the throughput specified in the SLA assuming that the throughput of the

resulting deployment increases linearly with the number of instances. The instance-drive

approach produces a provisioning plan of A8A8A8 which leads to a SLA violation ratio of

0.03% and a high overall cost of $4.56 per hour, a cost almost doubled compared with our

approach.

7.5 Related Work

Existing techniques used to plan multi-tier web application provisioning can be categorized

into three classes.

Experiment based exploration. This line of works[127] use automatic configured

experiments to test the application performance of different provisioning plans. As these

works often need to explore the entire configuration space to produce definite results, the

corresponding cost is fairly high in terms of both resource consumption and execution time.

Rules of thumb. These techniques use intuitive observation and heuristics to predict

performance and plan provisioning. For instance, if a VM with a single vCPU can achieve

throughput X, then a VM with 2 vCPUs should produce a throughput of 2X. These tech-

niques often overlook complex performance behaviors of applications, virtual machines

and clusters, which often lead to poor prediction accuracy. Due to its simplicity, rules of

thumb also do not cover certain provisioning options. For instance, it is not clear how to

220

develop a rule of thumb for predicting the growth of request response time given increasing

throughput for an arbitrary application.

Single-deployment performance modeling. Performance modeling is often used to

capture the relation between workloads and performance for a specific deployment. Ex-

isting approaches along this direction often apply queuing models[108] and regression

techniques[103]. Queuing model based approaches often use instrumentation at the mid-

dleware level or the operating system level to obtain critical model parameters such as

per-request service time. This often limits the applicability of these approaches in Cloud

environment where middleware or OS instrumentation may not be a valid option for Cloud

users. Other works employ assumptions or approximations to apply analysis techniques

such as mean value analysis (MVA),which may limit the accuracy of the model and its pre-

diction performance. Regression based approaches utilize statistical regression techniques

to build prediction models which captures the relation between workload and performance.

Compared with queuing model based approaches, they do not explicitly model the internal

processing and waiting mechanisms of an application, but simply capture the fundamental

relationship between workload and performance. As a result, they do not require instru-

mentation to build models, and introduce little assumption or approximation.

These approaches build models for a specific hardware/software deployment, e.g., fixed

machines and cluster configurations, and focus on the impact of workload changes on per-

formance. The resulting models often produce poor prediction results on a different hard-

ware/software deployment. On the contrary, our approach not only considers workload

changes, but also deployment changes, e.g. what if using machine A instead of machine B

to run the database server. This cross-deployment feature is important for Cloud applica-

tion provisioning due to the large number of available deployment options (e.g., different

virtual machines types and different cluster configurations). Another distinct feature of our

approach is that it utilize a per-tier model to capture the performance difference introduced

by deployment changes at each tier. This allows us to predict performance changes for any

221

combination of deployment changes at different tiers without collecting performance data

from the corresponding deployment, which saves tremendous amount of experiment time

and cost.

222

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This dissertation makes three unique contributions. First, we study the problem of accu-

rate and efficient local-to-global state aggregation in distributed state monitoring. At the

global violation detection level, we develop window based state monitoring (Chapter 4) to

prevent monitoring data noises to trigger unnecessary state violations. Furthermore, we de-

vise a distributed state monitoring algorithm that utilizes distributed monitoring windows

to achieve significant monitoring communication reduction which in turn saves consider-

able CPU resources on communication endpoints such as monitors and coordinators. At

the local state collection level, we develop violation likelihood based sampling technique

(Chapter 5) that dynamically tunes sampling intensities based on the likelihood of detecting

important results, which allows a flexible tradeoff between sampling cost and monitoring

accuracy.

Second, rather than assuming perfectly reliable monitoring environments in Cloud data-

centers, we consider various dynamics such as communication issues and node failures that

are common in a virtualized datacenters. These dynamics not only widely exist across vir-

tualized datacenters due to performance interferences, application scale and management

complexities, but also potentially introduce considerable monitoring errors to state mon-

itoring approaches that depend on reliable communication and always-online monitoring

nodes. We propose a robust state monitoring algorithm (Chapter 6) that not only continu-

ously annotates monitoring results with accuracy estimation, but also adapts to long-term

communication issues or node offline events. Overall, it maximizes the utility of mon-

itoring data even when they are incomplete or error-prone and helps Cloud application

performance management tasks such as auto-scaling to achieve better results.

223

Third, we also propose a set of techniques to address several important issues on the

distributed coordination model, including optimizing monitoring communication at multi-

task level, elasticity of the monitoring system and utilizing state monitoring data to simplify

application provisioning. We present REMO (Chapter 2) to provide multi-tenancy support

for different state monitoring service users through safeguarding per-node level monitoring

resource consumption and exploring cost sharing opportunities among different monitoring

tasks. We develop Tide (Chapter 3) to provide the elasticity that state monitoring servers re-

quire to keep up with the on-demand, highly dynamic Cloud workloads. We also introduce

Prism (Chapter 7) to show that state monitoring data can also be used to support advanced

Cloud management tasks.

When looking at different ways to realize state monitoring, there are three general

classes of approaches.

• Centralized comprehensive data collection, processing and analysis [20, 31, 32].

This type of approaches collect all monitoring related data to a central repository

where data processing and analysis are performed. Note that such centralized ap-

proaches still need to collect monitoring data from distributed nodes.

• Centralized selective data collection, processing and analysis [56, 54, 98, 29]. The

second type of approaches selectively collect monitoring data from a distributed sys-

tem or application based on the goal of monitoring and analysis. They still perform

centralized processing and analysis on the collected data.

• Distributed data collection, processing and analysis [39, 97, 60, 11, 57]. The final

class of approaches adopt a fully distributed monitoring paradigm where monitoring

data collection, processing and analysis are all distributed across monitoring nodes.

Techniques along this line often require distributed algorithms designed for different

monitoring and analysis tasks.

224

Techniques introduced in this dissertation primarily focus on the second and third monitor-

ing paradigms. Specifically, window based state monitoring (Chapter 4) and robust state

monitoring (Chapter 6) contribute to the algorithm design for distributed monitoring and

analysis systems. Violation likelihood based state monitoring (Chapter 5) is useful for both

centralized selective monitoring systems and distributed monitoring systems. Resource-

aware state monitoring (Chapter 2) and self-scaling state monitoring (Chapter 3) can be

applied to all three types of monitoring approaches as they both focus on multi-tenancy of

monitoring data collection/processing. However, they may provide additional performance

benefits in the second and third types of approaches due to their distributed nature.

8.1 Ongoing Research, Related Work and Open Problems

There are several interesting ongoing research directions that we intend to pursue. First,

our approaches focus on simple state monitoring form where monitoring data are evalu-

ated with simple thresholds and time windows. Furthermore, we use simple aggregation

operators such as sum and average for aggregating distributed data collected from differ-

ent monitors. It would be interesting to explore approaches that support advanced eval-

uation of state violations (e.g., statistical hypothesis testing) and other aggregations (e.g.,

statistical sketch). Second, state monitoring techniques introduced in this paper are often

tailored towards a specific monitoring requirement. For instance, our window based state

monitoring works best for users who are interested in continuous violation events (versus

non-continuous ones such as percentage of violation events within a time window). As

another example, our violation likelihood based state monitoring is most useful for mon-

itoring tasks with certain level of tolerance to miss-detection. Hence, it is worthwhile to

explore new monitoring approaches (e.g., meta monitoring engine) that can generalize dif-

ferent monitoring requirements and can be self-tuned to meet diverse monitoring needs.

Finally, although it is possible to employ all our approaches simultaneously at the levels of

225

local state collection and distributed violation detection, we have not yet studied the inte-

gration of all our techniques at different levels. It would also be an interesting topic to study

the value-add opportunities in such integration as well as cases with possible diminishing

marginal benefits.

While there are few works dedicated on state monitoring, there are a number of previ-

ous monitoring works related with the problem we study in three research areas: Sensor

Network, Distributed Aggregation and Resource and Performance Management Oriented

Monitoring.

Sensor Network. A number of existing works in sensor networks use correlation to

minimize energy consumption on sensor nodes[98, 29]. Our work differs from these works

in several aspects. First, these works often leverage the broadcast feature of sensor net-

works, while our system architecture is very different from sensor networks and does not

have broadcast features. Second, we aim at reducing sampling cost while these works

focus on reducing communication cost to preserve energy. Third, while sensor networks

usually run a single or a few tasks, we have to consider multi-task correlation in large-scale

distributed environments. Finally, some works (e.g., [29]) make assumptions on value dis-

tributions, while our approach makes no such assumptions.

Distributed Aggregation. Distributed data aggregation [105] has been an active re-

search area in recent years. Researchers have proposed algorithms for efficiently perform-

ing continuous monitoring of top-k items [19], sums and counts [86] and quantiles [34],

skylines [35], joins [124] and max/min values [99]. Problems addressed by these work are

quite different from ours. While these work study supporting different operators, e.g. top-k

and sums, over distributed data streams with guaranteed error bounds, we aims at detecting

whether a simple aggregate (e.g., sum and average) of distributed monitored values violates

constraints defined in value and time.

cSAMP [96] is network traffic flow monitoring system that minimizes monitoring cost

226

with flow-based sampling, has-based coordination and network-wide optimization. Com-

pared with this work, our approach aims at performing efficient distributed state monitoring

over performance metrics of systems or applications.

Jain and et al.[55] studies the impact of hierarchical aggregation, arithmetic filtering

and temporary batching in an unreliable network. They propose to measure the degree of

inaccuracy based on the number of unreachable monitoring nodes and the number of dupli-

cated monitoring messages caused by DHT overlay maintenance. While this work provides

insight for understanding the interplay between monitoring efficiency and accuracy given

message losses, it also has several limitations such as not considering delay and difficulties

in measuring monitoring accuracy. Our work is complementary to [55] as we try to move

forward the understanding of monitoring reliability by studying accuracy estimation and

self-adaptation in state monitoring.

Resource and Performance Management Oriented Monitoring. Wang and et. al. [119,

117] studied a series of entropy-based statistical techniques for reducing the false positive

rate of detecting performance anomalies based on performance metric data such as CPU

utilization with potential data noises. Compared with this work, our approach uses rel-

atively simple noise filtering techniques rather than sophisticated statistical techniques to

reduce monitoring false positives, but focuses on devising distributed window based state

monitoring algorithms that minimize monitoring related communication, which in turn re-

duces monitoring related CPU consumption. Note that our approach may still be used to

efficiently collect monitoring data which are fed to statistical techniques for sophisticated

application performance monitoring data analysis. For instance, one may use our approach

avoid collecting data with trivial statistical significance by using a low global threshold and

a short time window to filter such data and save monitoring data collection overheads.

Viswanathan and et. al. [109] recently proposed ranking windows of monitored metrics

based on their probability of occurrence computed based on the false positive/negative rates

for monitoring application performance anomalies. While this approach provides useful

227

prioritizing of monitoring alerts generated by a collection of performance monitoring tasks,

especially when administrators are overwhelmed by a large number of monitoring alerts,

our approach aims at improving the monitoring accuracy of each individual monitoring

task with the existence of data noises or communication issues.

Wang, Kutare and et. al. [118, 66] proposed a flexible architecture that enables the

tradeoff between monitoring/analysis costs and the benefits of monitoring/analysis results

for web application performance analysis and virtual machine clustering. The architec-

ture utilizes reconfigurable software overlays (Distributed Computation Graphs (DCGs))

which undertakes monitoring data collection, exchange and processing. While this work

considers monitoring cost in terms of capital cost of dedicated monitoring hardware or

software, our approach considers primarily CPU resource consumption related to monitor-

ing communication or data collection. Furthermore DCGs focus on designing a flexible

monitoring/analysis architecture. In contrast, we aim at developing concrete distributed

monitoring algorithms that minimizes monitoring communication or data collection for a

specific form of monitoring (state monitoring).

This dissertation research presents only one step towards a truly scalable and customiz-

able MaaS solution. Many issues need to be investigated in depth for MaaS to be a success-

ful service computing metaphor for Cloud state management. Here we list a few examples

of these important open problems in providing MaaS.

Monitoring Heterogeneity. While this dissertation research focuses primarily on the

most widely used monitoring form, state monitoring, which tracks the monitored state

change based on numerical metric values, there are other commonly used monitoring

forms. For instance, log monitoring is also important for tracking anomalies and locat-

ing root causes, especially in distributed environments. As another example, flow-based

monitoring is useful for distributed multi-tier applications. Flow-based request processing

monitoring tracks the execution of a request across nodes and can be used to quickly isolate

performance problems or bugs. How to support these forms of monitoring in an efficient

228

and scalable manner? What are the implications of supporting these monitoring forms to

the monitoring infrastructure? These are all open problems waiting to be solved.

Support Smart Cloud Management. Automation is the key for Cloud management

given the complexity of the Cloud infrastructure, platforms and applications. While we

have investigated the possibility of utilizing performance monitoring data to automate

performance-driven Cloud application provisioning, this is only a first step towards smart

Cloud management. MaaS should explore other automation opportunities based on the

rich set of monitoring data it collects. For instance, Cloud applications evolve over its

lifetime in the form of reconfiguration, feature enrichment, bug fixing, new functionalities

implementation, etc. Many often experience fast evolution pace due to quick release cycles

(e.g., mobile application backends). Managing Cloud application evolution involves many

challenges such as configuration management. Since many Cloud applications often use

common software components (e.g., application servers), and even share certain tiers (e.g.,

database), it is also possible to develop intelligent techniques that detect misconfigura-

tions through analysis of relevant configuration data across applications. Other challenging

problems along this line also include disturbance-free patching scheduling, performance

prediction for software/platform changes, automatic bug localization, etc.

Security and Privacy. Cloud promotes efficient and flexible computing paradigms

through resource sharing and workload consolidation, which also brings new challenges in

privacy and security. For instance, VMs running on the same host are vulnerable to perfor-

mance attacks that exploit the limitation of current hypervisors in performance isolation.

VMs may also expose sensitive information to infrastructure service providers as the latter

has complete access to their VMs. New techniques such as cross-VM memory sharing fur-

ther improve cost-effectiveness of Cloud services, but may open doors for new privacy and

security threats that exploit page sharing mechanisms to hurt system performance or even

cause privacy breach when combined with other attack techniques. With increasing VM

activities per host, VM related traffics within a server box essentially become unmonitored

229

dark regions where new forms of attack may rise. MaaS should also provide new monitor-

ing functionalities to address such security and privacy issues in Cloud environments. In

addition, MaaS itself should incorporate new designs with build-in monitoring data security

and privacy support.

230

REFERENCES

[1] Amazon Elastic Compute Cloud, CloudWatch, http://aws.amazon.
com/cloudwatch/.

[2] The Internet2 Observatory Data Collections, http://www.internet2.edu/
observatory/archive.

[3] WorldCup Trace, http://ita.ee.lbl.gov/html/contrib/WorldCup.
html.

[4] “Auto scaling.” http://aws.amazon.com/autoscaling/.

[5] “Enomaly homepage.” http://www.enomaly.com/.

[6] “Microsoft System Center.” http://www.microsoft.com/systemcenter.

[7] “oVirt home page..” http://ovirt.org/.

[8] “Rubis.” http://rubis.ow2.org/.

[9] “Visual evidence of amazon ec2 network issues.” https://www.cloudkick.
com/blog/2010/jan/12/visual-ec2-latency/, 2010.

[10] ABADI, D. J., MADDEN, S., and LINDNER, W., “Reed: Robust, efficient filtering
and event detection in sensor networks,” in VLDB, 2005.

[11] AGRAWAL, S., DEB, S., NAIDU, K. V. M., and RASTOGI, R., “Efficient detection
of distributed constraint violations,” in ICDE, 2007.

[12] AMAZON, “Amazon web service(aws).” http://aws.amazon.com.

[13] AMAZON, “Auto scaling.” http://aws.amazon.com/autoscaling/.

[14] AMAZON, “Amazon elastic computer cloud(amazon ec2),” 2008.

[15] AMINI, L., JAIN, N., SEHGAL, A., SILBER, J., and VERSCHEURE, O., “Adaptive
control of extreme-scale stream processing systems,” in ICDCS, 2006.

[16] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAYEE, A., TAN, L.,
and VASUDEVAN, V., “Fawn: a fast array of wimpy nodes,” in SOSP, pp. 1–14,
2009.

[17] APACHE, “Hbase.” http://hbase.apache.org/.

[18] ARLITT, M. and JIN, T., “1998 world cup web site access logs.”
http://www.acm.org/sigcomm/ITA/, August 1998.

231

[19] BABCOCK, B. and OLSTON, C., “Distributed topk monitoring,” in SIGMOD, 2003.

[20] BAHL, P., CHANDRA, R., GREENBERG, A. G., KANDULA, S., MALTZ, D. A.,
and ZHANG, M., “Towards highly reliable enterprise network services via inference
of multi-level dependencies,” in SIGCOMM, pp. 13–24, 2007.

[21] BHATIA, S., KUMAR, A., FIUCZYNSKI, M. E., and PETERSON, L. L.,
“Lightweight, high-resolution monitoring for troubleshooting production systems,”
in OSDI, pp. 103–116, 2008.

[22] BORKOWSKI, J., “Hierarchical detection of strongly consistent global states,” in
ISPDC/HeteroPar, pp. 256–261, 2004.

[23] BORKOWSKI, J., KOPANSKI, D., and TUDRUJ, M., “Parallel irregular computa-
tions control based on global predicate monitoring,” in PARELEC, 2006.

[24] BULUT, A. and SINGH, A. K., “A unified framework for monitoring data streams
in real time,” in ICDE, 2005.

[25] BURROWS, M., “The chubby lock service for loosely-coupled distributed systems,”
in OSDI, pp. 335–350, 2006.

[26] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A., BUR-
ROWS, M., CHANDRA, T., FIKES, A., and GRUBER, R., “Bigtable: A distributed
storage system for structured data,” in OSDI, pp. 205–218, 2006.

[27] CHASE, J. S., ANDERSON, D. C., THAKAR, P. N., VAHDAT, A., and DOYLE,
R. P., “Managing energy and server resources in hosting centres,” in SOSP, pp. 103–
116, 2001.

[28] CHASE, J. S., IRWIN, D. E., GRIT, L. E., MOORE, J. D., and SPRENKLE, S.,
“Dynamic virtual clusters in a grid site manager,” in HPDC, pp. 90–103, 2003.

[29] CHU, D., DESHPANDE, A., HELLERSTEIN, J. M., and HONG, W., “Approximate
data collection in sensor networks using probabilistic models,” in ICDE, p. 48, 2006.

[30] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C.,
PRATT, I., and WARFIELD, A., “Live migration of virtual machines,” in NSDI, 2005.

[31] COHEN, I., CHASE, J. S., GOLDSZMIDT, M., KELLY, T., and SYMONS, J., “Cor-
relating instrumentation data to system states: A building block for automated diag-
nosis and control,” in OSDI, pp. 231–244, 2004.

[32] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J., KELLY, T., and FOX, A.,
“Capturing, indexing, clustering, and retrieving system history,” in SOSP, pp. 105–
118, 2005.

[33] CORMODE, G. and GAROFALAKIS, M. N., “Sketching streams through the net:
Distributed approximate query tracking,” in VLDB, pp. 13–24, 2005.

232

[34] CORMODE, G., GAROFALAKIS, M. N., MUTHUKRISHNAN, S., and RASTOGI,
R., “Holistic aggregates in a networked world: Distributed tracking of approximate
quantiles,” in SIGMOD Conference, pp. 25–36, 2005.

[35] CUI, B., LU, H., XU, Q., CHEN, L., DAI, Y., and ZHOU, Y., “Parallel distributed
processing of constrained skyline queries by filtering,” in ICDE, 2008.

[36] DEAN, J. and GHEMAWAT, S., “Mapreduce: Simplified data processing on large
clusters,” in OSDI, pp. 137–150, 2004.

[37] DELIGIANNAKIS, A., STOUMPOS, V., KOTIDIS, Y., VASSALOS, V., and DELIS,
A., “Outlier-aware data aggregation in sensor networks,” in ICDE, 2008.

[38] DHARMAPURIKAR, S., KRISHNAMURTHY, P., SPROULL, T. S., and LOCKWOOD,
J. W., “Deep packet inspection using parallel bloom filters,” IEEE Micro, vol. 24,
no. 1, pp. 52–61, 2004.

[39] DILMAN, M. and RAZ, D., “Efficient reactive monitoring,” in INFOCOM, 2001.

[40] DOULIGERIS, C. and MITROKOTSA, A., “Ddos attacks and defense mechanisms:
classification and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–666,
2004.

[41] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN, W., and VAHDAT, A., “Model-
based resource provisioning in a web service utility,” in USENIX SITS, 2003.

[42] ESTAN, C. and VARGHESE, G., “New directions in traffic measurement and ac-
counting,” in SIGCOMM02.

[43] FOSTER, I. T., “The globus toolkit for grid computing,” in CCGRID, p. 2, 2001.

[44] GAO, L., WANG, M., and WANG, X. S., “Quality-driven evaluation of trigger con-
ditions on streaming time series,” in SAC, 2005.

[45] GRIMMETT, G. and STIRZAKER, D., Probability and Random Processes 3rd ed.
Oxford, 2001.

[46] GU, G., PERDISCI, R., ZHANG, J., and LEE, W., “Botminer: Clustering analysis of
network traffic for protocol- and structure-independent botnet detection,” in USENIX
Security Symposium, pp. 139–154, 2008.

[47] GUPTA, D., CHERKASOVA, L., GARDNER, R., and VAHDAT, A., “Enforcing per-
formance isolation across virtual machines in xen,” in Middleware, pp. 342–362,
2006.

[48] HAYES, B., “Cloud computing,” Commun. ACM, vol. 51, no. 7, 2008.

[49] HUANG, L., GAROFALAKIS, M. N., JOSEPH, A. D., and TAFT, N.,
“Communication-efficient tracking of distributed cumulative triggers,” in ICDCS,
p. 54, 2007.

233

[50] HUEBSCH, R., CHUN, B. N., HELLERSTEIN, J. M., LOO, B. T., MANIATIS, P.,
ROSCOE, T., SHENKER, S., STOICA, I., and YUMEREFENDI, A. R., “The archi-
tecture of pier: an internet-scale query processor,” in CIDR, 2005.

[51] HUEBSCH, R., GAROFALAKIS, M. N., HELLERSTEIN, J. M., and STOICA, I.,
“Sharing aggregate computation for distributed queries,” in SIGMOD, 2007.

[52] JAIN, A., HELLERSTEIN, J. M., RATNASAMY, S., and WETHERALL, D., “The
case for distributed triggers,” in HotNets, 2004.

[53] JAIN, N., AMINI, L., ANDRADE, H., KING, R., PARK, Y., SELO, P., and VENKA-
TRAMANI, C., “Design, implementation, and evaluation of the linear road bnchmark
on the stream processing core,” in SIGMOD, 2006.

[54] JAIN, N., DAHLIN, M., ZHANG, Y., KIT, D., MAHAJAN, P., and YALAGANDULA,
P., “Star: Self-tuning aggregation for scalable monitoring,” in VLDB, pp. 962–973,
2007.

[55] JAIN, N., MAHAJAN, P., KIT, D., YALAGANDULA, P., DAHLIN, M., and ZHANG,
Y., “Network imprecision: A new consistency metric for scalable monitoring,” in
OSDI, pp. 87–102, 2008.

[56] JAIN, N., YALAGANDULA, P., DAHLIN, M., and ZHANG, Y., “Self-tuning,
bandwidth-aware monitoring for dynamic data streams,” in ICDE, pp. 114–125,
2009.

[57] KASHYAP, S. R., RAMAMIRTHAM, J., RASTOGI, R., and SHUKLA, P., “Efficient
constraint monitoring using adaptive thresholds,” in ICDE, 2008.

[58] KASHYAP, S. R., TURAGA, D., and VENKATRAMANI, C., “Efficient trees for con-
tinuous monitoring,” 2008.

[59] KEAHEY, K., FOSTER, I. T., FREEMAN, T., and ZHANG, X., “Virtual workspaces:
Achieving quality of service and quality of life in the grid,” Scientific Programming,
05.

[60] KERALAPURA, R., CORMODE, G., and RAMAMIRTHAM, J., “Communication-
efficient distributed monitoring of thresholded counts,” in SIGMOD Conference,
pp. 289–300, 2006.

[61] KNUTH, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algo-
rithms, 3rd Ed. Addison-Wesley, 1998.

[62] KO, S. and GUPTA, I., “Efficient on-demand operations in dynamic distributed in-
frastructures,” in LADIS, 2008.

[63] KOSSMANN, D., “The state of the art in distributed query processing,” ACM Com-
put. Surv., vol. 32, no. 4, pp. 422–469, 2000.

234

[64] KRISHNAMURTHY, S., WU, C., and FRANKLIN, M. J., “On-the-fly sharing for
streamed aggregation,” in SIGMOD Conference, pp. 623–634, 2006.

[65] KRUEGEL, C. and VIGNA, G., “Anomaly detection of web-based attacks,” in CCS,
2003.

[66] KUTARE, M., EISENHAUER, G., WANG, C., SCHWAN, K., TALWAR, V., and
WOLF, M., “Monalytics: online monitoring and analytics for managing large scale
data centers,” in ICAC, pp. 141–150, 2010.

[67] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL, A. M., PATCHIN, P.,
RUMBLE, S. M., DE LARA, E., BRUDNO, M., and SATYANARAYANAN, M.,
“Snowflock: rapid virtual machine cloning for cloud computing,” in EuroSys, 09.

[68] LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., and TUCKER, P. A., “No pane, no
gain: efficient evaluation of sliding-window aggregates over data streams,” SIGMOD
Record, vol. 34, no. 1, pp. 39–44, 2005.

[69] LI, M., LIU, Y., and CHEN, L., “Non-threshold based event detection for 3d envi-
ronment monitoring in sensor networks,” in ICDCS07.

[70] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., and HONG, W.,
“Tinydb: an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[71] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., and HONG, W., “Tag: A
tiny aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[72] MADDEN, S., SHAH, M. A., HELLERSTEIN, J. M., and RAMAN, V., “Continu-
ously adaptive continuous queries over streams,” in SIGMOD, 2002.

[73] MANJHI, A., NATH, S., and GIBBONS, P. B., “Tributaries and deltas: Efficient and
robust aggregation in sensor network streams,” in SIGMOD, 2005.

[74] MARZULLO, K. and WOOD, M. D., “Tools for constructing distributed reactive
systems,” 1991.

[75] MCNETT, M., GUPTA, D., VAHDAT, A., and VOELKER, G. M., “Usher: An exten-
sible framework for managing clusters of virtual machines,” in LISA, pp. 167–181,
2007.

[76] MENG, S., IYENGAR, A. K., ROUVELLOU, I. M., and LIU, L., “Violation likeli-
hood based state monitoring.” Technical Report, 2011.

[77] MENG, S., IYENGAR, A. K., ROUVELLOU, I. M., and LIU, L., “Cloud prism:
Prediction-based application provisioning service.” Technical Report, 2012.

[78] MENG, S., KASHYAP, S. R., VENKATRAMANI, C., and LIU, L., “Resource-aware
application state monitoring,” IEEE Transactions on Parallel and Distributed Sys-
tems, p. to appear.

235

[79] MENG, S., KASHYAP, S. R., VENKATRAMANI, C., and LIU, L., “Remo:
Resource-aware application state monitoring for large-scale distributed systems,” in
ICDCS, pp. 248–255, 2009.

[80] MENG, S. and LIU, L., “Reliable state monitoring in large-scale distributed sys-
tems.” Technical Report, 2011.

[81] MENG, S., LIU, L., and SOUNDARARAJAN, V., “Tide: Achieving self-scaling in
virtualized datacenter management middleware,” in Middleware’10.

[82] MENG, S., LIU, L., and WANG, T., “State monitoring in cloud datacenters,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1328–1344, 2011.

[83] MENG, S., WANG, T., and LIU, L., “Monitoring continuous state violation in data-
centers: Exploring the time dimension,” in ICDE, pp. 968–979, 2010.

[84] NARAYANAN, D., DONNELLY, A., THERESKA, E., ELNIKETY, S., and ROW-
STRON, A. I. T., “Everest: Scaling down peak loads through i/o off-loading,” in
OSDI, pp. 15–28, 2008.

[85] NURMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI, G., SOMAN,
S., YOUSEFF, L., and ZAGORODNOV, D., “The eucalyptus open-source cloud-
computing system,” in CCGRID, 2009.

[86] OLSTON, C., JIANG, J., and WIDOM, J., “Adaptive filters for continuous queries
over distributed data streams,” in SIGMOD Conference, 2003.

[87] OLSTON, C., LOO, B. T., and WIDOM, J., “Adaptive precision setting for cached
approximate values,” in SIGMOD, 2001.

[88] OLSTON, C. and WIDOM, J., “Offering a precision-performance tradeoff for aggre-
gation queries over replicated data,” in VLDB, 2000.

[89] PADALA, P., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z., SINGHAL, S., MER-
CHANT, A., and SALEM, K., “Adaptive control of virtualized resources in utility
computing environments,” in EuroSys07.

[90] PARK, K. and PAI, V. S., “Comon: a mostly-scalable monitoring system for planet-
lab,” Operating Systems Review, vol. 40, no. 1, pp. 65–74, 2006.

[91] PETERSON, L. L., “Planetlab: Evolution vs. intelligent design in planetary-scale
infrastructure,” in USENIX ATC, 2006.

[92] PROJECT, T. N., “Ntp faq.” http://www.ntp.org/ntpfaq/NTP-s-algo.
htm#Q-ACCURATE-CLOCK.

[93] PU, X., LIU, L., MEI, Y., SIVATHANU, S., KOH, Y., and PU, C., “Understand-
ing performance interference of i/o workload in virtualized cloud environments,” in
IEEE Cloud, 2010.

236

[94] RAGHAVAN, B., VISHWANATH, K. V., RAMABHADRAN, S., YOCUM, K., and
SNOEREN, A. C., “Cloud control with distributed rate limiting,” in SIGCOMM07.

[95] RASCHID, L., WEN, H.-F., GAL, A., and ZADOROZHNY, V., “Monitoring the
performance of wide area applications using latency profiles,” in WWW03.

[96] SEKAR, V., REITER, M. K., WILLINGER, W., ZHANG, H., KOMPELLA, R. R.,
and ANDERSEN, D. G., “csamp: A system for network-wide flow monitoring,” in
NSDI, pp. 233–246, 2008.

[97] SHARFMAN, I., SCHUSTER, A., and KEREN, D., “A geometric approach to mon-
itoring threshold functions over distributed data streams,” in SIGMOD Conference,
pp. 301–312, 2006.

[98] SILBERSTEIN, A., BRAYNARD, R., and YANG, J., “Constraint chaining: on
energy-efficient continuous monitoring in sensor networks,” in SIGMOD, 2006.

[99] SILBERSTEIN, A., MUNAGALA, K., and YANG, J., “Energy-efficient monitoring
of extreme values in sensor networks,” in SIGMOD, 2006.

[100] SILBERSTEIN, A. and YANG, J., “Many-to-many aggregation for sensor networks,”
in ICDE, pp. 986–995, 2007.

[101] SOUNDARARAJAN, V. and ANDERSON, J. M., “The impact of management opera-
tions on the virtualized datacenter,” in ISCA, 2010.

[102] SRIVASTAVA, U., MUNAGALA, K., and WIDOM, J., “Operator placement for in-
network stream query processing,” in PODS, pp. 250–258, 2005.

[103] STEWART, C., KELLY, T., and ZHANG, A., “Exploiting nonstationarity for perfor-
mance prediction,” in EuroSys, pp. 31–44, 2007.

[104] SÜLI, E. and MAYERS, D. F., An Introduction to Numerical Analysis. Cambridge
University Press, ’03.

[105] SUTHERLAND, T. M., LIU, B., JBANTOVA, M., and RUNDENSTEINER, E. A., “D-
cape: distributed and self-tuned continuous query processing,” in CIKM, pp. 217–
218, 2005.

[106] TERREMARK, “vcloud express.” http://vcloudexpress.terremark.com/.

[107] TURAGA, D. S., VLACHOS, M., VERSCHEURE, O., PARTHASARATHY, S., FAN,
W., NORFLEET, A., and REDBURN, R., “Yieldmonitor: Real-time monitoring and
predictive analysis of chip manufacturing data,” 2008.

[108] URGAONKAR, B., PACIFICI, G., SHENOY, P. J., SPREITZER, M., and TANTAWI,
A. N., “An analytical model for multi-tier internet services and its applications,” in
SIGMETRICS, pp. 291–302, 2005.

237

[109] VISWANATHAN, K., CHOUDUR, L., TALWAR, V., WANG, C., MACDONALD, G.,
and SATTERFIELD, W., “Ranking anomalies in distributed systems,” in NOMS,
2012.

[110] VMWARE, “Distributed resource scheduling and distributed power management.”
http://www.vmware.com/products/drs/.

[111] VMWARE, “Linked-vsphere server.” http://www.vmware.com/support/
vsphere4.

[112] VMWARE, “vMotion.” http://www.vmware.com/products/vmotion.

[113] VMWARE, “VMware HA.” http://www.vmware.com/products/
high-availability/.

[114] VMWARE, “VMware Server Consolidation.” http://www.vmware.com/
solutions/consolidation/.

[115] VMWARE, “VMware View.” http://www.vmware.com/products/
view/.

[116] VMWARE, “vSphere.” http://www.vmware.com/products/vsphere/.

[117] WANG, C., “Ebat: Online methods for detecting utility cloud anomalies,” in MDS,
2009.

[118] WANG, C., SCHWAN, K., TALWAR, V., EISENHAUER, G., HU, L., and WOLF, M.,
“A flexible architecture integrating monitoring and analytics for managing large-
scale data centers,” in ICAC, pp. 141–150, 2011.

[119] WANG, C., TALWAR, V., SCHWAN, K., and RANGANATHAN, P., “Online detection
of utility cloud anomalies using metric distributions,” in NOMS, pp. 96–103, 2010.

[120] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEW-
BOLD, M., HIBLER, M., BARB, C., and JOGLEKAR, A., “An integrated experi-
mental environment for distributed systems and networks,” in OSDI, 2002.

[121] WIKIPEDIA, “Mutual information.” http://en.wikipedia.org/wiki/
Mutual_information.

[122] XIANG, S., LIM, H.-B., TAN, K.-L., and ZHOU, Y., “Two-tier multiple query
optimization for sensor networks,” in ICDCS, p. 39, 2007.

[123] YALAGANDULA, P. and DAHLIN, M., “A scalable distributed information manage-
ment system,” in SIGCOMM, pp. 379–390, 2004.

[124] YANG, X., LIM, H.-B., ÖZSU, M. T., and TAN, K.-L., “In-network execution of
monitoring queries in sensor networks,” in SIGMOD, 2007.

238

[125] ZHANG, R., KOUDAS, N., OOI, B. C., and SRIVASTAVA, D., “Multiple aggrega-
tions over data streams,” in SIGMOD, 2005.

[126] ZHAO, Y., TAN, Y., GONG, Z., GU, X., and WAMBOLDT, M., “Self-correlating
predictive information tracking for large-scale production systems,” in ICAC,
pp. 33–42, 2009.

[127] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J., SANTOS, J. R., and TURNER,
Y., “Justrunit: Experiment-based management of virtualized data centers,” in
USENIX ATC, 2007.

[128] ZHOU, Y., CHAKRABARTY, D., and LUKOSE, R. M., “Budget constrained bidding
in keyword auctions and online knapsack problems,” in WWW, pp. 1243–1244, 2008.

[129] ZIPF, G. K., Human Behavior and the Principle of Least Effort. Addison-Wesley,
1949.

239

VITA

Shicong Meng was born and raised in Wuhu, a beautiful city on the south bank of

Changjiang river in east China. He received a Bachelor of Science degree from East China

Normal University, Shanghai, China in 2004, and a Master of Science degree from Shang-

hai Jiaotong University in 2007. Subsequently, he moved to Atlanta to pursue a Ph.D. in

Computer Science at the College of Computing at Georgia Institute of Technology. As a

member of the DiSL research group and CERCS at the College of Computing, he con-

ducted research on various aspects of distributed data intensive systems under the guidance

of Prof. Ling Liu. His research in these projects has resulted in numerous publications that

have appeared in various international conferences and journals on distributed systems and

data management. He has also been a collaborator with the IBM T.J. Watson Research Cen-

ter and VMware. He received an IBM Ph.D. Fellowship in 2011 and holds or applied for a

number of patents on his work at both VMware and IBM, dealing with Cloud Datacenter

Monitoring and Management.

240

Monitoring-as-a-Service in the Cloud

Shicong Meng

241 Pages

Directed by Professor Ling Liu

State monitoring is a fundamental building block for Cloud services. The demand

for providing state monitoring as services (MaaS) continues to grow and is evidenced by

CloudWatch from Amazon EC2, which allows cloud consumers to pay for monitoring a se-

lection of performance metrics with coarse-grained periodical sampling of runtime states.

One of the key challenges for wide deployment of MaaS is to provide better balance among

a set of critical quality and performance parameters, such as accuracy, cost, scalability and

customizability.

This dissertation research is dedicated to innovative research and development of an

elastic framework for providing state monitoring as a service (MaaS). We analyze limi-

tations of existing techniques, systematically identify the need and the challenges at dif-

ferent layers of a Cloud monitoring service platform, and develop a suite of distributed

monitoring techniques to support for flexible monitoring infrastructure, cost-effective state

monitoring and monitoring-enhanced Cloud management. At the monitoring infrastructure

layer, we develop techniques to support multi-tenancy of monitoring services by exploring

cost sharing between monitoring tasks and safeguarding monitoring resource usage. To

provide elasticity in monitoring, we propose techniques to allow the monitoring infrastruc-

ture to self-scale with monitoring demand. At the cost-effective state monitoring layer,

we devise several new state monitoring functionalities to meet unique functional require-

ments in Cloud monitoring. Violation likelihood state monitoring explores the benefits of

consolidating monitoring workloads by allowing utility-driven monitoring intensity tun-

ing on individual monitoring tasks and identifying correlations between monitoring tasks.

Window based state monitoring leverages distributed windows for the best monitoring ac-

curacy and communication efficiency. Reliable state monitoring is robust to both transient

and long-lasting communication issues caused by component failures or cross-VM perfor-

mance interferences. At the monitoring-enhanced Cloud management layer, we devise a

novel technique to learn about the performance characteristics of both Cloud infrastructure

and Cloud applications from cumulative performance monitoring data to increase the cloud

deployment efficiency.

241

