Werklastgeneratie voor de prestatie-evaluatie van microprocessors

Workload Generation for Microprocessor Performance Evaluation

Luk Van Ertvelde

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. . Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2010 - 201 |

}

UNIVERSITEIT
GENT

ISBN 978-90-8578-395-4
NUR 980, 958
Wettelijk depot: D/2010/10.500/71

To my friends, family, and teachers.

Dankwoord

De weg naar een doctoraat is niet altijd vanzelfsprekend. Het is on-
mogelijk om de eindbestemming te bereiken zonder de actieve hulp en
steun van meerdere personen. Graag wil ik al degene die mij de afge-
lopen jaren hebben bijgestaan van harte bedanken.

Als eerste wil ik in het bijzonder mijn promotor prof. Lieven Eeck-
hout bedanken voor de succesvolle samenwerking. Hij gaf de juiste
richting aan wanneer ik de weg kwijt was. Zijn actieve ondersteu-
ning bij het schrijven van artikels bleek van onschatbare waarde. Het
is dankzij zijn ervaring en expertise dat ik onderzoeksresultaten heb
mogen voorstellen op belangrijke internationale conferenties. Zeven
dagen op zeven, vierentwintig uur per dag, bood hij antwoord op al
mijn vragen. Lieven, dankjewel!

Ik zou verder ook prof. Koen De Bosschere willen bedanken. Zijn
fascinerende lessen hebben mijn interesse in de wereld van de compu-
terarchitectuur opgewekt. Hij heeft mij aangeleerd hoe onderzoeksre-
sultaten aantrekkelijk te presenteren.

Ik wens de andere leden van mijn examencommissie eveneens uit-
drukkelijk te bedanken. Mijn dank gaat uit naar prof. Jan Van Cam-
penhout, de voorzitter van ELIS, de vakgroep waar dit onderzoek is
gebeurd. Zijn kritische opmerkingen, zowel tijdens de reviewvergade-
ringen als bij het nalezen van dit proefschrift, hebben bijgedragen tot de
kwaliteit van mijn onderzoek. Ik dank ook prof. Serge Demeyer (Uni-
versiteit Antwerpen) en prof. Bart Dhoedt (Universiteit Gent) voor hun
inspanning om dit werk te lezen en te beoordelen.

I would also like to thank the foreign members of my PhD committee for
their effort to evaluate my thesis. Thanks to dr. Harish Patil (Intel, USA) and
dr. Emre Ozer (ARM, United Kingdom) for their time to read my disserta-
tion and come over to Ghent to serve on my committee. Your comments were
invaluable. Your interest and appreciation gave me great satisfaction.

Ik bedank ook de andere professoren binnen ELIS voor hun feed-
back en suggesties na het geven van een interne presentatie. In het
bijzonder dank ik prof. Dirk Stroobandt voor het organiseren van de
KIS-verdedigingen, en prof. Erik D’Hollander voor het aanreiken van
wijzers naar wetenschappelijke literatuur.

Ik wil ook mijn bureaugenoten Frederik, Juan, Stijn, Kenneth, Fi-
lip, Kenzo, Trevor en Jeroen bedanken voor de fijne werksfeer. Trevor
wens ik in het bijzonder te bedanken voor het nalezen van mijn proef-
schrift, Kenzo voor de prettige discussies op vrijdagnamiddag. Ook
mijn andere collega’s van -3 wens ik te bedanken voor de aangename
momenten samen.

Het sociale aspect mag tijdens een doctoraat niet uit het oog wor-
den verloren. Ik heb een aantal onvergetelijke donderdagavonden mo-
gen beleven met Sean, Tim, Tom, Filip en Pieter. Dankjewel hiervoor!
Dankjewel ook aan Kristof, Pieter, Kathleen en alle anderen voor de
wekelijkse sportieve inspanningen samen.

Ik wens ook van de gelegenheid gebruik te maken om de mensen
te bedanken die mij de (bijna) voorbije dertig jaar hebben gevormd. Ik
denk dan in het bijzonder aan mijn ouders en broers, maar ook aan alle
docenten die mij vol overgave hun kennis en inzicht hebben overge-
bracht.

Last but not least wens ik mijn vriendin Dagmar te bedanken. Dag-
mar kreeg het de laatste maanden voor het afwerken van deze thesis
soms onnodig hard te verduren. Mijn humeur bleek meer dan eens af-
hankelijk van onderzoeksresultaten. Tijdens het schrijven van dit boek
kon ik er niet altijd voor haar zijn, maar steeds kon ik op haar begrip
en steun rekenen.

Luk Van Ertvelde
Gent, 6 december 2010

Examencommuissie

Prof. Daniél De Zutter, voorzitter
Prodecaan, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Jan Van Campenhout, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Koen De Bosschere
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Serge Demeyer
Vakgroep LORE, Departement Wiskunde & Informatica
Universiteit Antwerpen

Prof. Bart Dhoedt
Vakgroep INTEC, Faculteit Ingenieurswetenschappen
Universiteit Gent

Dr. Emre Ozer
ARM, Cambridge
United Kingdom

Dr. Harish G. Patil
Intel, Hudson, MA
USA

Leescommissie

Prof.

Prof.

Prof.

Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Serge Demeyer
Vakgroep LORE, Departement Wiskunde & Informatica
Universiteit Antwerpen

Bart Dhoedt
Vakgroep INTEC, Faculteit Ingenieurswetenschappen
Universiteit Gent

. Emre Ozer

ARM, Cambridge
United Kingdom

. Harish G. Patil

Intel, Hudson, MA
USA

Vi

Samenvatting

De vooruitgang van de microprocessor is de laatste decennia expo-
nentieel verlopen: van eenvoudige processors die instructies in pro-
grammavolgorde uitvoeren tot complexe processors die per klokslag
meerdere instructies in een mogelijk andere volgorde kunnen uitvoe-
ren. Door deze steeds hogere complexiteit zijn programma’s om de
prestatie van (nieuwe) processors te evalueren onmisbaar geworden,
en bijgevolg hebben meerdere organisaties gestandaardiseerde ver-
zamelingen van evaluatieprogramma’s’ ontwikkeld en vrijgegeven.
Hoewel dit het prestatie-evaluatieproces heeft gestandardiseerd, staan
computerarchitecten en computeringenieurs nog steeds voor een aan-
tal belangrijke uitdagingen. Bij het selecteren van een goed evaluatie-
programma kunnen we drie overkoepelende uitdagingen/problemen
identificeren die uiteindelijk aanleiding hebben gegeven tot dit onder-
zoekswerk.

1. De evaluatieprogramma’s moeten in de eerste plaats representa-
tief zijn voor de programma’s die het (toekomstige) systeem moet
uitvoeren, maar het is niet altijd mogelijk om zo'n representatieve
verzameling van evaluatieprogramma’s te selecteren. We kun-
nen hiervoor drie redenen onderscheiden. Een eerste reden is dat
gestandaardiseerde verzamelingen van evaluatieprogramma’s
typisch worden ontwikkeld op basis van openbronprogramma’s
omdat software-ontwikkelaars terughoudend zijn om hun eigen-
domsprogramma’s te verspreiden. Het probleem hierbij is dat
openbronprogramma’s een ander prestatiegedrag kunnen verto-
nen dan commerciéle applicaties, of een bepaalde doelapplicatie.
Bijgevolg kan het gebruik van openbronprogramma’s leiden tot

'We gebruiken ‘evaluatieprogramma’ als Nederlandse vertaling van het Engelse
woord ‘benchmark’, en ‘verzameling van evaluatieprogramma’s’ als vertaling van ‘ben-
chmark suite’.

viii

SAMENVATTING

verkeerde aankoopbeslissingen of tot een suboptimaal ontwerp
bij het verkennen van de ontwerpruimte van een processor. Een
tweede oorzaak is dat beschikbare evaluatieprogramma’s vaak
verouderd zijn omdat de applicatieruimte voortdurend evolueert
en het ontwikkelen en onderhouden van evaluatieprogramma’s
(op basis van die applicaties) veel tijd in beslag neemt. Een laatste
reden is dat men evaluatieprogramma’s niet zomaar op basis van
bestaande applicaties kan ontwikkelen in het geval men toekom-
stige werklasten wenst te modelleren.

. Een tweede uitdaging die aanleiding heeft gegeven tot dit on-

derzoekswerk is het terugdringen van het aantal instructies dat
een evaluatieprogramma uitvoert. Hedendaagse evaluatiepro-
gramma’s voeren honderden miljarden instructies uit om toe-
komstige processorontwerpen zinvol te belasten, maar dit be-
lemmert het gebruik van gedetailleerde (cyclusgetrouwe) simu-
latoren om de (micro)architecturale ontwerpruimte te verkennen.
Het simuleren van één zo'n programma neemt immers meerdere
dagen tot zelfs maanden in beslag, en bovendien is dit voor de
evaluatie van slechts één punt in de (micro)architecturale ruimte.
Dit kan uiteindelijk leiden tot vertragingen bij het op de markt
brengen van nieuwe processors.

De laatste uitdaging is het ontwikkelen van evaluatieprogram-
ma’s die kunnen worden aangewend voor zowel de exploratie
van verschillende (micro)architecturen als de exploratie van ver-
schillende compilers en compileroptimalisaties. Bestaande eva-
luatieprogramma’s voldoen aan deze voorwaarde maar dit is ty-
pisch niet het geval voor evaluatieprogramma’s die automatisch
worden gegenereerd of gereduceerd. De reden hiervoor is dat be-
staande technieken die automatisch evaluatieprogramma’s gene-
reren of reduceren opereren op assemblerniveau, waardoor de re-
sulterende programma’s niet aangewend kunnen worden voor de
evaluatie van bijvoorbeeld instructiesetuitbreidingen of nieuwe
compilertechnieken.

Samengevat willen we dus beschikken over korte maar represen-

tatieve evaluatieprogramma’s die bovendien gebruikt kunnen worden
voor zowel de evaluatie van verschillende (micro)architecturen als
voor de evaluatie van compilers en hun optimalisaties. In dit on-
derzoekswerk stellen we een aantal technieken voor die het mogelijk

ix

moeten maken om dergelijke evaluatieprogramma’s te genereren.

Codemutatie. We stellen eerst codemutatie voor om de verspreiding
van eigendomssoftware over verschillende partijen (bedrijven en uni-
versiteiten) mogelijk te maken met als eindoel het beschikken over
representatievere evaluatieprogramma’s. Codemutatie is een nieuwe
methode om evaluatieprogramma’s te genereren op basis van eigen-
domssoftware. De gegenereerde evaluatieprogramma’s (of evaluatie-
mutanten) verbergen de oorspronkelijke programma-algoritmen maar
vrijwaren de prestatie van het oorspronkelijke programma. We buiten
hiervoor twee observaties uit: (i) cachemissers en foutief voorspelde
paden hebben een bepalende impact op de prestatie van hedendaagse
microprocessors en (ii) meerdere variabelen vertonen een constant ver-
loop tijdens de uitvoering van een programma. We doen dit meer
concreet door oorspronkelijke programma-instructies te muteren die
geen invloed uitoefenen op het controleverloop en/of dataverloop.
We berekenen hiervoor eerst programmasneden van geheugenope-
raties en/of controleverloopoperaties. Vervolgens trimmen we deze
sneden door gebruik te maken van profielinformatie over het verloop
van variabelen en sprongen. Uiteindelijk overschrijven (muteren) we
de instructies die geen deel uitmaken van deze gereduceerde sne-
den door instructies met gelijkaardige prestatiekarakteristieken. Het
resulterende programma fungeert dan als alternatief voor het eigen-
domsprogramma, en kan worden verspreid (zonder vrijgave van de
originele programma-algoritmen) met het oog op prestatie-evaluatie
door derden.

De proefondervindelijke resultaten (opgemeten voor een verzame-
ling van SPEC CPU2000 en MiBench evaluatieprogramma’s) bevesti-
gen dat codemutatie een effectieve aanpak is die tot 90 procent van
de statische instructies muteert, tot 50 procent van de dynamische in-
structies, en tot 35 procent van de dynamische data-afhankelijkheden.
Bovendien zijn de prestatieresultaten van de evaluatiemutanten sterk
gelijkaardig aan de prestatieresultaten van de oorspronkelijke pro-
gramma’s.

Bedrijven die (ingebedde) microprocessors ontwikkelen en bedrij-
ven die diensten via het internet aanbieden kunnen het meeste voor-
deel halen uit onze codemutatietechniek. Dergelijke bedrijven zijn
immers terughoudend om hun eigendomssoftware te distribueren.
Wij stellen codemutatie voor om hun eigendomssoftware te muteren

X SAMENVATTING

en vervolgens de gemuteerde software aan te wenden om prestatie-
evaluatie door derden mogelijk te maken. Codemutatie heeft ook het
potentieel om de samenwerking tussen industrie en universiteiten te
versterken; dit kan leiden tot representatievere prestatiemetingen in
universiteiten, en uiteindelijk zinvollere onderzoeksrichtingen.

Bemonsterde simulatie: NSL-BLRL. Codemutatie op zich biedt geen
antwoord op de extreem lange simulatietijd van hedendaagse (evalu-
atie)programma’s. We kunnen hiervoor wel beroep doen op bemon-
sterde simulatie. Het idee van bemonsterde simulatie is om slechts
een deel (het zogenaamde monster) van een volledige programma-
uitvoering gedetailleerd te simuleren en zo snelheidswinst te behalen.
Merk op dat een monster hierbij kan bestaan uit één of meerdere mon-
stereenheden. Een belangrijk probleem bij bemonsterde simulatie is
de onbekende microarchitecturale toestand (toestand van de caches,
sprongvoorspeller, ...) aan het begin van elke monstereenheid; gerefe-
reerd in de literatuur als het koudestartprobleem.

Om het koudestartprobleem aan te pakken, stellen we een nieuwe
opwarmmethode voor: NSL-BLRL. Deze methode bouwt verder op
No-State-Loss (NSL) en Boundary Line Reuse Latency (BLRL) om de kost
van cyclusgetrouwe cachesimulatie in bemonsterde simulatie te mini-
maliseren. Het achterliggende idee is om de toestand van de cache aan
het begin van een monstereenheid efficiént te initialiseren door het in-
laden van een ingekorte NSL-stroom. NSL overloopt de voormonster-
eenheid? en houdt de laatste referentie naar elke unieke geheugenloca-
tie bij. Deze NSL-stroom wordt dan ingekort door gebruik te maken
van BLRL-informatie: we bepalen tot waar in de voormonstereenheid
we moeten teruggaan om de cache (voldoende) nauwkeurig op te war-
men.

Deze hybride aanpak heeft een aantal belangrijke voordelen t.o.v.
voorgaand onderzoek. We bereiken aanzienlijke simulatieversnellin-
gen t.0.v. BLRL en belangrijke data-opslagreducties t.o.v. NSL. Boven-
dien is NSL-BLRL breder toepasbaar dan de recent voorgestelde MHS-
aanpak of de TurboSMARTS-aanpak omdat NSL-BLRL onafhankelijk
is van de cacheblokgrootte.

’De voormonstereenheid (Eng.: pre-sampling unit) bestaat uit de instructies tussen
twee monstereenheden (of tussen het begin van het programma en de eerste monster-
eenheid).

Xi

Benchmarksynthese. Codemutatie kan in combinatie met bemon-
sterde simulatie gebruikt worden om korte evaluatieprogramma’s te
genereren die de originele programma-algoritmen verbergen. Hoewel
dit een effectieve aanpak is, zijn er een aantal nadelen aan verbonden.
Het is bijvoorbeeld niet mogelijk om deze evaluatieprogramma’s te ge-
bruiken voor de exploratie van verschillende instructiesetarchitecturen
of voor de exploratie van verschillende compilers en compileropti-
malisaties. Bovendien moet bij bemonsterde simulatie de simulator
typisch aangepast worden om de (micro)architecturale toestand aan
het begin van een monstereenheid te initialiseren. In het laatste luik
van dit onderzoekswerk stellen we een raamwerk voor dat korte eva-
luatieprogramma’s generereert in een hogere programmeertaal, om zo
te trachten antwoord te bieden op deze en de eerder geidentificeerde
problemen.

Het geintroduceerde raamwerk genereert korte, onherkenbare maar
toch representatieve evaluatieprogramma’s, en omdat de programma’s
in een hogere programmeertaal worden gegenereerd, kunnen ze wor-
den aangewend voor de exploratie van verschillende architecturen,
compilers en compileroptimalisaties. De eerste component van het
raamwerk profileert de (eigendoms)software (gecompileerd met een
lage optimalisatievlag) om verschillende uitvoeringskarakteristieken
op te meten. We maken hierbij gebruik van een nieuwe structuur
die het controleverloop van een programma statistisch beschrijft. De
tweede component van het raamwerk genereert op basis van het opge-
meten profiel een synthetisch evaluatieprogramma in een hogere pro-
grammeertaal (C in dit geval). Voorgaand onderzoek beperkte zich tot
de generatie van evaluatieprogramma’s in assemblertaal. De gegene-
reerde synthetische evaluatieprogramma’s hebben een aantal belang-
rijke eigenschappen. Allereerst zijn de evaluatieprogramma’s repre-
sentatief voor de eigendomssoftware op verschillende platformen (met
verschillende instructiesetarchitecturen, microarchitecturen, en compi-
lers en optimalisatieniveau’s). Ook zijn de gegenereerde programma’s
korter dan de oorspronkelijke programma’s (gemiddeld dertig keer
korter, opgemeten voor een verzameling van MiBench evaluatiepro-
gramma’s). De laatste eigenschap is dat de synthetische programma’s
de algoritmen van de eigendomssoftware verbergen. We hebben dit
geverifieerd door gebruik te maken van plagiaatdetectiesoftware.

Het raamwerk kan gebruikt worden bij verschillende toepassingen:
het verspreiden van representatieve klonen van eigendomssoftware
voor prestatie-evaluatiedoeleinden, het versnellen van gedetailleerde

Xii SAMENVATTING

simulaties, het modelleren van toekomstige werklasten, het conso-
lideren van meerdere programma’s in één synthetisch evaluatiepro-
gramma, enz.

Conclusie. We hebben een aantal technieken voorgesteld om werk-
lasten te genereren en/of reduceren. Codemutatie transformeert een ei-
gendomsprogramma in een mutant die de intellectuele eigendom ver-
bergt, en de prestatie vrijwaart. Bemonsterde simulatie kan gebruikt
worden om gedetailleerde simulaties te versnellen. Benchmarksyn-
these verbergt de intellectuele eigendom van een programma en redu-
ceert tevens de uitvoeringstijd.

Summary

Microprocessors have advanced exponentially over the years: from
scalar in-order execution processors to complex superscalar out-of-
order and multi-core processors. This ever-increasing microarchitec-
tural complexity necessitates benchmark programs to evaluate the
performance of a (new) microprocessor, hence, organizations such as
SPEC, EEMBC, etc., released standardized benchmark suites. Although
this has streamlined the process of performance evaluation, computer
architects and engineers still face several important benchmarking
challenges. We identify three overarching challenges in benchmark
design, which gave rise to this research work.

1. Benchmarks should be representative of the (future) applications
that are expected to run on the target computer system; however,
itis not always possible to select a representative benchmark suite
for at least three reasons. For one, standardized benchmark suites
are typically derived from open-source programs because indus-
try hesitates to share proprietary applications, and open-source
programs have the advantage that they are portable across dif-
ferent platforms. The limitation though is that these benchmarks
may not be representative of the real-world applications of in-
terest. Second, existing benchmark suites are often outdated be-
cause the application space is constantly evolving and developing
new benchmark suites is extremely time-consuming (and costly).
Finally, benchmarks are modeled after existing applications that
may be less relevant by the time the product hits the market.

2. Coming up with a benchmark that is short-running yet repre-
sentative is another major challenge. Contemporary application
benchmark suites like SPEC CPU2006 execute trillions of instruc-
tions in order to stress contemporary and future processors in a

Xiv SUMMARY

meaningful way. If we also take into account that during microar-
chitectural research a multitude of design alternatives need to be
evaluated, we easily end up with months or even years of simula-
tion time. This may stretch the time-to-market of newly designed
microprocessors. Hence, it is infeasible to simulate entire appli-
cation benchmarks using detailed cycle-accurate simulators.

3. Finally, a benchmark should enable both (micro)architecture and
compiler research and development. Although existing bench-
marks satisfy this requirement, this is typically not the case for
workload generation techniques that reduce the dynamic instruc-
tion count in order to address the simulation challenge. These
techniques often operate on binaries which eliminates their util-
ity for compiler exploration and instruction-set architecture ex-
ploration.

In summary, we would like to have a representative benchmark that
is short-running and that can be used for both (micro)architecture and
compiler research. In this research work, we propose three novel work-
load generation and reduction techniques that help to fulfill these chal-
lenges. In particular, code mutation addresses the proprietary nature
of contemporary applications, while sampled simulation using NSL-
BLRL reduces the long simulation times of contemporary benchmarks;
finally, benchmark synthesis reduces simulation time and hides propri-
etary information in the reduced workloads.

Code mutation. We first propose code mutation to stimulate shar-
ing of proprietary applications to third parties (academia and indus-
try). Code mutation is a novel methodology that mutates a propri-
etary application to complicate reverse engineering so that it can be
distributed as an application benchmark among several parties. These
benchmark mutants hide the functional semantics of proprietary appli-
cations while exhibiting similar performance characteristics. We there-
fore exploit two observations: (i) miss events have a dominant impact
on performance on contemporary microprocessors, and (ii) many vari-
ables of contemporary applications exhibit invariant behavior at run
time. More specifically, we compute program slices for memory access
operations and/or control flow operations trimmed through constant
value and branch profiles. Subsequently, we mutate the instructions
not appearing in these slices through binary rewriting. The end result

XV

is a benchmark mutant that can serve as a proxy for the proprietary
application during benchmarking experiments by third parties.

Our experimental results using SPEC CPU2000 and MiBench bench-
marks show that code mutation is an effective approach that mutates
(i) up to 90% of the binary, (ii) up to 50% of the dynamically ex-
ecuted instructions, and (iii) up to 35% of the at-run-time-exposed
inter-operation data dependencies. In addition, the performance char-
acteristics of the mutant are very similar to those of the proprietary
application across a wide range of microarchitectures and hardware
implementations.

Code mutation will mostly benefit companies that develop (embed-
ded) microarchitectures and companies that offer (in-house built) ser-
vices to remote customers. Such companies are reluctant to distribute
their proprietary software. As an alternative, they can use mutated
benchmarks as proxies for their proprietary software to help drive per-
formance evaluation by third parties as well as guide purchasing de-
cisions of hardware infrastructure. Being able to generate represen-
tative benchmark mutants without revealing proprietary information
can also be an encouragement for industry to collaborate more closely
with academia, i.e., it would make performance evaluation in academia
more realistic and therefore more relevant for industry. Eventually, this
may lead to more valuable research directions. In addition, developing
benchmarks is both hard and time-consuming to do in academia, for
which code mutation may be a solution.

Sampled simulation: NSL-BLRL. Code mutation conceals the intel-
lectual property of an application, but it does not lend itself to the gen-
eration of short-running benchmarks. Sampled simulation on the other
hand reduces the simulation time of an application significantly. The
key idea of sampled simulation is to simulate only a small sample from
a complete benchmark execution in a detailed manner (a sample con-
sists of one or more sampling units). The performance bottleneck in
sampled simulation is the establishment of the microarchitecture state
(caches, branch predictor, etc) at the beginning of each sampling unit.
The unknown microarchitecture starting image at the beginning of a
sampling unit is often referred to as the cold-start problem.

We address the cold-start problem by proposing a new cache
warmup method, namely NSL-BLRL which builds on No-State-Loss
(NSL) and Boundary Line Reuse Latency (BLRL) for minimizing the

Xvi SUMMARY

cost associated with cycle-accurate processor cache hierarchy simu-
lation in sampled simulation. The idea of NSL-BLRL is to establish
the cache state at the beginning of a sampling unit using a checkpoint
that stores a truncated NSL stream. NSL scans the pre-sampling unit
and records the last reference to each unique memory location. This is
called the least-recently used (LRU) stream. This stream is then trun-
cated to form the NSL-BLRL warmup checkpoint by inspecting the
sampling unit for determining how far in the pre-sampling unit one
needs to go back to accurately warm up the cache state for the given
sampling unit.

This approach yields several benefits over prior work: substan-
tial simulation speedups compared to BLRL (up to 1.4x under fast-
forwarding and up to 14.9x under checkpointing) and significant re-
ductions in disk space requirements compared to NSL (on average
30%), for a selection of SPEC CPU2000 benchmarks. Also, NSL-BLRL
is more broadly applicable than the Memory Hierarchy State (MHS)
and TurboSMARTS approaches because NSL-BLRL warmup is inde-
pendent of the cache block size.

Benchmark synthesis. Although code mutation can be used in com-
bination with sampled simulation to generate short-running workloads
that can be distributed to third parties without revealing intellectual
property, there are a number of limitations. The most important limita-
tion is that this approach operates at the assembly level, and as a result,
it cannot be used for compiler exploration and ISA exploration pur-
poses. We therefore propose a novel benchmark synthesis framework
that generates synthetic benchmarks in a high-level programming lan-
guage.

The benchmark synthesis framework aims at generating small but
representative benchmarks that can serve as proxies for other appli-
cations without revealing proprietary information; and because the
benchmarks are generated in a high-level language, they can be used
to explore the architecture and compiler space. The methodology to
generate these benchmarks comprises two key steps: (i) profiling a real-
world (proprietary) application (that is compiled at a low optimization
level) to measure its execution characteristics, and (ii) modeling these
characteristics into a synthetic benchmark clone. To capture a pro-
gram’s control flow behavior in a statistical way, we introduce a new
structure: the Statistical Flow Graph with Loop information (SFGL).

xvii

We demonstrate good correspondence between the synthetic and
original applications across instruction-set architectures, microarchitec-
tures and compiler optimizations, and we point out the major sources
of error in the benchmark synthesis process. We verified using software
plagiarism detection tools that the synthetic benchmark clones indeed
hide proprietary information from the original applications.

We argue that our framework can be used for several applications:
distributing synthetic benchmarks as proxies for proprietary appli-
cations, drive architecture and compiler research and development,
speed up simulation, model emerging and hard-to-setup workloads,
and benchmark consolidation.

Conclusion. To facilitate benchmarking, we proposed different work-
load generation and reduction techniques. Code mutation transforms a
proprietary application into a benchmark mutant that hides intellectual
property while preserving performance characteristics. Sampling can
be used to speed-up cycle-accurate simulation. Finally, high-level lan-
guage benchmark synthesis generates short-running synthetic bench-
marks that hide proprietary information.

Xviii SUMMARY

Contents

Nederlandstalige samenvatting

English Summary
1 Introduction

1.1 Key challenges in benchmark design

1.2 Contributions

1.3 Overview i i e e e e

2 Code mutation

21 Introduction
2.1.1 Proprietary nature of real-world applications . . .
2.1.2 General idea of code mutation

2.2 Designoptions.

2.3 Code mutation framework
2.3.1 Collecting the execution profile
23.2 Programanalysis
233 Binaryrewriting

2.4 Quantifying Mutation Efficacy

2.5 Experimentalsetup

2.6 Evaluation,
2.6.1 Hiding functional semantics
2.6.2 Performance characteristics

27 Summary

vii

xiii

XX CONTENTS

3 Sampled simulation 47
3.1 Sampled processor simulation 47
3.1.1 Selecting sampling units 50

3.1.2 Initializing the architecture state 51

3.1.3 Initializing the microarchitecture state 53

3.2 Cachestatewarmup 54
321 Adaptivewarming 55

3.2.2 Checkpointed warming 59

3.3 Combining NSL and BLRL into NSL-BLRL 61
3.4 Experimentalsetup 64
35 Evaluation 66
351 Accuracy 66

352 Warmuplength 67

3.5.3 Simulationtime 69

3.5.4 Storagerequirements. 71

3.5.5 Cache replacement policies 73

36 Summary 74
4 Benchmark synthesis 77
41 Introduction 77
4.2 High-level language benchmark synthesis 79
421 Frameworkoverview 79

422 Applications Lo 0oL 81

4.3 Frameworkdetails 83
43.1 Collecting the execution profile 83

43.2 Synthetic benchmark generation 86

433 Example L. 94

434 Limitations 95

44 Experimentalsetup 96
45 Evaluation 98
45.1 Performance characteristics 98

45.2 Hiding functional semantics 107

46 Relatedwork., 108

47 Summary 109

CONTENTS XXi

5 Comparing workload design techniques 111
51 Introduction 111
5.2 Workload design techniques 112

521 Inputreduction 112
522 Sampling. 113
523 Benchmarksynthesis 114
53 Comparison 115
54 Summary 118

6 Conclusion 119

61 Summary o 119
6.1.1 Codemutation 120
6.1.2 Cache state warmup for sampled simulation

through NSL-BLRL 121
6.1.3 High-level language benchmark synthesis 122

6.2 Futurework L. 123

6.21 Codemutation 123

6.2.2 High-level language benchmark synthesis 125

xXii CONTENTS

List of Tables

2.1
2.2
2.3
24

25
2.6

3.1
3.2

3.3

34
3.5

4.1
4.2
4.3

4.4
4.5

51

Examples of modern benchmark suites 12
CINT2000 benchmarks used for evaluating code mutation 32
MiBench benchmarks used for evaluating code mutation 32

Baseline processor model used for evaluating code mu-
tationo 33

Machines used for evaluating code mutation 33
Cache configurations used for evaluating code mutation 39

Simulation speeds for today’s simulators 48

Different SPEC CPU generations and their instruction
count 49

Simulation speeds for three different SimpleScalar simu-
latormodels 53

CINT2000 benchmarks for the evaluation of NSL-BLRL . 65
Baseline processor model for the evaluation of NSL-BLRL 65

Memory access strideso Lo 86
Pattern recognition 92
Embedded benchmarks used for evaluating benchmark

synthesis Lo oo 97
Machines used for evaluating benchmark synthesis . . . 97

Baseline processor model used for evaluating bench-
marksynthesis. o oo Lo 105

Comparison of workload design techniques 117

XXiv LIST OF TABLES

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13

2.14
2.15

2.16
217

3.1
3.2
3.3
34
3.5

Code mutation framework 16
Example illustrating inter-operation dependency profile 18

Example illustrating program slicing 22
Factorial function before code mutation 26
Factorial function after code mutation 27
Different types of branches in the binary 29
Benchmark efficacy using the SIR metric 35
Benchmark efficacy using the SEIR metric 36
Benchmark efficacy using the WIR metric 36
Benchmark efficacy using the DR metric 37
Benchmark efficacy using the WDR metric 37
Execution time deviation (simulated) 39
Normalized execution time for the original application

(simulated) 40
Normalized execution time for the mutant (simulated) . 40
Normalized execution time for the original application

(hardware) 42
Normalized execution time for the mutant (hardware) . . 42
Execution time deviation (hardware) 43
General concept of sampled simulation 49
IPC prediction error considering anempty MSL 55
Determining warmup using MRRL 56
Determining warmup using BLRL 58

Buildingthe LRUstack 60

XXVi LIST OF FIGURES
3.6 Combining NSL and BLRL into NSL-BLRL 62
3.7 Integrating NSL and BLRL using a single hash table . . . 63
3.8 IPC prediction error for NSL-BLRL compared to BLRL . 67
3.9 Number of warm simulation instructions for NSL-BLRL

comparedtoBLRL 68
3.10 Number of warm simulation references for NSL-BLRL as

a fraction of warm simulation references for NSL 69
3.11 Number of warm simulation references as a function of

the pre-sampling unitsize 70
3.12 Simulation time for BLRL and NSL-BLRL using fast-

forwarding o L oo o 71
3.13 Simulation time for BLRL and NSL-BLRL using check-

pointing L 72
3.14 Storage requirements for NSL-BLRL compared to NSL . 73
3.15 IPC for continuous warmup and NSL-BLRL 100% for

different cache replacement policies 74
4.1 Benchmark synthesis framework 80
4.2 Statistical Flow Graph with Loop annotation 84
43 Downscaled SFGL. 88
4.4 Skeleton code for different downscaled SFGLs 90
4.5 Modeling memory access streams 94
4.6 Reduction in dynamic instructioncount 99
4.7 Dynamic instruction count across compiler optimizations 99
4.8 Instruction mix for the ~00 optimization level 101
49 Instruction mix for the ~02 optimization level 101
4.10 Data cache hit rates for the original applications at the

-00 optimizationlevel 102
4.11 Data cache hit rates for the synthetic benchmarks at the

-00 optimizationlevel, 102
4.12 Data cache hit rates for the original applications at the

-02 optimizationlevel 103
4.13 Data cache hit rates for the synthetic benchmarks at the

-02 optimizationlevel 103
4.14 Branch prediction rates for the original applications and

the syntheticbenchmarks 104

LIST OF FIGURES XXVii

4.15 CPI for the original applications and synthetic benchmarks106
416 Normalized average execution time 107

XXViii LIST OF FIGURES

List of Abbreviations

ASI
BBL
BLRL
CFO
CPI
D-Cache
DR
ECF
HLL
I-Cache
ILP

IR

ISA
KIPS
L1

L2

L3
MA-CFO
MHS
MIPS
MRRL
MSI
NSL
PCA
RAW
RISC
ROB
SFGL
SIR
WDR

Architecture Starting Image

Basic Block

Boundary Line Reuse Latency
Control Flow Operation

Cycles Per Instruction

Data Cache

Dependence Ratio

Enforced Control Flow
High-Level Language

Instruction Cache

Instruction Level Parallelism
Instruction Ratio

Instruction Set Architecture
Kilo-Instructions Per Second
Level-1 Cache

Level-2 Cache

Level-3 Cache

Memory Access and Control Flow Operation
Memory Hierarchy State

Million Instructions Per Second
Memory Reference Reuse Latency
Microarchitecture Starting Image
No-State-Loss

Principal Component Analysis
Read After Write

Reduced Instruction Set Computer
Reorder Buffer

Statistical Flow Graph with Loop information
Static Instruction Ratio

Weighted Dependence Ratio

XXX LIST OF ABBREVIATIONS

WIR Weighted Instruction Ratio

Chapter 1

Introduction

The beginning is the most important part of the work.
Plato

According to Moore’s law [Moore, 1998], the number of transistors that
can be integrated on a chip doubles approximately every two years.
This is because of technological progress in the miniaturization of sili-
con transistors, i.e., transistors get smaller and cheaper. Computer ar-
chitects and engineers exploit this empirical law in their quest for ever
better performing microarchitectures. Over the years, microprocessors
have evolved from scalar in-order execution processors to complex su-
perscalar out-of-order processors. These processors issue multiple in-
structions per cycle, are deeply pipelined, have a deep memory hierar-
chy and employ branch prediction [Smith and Sohi, 1995]. Recently,
there has been a shift towards multi-core and many-core processors
[Olukotun et al., 1996].

This ever-increasing complexity leads to an increased design time of
new microprocessors [Agarwal et al., 2000], and therefore an increased
time-to-market. For contemporary designs, the design process can take
as long as seven years [Mukherjee et al., 2002]. A large part of this time
is spent on design space exploration or evaluating the performance im-
pact of different design choices. Hence, designing new microprocessors
and evaluating microprocessor performance are major challenges in
computer architecture research and development [Skadron et al., 2003].

The growing microarchitectural complexity necessitates the use of
benchmark programs to explore the design space of a microprocessor
and to quantify the performance of a computer system. Benchmarks are

2 Introduction

programs to assess the performance of a computer system. Computer
architects and engineers quantify performance by running these pro-
grams and by timing their execution times. In the early design phases
when the actual hardware is not yet available, benchmarks are used
as input to an architectural simulator that models a new microarchitec-
ture. The typical output of such a simulator is the number of cycles that
are required to execute the considered benchmark, along with several
statistics to help the architect understand how the different components
of the simulated system behave, e.g., the number of instruction cache
misses, the branch prediction accuracy, etc. Benchmarking is also use-
ful when a computer system becomes available, e.g., to identify pos-
sible improvements that can be implemented in future designs, or to
compare computer systems for guiding purchasing decisions.

Programs ranging from hand-coded synthetic benchmarks, micro-
benchmarks, kernels, to application benchmarks have been employed
as benchmarks for the performance evaluation of computer architec-
tures. Synthetic benchmarks are programs that impose a desired work-
load on (an individual component of) a computer system, e.g., the mi-
croprocessor. They are usually developed based on statistics from one
or more applications. Whetstone [Curnow and Wichmann, 1976] and
Dhrystone [Weicker, 1984] are two well-known synthetic benchmarks
that have been hand-coded in 1972 and 1984, respectively.

Micro-benchmarks [Sreenivasan and Kleinman, 1974] [Williams,
1977] [Wong and Morris, 1988] [Black and Shen, 1998] [Desikan et al.,
2001] and kernels [McMahon, 1986] are programs designed to mea-
sure the performance on a very small and specific piece of code. The
main difference between micro-benchmarks and kernels is that ker-
nels are typically derived from real-world programs whereas micro-
benchmarks are typically coded from scratch.

The caveat with these hand-coded synthetic benchmarks, micro-
benchmarks and kernels is that they are not representative for real
workloads. As a result, researchers rely heavily on application bench-
marks, i.e., benchmarks that run real-world programs, to assess com-
puter performance [Hennessy and Patterson, 2003]. Recently, there
has been an emergence of these application benchmarks, e.g., SPEC
CPU [Henning, 2000] [Henning, 2006], SPECmail, SPECweb, EEMBC
benchmarks, TPC benchmarks [Poss and Floyd, 2000], etc.

The availability of application benchmarks has standardized the
process of performance comparison. However, two major aspects of

1.1 Key challenges in benchmark design 3

this benchmarking process demand close attention of computer ar-
chitects and engineers: experimental design and data analysis. Ex-
perimental design refers to setting up the experiment, which involves
benchmark design and selection, simulator development, etc. Data
analysis refers to processing performance data after the experiment is
run. The focus of this dissertation is on the former, i.e., the design of
benchmarks to drive performance experiments in computer systems
research and development.

1.1 Key challenges in benchmark design

The design of a benchmark is of paramount importance in systems re-
search and development, and it involves several important challenges.
In this section, we detail these challenges in benchmark design, which
also gave rise to this research work.

1. Benchmarks should be representative of the (future) applications
that are expected to run on the target computer system. A bench-
mark suite that ill-represents a target domain may eventually lead
to a suboptimal design. However, it is not always possible to com-
pose a representative benchmark suite for three reasons:

(a) Industry-standard benchmarks are typically derived from
open-source programs [Henning, 2000] [Henning, 2006].
The limitation is that these open-source benchmarks may
not be truly representative of the real-world applications of
interest. One solution may be to use real-world applications
instead of the industry-standard benchmarks. However, in
many cases, real-world applications cannot be distributed to
third parties because of their proprietary nature.

(b) Existing benchmarks are often outdated. The reason is
twofold: (i) developing new benchmark suites and upgrad-
ing existing benchmark suites is extremely time-consuming
and thus very expensive, and (ii) the application space is
constantly evolving. As a result, the benchmark develop-
ment process may lag the emergence of new applications.

(c) Another problem arises when the software that is expected
to run on a future computer system is still under construc-
tion. In this case, computer architects and engineers have to

4 Introduction

rely on benchmarks that are modeled after existing applica-
tions that may be irrelevant by the time the product hits the
market. One could argue that computer architects design to-
morrow’s systems with yesterday’s benchmarks.

2. We also want a reduced benchmark. The redundancy! in a bench-
mark should be kept as small as possible to limit the amount of
work that needs to be done during performance evaluation. This
is especially important in the early design phases of a new mi-
croarchitecture, i.e., when computer architects and engineers rely
on simulators for evaluating the performance of new ideas. These
architectural simulators are extremely slow because of the com-
plexity of the contemporary processors that they model. If we
also take into account that (i) contemporary benchmarks execute
hundreds of billions or even trillions of instructions, and (ii) dur-
ing microarchitectural research a multitude of design alternatives
need to be evaluated, we easily end up with months or even years
of simulation time. This may stretch the time-to-market of newly
designed microprocessors. To mitigate this problem, benchmarks
should be short-running so that performance projections can be
obtained through simulation in a reasonable amount of time.

3. A benchmark should enable both (micro)architecture and com-
piler research and development. Although existing benchmarks
satisfy this requirement, this is typically not the case for workload
reduction techniques that reduce the dynamic instruction count
in order to address the simulation challenge. These techniques of-
ten operate on binaries and not on source code which eliminates
their utility for compiler exploration and Instruction Set Architec-
ture (ISA) exploration, e.g., when evaluating an architecture that
includes ISA extensions.

In summary, we would like to have a set of benchmarks that is rep-
resentative of existing and/or future applications, and that can be used
for microarchitecture, architecture and compiler research. In addition,
we would like to be able to reduce these representative benchmarks
to limit the time spent during performance evaluation. In this research
work, we propose three novel workload generation and reduction tech-

!This research work deals with intra-program redundancy, i.e., redundancy within
a benchmark of a given benchmark suite.

1.2 Contributions 5

niques that aim at addressing the aforementioned benchmarking chal-
lengesz. In the next section, we detail the specific contributions of this
dissertation.

1.2 Contributions

We first propose a methodology to hide the proprietary information of
contemporary applications to address the concern of distributing pro-
prietary applications to third parties. Subsequently, we contribute to
sampled simulation which addresses the long simulation time of con-
temporary benchmarks. Finally, we propose a workload generation
technique that aims at fulfilling most of the aforementioned challenges
and requirements. More precisely, this dissertation makes the following
contributions to the workload generation for the performance evalua-
tion of microprocessors.

Contribution 1: Code mutation

We propose code mutation which is a novel methodology that mutates
a proprietary application to complicate reverse engineering so that it
can be distributed as an application benchmark among third parties.
These benchmark mutants hide the functional semantics of proprietary
applications while exhibiting similar performance characteristics. The
key idea of this methodology is to preserve the proprietary applica-
tion’s dynamic memory access and/or control flow behavior in the
benchmark mutant while mutating the rest of the application code. We
therefore exploit two key observations: (i) miss events (cache misses,
branch mispredictions) have a dominant impact on performance on
modern architectures, and (ii) many variables of contemporary applica-
tions exhibit invariant behavior at run time. We achieve this by comput-
ing dynamic program slices for memory access operations and/or con-
trol flow operations trimmed through constant value and branch pro-
files, and then mutating the instructions not appearing in these slices
through binary rewriting.

2Note that the focus of this dissertation is on cpu-intensive single-threaded appli-
cations running on single-core processors. In Chapter 6, we discuss some of the chal-
lenges to extend the proposed techniques to multi-threaded applications running on
multi-core processors.

6 Introduction

We propose and empirically evaluate three approaches to code mu-
tation for single-threaded applications. These approaches differ in how
well they preserve the proprietary application’s memory access and
control flow behavior in the mutant. Obviously, there is a trade-off be-
tween information hiding and preserving the performance characteris-
tics of the proprietary application. However, because code mutation is
a top-down methodology — it mutates an existing (proprietary) appli-
cation — the performance characteristics of the benchmark mutants are
very similar to those of the proprietary applications, even for the most
aggressive mutation approach.

We also introduce a set of novel metrics to quantify to what extent
the functional meaning is hidden through code mutation. We report
that code mutation is an effective approach that mutates up to 90% of
the static binary and up to 50% of the dynamically executed instruc-
tions.

This work on code mutation is published in:

Luk Van Ertvelde and Lieven Eeckhout, “Dispersing Proprietary
Applications as Benchmarks through Code Mutation”, In Proceed-
ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2008, 201-
210.

Contribution 2: Cache state warmup for sampled processor simula-
tion through NSL-BLRL

Sampled simulation addresses the long simulation times of contempo-
rary benchmarks by simulating only a limited number of execution in-
tervals from a complete benchmark execution, called sampling units,
in a detailed manner. To make this approach feasible, the sampling
units must provide an accurate representation of the entire program ex-
ecution. Therefore, the sampling units must execute with an accurate
picture of the processor state, i.e., the processor state should be close
to the state should the whole dynamic instruction stream prior to the
sampling unit be simulated in detail. The difference in state at the start
of a sampling unit between sampled simulation and full simulation is
often referred to in literature as the cold-start problem [Haskins and
Skadron, 2003]. The structure that suffers the most from the cold-start
problem is the memory hierarchy, i.e., the caches.

We propose NSL-BLRL, a novel cache warming approach that

1.2 Contributions 7

builds on No-State-Loss (NSL) and Boundary Line Reuse Latency
(BLRL) to efficiently approximate the cache state at the beginning of a
sampling unit. The key idea of NSL-BLRL is to warm the cache hierar-
chy (at the beginning of a sampling unit) by loading a checkpoint that
stores a truncated NSL stream. The NSL stream is the least-recently
used (LRU) stream of memory references in the pre-sampling unit.
This stream is then truncated using BLRL information, i.e., BLRL com-
putes how many memory references are needed to accurately warm
the cache hierarchy. Compared to BLRL, this approach yields simula-
tion time speedups up to 1.4x under fast-forwarding and up to 14.9x
under checkpointing, while being nearly as accurate. Also, NSL-BLRL
is on average 30% more space-efficient than NSL for the same level of
accuracy.

A discussion on this hybrid cache state warm-up approach for sam-
pled processor simulation is published in:

Luk Van Ertvelde, Filip Hellebaut, Lieven Eeckhout and Koen
De Bosschere, “NSL-BLRL: Efficient Cache Warmup for Sampled
Processor Simulation”, In Proceedings of the Annual Simulation
Symposium (ANSS), 2006, 87-96.

Luk Van Ertvelde, Filip Hellebaut and Lieven Eeckhout, “Accu-
rate and Efficient Cache Warmup for Sampled Processor Simula-
tion through NSL-BLRL”, In The Computer Journal, Vol. 51, No. 2,
192-206, March 2008.

Contribution 3: High-level language benchmark synthesis

We propose a novel benchmark synthesis framework for generating
short-running benchmarks that are representative of other applications
without revealing proprietary information. The key novelty of our
approach is that these synthetic benchmarks are generated in a High-
Level programming Language (HLL), which enables both architecture
and compiler research. In contrast to code mutation, benchmark syn-
thesis is a bottom-up methodology, i.e., it generates synthetic bench-
marks from collected program characteristics. This allows us to reduce
the number of dynamically executed instructions.

The methodology consists of two key steps: (i) profiling a real-
world proprietary application to measure its execution characteris-
tics, and (ii) modeling these characteristics into a synthetic benchmark

8 Introduction

clone. We introduce a novel structure to capture a program’s control
flow behavior in a statistical way: the Statistical Flow Graph with Loop
information (SFGL). The SFGL enables our framework to generate
function calls, (nested) loops and conditional control flow behavior in
the synthetic benchmark. Prior work [Bell and John, 2005] [Bell et al.,
2006] [Joshi et al., 2007] [Joshi et al., 2008a] [Joshi et al., 2008b] in bench-
mark synthesis instead generated a long sequence of basic blocks, but
no loops nor function calls. In addition, it was limited to the generation
of synthetic benchmarks at the assembly level.

We evaluate our framework on x86 and IA64 hardware using single-
threaded workloads. We consider multiple hardware platforms with
different instruction set architectures, microarchitectures, compilers
and optimization levels. Prior work was limited to the evaluation
through simulation, and/or considered Reduced Instruction Set Com-
puter (RISC) ISAs. Finally, we use software plagiarism tools to demon-
strate that our synthetic benchmarks do not reveal proprietary infor-
mation.

A discussion on benchmark synthesis at the high-level language is
published in:

Luk Van Ertvelde and Lieven Eeckhout, “Benchmark Synthe-
sis for Architecture and Compiler Exploration”, In Proceedings

of the IEEE International Symposium on Workload Characterization
(IISWC), 2010, 106-116.

Contribution 4: Comparison of workload generation and reduction
techniques

To guide the process of performance evaluation, we give an overview
of other recently proposed workload generation and reduction tech-
niques. We compare them with our techniques along the following
criteria: whether they yield representative and short-running bench-
marks, whether they can be used for both architecture and compiler
exploration, and whether they hide proprietary information.

We conclude there is no clear winner, i.e., the different techniques
represent different trade-offs. The trade-off between code mutation
and benchmark synthesis is that benchmark synthesis yields synthetic
benchmarks that may be less accurate and representative with respect
to the real-world workloads compared to mutated binaries; however, it
hides proprietary information more adequately and it yields shorter-

1.3 Overview 9

running benchmarks. Furthermore, high-level language benchmark
synthesis seems to be one of the few techniques that aims at enabling
compiler and ISA exploration.

This comparison on workload generation and reduction techniques
is published in:

Luk Van Ertvelde and Lieven Eeckhout, “Workload Reduction
and Generation Techniques”, In IEEE Micro, Nov/Dec 2010, Vol.
30, No.6.

1.3 Overview

This dissertation is organized as follows.

We present code mutation in Chapter 2. We discuss how we pro-
file a proprietary application to collect its behavior characteristics, and
how we use these characteristics to rewrite the proprietary application
into a benchmark mutant. Also, we introduce a set of novel metrics
for quantifying how well the functional meaning of a proprietary ap-
plication is hidden by the benchmark mutant. Finally, we quantify how
well the performance characteristics of the proprietary application are
preserved in the mutant.

In Chapter 3, we briefly revisit sampled processor simulation. Sub-
sequently, we propose NSL-BLRL for minimizing the cost associated
with warming the cache hierarchy in sampled simulation.

Chapter 4 describes the benchmark synthesis framework for gen-
erating a synthetic benchmark in a high-level programming language
from desired program characteristics. We detail the profiling step and
the synthetic benchmark generation process. Finally, we demonstrate
that we indeed can generate representative synthetic benchmarks that
are shorter running than the workloads they are modeled after, while
still hiding proprietary information.

In Chapter 5, we compare the techniques that we proposed in the
previous chapters with other recently proposed workload generation
and reduction techniques.

Chapter 6 concludes this dissertation with a summary and a discus-
sion of future research directions.

10

Introduction

Chapter 2

Code mutation

If I were two-faced, would I be wearing this one?
Abraham Lincoln

In this chapter, we propose code mutation, a novel methodology for construct-
ing benchmarks that hide the functional semantics of proprietary applications
while exhibiting similar performance characteristics. As such, these bench-
mark mutants can be distributed among third parties as proxies for proprietary
applications for performance evaluation purposes.

After discussing the general idea of code mutation, we extensively describe
the code mutation framework and we motivate a number of high-level design
decisions. We explore several code mutation approaches and evaluate for each
approach how well the performance characteristics of the proprietary applica-
tion are preserved in the mutant, and how well the functional meaning of the
proprietary application is hidden by the mutant. To quantify this information
hiding, we propose a set of novel metrics.

2.1 Introduction

2.1.1 Proprietary nature of real-world applications

Benchmarking is the key tool for assessing computer system perfor-
mance. One use of benchmarking is to drive the design process of next-
generation processors. Another use of benchmarking is to compare
computer systems for guiding purchasing decisions. In order to enable
a fair evaluation of computer system performance, organizations such
as EEMBC, TPC and SPEC standardize the benchmarking process, and

12 Code mutation

for this purpose these organizations provide industry-standard bench-
mark suites. These benchmark suites cover different application do-
mains, as illustrated in Table 2.1.

Table 2.1: Examples of modern benchmarks suites.

Application domain ~ Example benchmark suites

bio-informatics BioPerf [Bader et al., 2005]
databases TPC [P&ss and Floyd, 2000]
general-purpose SPEC CPU [Henning, 2000] [Henning, 2006]
graphics SPECgpc
Java DaCapo [Blackburn et al., 2006], SPECjbb, SPECjvm
multimedia MiBench [Guthaus et al., 2001], MediaBench

[Lee et al., 1997]

transactional memory = STAMP [Cao Minh et al., 2008]

The limitation of these industry-standard benchmarks is that they
are typically derived from open-source programs [Henning, 2000]
[Skadron et al., 2003] which may not be representative of real-world
applications [Maynard et al., 1994] and may be very different from real-
world applications of interest. In addition, available benchmark suites
are often outdated because the application space is constantly evolving
and developing new benchmark suites is extremely time-consuming
(and thus very expensive). An alternative would be to use real-world
applications; however, companies are not willing to release their ap-
plications because of intellectual property issues. For example, a cell
phone company may not be willing to share its next-generation phone
software with a processor vendor for driving the processor design pro-
cess. This may eventually lead to a processor design that provides
suboptimal performance for the target phone software. In other words,
it would be in the industry’s interest to be able to distribute real-world
applications so that the computer systems are designed to provide
good performance for these applications. We propose code mutation
to address this concern of distributing proprietary applications to third
parties [Van Ertvelde and Eeckhout, 2008].

2.1.2 General idea of code mutation

The objective of code mutation is to modify a proprietary application
into a benchmark mutant that meets two conditions: (i) the functional

2.2 Design options 13

semantics of the proprietary application cannot be revealed, or, at
least, are very hard to reveal through reverse engineering of the mu-
tant, and (ii) the performance characteristics of the mutant resemble
those of the proprietary application well so that the mutant can serve
as a proxy for the proprietary application during benchmarking ex-
periments. The key idea of our methodology is to approximate the
performance characteristics of a proprietary application by retaining
memory access and/or control flow behavior while mutating the re-
maining instructions. To achieve this, we first compute program slices
for memory access operations and/or control flow operations. We then
trim these slices using constant value and branch profiles — the reason
for trimming these slices is to make more instructions eligible for code
mutation. Finally, we mutate the instructions not appearing in these
slices through binary rewriting. The end result is a benchmark mutant
that can be distributed to third parties for benchmarking purposes,
which may ultimately lead to more realistic performance assessments
with respect to real-world applications.

2.2 Design options

Before describing our code mutation framework in detail, we discuss
the high-level design choices we faced when developing our code mu-
tation framework. We also highlight the key difference between code
mutation and benchmark synthesis (we will discuss benchmark syn-
thesis in Chapter 4).

Trace mutation versus benchmark mutation. A first design option is
to distribute a mutant in the form of a trace or a benchmark. A trace,
or a sequence of dynamically executed instructions, is harder to reverse
engineer than a benchmark. Techniques borrowed from statistical sim-
ulation! to probabilistically instantiate program characteristics in a syn-
thetic trace [Oskin et al., 2000] [Nussbaum and Smith, 2001] [Eeckhout
et al., 2004], or coalescing representative trace fragments [Conte et al.,
1996] [lyengar et al., 1996] [Sherwood et al., 2002] [Wunderlich et al.,
2003] [Ringenberg et al., 2005] could be used to mutate the original trace
so that the functional meaning is hidden. A major limitation for a trace
mutant is that it cannot be executed on hardware nor on execution-

'We will further detail statistical simulation at the end of Chapter 4.

14 Code mutation

driven simulators, which is current practice in simulation. We therefore
choose to create benchmark mutants instead of trace mutants.

Oneinput. A second design option is to mutate the proprietary appli-
cation so that the resulting mutant can still take different inputs at run
time, or to intermingle the input with the application when creating
the mutant. We choose for the latter option for two reasons: (i) inter-
mingling the input and the application enables more aggressive code
mutations, and (ii) it prevents a malicious individual to try reverse en-
gineer the proprietary application by applying different inputs to the
mutant. The disadvantage of this approach is that a benchmark mutant
needs to be generated for each particular input set.

Binary level versus source code level mutation. Mutation can be ap-
plied at the binary level or at the program source code level. The advan-
tage of source code level mutation is that it is easier to port across plat-
forms, and it enables distributing mutants for compiler research and
development (which is an important benchmarking challenge, as de-
scribed in the introduction of this dissertation). Nevertheless, making
sure that the performance characteristics of the mutant correspond to
those of the proprietary application is a challenging task because the
compiler may affect the performance characteristics differently for the
benchmark mutant than for the proprietary application. We first choose
to generate benchmark mutants at the binary level; in Chapter 4, we in-
vestigate the generation of benchmarks in a high-level programming
language to enable compiler research and development as well.

Bottom-up versus top-down benchmark mutation. Code mutation is
a top-down approach that mutates an existing application to hide pro-
prietary information as much as possible while retaining performance
behavior so that proprietary applications can be shared as benchmark
mutants. A different approach to distribute proprietary applications
as benchmarks is to generate a synthetic benchmark clone? from de-
sired program characteristics [Bell and John, 2005] [Joshi et al., 2006b].
The research challenge of this bottom-up approach is to identify the

%A similar distinction between benchmark cloning and benchmark mutation is
made in circuit synthesis, an area related to benchmark synthesis [Verplaetse et al.,
2000].

2.3 Code mutation framework 15

key program characteristics that when modeled in the synthetic bench-
mark, resemble the original application well. Intuitively, the advantage
of synthetic benchmark generation is that hiding functional meaning is
easier, whereas code mutation eases achieving the goal of preserving
the behavioral characteristics of the proprietary workload. For this rea-
son, we investigate benchmark synthesis as well, see Chapter 4. The
trade-off between both approaches is discussed in Chapter 5.

Existing program obfuscation techniques. Code obfuscation [Coll-
berg et al., 1997] is a growing research topic of interest which converts
a program into an equivalent program that is more difficult to under-
stand and reverse engineer. Although benchmark mutation has some
properties in common with code obfuscation, there are two fundamen-
tal differences. First, code obfuscation requires that the obfuscated pro-
gram version is functionally equivalent to the original program, and
produces the same output. A mutant on the other hand does not re-
quire to be functionally equivalent, and may even produce meaningless
output. Second, a mutant should exhibit similar behavioral characteris-
tics as the proprietary application. An obfuscated program version on
the other hand does not have this requirement, and as a matter of fact,
many code obfuscation transformations change the behavioral execu-
tion characteristics through control flow and data flow transformations
and by consequence introduce significant run time overheads, see for
example [Ge et al., 2005]. These differences call for a completely differ-
ent approach for code mutation compared to code obfuscation.

2.3 Code mutation framework

The general framework for code mutation is depicted in Figure 2.1.
First, we profile the proprietary program’s execution, i.e., we run the
proprietary application along with a proprietary input within an in-
strumentation framework for collecting a so-called ‘execution profile’.
The execution profile is then used to transform the application code
into a mutant through binary rewriting. The mutant can then be shared
among third party industry vendors, as well as between industry and
academia.

We started from the observation that performance on contempo-
rary superscalar processors is primarily determined by miss events
[Karkhanis and Smith, 2004], i.e., branch mispredictions and cache

16

Code mutation

Proprietary Proprietary
application input

—
Profiling through

binary
instrumentation

—

Execution profile

Analysis and
binary rewriting

v

Mutant

\.

Mutant distribution

Academia

Industry
vendors

Hardware and
simulation

Different micro-
architectures

Figure 2.1: The code mutation framework.

2.3 Code mutation framework 17

misses, and to a lesser extent by inter-operation dependencies and
instruction types; inter-operation dependencies and instruction exe-
cution latencies are typically hidden by superscalar instruction pro-
cessing. This observation suggests that the mutant, in order to exhibit
similar behavioral characteristics as the proprietary application, should
mimic the branch and memory access behavior well without worrying
too much about inter-operation dependencies and instruction types. In
order to do so, we determine all operations that affect the program’s
branch and/or memory access behavior; we do this through dynamic
program slicing (see Section 2.3.2). We retain the operations appear-
ing in these slices unchanged in the mutant, and all other operations
in the program are overwritten to hide the proprietary application’s
functional meaning.

In Sections 2.3.1 through 2.3.3, we provide details on the three key
steps in our framework: (i) profiling the (real-world) proprietary appli-
cation to collect execution characteristics, (ii) program analysis using
this execution profile to mark instructions that can be mutated, and (iii)
mutating the proprietary workload into a benchmark mutant through
binary rewriting.

2.3.1 Collecting the execution profile

The execution profile consists of three main program execution proper-
ties: (i) the inter-operation dependency profile, (ii) the constant value
profile, and (iii) the branch profile. The execution profile will be used in
the next step by the slicing algorithm for determining which operations
affect the branch and/or memory access behavior.

This execution profile can be collected using a binary instrumen-
tation tool such as ATOM |[Srivastava and Eustace, 1994] or Pin [Luk
et al., 2005]. We use Pin in our framework. Dynamic binary instrumen-
tation using Pin adds instrumentation code to the application code as
it runs that collects the program execution properties of interest.

Inter-operation dependency profile

The inter-operation dependency profile captures the data dependen-
cies between instructions. Specifically, it computes the read-after-write
(RAW) dependencies between instructions through both registers and
memory. The inter-operation dependency profile then enumerates all

18 Code mutation

the static instructions that a static instruction depends upon (at least
once) at run time.

For example, consider the example given in Figure 2.2, where in-
struction d consumes registers r3 and r6; instruction a produces r3
and both instructions b and ¢ produce r6. If it turns out that the path
shown through the thick black line (A-B-D) is always executed, i.e., ba-
sic block C is never executed, then only instructions a and b will appear
in the inter-operation dependency profile for instruction d. Instruction
c will not appear in the dependency profile because basic block C is
never executed in this particular execution of the program. If, in con-
trast, basic block C would be executed at least once, then a, b and ¢
would appear in the dependency profile for instruction d.

]|

(a) add rl,r2->r3

A

(b) add r4,r5->r6 (c) sub r4,r5->r6

D .
(d) add r3,r6->r3

-

Figure 2.2: An example illustrating the inter-operation dependency profile: if
basic block C is never executed, only instructions a and b will appear in the
inter-operation dependency profile for instruction d.

2.3 Code mutation framework 19

Constant value profile

For each instruction we profile whether the register values that it con-
sumes and the register values that it produces are constant over the en-
tire program execution. In other words, for each instruction, we keep
track of the register values that it consumes and produces during pro-
filing, and store the constant value register operands in the execution
profile.

Value locality [Lipasti et al., 1996] [Lipasti and Shen, 1996], value
profiling [Calder et al., 1997], and its applications have received great
research interest over the past decade. Various authors have reported
that a substantial fraction of all variables produced by a program at
run time is invariant or semi-invariant. For example, Lipasti and Shen
[1996] show for a collection of integer benchmarks that on average 49%
of the instructions write the same value as they did the last time. Calder
et al. [1997] explore the invariant behavior of values for loads, param-
eters, and register operations. There are several ways of leveraging
invariant (and semi-invariant or predictable) data values such as hard-
ware value prediction [Lipasti and Shen, 1996], code specialization

[Calder et al., 1999], partial evaluation, and adaptive and dynamic
optimization [Auslander et al., 1996]. We will use the constant value
profiles to trim the program slices as we will explain in Section 2.3.2.

Branch profile

The branch profile captures a number of profiles concerning a pro-
gram’s control flow behavior:

e We store the branch direction in case a conditional branch is al-
ways taken or always not-taken.

e We store the branch target in case an indirect jump always
branches to the same target address.

e In case of an unconditional jump, we choose a condition flag that
is constant at the jump point across the entire program execution.

¢ And finally, we also capture the taken/not-taken sequence for in-
frequently executed conditional branches, i.e., in case the branch
is executed less than 32 times during the entire program execu-
tion.

20 Code mutation

Non-determinism

Non-deterministic system calls complicate the computation of the con-
stant value and branch profiles: a variable in one program run may
have a different value in another program run with the same input be-
cause of system call effects. We take a pragmatic solution and run each
program multiple times and then subsequently compute the constant
value profiles across these program runs. A more elegant solution may
be to record/replay system effects as done in pinSEL [Narayanasamy
et al., 2006].

2.3.2 Program analysis

The second step in our framework is to use the execution profile to
mark the instructions that can be mutated. To achieve this, we first
compute the operations that affect the branch and memory access be-
havior of a program execution. Computing these operations is done
through program slicing — program slicing itself is supported by the
inter-operation dependency profile. We then trim the program slices
using the constant value profile and the branch profile, and we mark
all the instructions not part of a slice as eligible for code mutation.

Program slicing

As alluded to before, we use program slicing [Weiser, 1981] [Tip, 1995],
which is a powerful technique for tracking chains of dependencies be-
tween operations in a program. Program slicing is found useful for
various purposes in software development [Calder et al., 1997], testing
and debugging [Weiser, 1982] [Gupta et al., 2005], as well as in opti-
mizing performance through identifying critical operations [Zilles and
Sohi, 2000]. A program slice consists of the instructions that (potentially)
affect the computation of interest, referred to as the slicing criterion. In
this work we consider backward slices, or the sequence of instructions
leading to the slicing criterion. The backward slice, or slice for short,
can be computed through a backward traversal of the program starting
at the slicing criterion. An important distinction is to be made between
a static and a dynamic slice [Agrawal and Horgan, 1990]. The former
does not make any assumptions about the program’s input whereas the
latter relies on a specific test case.

Our framework uses dynamic slicing because we have a specific

2.3 Code mutation framework 21

input available, and because dynamic slices are typically thinner, i.e.,
contain fewer instructions, than static slices. This enables us to more
aggressively apply code mutation. We use an imprecise dynamic slicing
algorithm because of the high computational complexity both in time
and space of precise dynamic slicing [Zhang et al., 2005], especially
for computing many slices for long-running applications. The slices
produced through imprecise slicing are less accurate than through pre-
cise slicing, nevertheless they are conservative meaning that they are
a superset of precise slices. As will turn out, this means that a precise
dynamic slice is a subset of an imprecise dynamic slice.

We use Algorithm II as described by Agrawal and Horgan [1990]
and Zhang et al. [2005]. This algorithm? starts from the slicing criterion
and recursively builds the backward slice using the inter-operation de-
pendency profile: starting from the dependency profile for the slicing
criterion, it recursively computes prior dependencies. The computa-
tional cost for this imprecise slicing algorithm is independent of the
number of slices that need to be computed [Zhang et al., 2005]. This
is an important benefit for our purpose since we compute slices for all
control flow operations and/or data memory accesses, as explained in
the next section.

Figure 2.3 illustrates the dynamic slicing algorithm through an ex-
ample, and how we apply this algorithm to calculate assembly level
slices. The thick black line represents the dynamic sequence of basic
blocks for a particular run of a program: A-B-D-E-H-A-C-D-F. Assume
we want to compute the slice for branch instruction (h2). The imprecise
dynamic slice comprises instructions {a, b, ¢, d, e, h1}, and is com-
puted as follows. Instruction h2 depends on instruction hl through
register r3. Instruction h1 in its turn depends on instruction d through
register r3 as well as on instruction e through memory location mem1
— h1 does not depend on f and g in this particular execution. Instruc-
tion d in its turn depends on a, b and c as these three operations appear
in the inter-operation dependency profile for d. Note however that al-
though d does not depend on c along the A-B-D-E-H execution path,
it still appears in the dynamic slice for h2 — c appears in the inter-
operation dependency profile for d just because c produces a value
that is consumed by d along the A-C-D-F execution path. This is ex-
actly where the imprecise dynamic slice differs from the precise dy-

*Note however that we apply this algorithm to calculate slices at the assembly level
instead of at the level of a high-level programming language.

22

Code mutation

l

(a) add rl,r2->r3

B - C -
(b) add r4,r5->r6 (c) sub r4,r5->r6
D
(d) add r3,r6->r3
E

(e) mov r6->meml

>

(g) add r3,r5->r3

(f) sub r3,r5->r3

H .

(hl) add r3,meml->r3
(h2) br r3

Figure 2.3: An example illustrating program slicing at the assembly level. The
imprecise dynamic slice of branch instruction h2 equals {a, b, ¢, d, e, h1}.

2.3 Code mutation framework 23

namic slice: the precise dynamic slice does not contain ¢ and equals {a,
b, d, e, h1}. Although the imprecise dynamic slice is slightly less accu-
rate than the precise dynamic slice, it is smaller than the static slice for
h2 which comprises instructions {a, b, ¢, d, e, £, g, h1}: instructions £
and g also appear in the slice although there is no dependency between
f/gand hl at run time.

The constant value and branch profiles help trimming both the
number of slices as well as the size of the slices that need to be com-
puted. Specifically, we do not need to compute slices for branches
that are either always taken or always not-taken. Also, the recursive
backward dependency tracking for computing the slices stops upon a
constant value. For example, if the value for register r3 in instruction d
is invariant, the trimmed dynamic slice of instruction h2 will no longer
include instructions a, b and c.

Code marking

In our evaluation, we consider three scenarios with different slicing cri-
teria.

e Memory Access and Control Flow Operation (MA-CFO) slic-
ing: The first scenario computes slices for all control flow opera-
tions as well as for all effective data addresses generated through
loads and stores. This scenario will ensure that the control flow
and memory access behavior of the mutant will be identical to the
proprietary application.

¢ Control Flow Operation (CFO) slicing: The second scenario only
computes slices for all control flow operations. This criterion will
be less accurate than the former because it does not compute
slices for data memory accesses. This has the potential benefit of
enabling more aggressive code mutation at the potential cost of
the mutant being less representative of the proprietary applica-
tion.

e CFO + Enforced Control Flow (ECF) slicing: The third scenario
computes slices for all control flow operations except conditional
branches that are executed less than 32 times over the entire pro-
gram execution — we detail this approach at the end of the fol-
lowing subsection.

24 Code mutation

Once the slices are computed, all the instructions not part of a
trimmed slice are marked as eligible for code mutation. Also, all in-
struction operands (input as well as output operands) that hold con-
stant values at run time are marked as such.

2.3.3 Binary rewriting

The final step in our code mutation framework is to perform the actual
code mutation. We employ binary rewriting to mutate the proprietary
application into a benchmark mutant; we use Diablo [De Bus et al.,
2003] as our binary rewriting tool. Applying mutation through binary
rewriting poses some challenges in terms of preserving the code layout.
Rewriting instructions may change the code layout and may thereby
affect the instruction cache performance. We therefore strive at keeping
the basic block size the same before and after mutation.

Control flow mutations

As mentioned before, we do not compute slices for branches that have
a constant branch target. Instead, we mutate those branches to com-
plicate the understanding of the mutant. To do so, we use an opaque
variable or predicate [Collberg et al., 1997]. An opaque variable is a
variable that has some property that is known a priori to the code mu-
tator, but which is difficult for a malicious person to deduce. In our
work, we use as the opaque variable a condition flag that has a constant
value at the branch point during the course of the program execution
but which is different from the condition flag in the original program.
We mutate conditional branches that are either always taken or always
not-taken, indirect jumps with a constant branch target, and we also
convert unconditional branches into conditional branches. Conditional
branches that jump based on an opaque condition flag do not alter the
execution flow of the mutant but complicate the understanding of the
mutant binary. In addition, control flow edges that are never taken are
altered in the mutant.

Rewriting code and breaking data dependencies

We rewrite the marked instructions — including the unexecuted code
— by randomly reassigning an instruction type, and register input and
output operands. This random reassignment assures that there is no

2.3 Code mutation framework 25

one-to-one mapping of instruction types and operands which compli-
cates reverse engineering. Nevertheless, we ensure that the dynamic
instruction mix in the mutant — the relative occurrence of instruction
types — is similar to that in the proprietary application so that the run
time behavior characteristics of the mutant match those of the propri-
etary application. Likewise, we generate inter-operation data depen-
dencies in such a way that the distribution of inter-operation depen-
dencies of the mutant is similar to the one of the proprietary application
in order to preserve the amount of ILP (Instruction-Level Parallelism)
in the mutant. The instruction operands that are marked as holding
constant values are replaced by immediate constants. By doing so, we
break inter-operation dependencies making it harder to understand the
proprietary application. For the output register operands, we use non-
live register operands to make sure the inserted code mutations do not
affect the execution flow of the mutant.

Example

We now illustrate code mutation that preserves the control flow be-
havior on a simple example that computes the factorial of 7. Figure
2.4 shows the original factorial function and Figure 2.5 shows the code
after code mutation; the instructions shown in bold in Figure 2.5 are
overwritten.

The input to the function, which is ‘7', is held in register eax. Basic
block A checks whether the input is larger than 12. If yes, error han-
dling code is executed in E; if no, the factorial is computed and printed
in B, C, and D. The branch instruction in A is a conditional branch that
is never taken for the given input ‘7’: we overwrite this branch as well
as the cmp instruction in its slice. E is never executed, and by conse-
quence, we can completely overwrite E. Also the conditional branch in
B is never taken — the input differs from ‘1" — and we thus overwrite
the branch and the instructions in its slice. In C, both eax and edx
from the cmp instruction appear in the slice for the conditional branch
at the end of C. However, the value for eax is invariant for this particu-
lar execution, and we thus overwrite the eax argument by its constant
value which is 7. For register edx, the slice includes the cmp and inc
instructions in C and the mov instruction in B; these instructions thus
remain unchanged in the mutant. The values in eax and ebx in D are
constant, and are overwritten by constant values. As a result of that, we
can overwrite the imul instruction in C. The end result of code muta-

26

Code mutation

A | cmp $0xc, $eax
ja E

cmp %eax, sebx
mov $0x1, %edx
ja D

inc
cmp

$edx, $Sebx
Sedx

$eax, Sedx
C

Y

E | movl $0x8096343, (%esp)
call puts
jmp F

D mov
mov
mov 1l
call

%ebx, 0x8 (%esp)
Seax, 0x4 (%esp)
$0x8096328, (%$esp)
printf

F mov Oxfffffffc(%ebp), Sebx
mov $0x1, %eax

leave
ret

Figure 2.4: Factorial function before code mutation.

2.3 Code mutation framework

A | cmp $0x123, %eax
jge E

cmp %edx, %$ecx
mov $0x1, %edx

jge E

inc
cmp

Sedx

%0x7, $edx

C

%$ebx, $eax

call printf
jge F

E | movl $0x8083951, (%esp)

D mov
mov
mov1l
call

%$0x13b0, 0x8 ($esp)
%0x7,0x4 (%esp)
$0x8096328, (%esp)

printf

Figure 2.5: Factorial function (with input ‘7’) after code mutation. Instructions

mov Oxfffffffc(%ebp), Sebx
mov $0x1, %eax

leave

ret

that are mutated are shown in bold.

28 Code mutation

tion is a mutant, shown in Figure 2.5, that looks fairly different from the
original application shown in Figure 2.4. It will be very hard to reveal
the functional meaning of the original application from its mutant.

Infrequent branches

As already alluded to, we do not compute slices for infrequent branches,
in our case, conditional branches that are executed less than 32 times
over the entire program execution. For those branch instructions we
record the branch taken/not-taken sequence in the branch profiles (as
mentioned above), and replay this branch sequence in the mutant at
run time. We refer to this transformation as “Enforced Control Flow’
(ECF). The following code snippet, a basic block from the crafty
benchmark, illustrates ECF:

Original application before ECF:

and %edx, $eax

mov 0x154 (%esp), $ebx
mov %eax, 0x150 (%esp)
or 0x150(%esp), %ebx

1
2
3
4
5) Jjne 0x807026f

~ e~ o~~~
—_— — — — ~—

Benchmark mutant after ECF:

(a) xor %ebx, %$eax

(b) mov 0x154 (%esp), %ecx
(c) mov %ebx,0x150 (%esp)
(d) mov 0x80637e9, %ecx
(e) shl %ecx

(f) mov %ecx,0x80637e9
(g) js 0x80639f6

To enforce the taken/not-taken behavior for the conditional branch, we
first load the branch sequence from memory, see instruction d in the
benchmark mutant — the branch sequence is stored in memory loca-
tion 0x80637e9. We then shift left this branch sequence, and subse-
quently store it back to memory, see instructions e and f. Finally, the
sign bit determines the branch direction (see instruction g). An impor-
tant benefit of ECF is that it increases the number of instructions eligi-
ble for code mutation. For example, the instructions 1 through 3 are
mutated because of not having to retain these instructions in the slice
leading up to the conditional branch.

2.4 Quantifying Mutation Efficacy 29

branches with constant direction ®branches subject to ECF ® branches subject to slicing

1
0,9
0,8
0,7
- 06
L2
5 0,5
g
= 0,4
0,3
o2 HEEEEEEE BEEEEEEE B
ol M EEEEEE BEREEEREREERE B
0
N > 9 2 % 5 = 5 € £ £ o c © £ © T}
SESBELE> g2gAa&Ew g9
= ° g g2 7 8 5 5
o o g
<

Figure 2.6: Fraction of the branches in the binary (i) with constant taken/not-
taken direction, (ii) that are subject to ECF (Enforced Control Flow), and (iii)
that are subject to slicing.

Figure 2.6 quantifies for what fraction of branches in the static bi-
nary we can apply ECF — we will describe the experimental setup later
in Section 2.5. We can apply ECF to approximately 18% of the static
branches. Together with the on average 54% of the branches that are
always taken or not-taken, this means, that on average, we only need
to compute slices for 28% of the static branches.

2.4 Quantifying Mutation Efficacy

There are two issues when quantifying the efficacy of code mutation.
The first one concerns with how well the performance characteristics
of the proprietary application are preserved in the mutant. This is
straightforward to do: this can be done by comparing performance
numbers of the mutant against the proprietary application across a
number of microarchitectures and hardware platforms. The second
issue is much more challenging and concerns with how well the func-
tional meaning of the proprietary application is hidden by the mutant.

30 Code mutation

An industry vendor will only release a proprietary application as a
benchmark mutant based on a thorough efficacy evaluation. This sec-
tion discusses metrics for quantifying how well the functional meaning
of a proprietary application is hidden by the mutant.

There exist a vast body of work on software complexity metrics
which typically quantify various textual properties of the source code
into a complexity measure. Code obfuscation uses some of those met-
rics to quantify the efficacy of code transformations [Collberg et al.,
1997]. These metrics relate to code size, data flow complexity, con-
trol flow complexity, data structure complexity, etc. These metrics only
partially achieve what we want a mutation efficacy metric to measure.
Recall that the aim of code obfuscation is to complicate the understand-
ing of the proprietary application; however, the obfuscated program is
still functionally equivalent to the original application — code obfus-
cation just makes it harder to grasp the proprietary information. Code
mutation goes one step further in the sense that a mutant removes in-
formation from the proprietary application through binary rewriting,
i.e., the mutant is no longer functionally equivalent to the proprietary
application.

These considerations call for metrics specifically targeted towards
quantifying how well code mutation hides the proprietary informa-
tion. We therefore develop a set of metrics to quantify mutation effi-
cacy. The first three metrics quantify the number of instructions that
are mutated, i.e., the fraction instructions that have been rewritten. The
next two count the number of data dependencies that are broken in
the mutant with respect to the proprietary application — hiding data
dependencies and introducing artificial data dependencies complicate
the understanding of the mutant. In this work, when reporting these
metrics, we only report about the application, not the libraries — the
reason is to stress code mutation in the evaluation because most library
code is executed infrequently (if at all).

e Static Instruction Ratio (SIR): The SIR computes the ratio of the
number of instructions in the binary that are mutated relative to
the total number of instructions in the binary.

e Static Executed Instruction Ratio (IR): The SEIR computes the
ratio of the number of instructions in the binary that are mutated
and executed at least once, relative to the number of instructions
in the binary that are executed at least once.

2.5 Experimental setup 31

e Weighted Instruction Ratio (WIR): The WIR computes the ra-
tio of the number of instructions that are mutated, weighted by
their execution frequency relative to the total dynamic instruction
count. In other words, the WIR computes the fraction mutated in-
structions executed relative to the dynamic instruction count.

e Dependence Ratio (DR): The DR metric computes the fraction
inter-operation data dependencies that appear at least once at run
time and that are broken in the mutant.

e Weighted Dependence Ratio (WDR): The WDR metric weights
the DR metric with the execution frequency for each of the depen-
dencies.

The first metric quantifies the efficacy of code mutation for mak-
ing static reverse engineering hard, i.e., reverse engineering of the pro-
prietary application by inspecting the binary of the benchmark mutant.
The other four metrics quantify the efficacy for making dynamic reverse
engineering hard, i.e., reverse engineering by inspecting the dynamic
execution of the mutant.

2.5 Experimental setup

In our evaluation we consider a number of general-purpose SPEC
CPU2000 [Henning, 2000] benchmarks as well as a number of bench-
marks from the embedded MiBench benchmark suite [Guthaus et al.,
2001]. The benchmarks* are shown in Table 2.2 and Table 2.3 along with
their inputs. For the SPEC CPU2000 benchmarks, we use MinneSPEC
[KleinOsowski and Lilja, 2002] inputs in order to limit the simulation
time of complete benchmark executions. For MiBench, we consider the
largest input available. All the benchmarks are compiled on an x86
platform (Intel Pentium 4 running Linux) using gcc compiler version
3.2.2 with optimization level —03; all binaries are statically compiled.

The baseline processor configuration is shown in Table 2.4. We
model a 4-wide superscalar out-of-order processor with a three-level
cache hierarchy. The simulations are done using PTLsim [Yourst, 2007],
an execution-driven x86 superscalar processor simulator.

*We were unable to include all the SPEC CPU2000 integer benchmarks because
of difficulties in inter-operating the various tools (Pin, Diablo and PTLsim) in our
experimental setup.

32

Code mutation

Table 2.2: The SPEC CPU2000 benchmarks used for evaluating code mutation.

Benchmark Description Input

bzip2 compression lgred.source
crafty game playing: chess Igred

gap group theory, interpreter Igred

gzip compression smred.log
mcf combinatorial optimization lgred

parser word processing lgred

twolf place and route simulator lgred

vpr FPGA circuit placement and routing small.arch

Table 2.3: The MiBench benchmarks used for evaluating code mutation.

Benchmark Description

Input

bitcount
blowfish
dijkstra
FFT
jpeg
gsort
sha
susan

bit count algorithm
encryption
path calculation

Fast Fourier Transformation
image (de)compression

quick sort algorithm

secure hash algorithm

image recognition

1125000
large
large
8 32768
large
large
large
large

We also provide hardware performance results and consider three
different Intel Pentium 4 machines. These machines differ in terms of
their clock frequency, microarchitecture, memory hierarchy, and imple-
mentation technology; see Table 2.5 for the most significant differences.

2.6 Evaluation

We now evaluate the proposed code mutation approaches: (i) MA-CFO
(memory access and control flow operation slicing) aiming at preserv-
ing the memory access and control flow behavior in the mutant, (ii)
CFO (control flow operation slicing) aiming at preserving the control

2.6 Evaluation 33

Table 2.4: The baseline processor model considered in our simulations for
evaluating code mutation.

Parameter Configuration
ROB 128 entries
load queue 48 entries
store queue 32 entries

issue queues
processor width
latencies

L1 I-cache

L1 D-cache

L2 cache

L3 cache

main memory
branch predictor
frontend pipeline

4 16-entry issue queues

4 wide fetch, decode, dispatch, issue, commit
load (2), mul(3), div(20)

16 KB 4-way set-associative, 1 cycle

16 KB 4-way set-associative, 1 cycle

unified, 128 KB 16-way set-associative, 6 cycles
unified, 1 MB 16-way set-associative, 20 cycles
250 cycle access time

hybrid bimodal/gshare predictor

8 stages

Table 2.5: The Intel Pentium 4 machines used for evaluating code mutation.

Memory
Machine Generation L2 (KB) Main (GB)
Pentium 4 2 GHz Northwood 512 1
Pentium 4 2.8 GHz Northwood 512 2
Pentium 4 3 GHz Prescott 1024 1

34 Code mutation

flow behavior in the mutant only, and (iii) CFO plus ECF (CFO plus en-
forced control flow of infrequent branches). We evaluate the efficacy of
these approaches along two dimensions: their ability to hide functional
semantics, and their ability to preserve the performance characteristics
in the mutant with respect to the proprietary application.

2.6.1 Hiding functional semantics
Static Instruction Ratio

Figure 2.7 shows results for the SIR metric, or the fraction of the ap-
plication binary that can be mutated, which is an indication for how
well binary mutation protects against static reverse engineering. There
are four bars in this graph. The first bar quantifies the SIR metric by
overwriting code that is not executed for the considered input set. On
average, this results in a 44% SIR metric. The next three bars quantify
the SIR metric for MA-CFO, CFO and CFO plus ECF code mutation;
these approaches achieve a SIR metric of 56%, 60% and 62%, respec-
tively. CFO achieves a higher SIR score than MA-CFO, and CFO plus
ECF achieves a higher SIR score than CFO. The reason is that fewer
slices need to be computed which increases the number of instructions
eligible for code mutation.

The relative increase is limited though: we expected that the SIR
metric would be much higher for CFO compared to MA-CFO. How-
ever, the relatively small increase seems to suggest that there is signif-
icant overlap between the slices for the memory accesses compared to
the slices for the control flow operations. Not computing memory ac-
cess slices does not reveal that many additional instructions eligible for
code mutation. Put another way, by striving at preserving a program’s
control flow behavior, we also preserve most of the memory access be-
havior.

Another interesting note is that the achievable SIR is benchmark
specific, and for some benchmarks more than 90% of the application
binary can be mutated, see for example gap and susan. The high
SIR score for susan and gsort correlates well with the small num-
ber of branches subject to slicing, see Figure 2.6. For other benchmarks
though, the small number of branches subject to slicing does not trans-
late into a high SIR score, see for example bzip2: a small number of
control flow slices cover a large fraction of the entire program code.

2.6 Evaluation 35

unexecuted code MA-CFO ®m CFO = CFO +ECF

100%
90%
80%
o
T 0
g 70%
§ 60%
3 50%
3
S 40%
8
g 30%
2]
20%
10% I
0%
N > a9 2% 5 = 5 E g £ o o g ® w
S8 8§ E e g > 23 3 8& 6 3 Q
2 s g §a3° "% = g
8 o] © w
<

Figure 2.7: Quantifying the efficacy of benchmark mutation using the SIR
(Static Instruction Ratio) metric. CFO plus ECF achieves an average SIR score
of 62%.

Static Executed Instruction Ratio and Weighted Instruction Ratio

Figures 2.8 and 2.9 report similar results for the SEIR and WIR met-
rics, which are measures for how well code mutation protects against
dynamic reverse engineering. The SEIR and WIR metrics have lower
values than the SIR metric: average SEIR and WIR scores of 36% and
20%, respectively, compared to the average 62% SIR score for CFO plus
ECF code mutation. Also, the WIR score is typically lower than the
SEIR score. This suggests that code mutation primarily mutates code
in less frequently executed code regions. The susan benchmark is an
extreme example which has an SIR metric of 95%, an SEIR metric of
43% and a WIR metric of 8%. For other benchmarks on the other hand,
such as gsort, code mutation mutates frequently executed code, and
achieves a WIR score (53%) that is higher than its SEIR score (38%).

36 Code mutation

MA-CFO m CFO = CFO +ECF

60%

50%

40%

30%

20%

10%

Static Executed Instruction Ratio

0%

YrgeTyss ESEgEEEL Y

5 © o § E @ > 5 5 3 8 & 5 17 Q

N (o)) LE Ie) (/1__“§ 9] b3
a o IS 8 o © X

o _gw o .5 [a'd

<

Figure 2.8: Quantifying the efficacy of benchmark mutation using the SEIR
(Static Executed Instruction Ratio) metric. CFO plus ECF achieves an average
SEIR score of 36%.

MA-CFO = CFO m CFO +ECF
60%

50%

10

40% I

30%

20%

Weighted Instruction Rat

10% H

0%

bzip2
crafty
gap
gzip
mcf
parser
twolf
vpr
bitcount
susan
gsort
ipeg
blowfish
sha

fft
dijkstra
AVERAGE

Figure 2.9: Quantifying the efficacy of benchmark mutation using the WIR
(Weighted Instruction Ratio) metric. CFO plus ECF achieves an average WIR
score of 20%.

MA-CFO m CFO m CFO +ECF

(H

S 5 &
> o Qo
2 2

50%
45%
40%

2.6 Evaluation 37
35%
30%

25%

20%

15%

10%

5%

0%
Q o

Figure 2.10: Quantifying the efficacy of benchmark mutation using the DR
(Dependence Ratio) metric. CFO plus ECF achieves an average DR score of
29%.

Dependence Ratio

T e

mcf
dijkstra

parser
twol
bitcoun
susan
blowfish
sha

AVERAGE |

MA-CFO = CFO = CFO +ECF

50%
45%
o
=2 40%
@
3 35%
c
S 30%
5 |
S 25%
2 I
2 20%
£ 15%
=)
2 10% -
5% -
0%
Sg89EEEE 583885 °§ ¢
< ° g g a ° 8 = o4
o e g
z

Figure 2.11: Quantifying the efficacy of benchmark mutation using the WDR
(Weighted Dependence Ratio) metric. CFO plus ECF achieves an average
WDR score of 16%.

38 Code mutation

Dependence Ratio and Weighted Dependence Ratio

Figures 2.10 and 2.11 show the DR and WDR metrics, respectively. The
average DR and WDR metric scores are 29% and 16%, respectively, and
go up to 40% and 35%, respectively. This result shows that a substan-
tial fraction of the at run-time-exposed data dependencies are broken
through code mutation, which will complicate reverse engineering sig-
nificantly.

2.6.2 Performance characteristics

We now evaluate how well the mutant preserves the performance char-
acteristics of the original application. We do this in three steps. We
tirst consider our baseline simulated processor configuration, and sub-
sequently evaluate how well the mutant tracks the original applica-
tion across a microarchitecture design space. Finally, we consider three
hardware platforms.

Simulation results

Figure 2.12 quantifies the execution time deviation for the mutant com-
pared to the original application. The average (absolute) performance
deviation equals 0.7%, 1.0% and 1.2% for MA-CFO, CFO, and CFO plus
ECE, respectively. The maximum performance deviation is limited to
6%, see gsort which is also the benchmark with the highest WIR and
WDR metric values.

We also evaluated code mutation across a microarchitecture design
space in which we vary the cache hierarchy, see Table 2.6 for the dif-
ferent cache configurations. The average deviation across this design
space equals 0.8%, 1.3% and 1.4% for MA-CFO, CFO and CFO plus
ECF, respectively. The relative small increase in performance deviation
suggests that CFO plus ECF is the mutation approach that represents a
good trade-off in its ability to hide proprietary information while pre-
serving performance characteristics.

This is further illustrated in Figure 2.13 and Figure 2.14. Figure 2.13
shows the normalized execution time for the original application across
four cache hierarchy configurations for a four-wide superscalar pro-

2.6 Evaluation 39

MA-CFO m CFO = CFO +ECF
8%

6%

c
S 4%
8
S
v 2% I
°
)
£ 0% ool S i - - " l
=
z | |
2 2%
3
o)
x -4%
)
-6%
-8%
N > 2 b5 5 = = 2 c £ o c o I
2 £ S ¢ 8 5 ¢ gmémwc“t—: %
N g o5 E§ 2 28285 2 <
° © o £ o S 5 o«
o Ke) g
<

Figure 2.12: Execution time deviation for the mutant against the original ap-
plication for the baseline processor configuration.

cessor, and Figure 2.13 shows the normalized execution time for the
mutant considering CFO plus ECF. The mutant tracks the performance
sensitivities across the memory hierarchy very well. For example, mc £
benefits the most going from a 8 KB L1 cache to a 16 KB L1 cache, see
Figure 2.13. This goes for the mutated version of mc £ as well, see Figure
2.14

Table 2.6: Cache configurations used for evaluating code mutation.

Cache size (KB)
Configuration L1 L2 L3
‘small” cache 8 64 512

‘medium-small’ cache 16 128 1024
‘medium-large’ cache 32 256 2048
‘large’ cache 64 512 4096

40 Code mutation

'small' cache ='medium-small' cache ®'medium-large' cache ®'large’' cache

100%
o 90% [— — —
E
=
c
Re]
5 80% | —
o
Q
x
)
o
& 70% - L
©
€
P
5]
< 60% -
50%
N> QO 9 % 5 £ 935 E © £ o £ «© @
2 £ 8 § 2 § °o ¢ %m‘émmc“t-:
N 8 o 5 E & 3 > 3 9 6 o & ® 7]
85 S 8 2 & = % 2
o = u o 5
a 5

Figure 2.13: Normalized execution time for the original application across
four cache hierarchy configurations for a four-wide superscalar processor.

'small' cache = 'medium-small' cache ®'medium-large' cache ®'large’' cache

100%
© 90% —
£
c
S
S 80% - —
o
Q
x
(]
e}
8 70% - —
E
£
o
S 60%
50%
5 g«

bzip2
crafty
gap
gzip
mcf
parser
twolf
bitcount
susan
gsort
ipeg
blowfish
s
dijkstra

Figure 2.14: Normalized execution time for the mutant assuming CFO plus
ECF across four cache hierarchy configurations for a four-wide superscalar
processor.

2.6 Evaluation 41

Hardware results

The results presented so far are obtained through simulation. Figures
2.15 through 2.17 show results obtained from hardware measurements
on three Intel Pentium 4 machines, see also Table 2.5.

Figure 2.15 shows the normalized execution times across the three
Intel Pentium 4 machines for the original applications, and Figure 2.16
for the mutants; the results are normalized to the execution time of
the original application on the 3.0 GHz Prescott machine. These re-
sults show that the mutants track the relative performance differences
of the original application very well across the different hardware plat-
forms. For example, for the SPEC benchmarks, bzip2 and mcf show
the largest performance improvement going from the 2.8 GHz North-
wood machine to the 3.0 GHz Prescott machine; for the MiBench bench-
marks, susan and jpeg seem to benefit the most from the Prescott ar-
chitecture. We observe this for both the original applications (shown in
Figure 2.15) and the benchmark mutants (shown in Figure 2.16).

Figure 2.17 quantifies the performance deviation of the mutant with
respect to the original application on the Prescott Intel Pentium 4 (ma-
chine 3). The execution time deviation is small: 1.4% on average; the
maximum deviation 6% is observed for gsort, which is the benchmark
with the highest number of dynamically executed instructions that are
mutated.

42 Code mutation

3.0 Ghz Prescott ®2.8 Ghz Northwood m 2.0 Ghz Northwood
2,5

15

normalized execution time

bzip2
crafty
gap
gzip
mcf
parser
twolf
vpr
bitcount
susan
gsort
ipeg
blowfish
sha

fft
dijkstra

Figure 2.15: Normalized execution time for three hardware platforms for the
original application; the results are normalized to the execution time of the
original application on the 3.0 Ghz Prescott Intel Pentium 4 machine.

3.0 Ghz Prescott ®2.8 Ghz Northwood m 2.0 Ghz Northwood

2,5

15

normalized execution time

bzip2
crafty
gap
gzip
mcf
parser
twolf
vpr
bitcount
susan
gsort
jpeg
blowfish
sha

fft
dijkstra

Figure 2.16: Normalized execution time for three hardware platforms for the
mutant assuming CFO plus ECF; the results are normalized to the execution
time of the original application on the 3.0 Ghz Prescott Intel Pentium 4 ma-
chine.

2.6 Evaluation 43

3%

R 1l
- m [| I g - B
-1%

-3%

execution time deviation

-5%

-1%

bzip2
crafty
gap
9zip
mcf
parser
twolf
vpr
bitcount
susan
gsort
Jpeg
blowfish
sha

fft
dijkstra

Figure 2.17: Execution time deviation for a mutant (CFO plus ECF) against its
original application for the 3.0 Ghz Prescott Intel Pentium 4 machine.

44 Code mutation

2.7 Summary

Evaluating the performance of computer systems is typically per-
formed with standardized, open-source benchmarks because industry
vendors are reluctant to share their proprietary applications; however,
open-source benchmarks may not be representative of these propri-
etary applications. This chapter presented code mutation, a novel
methodology that enables automatic profile-based generation of bench-
mark mutants from binaries of proprietary applications in a way that
hides functional semantics while preserving key performance char-
acteristics. As such, these benchmark mutants can be distributed to
third parties without exposing intellectual property, and then serve as
proxies during benchmarking experiments.

Code mutation will be most useful for companies that offer in-house
built services to remote customers. Such companies are reluctant to
distribute their proprietary software. As an alternative, they could use
mutated benchmarks as proxies for their proprietary software. The mu-
tated benchmarks can help drive performance evaluation by third par-
ties as well as guide purchasing decisions of hardware infrastructure.
Being able to generate representative benchmark mutants without re-
vealing proprietary information can also be an encouragement for in-
dustry to collaborate more closely with academia, i.e., it would make
performance evaluation in academia more realistic and therefore more
relevant for industry. In addition, developing benchmarks is both hard
and time-consuming to do in academia, for which code mutation may
be a solution.

We discussed and quantatively evaluated three code mutation ap-
proaches; these approaches differ in how well they preserve the pro-
prietary application’s memory access and control flow behavior in
the mutant. We found CFO plus ECF to be the approach that rep-
resents the best trade-off between accuracy and information hiding.
This approach computes control flow slices for frequently executed,
non-constant branches, and mutates instructions that are not part of
any of these slices. The slices are trimmed using constant value pro-
tiles to make more instructions eligible for code mutation. Our results
obtained for a selection of SPEC CPU2000 and MiBench benchmarks
report that up to 90% of the binary can be mutated, up to 50% of the
dynamically executed instructions, and up to 35% of the at-run-time-
exposed inter-operation data dependencies. We also demonstrated
that the performance characteristics of the mutants correspond well

2.7 Summary 45

with those of the original applications; for CFO plus ECEF, the average
execution time deviation on hardware is 1.4%.

46

Code mutation

Chapter 3

Sampled simulation

Nothing is particularly hard if you divide it into small jobs.
Henry Ford

Code mutation conceals the intellectual property of an application, but it does
not lend itself to the creation of short-running benchmarks. Sampled simula-
tion on the other hand aims at reducing the simulation time of an application,
and probably is the most widely used simulation acceleration technique today.
After briefly revisiting sampled processor simulation, we propose NSL-BLRL,
a technique that builds on No-State-Loss (NSL) and Boundary Line Reuse La-
tency (BLRL) for minimizing the cost associated with warming processor cache
hierarchy state in sampled simulation. We extensively evaluate the accuracy
of this technique and demonstrate that substantial simulation time speedups
are obtained compared to prior work.

3.1 Sampled processor simulation

Computer architects and engineers rely heavily on detailed cycle-
accurate simulation to explore and validate microarchitectural inno-
vations. However, cycle-accurate simulators are extremely slow given
the huge complexity of the microarchitectures that they model [Smith
and Sohi, 1995]. Chiou et al. [2007] give an indication of the simulation
speeds for a number of simulators that are widely used in computer
architecture research and development, see Table 3.1. The reported
speeds range from 1 KHz to a maximum of 740 Kilo Instructions per
Second (KIPS), observed for sim-outorder — measured on an AMD
Opteron 275 processor clocked at 2.2 GHz — which is part of the Sim-

48 Sampled simulation

Table 3.1: An overview of the simulation speeds for today’s simulators [Chiou
et al., 2007].

Simulator Speed
Intel 1-10 KHz
AMD 1-10 KHz
IBM 200 KIPS
Freescale 80 KIPS
PTLSim [Yourst, 2007] 270 KIPS
Sim-outorder [Austin et al., 2002] 740 KIPS
GEMS [Martin et al., 2005] 69 KIPS

pleScalar ToolSet [Austin et al., 2002]. In other words, one second of
native execution time corresponds to multiple hours (or even days) of
simulation time.

At the same time, benchmarks that are being simulated grow in
complexity as well, i.e., the dynamic instruction count of contemporary
benchmarks increases in order to stress the increasingly more powerful
processors. For the SPEC CPU benchmarks, the number of dynami-
cally executed instructions per benchmark increased exponentially, as
illustrated in Table 3.2. For example, the SPEC CPU89 benchmark suite
executes an average of 2.5 billion instructions per benchmark, while for
the SPEC CPU2006 benchmark suite, an average of about 2,500 billion
instructions per benchmark need to be executed. Hence, we easily end
up with months or even years of simulation, e.g., it takes PTLSim more
than 3 months! to run a single SPEC CPU2006 benchmark to comple-
tion. And this is to simulate just a single microarchitecture design point.
Clearly, these long simulation times preclude a detailed exploration of
the design space.

Past research advocates sampling for speeding up detailed simula-
tion [Laha et al., 1988] [Conte et al., 1996] [Sherwood et al., 2002] [Wun-
derlich et al., 2003] [Ekman and Stenstrom, 2005] [Luo et al., 2005]. The
key idea of sampled simulation is to simulate only a small sample from
a complete benchmark execution, as shown in Figure 3.1. A sample
consists of one or more sampling units. We refer to the pre-sampling units
as the parts between consecutive sampling units. Sampled simulation

INote that the precise amount of time depends on the particular ma-
chine/benchmark used in the simulation experiment.

3.1 Sampled processor simulation 49

Table 3.2: The different SPEC CPU generations and their average dynamic
instruction count [Phansalkar et al., 2004] [Joshi et al., 2006a] [Phansalkar et al.,
2007].

Benchmark Average dynamic
suite instruction count (billion)
SPEC CPU89 ~25
SPEC CPU92 ~15
SPEC CPU95 ~75
SPEC CPU2000 =230
SPEC CPU2006 =~ 2,500

dynamic instruction stream

s] -

m E pre_sampling unlt
sample
- sampling unit

Figure 3.1: General concept of sampled simulation.

only simulates the instructions in the sampling units in a cycle-accurate
manner instead of the entire dynamic instruction stream. Hence, signif-
icant speedups can be achieved.

There are three major challenges for sampled simulation to be accu-
rate and fast:

1. How to select the sampling units? The first issue is the selec-
tion of representative sampling units. The challenge is to select
sampling units in such a way that the sampled execution is an
accurate picture of the complete execution of the program. In
other words, sampling units should be chosen such that all major
phases of the original program’s execution are represented dur-
ing sampled execution.

2. How to initialize a sampling unit’s architecture starting image?
The sampling unit’s Architecture Starting Image (ASI) is the archi-
tecture state, i.e., register and memory state, needed to correctly
functionally simulate the sampling unit’s execution. This is not a

50 Sampled simulation

concern for trace-driven simulation? for which the instructions in
the pre-sampling unit can be discarded from the trace. However,
for execution-driven simulation?, it is important to establish the
correct architecture state at the beginning of the sampling unit as
fast as possible so that the sampled simulation can quickly jump
between sampling units.

3. How to accurately estimate a sampling unit’s microarchitecture
starting image? The sampling unit’s Microarchitecture Starting Im-
age (MSI) is the microarchitecture state (content of caches, branch
predictor, etc.) at the beginning of the sampling unit. It is impor-
tant to establish microarchitecture state at the beginning of each
sampling unit in an efficient way. In literature, the unknown mi-
croarchitecture state is often referred to as the cold-start problem.

In this chapter, we address the cold-start problem by proposing a
highly efficient and accurate technique for estimating the content of the
caches (and cache-like structures such as translation lookaside buffers
and branch targets buffers) at the beginning of a sampling unit. The
main motivation to address this challenge is that a significant part of
the total sampled simulation time is spent on establishing the microar-
chitecture state, as we will explain later on. As such, an efficient strat-
egy to warm the microarchitecture state can yield significant simulation
speedups. Before introducing our cache state warmup methodology,
we briefly summarize proposed solutions to the first two challenges.

3.1.1 Selecting sampling units

There are two prevailing strategies for selecting sampling units: (i) sta-
tistical sampling and (ii) targeted sampling. Statistical sampling builds
on statistical sampling theory to estimate the CPI error of the sampled
simulation whereas targeted sampling builds on program analysis to
select representative sampling units.

’In trace-driven simulation, a trace of program instructions and addresses is
recorded and used to drive a software timing model of a microprocessor model. By
consequence, functional simulation —which models the functional characteristics of
an ISA — needs to be performed only once.

®An execution-driven simulator combines functional simulation with timing simu-
lation to evaluate the performance of a microprocessor model — trace files do not need
to be stored.

3.1 Sampled processor simulation 51

Statistical sampling

Statistical sampling selects the sampling units either randomly [Conte
etal., 1996] or periodically. SMARTS (Sampling Microarchitecture Sim-
ulation) proposed by Wunderlich et al. [2003] is a well-known example
of periodic sampling. They use the central limit theorem to determine
how many sampling units are required to achieve a desired confidence
interval at a given confidence level. The user first specifies an initial
number of sampling units. After simulating these sampling units, the
CPI error is estimated based on the central limit theorem. If the esti-
mated CPI error is higher than the user-specified confidence interval,
SMARTS then recommends a higher sampling frequency.

SMARTS uses a small sampling unit size of 1,000 instructions for
SPEC CPU workloads, which implies that many sampling units are
needed (typically in the order of 1,000 sampling units). This small sam-
pling unit size also suggests that sampled simulation accuracy is very
sensitive to the cold-start problem.

Targeted sampling

The idea of targeted sampling is to analyze a program’s time-varying
execution behavior and subsequently pick sampling units from each
program phase. The SimPoint technique by Sherwood et al. [2002] is
the most well-known targeted sampling approach. They propose to
profile the program’s execution in order to identify program phases,
and select a sampling unit from each phase. Compared to SMARTS,
a relative small number of sampling units are chosen (in the range of
one up to ten sampling units), and the typical sampling unit size ranges
from 1 M to 100 M instructions.

Yi et al. [2005] compare the SimPoint approach with the SMARTS

approach. They conclude that SMARTS is slightly more accurate than
SimPoint but SimPoint has a better speed versus accuracy trade-off.

3.1.2 Initializing the architecture state

There are two common approaches for establishing the architecture
state (register and memory state) at the beginning of a sampling unit:
(i) fast-forwarding and (ii) checkpointing. We first explain them since
we will consider both scenarios for the evaluation of our cache warmup

52 Sampled simulation

strategy — once again, note that initializing the ASI does not apply to
trace-driven simulation.

Fast-forwarding

The idea is to fast-forward between sampling units, i.e., navigate be-
tween sampling units through functional simulation. Functional simu-
lation models only the functional characteristics of an instruction-set
architecture, without updating the microarchitecture state and with-
out computing performance metrics. In this scenario, sampled simu-
lation begins fast-forwarding from the end of a sampling unit (or the
beginning of the program) to construct the architecture starting image
through functional simulation. When the beginning of the next sam-
pling unit is reached, the simulator switches to detailed cycle-accurate
simulation. At the end of the sampling unit, the simulator switches
back to functional simulation (or quits in case the last sampling unit is
simulated).

Obviously, functional simulation is much faster than detailed cycle-
accurate simulation. Table 3.3 lists the simulation speeds for the
SimpleScalar simulator models used in the evaluation [Austin et al.,
2002]; the speeds are obtained on an AMD Athlon XP 2600+ processor.
The sim-fast simulator model implements a functional simulator
whereas sim-outorder is a detailed out-of-order performance simu-
lator with a multi-level memory system. These results show that for the
SimpleScalar ToolSet functional simulation is approximately ten times
faster than cycle-accurate simulation — this is where the simulation
speedup in sampled simulation (using fast-forwarding) comes from.

Checkpointing

The second scenario is checkpointing, which stores the architecture
starting image before each sampling unit, i.e., the register contents and
the memory state prior to a sampling unit. Simulating a sampling unit
begins with loading its corresponding checkpoint from disk in order to
update the register and memory state in the simulator. Subsequently,
cycle-accurate simulation of the sampling unit begins.

Checkpointing avoids time-consuming fast-forwarding and allows
for parallel simulation. However, the disadvantage is that full check-
points can be very large, and thus costly in terms of disk space. For

3.1 Sampled processor simulation 53

Table 3.3: Simulation speeds for the SimpleScalar simulator models used in
the evaluation: sim—fast (functional simulation), sim-bpred + sim-cache
(functional warming), and sim-outorder (cycle-accurate simulation).

SimpleScalar simulator model

sim-fast sim-bpred + sim-outorder
Benchmark (MIPS) sim-cache (MIPS) (MIPS)
bzip2 7.78 5.63 0.57
crafty 6.57 5.08 0.68
eon 5.81 5.09 0.73
gcc 5.51 4.66 0.62
gzip 7.14 5.30 0.58
parser 6.71 540 0.65
twolf 7.53 498 0.87
vortex 6.10 4.97 0.72
vpr 6.30 522 0.80

example, Van Biesbrouck et al. [2005] report that full checkpoints can
take up to 28.8 gigabytes for a single benchmark. They report an av-
erage file size per compressed checkpoint of 49.3 Mbytes. To combat
these large checkpoints, they propose the Touched Memory Image (TMI),
which stores only the memory words that are read in a sampling unit.
This yields a reduction in checkpoint size by more than two orders of
magnitude. Similarly, Wenisch et al. [2006a] propose live-points to re-
duce the size of conventional checkpoints.

3.1.3 Initializing the microarchitecture state

The third issue in sampled simulation is to estimate the MSI (microar-
chitecture starting image) for the sampling unit to be simulated — to
address the cold-start problem — as fast as possible while maintaining
a sufficient level of accuracy. If the MSI for the sampling unit differs
too much from the MSI that would have been obtained through de-
tailed simulation of all the instructions prior to the sampling unit, the
simulation results will be inaccurate. This is shown in Figure 3.2, where
the IPC prediction error is presented when we assume an empty MSI

54 Sampled simulation

at the beginning of each sampling unit*. The IPC prediction error is
computed as follows:

IPCeoppty mst — IPCherfect MsI
/’Le""”or(%> = ‘ empI:yPC perfec |'
perfect MSI

The error ranges from 17.5% (observed for eon) up to 47.2% (observed
for gzip). Consequently, we must establish the MSI as accurate as pos-
sible to make sampled simulation feasible.

A naive approach for establishing the MSI is to functionally-warm
the microarchitectural state for the entire duration between sampling
units. Functional warming is a combination of functional simulation
with specialized branch predictor and cache hierarchy simulation —
simulation speed is slower than functional simulation but faster than
detailed simulation, as shown in Table 3.3. The disadvantage of this
approach though is that functional warming quickly becomes a perfor-
mance bottleneck. This is because the pre-sampling unit size is typi-
cally much larger than the sampling unit size [Wunderlich et al., 2003],
i.e., the faster simulation speed in the pre-sampling unit does not off-
set the larger number of instructions that needs to be simulated. In
other words, reducing the time spent on establishing the MSI can de-
crease the total simulation time significantly. Therefore, it is important
to study efficient but accurate warmup strategies.

3.2 Cache state warmup

The most critical aspect of the microarchitecture state are the caches and
cache-like structures such as TLBs and BTBs. The reason is that cache
structures can be large and thus can introduce a long history. There-
fore, researchers have proposed several cache state warmup techniques
for approximating the cache state at the beginning of a sampling unit.
These techniques can be divided in two important categories: (i) adap-
tive warming and (ii) checkpointed warming. The cache state warmup
strategy that we propose uses insights obtained from both approaches.

*We consider a sampling unit size of 1 M instructions and a pre-sampling unit size
of 100 M instructions. More details about the experimental setup can be found in Sec-
tion 3.4.

3.2 Cache state warmup 55

= perfect MSI empty MSI
2.0

1.8 -

1.6 -

14 -

1.2 -

1.0 -

0.8 -

0.6 -

04 - —
0.2 - —
0.0 - w \ \

bzip2 crafty eon gcc gzip parser twolf vortex vpr

IPC

Figure 3.2: IPC prediction error considering an empty microarchitectural
starting image (MSI).

3.21 Adaptive warming

Functionally-warming the microarchitectural state for the entire dura-
tion between consecutive sampling units is usually not necessary. The
key idea of adaptive warming is to approximate the microarchitecture
state with a reduced functional warming period. The challenge lies
in determining the optimal length of this reduced functional warming
period: underestimating the warming period leads to inaccurate simu-
lation results while overestimating the warming period sacrifices sim-
ulation speed.

The best well-known technique for determining cache warming re-
quirements is Memory Reference Reuse Latency (MRRL). MRRL also
forms the base for Boundary Line Reuse Latency (BLRL) and ultimately
NSL-BLRL. Therefore, we detail on these cache state warmup strate-
gies; in addition, we give pointers to other warmup strategies as well.

Memory Reference Reuse Latency (MRRL)

Haskins and Skadron [2003] propose Memory Reference Reuse Latency
(MRRL) for accurately warming up microarchitectural state at the be-

56 Sampled simulation

pre-sampling unit sampling unit
|11 I BN R R
A o A A A
0 Lginsns Npp-1-k Npgp-1 N;-1
warmup
A
<« L !
Cry1 Co

Figure 3.3: Determining warmup using MRRL (Memory Reference Reuse La-
tency).

ginning of each sampling unit. As suggested, MRRL refers to the num-
ber of instructions between consecutive references to the same memory
location, i.e., the number of instructions between a reference to address
‘A’ and the next reference to “‘A’. The MRRL warmup approach com-
putes the MRRL for each memory reference in the sampling unit. Sub-
sequently, these MRRLs are used to build a histogram. For this pur-
pose, they divide the pre-sampling/sampling unit pair into Nz non-
overlapping buckets each containing Lp contiguous instructions; in
other words, the total pre-sampling unit/sampling unit pair consists
of Np - Lp instructions; see also Figure 3.3. The buckets receive an
index from 0 to Np — 1 in which index 0 is the first bucket in the pre-
sampling unit. The first Vg p buckets constitute the pre-sampling unit
and the remaining Np s buckets constitute the sampling unit; obvi-
ously, Ng = Np p + Np.s.

The MRRL warmup strategy also maintains Np counters ¢; (0 < ¢ <
Np). These counters ¢; will be used to build the histogram of MRRLs.
Through profiling, the MRRL is calculated for each reference and the
associated counter is updated accordingly. For example, for a bucket
size Lg = 10,000 (as is the case in [Haskins and Skadron, 2003]) an
MRRL of 124,534 will increment counter c12. When the complete pre-
sampling unit/sampling unit pair is profiled, the MRRL histogram p;,

3.2 Cache state warmup 57

(0 < i < Np) is computed. This is done by dividing the bucket counters
by the total number of references in the pre-sampling unit/sampling
unit pair:

Ci
> j:Bo_1 ¢
In other words, p; represents the probability for observing an MRRL
between i - L instructions and (i 4+ 1) - Lp — 1 instructions:

pi =

pi = Probli-Lp < MRRL < (i+1)-Lp —1].

Not surprisingly, the largest p;s are observed for small values of i
due to the notion of temporal locality in computer program address
streams. Using the histogram p;, Haskins and Skadron calculate the
bucket corresponding to a given percentile K%, i.e., bucket k for which
an;lo pm < K% and anzo pm > K%. This means that of all the refer-
ences in the current pre-sampling unit/sampling unit pair, K% have a
reuse latency that is smaller than & - L. Hence, Haskins and Skadron
define these k buckets as their warmup buckets. In other words, func-
tional warming is started k - L g instructions before the sampling unit.

An important limitation in efficiency of MRRL is that a mismatch in
the MRRL behavior in the pre-sampling unit versus the sampling unit
might result in a suboptimal warmup strategy in which the warmup
is either too short to be accurate, or too long for the attained level of
accuracy. For example, if the reuse latencies are generally larger in the
sampling unit than in the pre-sampling unit/sampling unit pair, the
warmup will be too short and by consequence, the accuracy might be
poor. On the other hand, if reuse latencies are generally shorter in the
sampling unit than in the pre-sampling unit/sampling unit pair, the
warmup will be too long for the attained level of accuracy. One way of
solving this problem is to choose the percentile K% to be large enough.
The result is that the warmup will be longer than needed for the at-
tained accuracy.

Boundary Line Reuse Latency (BLRL)

Boundary Line Reuse Latency (BLRL) [Eeckhout et al., 2005] improves
upon MRRL. In BLRL, the sample is scanned for reuse latencies that
cross the pre-sampling unit/sampling unit boundary line, i.e., a mem-
ory location is referenced in the pre-sampling unit and the next refer-
ence to the same memory location is in the sampling unit. For each

58 Sampled simulation

boundary line

pre-sampling unit sampling unit
1 | 1 1 1 | | 1 | !
A o A A ‘F A
0 Lginsns Npp-1-k Npp-1 N;-1
reuse latency x

<«—» instructioni
pre-samplereuse
latency

A

« —T1T—

<

Cryg 1 G,

Figure 3.4: Determining warmup using BLRL (Boundary Line Reuse Latency).

of these cross BLRLs, the pre-sampling unit reuse latency is calculated.
This is done by subtracting the distance in the sampling unit from
the MRRL. For example, if instruction ¢ has a cross BLRL z, the pre-
sampling unit reuse latency then is « — (i — Np p - Lp); see Figure 3.4.
A histogram is built up using these pre-sampling reuse latencies. As is
the case for MRRL, BLRL uses Ng p buckets of size Lp to limit the size
of the histogram. This histogram is then normalized to the number of
reuse latencies crossing the pre-sampling unit/sampling unit bound-
ary line. The required warmup length is then computed to include a
given percentile K% of all reuse latencies that cross the pre-sampling
unit/sampling unit boundary line.

There are three differences between BLRL and MRRL. First, BLRL
considers reuse latencies for memory references originating from in-
structions in the sampling unit whereas MRRL considers reuse laten-
cies for memory references originating from instructions both in the
pre-sampling unit and the sampling unit. Second, BLRL only considers

3.2 Cache state warmup 59

reuse latencies that cross the pre-sampling unit/sampling unit bound-
ary line; MRRL considers all reuse latencies. Third, in contrast to MRRL
which uses the reuse latency to update the histogram, BLRL uses the
pre-sampling reuse latency. Previous work [Eeckhout et al., 2005] has
shown that BLRL substantially outperforms MRRL; the warmup length
of BLRL is nearly half the warmup length of MRRL for the same level
of accuracy.

Other adaptive warming approaches

Full warmup continuously keeps the cache state warm between sam-
pling units. This is a very accurate approach but increases the time
spent between sampling units. This approach is implemented in
SMARTS [Wunderlich et al., 2003].

Luo et al. [2005] propose a self-monitored adaptive cache warmup
scheme in which the simulator monitors the warm-up process of the
caches and decides when the caches are warmed up based on simple
heuristics. The limitation of this approach is that it is a priori unknown
when the caches will be warmed up and when detailed simulation
should get started, which is an issue for periodic sampling and targeted
sampling.

3.2.2 Checkpointed warming

In checkpointed warming, the idea is to checkpoint or to store the
microarchitecture state at the beginning of each sampling unit and
impose this state during sampled simulation. This approach yields a
perfect MSI. However, the storage needed to store these checkpoints
can explode in case many sampling units are required. In addition, the
microarchitecture state needs to be stored for each specific hardware
configuration. For example, for each cache configuration a checkpoint
needs to be made. Obviously, the latter constraint implies that the com-
plete program execution needs to be simulated for these various hard-
ware structures. Since this is infeasible to do in practice, researchers
have proposed more efficient approaches to microarchitecture state
checkpointing.

60 Sampled simulation

D A B A
C C D A B

B A A A A C D D

lA] [A B B B B B C C

(6] @ @) (4) (5) (6) U] ®) 9)

Figure 3.5: Building the LRU stack for '"ABAACDABA'.

No-State-Loss (NSL)

One example is the No-State-Loss (NSL) approach [Conte et al., 1998]
which scans the pre-sampling unit and records the latest reference to
each unique memory location in the pre-sampling unit. This is the
stream of unique memory references as they occur in the memory ref-
erence stream sorted by their least recently usage. In fact, NSL keeps
track of all the memory references in the pre-sampling unit and then
retains the last occurrence of each unique memory reference. The re-
sulting stream is referred to as the Least Recently Used (LRU) stream.

Consider the example reference stream ‘ABAACDABA’; the alpha-
betic characters are assumed to represent memory addresses. The LRU
stream of this reference stream is ‘CDBA’. Computing this LRU stream
can be done by building the LRU stack for the given reference stream, as
illustrated in Figure 3.5. The LRU stack operates as follows: if address
‘X’ from the reference stream is not present on the stack, it is pushed
onto the stack. For example, ‘A’ is pushed onto the stack in the first
step, followed by ‘B’ in the second step, etc. If, in contrast, address ‘X" is
already present on the stack, it is removed from the stack and repushed
onto the stack. See for example the third step, where ‘A" moved from
the bottom of the stack to the top of the stack. In the fourth step, ‘A’
was already on the top of the stack. Continuing in this manner results
in the LRU stream ‘CDBA), as illustrated in Figure 3.5 (9).

Both the original reference stream and the LRU stream yield the
same state when applied to a cache with an LRU replacement pol-
icy. The No-State-Loss warmup method exploits this property by com-
puting the LRU stream of the pre-sampling unit and by applying this
stream to the cache as warmup. By consequence, the No-State-Loss
warmup strategy yields perfect warmup for caches with an LRU re-
placement policy.

3.3 Combining NSL and BLRL into NSL-BLRL 61

Other checkpointed warming approaches

Barr et al. [2005] extend the NSL approach for reconstructing the cache
and directory state during sampled multiprocessor simulation. In order
to do so, they keep track of a timestamp per unique memory location
that is referenced. In addition, they keep track of whether accessing
the memory location originates from a load or a store operation. This
information allows them to quickly reconstruct the cache and directory
state at the beginning of a sampling unit [Barr et al., 2005].

Van Biesbrouck et al. [2005] propose the Memory Hierarchy State
(MHS) approach, which simulates the largest cache of interest once
for the entire program execution, and stores a checkpoint of the cache
content at the start of each sampling unit. The checkpoint is stored in
a manner that allows them to faithfully recreate the content of smaller
caches, i.e., caches with smaller sized memory hierarchies (smaller
associativity /reduced number of sets). Hence, the MHS needs to be
collected only once for each block size and replacement policy. A
similar checkpointing approach is proposed by Wenisch et al. [2006a],
referred to as live-points.

3.3 Combining NSL and BLRL into NSL-BLRL

We propose a hybrid cache state warmup approach that combines MSI
checkpointing through NSL with BLRL into NSL-BLRL [Van Ertvelde
et al., 2006] [Van Ertvelde et al., 2008]. This is done by computing both
the LRU stream as well as the BLRL warmup buckets corresponding to
a given percentile K %. Only the unique references (identified through
NSL) that are within the warmup buckets (determined through BLRL)
will be used to warmup the caches. This could be viewed as pruning
the LRU stream with BLRL information, as illustrated in Figure 3.6. The
LRU stream of the memory reference stream in the pre-sampling unit
is ‘CDBA’ (as computed previously). Also, BLRL recommends to begin
functional warming at memory reference ‘D" — we assume a K value
of 75%. Hence, 75% of all reuse latencies that cross the boundary line
between the pre-sampling unit and the sampling unit are included in
the warmup period — memory reference ‘C’ is not part of this warmup
period. This information is then used to construct the reduced NSL-
BLRL checkpoint ‘DBA’, which no longer contains memory reference
‘C’, as shown in Figure 3.6(c).

62 Sampled simulation

dynamic instruction stream

pre-sampling unit sampling unit

i

"~ (b) BLRL 75%

3
>

A
B A
D B
C D
(a) NSL (c) NSL-BLRL 75%

Figure 3.6: Combining NSL and BLRL into NSL-BLRL.

NSL-BLRL could also be viewed of as computing the LRU stream
from the BLRL warmup buckets. Consider once again the example
shown in Figure 3.6: BLRL 75% prescribes to begin functional warm-
ing at memory reference D, as mentioned above. Consequently, mem-
ory reference stream ‘DABA’ is used to warmup the caches. The LRU
stream of this reference stream is ‘DBA” — this forms the same NSL-
BLRL checkpoint as calculated previously.

Integrating NSL and BLRL can be done without significantly in-
creasing the complexity of the warmup procedure. Computing the LRU
stream requires building and maintaining an LRU stack. Searching the
LRU stack for the last reference to a given memory location can be done
efficiently using a hash table; the hash table uses the memory address as
its index and returns a pointer to the LRU stack entry. The same hash
table can also be used to simultaneously identify the last reference in
the dynamic instruction stream to the same memory location — next to
returning a pointer to the LRU stack, the hash table then as well returns
the position in the dynamic instruction stream. The location of the last
reference in the dynamic instruction stream compared to the current
memory access then determines the BLRL distance. Figure 3.7 illus-
trates this with an example. The input to the hash function is memory
address ‘A’ (used by instruction 13); the hash of this memory address
(a) is used to locate the last reference to ‘A’ in the LRU stack, i.e., the
value at memory address a points to the bottom of the LRU stack (0x0).
From the same hash table, it also appears that instruction 9 was the
last instruction that referred to memory address ‘A’. As such, the BLRL

3.3 Combining NSL and BLRL into NSL-BLRL 63

B

A
/ LRU stack

hash table

O P, N W

A(13)

hash
function

BLRL histogram

Figure 3.7: Integrating NSL and BLRL using a single hash table.

distance equals 4 (13-9) — this information is then used to update the
BLRL histogram. In summary, NSL and BLRL can be implemented ef-
ficiently using a single hash table, which needs to be performed only
once.

Using NSL-BLRL as a warmup approach, the subsequent operation
is as follows. The reduced LRU stream as it is obtained through NSL-
BLRL is to be stored on disk as a MSI checkpoint. Upon simulating a
sampling unit, the reduced LRU stream is loaded from disk, the cache
state is warmed up and finally, the simulation of the sampling unit be-
gins. Note that NSL-BLRL can be used with both fast-forwarding and
checkpointing.

The advantage of NSL-BLRL over NSL is that NSL-BLRL requires
less disk space to store the warmup memory references; in addition,
the smaller size of the reduced LRU stream results in faster warmup
processing. The advantage over BLRL is that loading the reduced LRU
stream from disk is more efficient than functional warming. According
to our results, the warmup length for BLRL is at least two orders of
magnitude longer than for NSL-BLRL. As such, significant speedups
are obtained compared to BLRL. Compared to existing checkpointing
techniques, NSL-BLRL is more broadly applicable during design space
exploration. Both the MHS approach [Van Biesbrouck et al., 2005] and
the live-points approach [Wenisch et al., 2006a] require the cache line

64 Sampled simulation

size to be fixed, i.e., if a cache needs to be simulated with a different
cache line size, the warmup info needs to be recomputed. On the other
hand, NSL-BLRL inherits the limitation from NSL of only guaranteeing
perfect warmup for caches with LRU replacement. Caches with other
replacement policies such as random, first-in first-out (FIFO), not-most-
recently-used (NMRU) are not guaranteed to get a perfectly warmed
up cache state under NSL-BLRL (as is the case for NSL) — however,
the difference in warmed up hardware state is very small, as we show
experimentally in the evaluation section.

3.4 Experimental setup

For the evaluation we use 9 SPEC CPU2000 integer benchmarks, see
Table 3.4. The binaries, which were compiled and optimized for the
Alpha 21264 processor, were taken from the SimpleScalar website®. All
measurements presented in the evaluation section are obtained using
the MRRL software® which in its turn is based on the SimpleScalar soft-
ware [Austin et al., 2002]. The processor simulation model is shown in
Table 3.5. The caches use write-allocate and write-back policies. We
consider 50 sampling units each containing 1 M instructions. We se-
lect a sampling unit every 100 M instructions unless mentioned oth-
erwise. These sampling units were taken from the beginning of the
program execution to limit the simulation time while evaluating the
various warmup strategies with varying percentiles K %. Taking sam-
pling units deeper down the program execution would have been too
time-consuming given the large fast-forwarding needed. However, we
believe this does not affect the conclusions, since the warmup strategies
that are evaluated can be applied to any collection of sampling units.
Once a set of sampling units is provided, either warmup strategy can
be applied to it.

We quantify the accuracy of a warmup strategy using the IPC pre-
diction error, i.e., the relative difference between the IPC for perfect
warmup against the IPC for the warmup strategy of interest. The
warmup length is defined as the number of instructions under func-
tional warming, i.e.m functional simulation while updating the MSI.

Shttp://www.simplescalar.com
®http://www.cs.virginia.edu/~3wh6q/mrrl-web

3.4 Experimental setup

65

Table 3.4: The SPEC CPU2000 integer benchmarks used along with their in-

put.
Benchmark Description Input
bzip2 compression program
crafty game playing: chess ref
eon computer visualization rushmeier
gcc C programming language compiler integrate
gzip compression graphic
mcf combinatorial optimization lgred
parser word processing ref
twolf place and route simulator ref
vpr FPGA circuit placement and routing route
Table 3.5: The baseline processor simulation model.
Parameter Configuration

instruction cache
data cache
unified L2 caches

I-TLB and D-TLB
memory
branch predictor

speculative update
branch misprediction
penalty

IFQ

RUU and LSQ
processor width
functional units

16 KB, 2-way set associative, 32-byte block,

2 cycles access latency

32 KB, 4-way set associative, 32-byte block,

2 cycles access latency

1 MB, 4-way set associative, 32-byte block,
20 cycles access latency

32-entry 8-way set-associative with 4 KB pages
150 cycle round trip access

8 K-entry hybrid predictor selecting between
an 8K-entry bimodal predictor and a

2-level (8 K x 8 K) local branch predictor

at dispatch time

14 cycles

32-entry instruction fetch queue

128 entries and 32 entries, respectively

8 issue width, 8 decode width, 8 commit width
8 integer ALUs, 4 load/store units, 2 fp adders,
2 integer and 2 fp mult/div units

66 Sampled simulation

3.5 Evaluation

In this section, we extensively evaluate our NSL-BLRL approach and
compare it with NSL and BLRL. We have a number of criteria to eval-
uate our improved warmup proposal, namely: accuracy, number of
warm simulation instructions, overall simulation time and storage re-
quirements.

3.5.1 Accuracy

Our first criterion to evaluate NSL-BLRL is its accuracy. Figure 3.8
shows the IPC prediction error for BLRL and NSL-BLRL for the consid-
ered benchmarks and for varying percentiles K% (note that NSL yields
the same accuracy as NSL-BLRL 100%). The IPC prediction error is
the relative error compared to continuous warmup, i.e., all instructions
prior to the sampling unit are functionally warmed. As reported in
previous work [Eeckhout et al., 2005], BLRL results in highly accurate
warmup. BLRL yields small IPC prediction errors of only a few percent.
Especially for large percentiles K %, the IPC prediction error because of
an inaccurate MSI is very small. For example, for BLRL 95%, the max-
imum error is only 1.6% (twolf). For BLRL 100%, the error is almost
zero. Comparing NSL-BLRL 100% versus BLRL 100% typically gives
slightly higher IPC prediction errors; however, the difference is very
small, at less than 1%. There are two reasons for these slightly higher
IPC prediction errors. The first reason is that while warming the caches
through NSL-BLRL we do not keep track of dirty cache blocks, whereas
BLRL does keep track of dirty cache blocks. Our results show that not
warming dirty cache block info has a small impact on overall accuracy.
This is to be expected given the fact that contemporary out-of-order mi-
croprocessors give priority to load operations over writing back dirty
data to higher level caches in the memory hierarchy. If needed, warm-
ing dirty cache blocks can be supported by storing status information
for each cache block so that dirty cache blocks are correctly marked,
and dirty cache misses are modeled as such.

The second reason for the difference between the NSL-BLRL and
BLRL is that NSL-BLRL only warms the cache state but does not warm
branch predictor state. BLRL on the other hand warms both the cache
hierarchy and branch predictor state. However, for the considered sam-
pling unit size, we found this influence to be small. To experimentally
verify this, we compared the accuracy of NSL-BLRL versus BLRL for

3.5 Evaluation 67

BLRL 85% BLRL 90% = BLRL 95% = BLRL 100%
= NSL-BLRL 85% mNSL-BLRL 90% mNSL-BLRL 95% mNSL-BLRL 100%

4,0%

3,5%

3,0%

I
3
B

2,0%

1,5% |

IPC prediction error

1,0% I

0,5%

0,0% -
bzip2 crafty eon gcce gzip parser twolf vortex vpr

Figure 3.8: IPC prediction error for BLRL versus NSL-BLRL.

perfect branch predictors — this was to exclude the branch predictor
component in the warmup state — and we obtained very similar re-
sults to what is being reported in Figure 3.8. Hence, we conclude that
the impact of the branch predictor state is small.

In summary, we conclude that NSL-BLRL is a highly accurate cache
warmup approach that is nearly as accurate as BLRL. Especially, high
percentiles K % yield highly accurate performance estimates. The max-
imum error for K = 95% equals 1.4% (twolf); for K = 100%, the
maximum error is even less, 0.66% (also for twol f).

3.5.2 Warmup length

Figure 3.9 shows the number of warm simulation instructions for BLRL
as well as the number of warm simulation references for NSL and NSL-
BLRL. For BLRL and NSL-BLRL, we consider different percentiles K %.
Note that the vertical axis is on a logarithmic scale. We observe that
NSL-BLRL yields a reduction in the number of warm simulation in-
structions by two to three orders of magnitude compared to BLRL. The
reason for this dramatic reduction is that the number of warm simula-
tion instructions for NSL-BLRL is proportional to the number of unique

68 Sampled simulation

1,0E+10
]
[
S
©c 1,0E+09
I~
2
= BLRL 85%
2 1,0E+08 BLRL 90%
F BLRL 95%
% u BLRL 100%
£ 1,0E+07 m NSL-BLRL 85%
g m NSL-BLRL 90%
S m NSL-BLRL 95%
g 1,0E+06 m NSL-BLRL 100%
E ONSL
>
[
1,0E+05

bzip2
crafty
eon
gce
gzip
parser
twolf
vortex
vpr

Figure 3.9: The number of warm simulation instructions for BLRL versus the
number of warm simulation references for NSL-BLRL and NSL.

references in the pre-sample. BLRL on the other hand uses all refer-
ences from a given warmup starting point up to the sampling unit start-
ing point. Note that these results were obtained for 100 M instruction
pre-samples prior to each sampling unit. For larger pre-sampling units,
the difference in the number of warm simulation instructions is likely
to increase when comparing BLRL versus NSL-BLRL.

Comparing NSL-BLRL versus NSL we also observe a substantial
decrease in the number of warm simulation instructions. Figure 3.10
shows the number of warm simulation references for NSL-BLRL as a
fraction of NSL. Some benchmarks do not benefit substantially from
NSL-BLRL compared to NSL. However, we observe that NSL-BLRL
100% yields substantial warm simulation reductions for other bench-
marks — up to 39% for bzip2; i.e., the warmup length for NSL-BLRL
100% is 61% of the NSL warmup length. For smaller K% percentiles,
the reduction in warmup length increases significantly.

The results are given for a pre-sampling unit size of 100 M instruc-
tions. For larger pre-sampling unit sizes, the benefit for NSL-BLRL over
NSL in terms of the number of warm simulation instructions even in-
creases. This is illustrated in Figure 3.11 where the number of warm

3.5 Evaluation 69

NSL-BLRL 85% ®NSL-BLRL90% ®NSL-BLRL95% ®NSL-BLRL 100%
100%

90%

80%

70%

60%

50%

percentage

40%
30%
20%

10%

0%

bzip2 crafty eon gcc gzip parser twolf vortex vpr

Figure 3.10: The number of warm simulation references for NSL-BLRL as a
fraction of the number of warm simulation references for NSL.

simulation instructions is shown as a function of the pre-sampling unit
sizes for NSL and NSL-BLRL for bzip2 — similar curves were ob-
tained for other benchmarks. The important trend to be observed from
this graph is that the number of warm simulation instructions does not
increase as fast for NSL-BLRL as it does for NSL. As such, we can con-
clude that NSL-BLRL is more scalable for larger pre-sampling unit sizes
and thus, longer running applications.

3.5.3 Simulation time

The number of warm simulation instructions only gives a rough idea
about the impact of the warmup strategies on overall simulation time.
To evaluate the simulation time speedup, we consider two scenarios’
for sampled simulation : (i) establishing the ASI (Architectural Starting
Image) through fast-forwarding and (ii) establishing the ASI through
checkpointing.

7 As already explained in Subsection 3.1.2.

70 Sampled simulation

-—-NSL NSL-BLRL 100%

400
2
S 350
k3 /
2
2300
£
& 250
pm}
E £ 200
==
E /
E ~
5 150
g /
S 100
[0}
o)
E 50
c
0
0 500 1000 1500

pre-sampling unit size (millions)

Figure 3.11: The number of warm simulation references for NSL-BLRL 100%
and NSL as a function of the pre-sampling unit size for bzip2.

Fast-forwarding

The results in Figure 3.12 show the simulation time in seconds under
fast-forwarding. We observe that BLRL achieves a substantial simula-
tion time reduction compared to full warmup. NSL-BLRL reduces the
overall simulation time even further, even to a level where warmup
using NSL-BLRL is nearly as fast as no-warmup. In other words, the
cost for warming up the microarchitecture state under fast-forwarding
is nearly zero under NSL-BLRL. Note also that different percentiles K %
have limited effect on the overall simulation time. We can conclude that
a percentile K = 100% is the optimal choice since it gives the highest
accuracy while incurring no additional simulation time overhead com-
pared to smaller percentiles K %.

Checkpointing

The simulation times for checkpointed simulation are presented in
Figure 3.13. BLRL yields substantial simulation time reductions over
full warmup. Note that the simulation time reductions under check-
pointing are even bigger than under fast-forwarding. This is to be ex-

3.5 Evaluation 71

1200
1100
1000 u full warmup
_ BLRL 85%
3 I BLRL 90%
5 900 I BLRL 95%
3 ® BLRL 100%
© 800 | H H H H | ®NSL-BLRL 85%
£ m NSL-BLRL 90%
m NSL-BLRL 95%
700 i i i i i i | WNSL-BLRL 100%
dno warmup
600 | ik GE GE GR R i
500 T T T T T T T 1

bzip2 crafty eon gcc gzip parser twolf vortex vpr

Figure 3.12: Simulation time for BLRL and NSL-BLRL for sampled simulation
using fast-forwarding.

pected as checkpointed simulation does not require simulating the pre-
sampling unit as opposed to fast-forwarding. Another interesting note
is that the simulation time reduction when comparing NSL-BLRL ver-
sus BLRL under checkpointing is higher than under fast-forwarding.
Under fast-forwarding, NSL-BLRL achieves a reduction in simulation
time over BLRL up to a factor 1.4x; under checkpointing, NSL-BLRL
achieves a 2.9x to 14.9x simulation time speedup over BLRL. This is
to be explained for the same reason as detailed earlier; checkpointed
simulation does not involve functional simulation.

3.5.4 Storage requirements

We now quantify the storage requirements of NSL-BLRL for storing
the cache state checkpoints on disk. Figure 3.14 shows the amount of
storage requirements for NSL-BLRL compared to NSL — BLRL does
not require any significant storage. The numbers shown in Figure 3.14
represent the amount of storage (in MB) needed to store one cache
state checkpoint in compressed format. For NSL, the average com-
pressed storage requirement per sampling unit is 810 KB; the maxi-

72 Sampled simulation

1200
1000
| full warmup
800 BLRL 85%
BLRL 90%
BLRL 95%
600 ® BLRL 100%

= NSL-BLRL 85%
= NSL-BLRL 90%
400 1 ENSL-BLRL 95%
® NSL-BLRL 100%
0 no warmup

time (seconds)

lalallalblalllal

bzip2 crafty eon gcc gzip parser twolf vortex vpr

Figure 3.13: Simulation time for BLRL and NSL-BLRL for sampled simulation
using checkpointing.

mum observed is for bzip2: 2.5 MB. The storage requirements are sig-
nificantly smaller for NSL-BLRL compared to NSL. For example, for
K = 100%, the average storage requirement is 553 KB (a 32% reduc-
tion); for K = 95%, the average storage requirement is 425 KB (a 48%
reduction). We thus conclude that the real benefit of NSL-BLRL com-
pared to NSL is its reduced storage requirements — NSL-BLRL and
NSL are comparable in terms of accuracy and simulation time. In case
a larger number of checkpoints need to be stored on disk for a complete
benchmark suite, then we can easily end up with thousands of samples
and respective checkpoint files. For example, for SimPoint there are
7392 1 M instruction samples for the entire SPEC CPU2000 benchmark
suite. If 810 KB needs to be stored on disk per sampling unit, then
approximately 6 GB disk space is required for storing the NSL cache
state warmup info. Note that this is an optimistic approximation. In
our experimental setup we assumed 100 M instruction pre-sampling
units. Larger pre-sampling units will result in even larger NSL warmup
checkpoints to be stored on disk, as discussed previously (see also Fig-
ure 3.11). Hence, the total storage requirements are expected to be sub-

Shttp://www.cs.ucsd.edu/~calder/simpoint

3.5 Evaluation 73

NSL-BLRL 80% m NSL-BLRL 85% ®NSL-BLRL 90%
ENSL-BLRL 95% ®mNSL-BLRL 100% mNSL

checkpoint file size (MB)
-
[6)]

bzip2 crafty eon gcce gzip parser twolf vortex vpr

Figure 3.14: Storage requirements for NSL-BLRL compared to NSL: average
number of MBs of disk storage needed for storing one MSI checkpoint in com-
pressed format.

stantially larger than the 6 GB mentioned above. In addition, the ASI
needs to be stored on disk as well. Even though storage is cheap these
days, maintaining such large checkpoint files might be impractical to
do. We conclude that NSL-BLRL is capable of reducing the total disk
space requirements for MSI checkpointing by approximately 30% with-
out any loss in accuracy.

3.5.5 Cache replacement policies

NSL achieves perfect warmup for LRU caches, by construction; how-
ever, it is unclear whether NSL-BLRL is an accurate technique for
warming caches under different cache replacement policies. This is
evaluated in Figure 3.15, which compares the IPC between continuous
warmup and NSL-BLRL 100% for the FIFO, random and LRU replace-
ment policies. The IPC prediction error increases slightly for the FIFO
and random replacement policies compared to LRU. The average pre-
diction error for LRU is 0.3% whereas the average prediction errors for
FIFO and random are 1.3% and 2.3%, respectively. This is to be ex-
pected because NSL only guarantees perfect warmup for caches with

74 Sampled simulation

continuous warmup ®NSL-BLRL 100%

1,75 HE 1

RN B B Y B B R N B

IPC
.
\
\
\
|
\

ors f1HLl

os LEELL

FIFO |
random
LRU
FIFO |
random
LRU |
FIFO |
random |
LRU
FIFO
random |
LRU
FIFO
~_random
LRU
FIFO
random
LRU
FIFO
random
LRU
FIFO
random
LRU
FIFO
random

2
o
-

bzip2 ‘ crafty eon gcce ‘ gzip parser twolf vortex vpr

Figure 3.15: IPC for continuous warmup and NSL-BLRL 100% for different
cache replacement policies.

an LRU replacement policy.

3.6 Summary

Computer architecture research and development relies heavily on
sampling for speeding up architectural simulation. The idea of sam-
pled simulation is to simulate only a small fraction of a benchmark’s
dynamic instruction stream (the sample). However, there are three
major challenges for sampled simulation to be accurate and fast: (i)
the selection of representative sampling units, (ii) initializing the sam-
pling unit’s architecture state, and (iii) estimating the sampling unit’s
microarchitecture state, also referred to as the cold-start problem.

This chapter addressed the cold-start problem by combining No-
State-Loss (NSL) with Boundary Line Reuse Latency (BLRL) into a new
cache warmup strategy: NSL-BLRL. The basic idea is to truncate the
NSL stream of memory references in a pre-sampling unit using BLRL
information. The NSL stream is the least recently used sequence of
memory references in the pre-sampling unit. BLRL then selects a frac-
tion of this NSL stream based on how far back warmup needs to go in

3.6 Summary 75

the pre-sampling unit to accurately warmup the microarchitecture state
for the given sampling unit. The NSL-BLRL warmup info could then be
viewed as a microarchitecture state checkpoint. Warming up a cache hi-
erarchy using NSL-BLRL is then done by loading the checkpoint from
disk and warming the caches using the NSL-BLRL reference stream.
Compared to other existing microarchitecture state checkpointing tech-
niques, NSL-BLRL is more flexible in the sense that the warmup info
can be used for a broader range of hardware configurations. For exam-
ple, whereas Memory Hierarchy State (MHS) and the TurboSMARTS’
live-points approaches require a fixed cache block size, NSL-BLRL does
not.

We showed that NSL-BLRL is substantially faster than BLRL, i.e.,
the number of warmup instructions is reduced by up to three orders of
magnitude. Also, NSL-BLRL is nearly as accurate as BLRL — the small
deviation is mainly because of not modeling dirty cache lines in NSL-
BLRL. The shorter warmup length for NSL-BLRL results in substantial
simulation speedups against BLRL. Under fast-forwarding, the simula-
tion speedup is up to 1.4x, while under checkpointing, the simulation
speedup ranges between 2.9 x and 14.9x. Compared to NSL, the benefit
of NSL-BLRL is in the reduced checkpoint files that need to be stored on
disk. NSL-BLRL typically yields 30% smaller MSI checkpoints which is
important when it comes to storing a large number of checkpoint files
on disk for a large number of sampling units. In addition, reducing
the checkpoint size allows for a faster checkpoint distribution across a
cluster of machines in case of parallel sampled simulation.

76

Sampled simulation

Chapter 4

Benchmark synthesis

Nothing can be created from nothing.
Lucretius, De Rerum Natura

Code mutation conceals the proprietary information of an application to facil-
itate benchmark sharing, while, on the other hand, sampled simulation is very
effective at reducing simulation time. However, extending both approaches to
enable compiler and ISA exploration is non-trivial.

This chapter presents a benchmark synthesis framework that generates
short-running benchmarks to limit simulation time; in addition, because the
benchmarks are synthetically generated from a number of program character-
istics, they do not reveal proprietary information. To enable architecture and
compiler exploration, we generate the benchmarks in a high-level program-
ming language. We extensively discuss the benchmark synthesis framework
along with a number of possible applications.

4.1 Introduction

As mentioned before, code mutation and sampled simulation can be
used in cascade to generate short-running benchmarks that are repre-
sentative of (proprietary) applications and that can be distributed to
third parties without revealing intellectual property. Although this is
a feasible approach, there are a number of limitations. For one, while
the top-down approach of code mutation yields highly representative
benchmarks, it lacks flexibility. More specifically, it does not allow for
altering workload behavior easily. For example, for the generation of

78 Benchmark synthesis

future workloads, a bottom-up approach would be more suitable, i.e.,
one could model performance characteristics that are to be expected
for future applications into a synthetic benchmark. The importance of
anticipating future application behavior is shown in [Yi et al., 2006].
This study shows that the performance of a processor optimized for
the SPEC CPU95 benchmarks is more than 20% slower than the per-
formance of a processor optimized for the SPEC CPU2000 benchmarks,
when executing the SPEC CPU2000 benchmarks.

Second, code mutation acts at the binary level, i.e., it mutates a
binary into a benchmark mutant through binary rewriting. Con-
sequently, a benchmark mutant can only be used for exploring the
microarchitectural space. To explore the architectural and compiler
space as well, a benchmark mutant needs to be generated for each
ISA/compiler. A similar problem arises when using sampled simu-
lation during architecture exploration; comparing multiple binaries of
the same source code requires identifying sampling units that represent
the same behavior across these binaries [Perelman et al., 2007].

Finally, sampled simulation requires simulator support to establish
the architecture state (to go from one sampling unit to the next) and
the microarchitecture state (to minimize the cold-start problem) at the
beginning of a sampling unit. Also, sampling units can be executed
on functional and performance simulators, but not on hardware. This
implies that sampled simulation is not ideal for verifying that a per-
formance model is accurate with respect to hardware (in the literature
referred to as ‘performance model validation’). The underlying reason
is that sampled simulation introduces an additional error — next to the
error from an inaccurate performance model — which complicates the
calibration of the performance model.

In this chapter, we propose a novel benchmark synthesis approach
[Van Ertvelde and Eeckhout, 2010a] that aims at addressing these ad-
ditional limitations. More specifically, we present a benchmark syn-
thesis framework with three key features. First, it generates synthetic
benchmarks in a high-level programming language (HLL) to enable
the exploration of both the architecture and compiler spaces, in con-
trast to prior work in benchmark synthesis which generates synthetic
benchmarks in assembly. Second, the synthetic benchmarks hide pro-
prietary information from the original applications they are built after.
Hence, companies may want to distribute synthetic benchmark clones
to third parties as proxies for their proprietary codes; third parties can

4.2 High-level language benchmark synthesis 79

then optimize the target system without having access to the original
codes. Third, the synthetic benchmarks are short-running compared to
the original applications they are modeled after, yet they are representa-
tive. The framework involves two key steps: (i) profiling the real-world
(proprietary) application to measure its execution characteristics, and
(ii) generating a synthetic benchmark clone in a high-level language (C
in our case) based on this execution profile.

4.2 High-level language benchmark synthesis

Our goal is to generate a synthetic benchmark in a high-level program-
ming language that is similar to a real application in terms of its ex-
ecution behavior across architectures and compilers, yet it should not
expose proprietary information and it should be short-running com-
pared to the real application. This is a non-trivial problem to solve. We
now describe how we approach this problem at a high level — we dis-
cuss the various steps of our benchmark synthesis framework in greater
depth in Section 4.3.

4.2.1 Framework overview

Figure 4.1 provides a high-level view of the overall framework. We
start from a real-world application. This could be a proprietary appli-
cation with a proprietary input. This application is then compiled at a
low optimization level, e.g., —00 in GNU’s GCC. The reason for doing
so is to facilitate pattern recognition and to enable compiler research, as
we will explain later on. We then run the resulting binary and profile
its execution, i.e, we count how many times a loop is iterated, how of-
ten a basic block is executed, etc. — this information is stored in a novel
structure: the ‘Statistical Flow Graph with Loop information” (SFGL).
In addition, we record memory access patterns and branch taken and
transition rates. Finally, we employ a (simple) pattern recognizer that
scans the executed code to identify C code statements that correspond
to sequences of instructions observed at the binary level. This pattern
recognizer translates the binary code to C code in a semi-random fash-
ion in order to obfuscate proprietary information.

All the characteristics that we collect are comprised in a statistical
profile that captures the execution behavior of the original application
and its input. We then generate a synthetic benchmark from this sta-

80

Benchmark synthesis

oo code of Compilation at
roprietary —> ow
proprietz optimization
application level
L 4
Binary
Prqprletary > Profiling
input . g
— ¥V
_/
Workload profile
_/
_ L 4 N
Synthetic . Benchmark
benchmark in [« synthesis
HLL (e.g., C) \ d g

Synthetic benchmark distribution

Academia

Industry

vendors

Hardware and
simulation

Different ISAs

Different micro-
architectures

Different compilers
and optimizations

Figure 4.1: Benchmark synthesis framework overview.

4.2 High-level language benchmark synthesis 81

tistical profile. This is done in a high-level programming language, in
our case C: we generate sequences of C code statements (basic blocks),
as well as if-then-else statements, loops and function calls, and we add
inter-statement dependencies as well as data memory access patterns.
The C code structures are generated pro rata their occurrences in the
original application. However, we force the synthetic benchmark to
execute fewer instructions than the original application, by construc-
tion. This is done by reducing the execution frequencies of basic blocks,
loops and function calls by a given reduction factor R. The end result is
a synthetic benchmark that executes fewer instructions than the origi-
nal application while being representative of the original application.

The synthetic benchmark does not expose proprietary information
(because of the semi-random binary to source code translator, and the
workload reduction) and can thus be distributed to third parties. Be-
cause the synthetic benchmarks are generated in a high-level program-
ming language, they enable exploring the architecture and compiler
space, and comparing systems with different compilers, and optimiza-
tion levels, as well as different instruction-set architectures, microarchi-
tectures and implementations. The synthetic benchmarks can run on
execution-driven simulators as well as on real hardware.

A important aspect of our approach is that we compile the original
application at a low compiler optimization level before profiling. The
reason for doing so is to force the compiler not to perform aggressive
optimizations. This facilitates the pattern recognition and translation
from binary code to C code, and, more importantly, it enables gener-
ating synthetic benchmarks that can be used to explore the compiler
space, as we will demonstrate in the evaluation section.

Before describing the different steps of our framework in more de-
tail, we discuss the potential applications of high-level language bench-
mark synthesis.

4.2.2 Applications

We believe the proposed framework has a number of potential applica-
tions:

e Distributing synthetic benchmarks as proxies for proprietary
applications. The most obvious application is to use the frame-
work to generate synthetic clones for real-world proprietary ap-
plications. There are many possible application scenarios, both in

82

Benchmark synthesis

the embedded and server/datacenter spaces. For example, phone
companies may not be willing to share their proprietary software
with a processor vendor in order to optimize the processor ar-
chitecture for the next-generation cell phone, yet they may be
willing to share a synthetic clone. A similar application scenario
applies to service providers in the cloud: they will be reluctant
to share their platform software, yet they may want to distribute
synthetic clones to third-party hardware vendors. The same ap-
plies to compiler builders: they could evaluate their compiler per-
formance based on the synthetic clones rather than the real appli-
cations. Of course, co-optimization of hardware and software,
which is an important focus today given the emphasis on energy-
efficient computing, can also rely on synthetic benchmark clones.

Simulation time reduction. As mentioned earlier, the synthetic
benchmarks are short-running compared to the original applica-
tions, i.e., their dynamic instruction count is significantly smaller.
Because simulation time is an important concern in architec-
ture research and development, benchmark synthesis also helps
in reducing simulation time, and eventually the overall time-to-
market. This is also important in the compiler space: for example,
iterative compilation evaluates a very large number of compiler
optimizations in order to find the optimum compiler optimiza-
tions for a given program [Cooper et al., 1999] [Kulkarni et al.,
2004]. A synthetic clone that executes faster could reduce the
overall compiler space exploration time.

Generate emerging workloads. The framework can also be used
to generate emerging and future workloads. In particular, one
can generate a statistical profile with performance characteristics
that are to be expected for future emerging workloads. For ex-
ample, one could generate specific sequences of C statements, a
particular memory access behavior (e.g., large working set, ran-
dom access patterns), etc. The synthetic benchmarks generated
from the profiles can then be used to explore design alternatives
for future computer systems.

Model hard-to-setup workloads. Similarly, one could build
proxy benchmarks for workloads that are hard to setup. For
example, database workloads and commercial workloads in gen-
eral are non-trivial to setup [Shao et al., 2005]. Synthetics could

4.3 Framework details 83

be a way to facilitate the benchmarking process using commer-
cial workloads. In fact, an additional advantage of generating
synthetic benchmarks in a high-level programming language
compared to assembly synthetic benchmarks is that interfacing
libraries can be done easily using existing APIs.

e Benchmark consolidation. Multiple applications can also be con-
solidated into a single synthetic benchmark. Basically, by putting
together the statistical profiles from different applications, one
can generate a single consolidated synthetic benchmark that is
representative of a set of applications. Benchmark consolidation
also helps hiding and obfuscating proprietary information.

4.3 Framework details

We now describe the two key steps of our benchmark synthesis frame-
work in more detail: (i) collecting the execution profile, and (ii) gener-
ating a synthetic benchmark clone based on this profile.

4.3.1 Collecting the execution profile

The profiler collects a number of execution characteristics, which we
discuss in the following subsections.

Statistical Flow Graph with Loop annotation (SFGL)

The central structure in the statistical profile is the SFGL which cap-
tures a program’s control flow behavior in a statistical manner. Fig-
ure 4.2 shows an example. The nodes represent basic blocks and the
edges represent control flow transitions. Each node is annotated with
the basic block’s execution count, and each edge is annotated with the
respective transition probability. For example, basic block A executes
10 times, and is followed nine times out of ten by basic block B, and
one time out of ten by basic block C. Basic block D on the other hand,
is always followed by basic block E.

The SFGL also identifies the loops along with the number of itera-
tions that each loop executes. We use the loop detection algorithm by
Aho et al. [2006]. For example, E—] is a loop comprising basic blocks E,
F, G, H, I and]. The explanation is that (i) there is no way to reach basic

84 Benchmark synthesis

SFGL

A (10)

90% 10%

B(9) c@)

10%k MO%

D (10)

'100%

E (100)

(100%

F (5000)

80% 20%

G (4000) H (1000)

1655?\\\5“(////166%

1(5000)

100
y

J (100) 90

Figure 4.2: An example SFGL (Statistical Flow Graph with Loop annotation).

4.3 Framework details 85

block J without going through basic block E, and (ii) there exists a back
edge that closes the loop [Aho et al., 2006].

For each instruction in each basic block we also record its instruc-
tion type. We consider a number of instruction types such as addition,
subtraction, multiply, divide, branches, etc., and we make a distinction
between integer and floating-point instructions. We also keep track of
the instruction’s input operands (constant, register, memory) and out-
put operand (register or memory).

Branch taken and transition rate

For each conditional branch that is not a loop back edge, we determine
its taken and transition rate. The branch taken rate is defined as the
fraction of taken outcomes per branch, while the branch transition rate
is defined as the number of times a branch switches between taken and
not-taken during execution [Haungs et al., 2000]. A low transition rate
means that the branch is either mostly taken or mostly not taken, and a
high transition rate means that the branch constantly changes between
taken and not-taken. High and low transition rates typically suggest
easy to predict branches. A medium transition rate suggests hard to
predict branches.

For example, if the branch sequence at the end of basic block A in
Figure 4.2 is “1111111110" (whereas 1 means ‘taken’), the branch transi-
tion rate is 10% and the taken rate is 90%. Both the branch taken rate
and transition rate are independent of a particular branch predictor. We
classify branches into two classes, easy to predict branches (branches
with a transition rate less than or equal to 10% or greater than or equal
to 90%) and hard to predict branches. The branch at the end of basic
block A is thus classified as easy to predict.

Memory access patterns

For each memory access we record its cache hit/miss ratio. We do this
by simulating a cache structure in the profiling tool — it is possible to
compute cache miss rates across a range of cache organizations in a
single pass [Hill and Smith, 1989]; this involves computing LRU stack
distances to model temporal locality and memory address distances to
model spatial locality (see Section 3.3 in Chapter 3 for how to build and
maintain an LRU stack).

86 Benchmark synthesis

Table 4.1: Memory access strides for generating a target miss rate (assuming
a 32-byte cache line and a 32-bit architecture).

Class Miss rate range Stride (bytes)

0 0% - 6.25% 0
1 6.25% - 18.75% 4
2 18.75% - 31.25% 8
3 31.25% - 43.75% 12
4 43.75% - 56.25% 16
5 56.25% - 68.75% 20
6 68.75% - 81.25% 24
7 81.25% - 93.75% 28
8 93.75% - 100% 32

We classify the memory accesses in a number of classes according to
their hit/miss ratios, see Table 4.1 . Data memory accesses are modeled
using these simple stream access classes, as we will describe later.

4.3.2 Synthetic benchmark generation

The second step in our HLL benchmark synthesis framework is to gen-
erate a synthetic benchmark by modeling all the workload characteris-
tics described in the previous subsections into a synthetic clone. This
generation process is done in three sub-steps: (i) SFGL downscaling,
(ii) generation of basic blocks, loops and C-functions, and (iii) C code
generation.

Scale down the SFGL

We first compute a downscaled SFGL by reducing the occurrences of
the basic blocks and loop counts in the SFGL. This is done by dividing
the basic block execution counts and loop iteration counts by a reduc-
tion factor R. For nested loops, we first scale the iteration count of the
outer loop. If the iteration count of the outer loop is smaller than the
reduction factor, we also downscale the nested loop, etc. Basic blocks
and loops that are executed infrequently (i.e., less than R times) are re-
moved from the SFGL. Along with this removal, we also remove all in-
coming and outgoing edges. The purpose for downscaling is twofold:

4.3 Framework details 87

(i) generate short-running synthetic benchmarks, and (ii) obfuscate the
original application’s semantics.

Figure 4.3(a) shows the downscaled SFGL of the example shown
in Figure 4.2. The reduction factor equals 2 in this example!. Basic
block C (along with its incoming and outgoing edges) does no longer
appear in the downscaled SFEGL. Also, the iteration count of the outer
loop (A—K) is scaled down from 10 to 5. Note however that the (aver-
age) iteration count of loop E—] remains 10 ((45/5) + 1). Figure 4.3(b)
shows the downscaled SFGL for a reduction factor of 50. The outer loop
(A—K) does no longer appear. For a reduction factor of 200, loop E—]
also gets removed, see Figure 4.3(c), and loop F—I gets scaled down to
25 iterations.

Generate basic blocks and loops

Once the downscaled SFGL is computed, we start generating the skele-
ton for the synthetic benchmark. We first pick a (random) basic block.
If this basic block is part of a loop, we generate the loop that contains
this basic block; for example, if basic block F would be picked in Figure
4.3(c), the framework would generate a loop comprising basic blocks F,
G, H and I. If the loop itself is nested in a bigger loop, we first generate
the outer loop and then generate the inner loops. If the basic block is
not part of a loop, we determine its successor(s) and start building the
control flow structure of the synthetic benchmark. If there are no suc-
cessors to a basic block (because the successor basic blocks got removed
during down-scaling), we re-start the generation algorithm and pick a
random basic block. For each basic block and loop that we generate,
we decrease the respective execution counts to reflect the fact that these
basic blocks and loops have been generated. Basic blocks and loops
with zero execution counts are removed from the SFGL. We continue
this process until all basic blocks in the SFGL have been selected and
the SFGL is empty.

Formally, this corresponds to the following algorithm:

1. Terminate the algorithm when all the basic blocks (and loops)
have been selected and the downscaled SFGL is empty. Other-
wise, select a (random) basic block.

'Note that we use a small reduction factor for illustrative purposes. For the appli-
cations considered in the evaluation section, we typically use larger reduction factors.

88 Benchmark synthesis

(a) downscaled SFGL (R=2) (b) downscaled SFGL (R=50)
A (5) E()
/ !
F (100)
D (5) G (80) H (20)
\ 4 \/
E (50) 1(100)
98
2
A 4 y
F (2500) J(2) 1
/\ 1 \
G (2000) H (500)
\ / (c) downscaled SFGL (R=200)
2450 1(2500) F (25)
50 /\
v
J (50) 25 G (20) H (5)
A 4 > \/
) K (5) " 1(25)

1 \ 1 \
Figure 4.3: Downscaled SFGL with a reduction factor R = 2, 50 and 200, com-
pared to the original SFGL shown in Figure 4.2.

4.3 Framework details 89

2. If this basic block is part of a loop, determine the outer loop that
contains this basic block (we first generate outer loops and then
generate the inner loops). Otherwise go to step 4.

3. Generate this loop with the iteration count the number of times
the loop needs to be iterated according to the downscaled SFGL.
Reduce the execution count of this loop in the SFGL with the
number of iterations so as to reflect the fact that this loop has been
generated. If the execution count is zero, remove this loop from
the SFGL. Finally, select the first basic block (of this loop) that
needs to be generated.

4. If this basic block is the beginning of a loop, goto step 3. If this
basic block is the beginning of an if-then-else statement, goto step
5. Otherwise goto step 6.

5. First generate the basic blocks following the i f-then statement,
and subsequently generate the basic blocks following the else
statement. Select the first basic block of the then/else state-
ment.

6. Generate this basic block and decrease the execution count to re-
flect the fact that this basic block has been generated — take the
number of iteration counts into account.

7. Determine its successor(s) and goto step 4. If there are no suc-
cessors? to a basic block (because the successor basic blocks got
removed during down-scaling), goto step 1.

When we apply this algorithm to the downscaled SFGLs from Fig-
ure 4.3, we get the skeleton code shown in Figure 4.4. For example,
consider the downscaled SFGL shown in Figure 4.3(b). Following the
algorithm, we first pick a (random) basic block, e.g., basic block G.
This basic block is part of loop F—I, and loop F—I is in its turn part
of outer loop E—]J. Hence, we first generate the outer loop E—J, which
is downscaled to 2 (100/50) iterations. This translates to for (j=0;
j<2; J++){} in C code, as also shown in the lower left corner of Fig-
ure 4.4. We then determine the successor of basic block E, which is basic
block F, and we generate loop F—1I: for (k=0; k<50; j++){}. Basic

For the sake of clarity, this algorithm does not cover all the possible exceptions,
e.g., when there are no successors to a BBL in a loop, we select a random BBL in the
same loop (if any)

90

Benchmark synthesis

Original skeleton code, see
Figure 4.2

for (1=0;1<10; i++) {
if () {
}
elsef
}
for (3=0; 3<10; j++) {
for (k=0;k<50; k++) {
if () {
}
else(
}

Skeleton code for
4.3(a), R=2

Figure

for (1=0;1<5;1i++) {

if () {

}

else(

}

for (7=0; j<10; j++) {

for (k=0;k<50; k++) {

if(){
}
else(

}

Skeleton code for
4.3(b), R=50

Figure

for (3=0;J<2; j++) {
for (k=0;k<50; k++) {
if(){
}
else{

}

Skeleton code for
4.3(c), R=200

Figure

for (k=0;k<25;k++) {
if () {
}
else(

}

Figure 4.4: The upper left figure shows the skeleton code for the original ap-
plication. The other figures show the skeleton code for the downscaled SFGLs.

4.3 Framework details 91

block F is also the beginning of an if-then-else statement; after generat-
ing this construction, the downscaled SFGL is empty and the algorithm
terminates. The end result is shown in Figure 4.4, along with the skele-
ton codes for the other downscaled SFGLs. These examples show how
we first scale the iteration count of the outer loop, and, if necessary,
then scale the iteration count of the nested loop(s).

Function assignment

We subsequently organize the basic blocks and loops into C-functions.
This organization does not necessarily correspond to the C-functions
observed in the original application — again, this is to hide proprietary
information in the synthetic benchmark.

Generate C statements

Once we have the skeleton synthetic benchmark consisting of C-
functions, loops and basic blocks, we now populate the basic blocks
with C statements. This is done by scanning the instruction types of
all the instructions in each basic block, and identifying C statements
that correspond to these sequences of instructions. Table 4.2 shows the
most important patterns and how they are translated into C statements.
The patterns cover over 95% of the instructions for all the benchmarks.
Coverage is not 100% (which again helps in hiding proprietary infor-
mation): to compensate for the uncovered instructions we keep track
of the number of operations and types that have been translated so
far, and we compensate for those instructions on a later occasion. For
example, if we are lagging behind in the number of loads, we try to
generate a ‘load-load-arithmetic-store” instead of a ‘load-arithmetic-
store” pattern. Or, if we are lagging behind in the number of stores, we
will generate an additional ‘store” pattern.

When reaching the end of a basic block we generate a branch state-
ment. This can be either a loop back edge or a conditional branch. In
case of a loop back edge, we generate a for loop with the iteration
count the number of times the loop needs to be iterated according to
the downscaled SFGL, as mentioned before.

92

Benchmark synthesis

Table 4.2: Generating C statements through pattern recognition. The op refers
to an operation (e.g., addition, subtraction, etc.); the cst refers to a randomly

generated constant value.

Pattern

Example

C statement

load-store

movl
movl

t+512, %eax
$eax,t+504

mem[i] = mem[]j];

load-arithmetic-store

movl
addl
movl1l

t+512, Seax
$2, %eax
%$eax,t+504

mem[i]
op cst;

mem|[j]

load-load-arith-store

movl1l
movl
leal
, $eax
movl

t+508, $edx
t+512, %Seax
(%edx, $Seax)

%$eax,t+504

mem[i] = mem[7j]
op meml[k];

load-load-arith-load-
reg-arith-reg-store

movl
movl
addl
mov1l
mov1l
subl
movl
movl

t+508, $edx
t+512, %$eax
$eax, $sedx
t+516, Seax
%$edx, %secs
%$eax, secx
%ecx, $eax
$eax,t+504

mem[i] = mem[Jj] op
mem[k] op mem[l];

load-compare-branch

mov1l
cmpl
jbe

t+504, %Seax
$3, %$eax

if (mem[i] > cst)

store

movl

$9, %Seax

mem([i] = cst;

4.3 Framework details 93

For a non-loop branch, we generate an if-then-else statement, and
we make a distinction between branches with a low transition rate
(<10%), a medium transition rate (10%< rate <90%), and a high tran-
sition rate (>90%). Branches with a low transition rate are modeled to
match their taken rates using a compare operation on a loop iterator.
Consider, for example, the skeleton code shown lower right in Figure
4.4; the i f-then path is taken 20 times, and the else path is taken 5
times. Assuming a low transition rate, this translates to the following
C code:

for (k=0;k<25; k++) {
if (k<20){
}
else(

}

Obviously, a branch predictor should be able to predict the outcome
of this conditional branch accurately.

If a branch is always (not-)taken, we fill the non-executed path with
C statements that print out the results that have been computed else-
where in the synthetic benchmark — this is to force the compiler not
to optimize code away that is needed to preserve representativeness
while producing data that is never used.

Branches with a high transition rate on the other hand, are modeled
using a modulo-2 operation on the iterator of its innermost outerloop.
Hence, the branch transitions between taken and not-taken (note that
such a branch is easy to predict for a history predictor but hard to pre-
dict for a bimodal predictor).

Finally, branches with a medium transition rate jump in one or the
other direction based on their taken and transition rates, i.e., we model
them to match their taken and transition rates using both a compare
and a modulo operation. For example, consider the following branch
sequence: “1111011010". The taken rate is 70% and the transition rate is
50%. This is modeled as follows:

for (k=0;k<10; k++) {
1f (k<5 || (k%2)==0) {
}

else({

94 Benchmark synthesis

One can verify that the branch sequence in this code example equals
“1111101010’; the taken rate is 70% and the transition rate is 50%.

We also generate memory access streams. This is done by gener-
ating stride patterns for all memory accesses, following prior work by
Bell and John [2005]. These patterns walk through pre-allocated mem-
ory with a particular stride; the stride value is determined by the mem-
ory access hit/miss ratio. Different hit/miss ratios lead to different
stride values. For example, an always hit memory access is modeled
through a zero stride. A 50% hit rate is modeled through a stride value
of 4; this will lead to a 50% miss rate assuming a 32 byte cache line size
and a 32-bit machine, see also Figure 4.5.

mem(0] (of [[&l [[JELIL LI

miss hit miss hit

mem[16] (T 1) O L)

miss hit miss hit
\ J

32-byte cache line size
32-bit machine

Figure 4.5: Generating stride patterns. A stride value of 4 results in a 50% hit
rate.

4.3.3 Example

The code snippet below shows the Fibonacci kernel along with the au-
tomatically generated synthetic clone. The profiling was done with a
particular input that calculates £ib (20), and we used a reduction fac-
tor of 2. This is reflected in the number of iterations that the loop is
taking: the synthetic benchmark takes 10 iterations.

That specific input never caused an overflow, hence the if state-
ment in the loop is never executed. The branches in both the original
Fibonacci kernel and the synthetic program clone are easy to predict
which is important to preserve the original program’s performance
characteristics. This example also illustrates that the Fibonacci kernel is
no longer recognizable in the synthetic clone because the data depen-

4.3 Framework details 95

dencies between the statements are very different between the original
program and its clone.

The original Fibonacci kernel:

int fib(int n) {
int a=0, b=1, i=0,
sum=0;

for (i=0;i<n; i++) {
sum = a + b;
if (sum<0) {
printf ("overflow");

break;
}
a = b;
b = sum;

}

return sum;

}
The generated synthetic program clone:

unsigned int mStream0[256];
int i1=0, 3=0;

int £ () {
for (1=0;1<10;i++) {
mStream0[4] = mStreamO[7] + mStreamO0[2];

if (mStreamO0[0]==0x99) {
for (3=0; j<256; j++) printf ("%d;", mStreamO[]j]);
}
mStreamO[6] = i;
mStream0 [7] mStreamO[6];

4.3.4 Limitations

Before evaluating our benchmark synthesis approach, we first discuss
the current limitations of our framework.

e Different program characteristics are modeled independently of
each other — the framework currently takes a first-order ap-
proach and assumes that the characteristics are uncorrelated. For

96

Benchmark synthesis

example, memory access behavior is modeled independently of
control flow behavior and its interaction is not modeled. This is
obviously not the case in real programs. Modeling second-order
effects is likely to improve accuracy.

The memory access behavior is based on cache miss rates and
hence it is specific to a particular memory hierarchy. Although
it is possible to measure cache miss rates for a range of caches
in a single run, as mentioned earlier, a better solution would be
to have a microarchitecture-independent way of modeling mem-
ory access behavior. Further, the current approach assumes that
memory accesses can be modeled using stride patterns. Future
work though may focus on modeling less regular memory access
patterns.

The instruction-level parallelism model is simplistic in our cur-
rent setup, as we assume random dependencies between instruc-
tions. A more accurate approach would be based on profiling
information so that the distribution of data dependencies in the
synthetic benchmark matches the original application — how-
ever, there is a trade-off in accuracy versus hiding proprietary
information.

The reduction factor is chosen empirically so that the synthetic
benchmark executes approximately 10 million instructions, as we
will describe later. A more accurate approach would base the re-
duction factor on how representative the synthetic benchmark is
relative to the real application while taking into account phase
behavior.

4.4 Experimental setup

The benchmarks used in this study are from the MiBench bench-

mark suite [Guthaus et al., 2001], see Table 4.3. Pofiling is done using
Pin [Luk et al., 2005], which is a dynamic binary instrumentation tool.
The cache simulations are done using Pin as well. The branch predic-
tion results are obtained using PTLSim [Yourst, 2007]; we consider a
hybrid branch predictor with a bimodal component along with a global

4.4 Experimental setup 97

Table 4.3: Embedded benchmarks used for evaluating benchmark synthesis.

Benchmark Description Input

Automotive

basicmath ~ mathematical calculations small/large

bitcount bit count algorithm small/large

gsort quick sort algorithm large

susan image recognition small/large
edges/corners/smoothing

Consumer

jpeg image (de)compression large, encode

Office

strinsearch ~ comparison algorithm small/large

Network

dijkstra path calculation small/large

patricia network routing small

Security

sha secure hash algorithm small/large

Telecomm.

ADPCM Pulse Code Modulation small/large, enc./dec.

CRC32 32-bit Cyclic Redundancy Check small/large

FFT Fast Fourier Transformation small/large, FFT/IFFT

GSM voice encoding/decoding small/large, enc./dec.

Table 4.4: Machines used for evaluating benchmark synthesis.

Machine

ISA Description

Itanium 2

Pentium 4,2.8 GHz x86
Pentium 4, 3 GHz x86

Core 2
Core i7

[A64

x86_64
x86_64

Itanium 2 at 900 Mhz with 256 KB L2
Pentium 4 at 2.8 GHz with 1 MB L2
Pentium 4 at 3 GHz with 1 MB L2
Core 2 at 2.2 GHz with2 MB L2
Core i7 at 2.67 Ghz with 8 MB L2

98 Benchmark synthesis

history-based component. We also run detailed cycle-accurate simula-
tions using PTLSim and we simulate a 2-wide out-of-order processor.

We also run real hardware experiments on five machines, see Table
4.4. The machines include Pentium 4, Core 2, Core i7 and Itanium 2
processors, and three ISAs: x86, x86_64 and 1A64.

We use GNU’s GCC compiler v4.0.2 in all of our experiments for
the x86 and x86_64 machines. For the Itanium 2 machine we use GCC
v3.3.2. We consider four compiler optimization levels: -00, -01, -02
and -03.

4.5 Evaluation

The evaluation of the framework is done in a number of steps. We
evaluate whether the synthetic benchmarks correspond to the real ap-
plications with respect to their dynamic instruction count, instruction
mix, cache performance, branch prediction behavior, and eventually
overall performance across architectures and compilers. We also verify
whether the synthetic benchmark clones hide proprietary information
from the original applications using existing software plagiarism detec-
tion tools.

4.5.1 Performance characteristics
Dynamic instruction count

Figure 4.6 shows the reduction in dynamic instruction count between
the synthetic benchmark and the original application. Recall that the
synthetic benchmark generation process scales down the SFGL using a
reduction factor. We choose the reduction factor such that the synthetic
benchmark executes approximately 10 million instructions. This leads
to a reduction factor ranging from 1 to 250. The fact that the reduction
factor is low in a number of cases is because the MiBench benchmarks
are fairly short-running, hence there is little simulation time reduction
to be gained. On average though, we achieve a 30x reduction in dy-
namic instruction count.

Figure 4.7 shows the normalized dynamic instruction count across
compiler optimization levels; we show average numbers here. The dy-
namic instruction count is an important optimization target for com-
pilers, even on today’s superscalar out-of-order processors [Eyerman

99

4.5 Evaluation

JOVHIANVY
glrews/uesns
Zlrewsjuesns
TIrews/uesns
coabuejuesns
zobuejuesns
19b.e|/ueSNS
Jrews; sbuins
abue|/ sbulns
lrewsreys
ablejreys
abre|uosb
|rewsyeioued
1ob.e)/H6adl
Zlrews/wsb
TIrews/wshb

[zaburejwsbh
1ob1ej/wsh
Tirewsny
zabuejny
1obIe)ny
Irewsrensylip
abure|rensylip
|rews/zeo1o
abue|/zeo10
|lewsauNodNg
abe|punodiiq
|lews; woiseq
abue|/ woiseq
Zlrews/wodpe

TIrews/wodpe
zaburejjwodpe
19b.1e)/Wwodpe

o o o o o o

re} S e} S re]

3 39 =1 —

Jewyouaq d18YIUAs 0} aAne|al
uoneoldde reuiblio 1UNO2 UONINJISUI JILIRUAP

Reduction in dynamic instruction count.

Figure 4.6

| synthetic benchmark

= original application

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

1UNOD UONONISUI JIWRUAD pazijewlou

0%

03

02

o1

00

Normalized dynamic instruction count across compiler optimiza-

Figure 4.7

tion levels.

100 Benchmark synthesis

et al., 2008]. The synthetic workload tracks the original workload fairly
well: both suggest that the dynamic instruction count reduces by about
a third when going from -00 to a higher optimization level.

Instruction mix, cache hit rates, and branch prediction behavior

Figures 4.8 and 4.9 show the instruction mix for the original applica-
tions and the synthetic benchmarks at the ~00 and -02 optimization
levels. Figures 4.10 and 4.11 show the data cache behavior for the origi-
nal applications and the synthetic benchmarks at the —~00 optimization
level; Figures 4.12 and 4.13 show the data cache behavior at the -02
optimization level. Figure 4.14 shows results for the branch predictor
behavior.

All of these graphs basically lead to the same conclusion. Although
the synthetic benchmarks do not yield a perfect match with the original
applications, they most often yield the same conclusions and insights.
For example, both the synthetics and the real workloads see a decrease
in the fraction of load instructions along with an increase in the fraction
of arithmetic instructions at a higher optimization level, see the average
bars on the righthand side in Figures 4.8 and 4.9; the reason is that
optimizations such as copy propagation eliminate load instructions by
replacing variables with their original values (if the variables do not
change). In terms of data cache behavior, the synthetic benchmarks
correlate well with the original applications, in spite of using a very
simple cache access model. For example, dijkstra seems to be the
benchmark that is most sensitive to cache space, see Figure 4.10, and
a data cache size of 8 KB seems to capture most of the benchmark’s
working set (i.e., there is a significant increase in data cache hit rate
going from 4 KB to 8 KB but a minor increase going from 8 KB to 16
KB). We observe the same trend for the synthetic version of di jkstra,
see Figure 4.11.

Finally, for the branch predictor accuracy graph, see Figure 4.14, we
observe that adpcm is most sensitive to the branch predictor; this is also
captured by the synthetic benchmark. Also, for both the original and
the synthetic workloads, crc32 seems to be the program with the high-
est branch prediction accuracy; this is because the crc32 kernel con-
sists of one large loop with branches that have low transition rates. On
the other hand, the synthetic branch prediction accuracy is significantly
overestimated for adpcm, jpeg, gsort and stringsearch. The rea-
son is that the current branch model is more oriented towards bimodal

101

4.5 Evaluation

Hloads Mmstores Mbranches & others

100%
90%
80%
70%
60% -
50%
40%
30%
20%
10%

0% -

NAS
9YO FDOVHINY
NAS

940 (9) uesns
NAS

940 (2) "sbus
NAS

940 (2) eus
NAS

9340 Hosb

NAS

94O eloured
NAS

940 badl

NAS

940 (¢) wsh
NAS

940 (2) W

NAS

940 (2) ensylip
NAS

940 (2) zgo0
NAS

940 () wnoanq
NAS

940 (2) "woaiseq
NAS

940 (y)wodpe

Figure 4.8: Instruction mix for the original applications (ORG) and the syn-

thetic benchmarks (SYN) at the ~00 optimization level.

Hm|oads M®stores Mbranches ®others

100%
90%
80%
70%
60% -
50%
40%
30%
20%
10%

0% -

NAS
940 FDVHINY
NAS

940 (9) uesns
NAS

940 (2) "sbus
NAS

940 (2) eus
NAS

940 1osb

NAS

940 eloured
NAS

9Y0 badl

NAS

940 (v) wsh
NAS

940 (2) W

NAS

940 (2) ensilip
NAS

940 (2) zeoo
NAS

940 () noong
NAS

940 (2) "woiseq
NAS

940 ()wodpe

Figure 4.9: Instruction mix for the original applications (ORG) and the syn-

thetic benchmarks (SYN) at the -~02 optimization level.

102 Benchmark synthesis
1KB ®W2KB W4KB m8KB m16KB m32KB
100%
98%
. 96%
I
= 94% -
<
2 92%
]
o
g 90%
©
©
88%
86%
84%

» DD PP B PP S DD S F
ISR L S O I I P R D P\
0 & € ¥ < R IR R
CARINCARINS » & T ¥

Figure 4.10: Data cache hit rates for the original applications at the ~00 opti-
mization level.

100%
98%
96%
94%
92%

90%

data cache hit rate

88%
86%

84%

1KB m2KB m4KB m8KB m16KB m32KB

Figure 4.11: Data cache hit rates for the synthetic benchmarks at the ~00 op-
timization level.

4.5 Evaluation 103

100%
98%
96%
94%
92%
90%
88%
86%
84%
82%
80%

data cache hit rate

>

Figure 4.

o
)

1KB m2KB m4KB m8KB m16KB m32KB

NN

» Q@ O P »
PO A a <<\ NI é\o\ N
6\\‘00 & 6\\\‘: &] 0}'9

&

12: Data cache hit rates for the original applications at the ~02 opti-

mization level.

100%
98%
96%
94%
92%
90%
88%
86%
84%
82%
80%

data cache hit rate

Figure 4.

1KB m2KB m4KB m8KB m16KB m32KB

13: Data cache hit rates for the synthetic benchmarks at the ~02 op-

timization level.

104 Benchmark synthesis

moriginal -O0 ®original -O2 ®synthetic-O0 ®synthetic -O2

100%
98%
96%
94%
92%
90%
88%
86%
84%
82%
80%

branch prediciton accuracy

e |
I s o sy o

Figure 4.14: Branch prediction rates for the original applications and the syn-
thetic benchmarks.

predictors, i.e., a history predictor is able to predict the branches that
are modeled using a modulo operation more accurately.

Detailed cycle-accurate simulation

Figure 4.15 shows CPI for a 2-wide out-of-order processor while vary-
ing cache size; these results are obtained through detailed cycle-
accurate simulation using PTLSim — the processor configuration is
shown in Table 4.5. The synthetics track overall performance across
the benchmarks fairly well. For example, £ft is the benchmark with
the highest CPI (due to a large fraction of floating-point instructions)
and sha the lowest CPI; we observe this for both the real applica-
tions and the synthetic benchmarks. We also observe that the synthetic
benchmark captures the performance trend as a function of data cache
size well, see for example di jkstra and gsort. The remaining errors
come from a number of potential sources. The current data dependency
model can be improved to more accurately mimic real application be-
havior in the synthetic benchmarks (see bitcount); also, modeling
the branch behavior can be improved upon (see adpcm), as well as the
data cache behavior (see st ringsearch). Improving the modeling of

4.5 Evaluation 105

Table 4.5: The baseline processor model considered in our simulations.

Parameter Configuration

ROB 64 entries

load queue 24 entries

store queue 16 entries

issue queues 2 16-entry issue queues

processor width 2 wide fetch, decode, dispatch, issue, commit
latencies load (2), mul(3), div(20)

L1 I-cache 32 KB 4-way set-associative, 1 cycle

L1 D-cache 8/16/32 KB 4-way set-associative, 1 cycle
main memory 180 cycle access time

branch predictor hybrid bimodal/gshare predictor
frontend pipeline 8 stages

these program characteristics is likely to improve the representative-
ness of the synthetic benchmarks compared to the original applications.
Also, different applications may require different R values to faithfully
reproduce the application behavior in a synthetic benchmark.

Overall performance across architectures and compilers

Figure 4.16 shows the normalized execution times for the original ap-
plications and the synthetic clones across different architectures and
compilers and optimization levels; we consider the real machines and a
benchmark consolidation setup here and report average numbers. All
the results are normalized to the —00 optimization level on the 3Ghz
Pentium 4 machine. This graph shows that the synthetic benchmarks
track the original applications fairly well across architectures and com-
piler optimization levels. The error in predicting the speedup relative
to —00 is less than 20% across all machines and optimization levels,
with an average error of 7.4%. The synthetics track that the Core i7
yields the best overall performance, and the Itanium 2 the worst. A
particularly encouraging result is that the synthetic workload is able to
track that the -02 and -03 optimization levels yield a substantial 25%
performance benefit over ~01 on the Itanium 2 machine but not on the
other machines. This performance benefit for the Itanium architecture
is due to the fact that Itanium’s EPIC architecture is sensitive to com-
piler optimizations — an EPIC architecture is a statistically scheduled
architecture as opposed to a dynamically scheduled out-of-order pro-

106 Benchmark synthesis

JOVHINVY
glrews/uesns

" Sm— jeuws/uesns
TIfewsy/uesns
gaburejjuesns
zabuejjuesns
1oburejjuesns
|rews; sbulins

\ abue)/ sbuns
[lewsreys

\ abiejeys

. . abejuosb
|rewsyelouyed
Tabue|/Bad(
Zlrews/wsb
TIews/wsb
zoburejjwish
1obrejywsh
Tirewsny
zabue|ny
1oburejny
[rews/ensyip
abrejensyip
|lews/zeol1o
abue|/zealo
|lews/AuN02Iq
abrejaunodliq
|lews/ woiseq
abuej/ woiseq
Zllrews/wodpe
TIews/wodpe
zabuejywodpe
Tabuejjwodpe

moriginal 16 KB m®original 32 KB

original 8 KB
m synthetic 8 KB msynthetic 16 KB B synthetic 32 KB

N

3,5
2,5
15
0,5

IdO

Figure 4.15: CPI for the original and synthetic workloads on a 2-wide out-of-
order processor while varying cache size.

4.5 Evaluation 107

3Ghz Pentium 4 ®mCore2 ®28GhzPentium4 ®ltanium?2 ®Corei7
4

n w
o w o

=
3

normalized execfution time
N

—
-
—
=
e
=

Figure 4.16: Normalized average execution time for the original applications
and synthetic benchmarks across architectures and compilers.

cessor, hence compiler optimizations have a more significant impact
on overall performance. Clearly, the synthetic benchmarks expose pro-
gram constructs similar to the real applications that enable the compiler
to optimize in a similar vein.

4.5.2 Hiding functional semantics

An important asset of benchmark synthesis is that it hides proprietary
information, i.e., it is impossible, or at least very hard, to reverse engi-
neer proprietary information from the synthetic benchmark. One way
of evaluating whether this is really achieved is through manual inspec-
tion. By comparing the synthetic benchmark against the original appli-
cation, one can assess whether any proprietary information is still left
in the synthetic benchmark. Presumably, companies that plan on using
benchmark synthesis will most likely do this validation process very
carefully before distributing a synthetic clone.

We now use existing tools for evaluating whether proprietary in-

formation is still present in the synthetic benchmark. We therefore use
two existing tools, Moss [Aiken, 2003] and JPlag [Malpohl, 1996], which

108 Benchmark synthesis

are used to find plagiarism in software. Moss’ main usage has been in
detecting plagiarism in programming classes. JPlag is aware of pro-
gramming language syntax and program structure. The way both tools
work is that the user gives two source code files, and the tool returns
whether there is any similarity between these two files. When giving
the original application and the synthetic benchmark, both Moss and
JPlag return that the synthetic benchmark does not provide any simi-
larity with the original application.

4.6 Related work

Our work shares some commonalities with statistical simulation. Sta-
tistical simulation [Noonburg and Shen, 1997] [Oskin et al., 2000]
[Nussbaum and Smith, 2001] [Eeckhout et al., 2004] [Genbrugge et al.,
2006] collects program characteristics from a program execution and
subsequently generates a synthetic trace from it which is then simu-
lated on a simple, statistical trace-driven simulator. The important ad-
vantage of statistical simulation is that the dynamic instruction count
of a synthetic trace is very short, typically a few millions of instructions
at most, making it a useful simulation speedup technique for quickly
identifying a region of interest in a large microprocessor design space.

Synthetic benchmarks such as Whetstone [Curnow and Wichmann,
1976] and Dhrystone [Weicker, 1984] are manually crafted bench-
marks. Manually building benchmarks though is both tedious and
time-consuming, and in addition, these benchmarks are quickly out-
dated. Therefore, recent work proposed automated synthetic bench-
mark generation [Bell and John, 2005] [Bell et al., 2006] [Joshi et al.,
2007] [Joshi et al., 2008a] [Joshi et al., 2008b] [Ganesan et al., 2010]
which builds on the statistical simulation approach but generates a
synthetic benchmark rather than a synthetic trace.

Our framework borrows some concepts proposed in this related
work. Our proposal extends the statistical flow graph [Eeckhout et al.,
2004] with loop information. By doing so, our synthetic benchmarks
consist of many (nested) loops as observed in real applications. The
approach of Bell and John [2005] on the other hand, generates a lin-
ear sequence of instructions that is iterated in a big loop until conver-
gence. Our framework also borrows the idea of using the branch tran-
sition rate for modeling the branch behavior [Joshi et al., 2008a] and
the stride-based memory access pattern modeling approach [Bell and

4.7 Summary 109

John, 2005]. The main difference with this prior work though is that (i)
we target synthetic benchmarks in a high-level programming language,
whereas prior frameworks generated synthetic traces or benchmarks in
assembly language, (ii) we generate fine-grained loop structures using
the SFGL, and (iii) we use pattern recognition rather than statistics to
generate synthetic code sequences.

Code obfuscation [Collberg et al., 1997] converts a program into an
equivalent program that is more difficult to understand and reverse
engineer. There is a fundamental difference between code obfuscation
and benchmark synthesis though. The goal of program obfuscation is
to generate a transformed program that is functionally equivalent to
the original program, i.e., when given the same input, the transformed
program should produce the same output as the original program. The
performance characteristics of the transformed program can be very
different from the original program. Benchmark synthesis on the other
hand generates a synthetic program that exhibits the same performance
characteristics as the original program; however, its functionality can
be very different. Not having to preserve functionality has an impor-
tant implication for benchmark synthesis because it allows for generat-
ing a synthetic benchmark for a specific input, hence benchmark syn-
thesis can also hide proprietary information as part of the input.

4.7 Summary

The current benchmarking process is typically driven by application
benchmarks, i.e., benchmarks that are derived from real-life applica-
tions. Although this is an effective approach, there are two major lim-
itations: (i) available benchmarks may not be truly representative of
real-life applications (of interest), and (ii) the simulation of contempo-
rary benchmarks is very time-consuming. Code mutation can be used
in combination with sampled simulation to combat these limitations;
however, the resulting workloads cannot be used for compiler and ISA
exploration.

This chapter proposed a novel benchmark synthesis paradigm
that generates synthetic benchmarks in a high-level programming lan-
guage. It generates small but representative benchmarks that can serve
as proxies for other applications without revealing proprietary infor-
mation; and because the benchmarks are generated in a high-level
language, they can be used to explore the architecture and compiler

110 Benchmark synthesis

space. The methodology to generate these benchmarks comprises two
key steps: (i) profiling a real-world (proprietary) application (that is
compiled at a low optimization level) to measure its execution charac-
teristics, and (ii) modeling these characteristics into a synthetic bench-
mark clone. Our experimental results obtained with our initial frame-
work are promising and demonstrate the feasibility and effectiveness
of the approach. We demonstrated good correspondence between the
synthetic and original applications across instruction-set architectures,
microarchitectures and compiler optimizations; we also pointed out the
major sources of error in the benchmark synthesis process. We verified
using software plagiarism detection tools that the synthetic benchmark
clones indeed hide proprietary information from the original applica-
tions.

We also described the potential applications of this benchmark syn-
thesis paradigm: distributing proprietary applications as proxies, drive
architecture and compiler research and development, speed up simu-
lation, model emerging and hard-to-setup workloads, and benchmark
consolidation.

Chapter 5

Comparing workload design
techniques

Your true value depends entirely on what you are compared with.
Bob Wells

The workload generation and reduction techniques discussed in the previous
chapters exhibit different strengths and weaknesses. In this chapter, we com-
pare code mutation, sampling, and benchmark synthesis along with the pre-
viously proposed input reduction approach. We do this using the following
criteria: (i) Do the different techniques yield representative and short-running
benchmarks? (ii) Can they be used for both architecture and compiler explo-
rations? (iii) Do they hide proprietary information?

5.1 Introduction

We first briefly revisit the benchmark requirements that we identified
in the introduction of this dissertation.

e The benchmarks should reflect their target domain. A benchmark
that is not representative of a target domain may lead to a sub-
optimal design. In addition, given that the processor design cy-
cle takes five to seven years, architects should anticipate future
workload characteristics.

e The benchmarks should also be short-running to limit simulation
time during design space exploration.

112 Comparing workload design techniques

e The benchmarks need to enable both (micro)architecture and
compiler research and development, e.g., to evaluate new ISA-
extensions.

e The benchmarks must not reveal proprietary information. Indus-
try has the workloads that the user cares about; however, com-
panies are reluctant to release their codes. For this reason, re-
searchers and developers typically have to rely on open-source
benchmarks which may not be truly representative for the real-
world workloads.

Fulfilling all of the above criteria is non-trivial, and to the best of our
knowledge, none of the existing workload generation and reduction
techniques address them all.

5.2 Workload design techniques

Before comparing input reduction, code mutation, sampling, and
benchmark synthesis against each other, we provide details on the
techniques that have not been (fully) described in the previous chap-
ters, namely input reduction, sampling and benchmark synthesis.

5.2.1 Input reduction

The idea of input reduction [KleinOsowski and Lilja, 2002] is to reduce
a reference input or to come up with a different input that leads to a
shorter running benchmark compared to a reference input while ex-
hibiting similar program behavior. Although the idea of input reduc-
tion is simple, doing so in a faithful way is far from trivial.

Most benchmark suites come with a number of inputs. For exam-
ple, SPEC CPU comes with three inputs. The test input is used to verify
whether the benchmark runs properly, and should not be used for per-
formance analysis. The train input is used to guide profile-based opti-
mizations, i.e., the train input is used during profiling after which the
system is optimized. The reference input is the one that is to be used for
performance measurements. In some cases, researchers and developers
also use train inputs to report performance numbers. The primary rea-
son typically is that it takes too long to simulate a benchmark run with a
reference input. In particular, simulating a benchmark execution with a

5.2 Workload design techniques 113

reference input can take multiple weeks to run to completion on today’s
fastest simulators on today’s fastest machines. A train input brings the
total simulation time down to a couple hours.

The pitfall using train inputs, and smaller inputs in general, is that
they may not be representative of the reference inputs. For example, the
working set of a reduced input is typically smaller, hence their cache
and memory behavior may stress the memory hierarchy less than the
reference input would. Another fundamental problem with this ap-
proach is that it takes significant time to come up with the reduced
input set for a workload.

KleinOsowski and Lilja [2002] explore the idea of input reduction
and they proposed MinneSPEC which collects a number of reduced
input sets for some CPU2000 benchmarks. These reduced input sets
are derived from the reference inputs using a number of techniques:
modifying inputs (for example, reducing the number of iterations),
truncating inputs, etc. They propose three reduced inputs: smred for
short simulations, mdred for medium-length simulations, and 1gred
for full-length, reportable simulations. KleinOsowski and Lilja [2002]
compare the representativeness of the reduced inputs against the refer-
ence inputs by comparing their function-level execution profiles, which
appears to be accurate for most benchmarks but not all [Eeckhout et al.,
2003].

5.2.2 Sampling

We showed that sampled simulation is very effective at reducing the
dynamic instruction count while retaining representativeness and ac-
curacy (see Chapter 3). However, it requires that the simulator is mod-
ified to quickly navigate between sampling units and to establish ar-
chitecture state (register and memory state) and microarchitecture state
(content of caches, TLBs, predictors, etc.) at the beginning of the sam-
pling units.

Ringenberg et al. [2005] present intrinsic checkpointing which does
not require modifying the simulator. Instead, intrinsic checkpointing
rewrites the benchmark’s binary and stores the checkpoint (architec-
ture state) in the binary itself. Intrinsic checkpointing provides fix-up
checkpointing code consisting of store instructions to put the correct
data values in memory and other instructions to put the correct data
values in registers [Ringenberg et al., 2005].

114 Comparing workload design techniques

The original SimPoint approach [Sherwood et al., 2002] focused on
finding representative sampling units based on the basic blocks that
are being executed. Follow-on work considered alternative program
characteristics such as loops and method calls, which enabled them to
identify cross binary sampling units that can be used by architects and
compiler builders when studying ISA extensions, and evaluating com-
piler and software optimizations [Perelman et al., 2007].

5.2.3 Benchmark synthesis

Statistical simulation [Noonburg and Shen, 1997] [Oskin et al., 2000]
[Nussbaum and Smith, 2001] [Eeckhout et al., 2004] [Genbrugge et al.,
2006] collects program characteristics from a program execution and
subsequently generates a synthetic trace from it which is then simu-
lated on a statistical processor simulator. The important advantage of
statistical simulation is that the dynamic instruction count of a syn-
thetic trace is very short, typically a few millions of instructions at most.
A synthetic trace hides proprietary information very well; however, a
synthetic trace cannot be run on real hardware nor on an execution-
driven simulator (which is current practice as opposed to trace-driven
simulation). Hence, statistical simulation is primarily useful for guid-
ing early-stage design space explorations.

More recent work focused on automated synthetic benchmark gen-
eration which builds on the statistical simulation approach but gener-
ates a synthetic benchmark rather than a synthetic trace. Although our
benchmark synthesis approach shares some commonalities with this
prior work, there are important differences as well. For one, in our
work we aim at generating synthetic benchmarks in a high-level pro-
gramming language such as C so that both compiler and architecture
developers and researchers can use these benchmarks. Prior work in
automated benchmark synthesis generates binaries which limits their
usage to architects only, i.e., the synthetic benchmarks cannot be used
for compiler research and development. In addition, there are some
technical differences as well. For example, whereas prior benchmark
synthesis approaches model control flow behavior in a coarse-grain
manner, our current work models fine-grained control flow behavior,
including (nested) loops, if-then-else structures, etc. Also, we use pat-
tern recognition rather than statistics and distributions for generating
synthetic code sequences.

5.3 Comparison 115

5.3 Comparison

Table 5.1 compares input reduction, code mutation, sampling and
benchmark synthesis in terms of a number of dimensions. It is im-
mediately apparent from this table that there is no clear winner. The
different techniques represent different trade-offs which makes dis-
cussing the differences in more detail interesting and which naturally
leads to different use cases for each technique.

Accuracy

Whether the generated workload is representative of the original refer-
ence workload is obviously of primary importance. Although it is hard
to compare the various workload generation techniques without doing
an apples-to-apples comparison — this would require a comparison us-
ing the same set of benchmarks and simulation infrastructure — we can
make a qualitative statement based on the results in this dissertation.

Sampling is the most accurate approach, followed by code muta-
tion. In Chapter 3 we showed an average performance difference of
only 0.29% between full simulation and sampled simulation with NSL-
BLRL K=100%, see Figure 3.8. For code mutation, the performance of
the mutated binary is also very similar to the original workload: within
1.4% on average (and at most 6%) on real hardware, see Figure 2.17.

Benchmark synthesis has shown medium accuracy; an average per-
formance difference of 7.4% between the synthetic clone and the origi-
nal workload across a set of compiler optimization levels and hardware
platforms, see Figure 4.16. However, the performance difference on a
per-benchmark basis can be much higher, as illustrated in Figure 4.15.

The intuitive reason for the higher performance difference of bench-
mark synthesis is that both sampling and code mutation start from an
original application whereas benchmark synthesis identifies a set of
program characteristics that when modeled in a synthetic benchmark
reflects the performance of the original application — which is non-
trivial.

Reduced inputs have shown good accuracy for some benchmarks
but very poor accuracy for others. Moreover, compared to sampled
simulation, the poor accuracy is not offset by higher simulation speed
[Yi et al., 2005].

116 Comparing workload design techniques

Simulation time reduction

All techniques except for code mutation aim at reducing the dynamic
instruction count so that simulation time is reduced. Simulation time
reductions of several orders of magnitude have been reported for sam-
pled simulation (see Chapter 3) and benchmark synthesis (see Chap-
ter 4). Similar simulation time reductions are reported for reduced
input data sets [Haskins et al., 2002]. Reducing the dynamic instruc-
tion count is not only important for architecture research and develop-
ment, it is also extremely important in the compiler space, e.g., iterative
compilation evaluates a very large number of compiler optimizations
in order to find the optimum compiler optimizations for a given pro-
gram [Cooper et al., 1999] [Kulkarni et al., 2004]. A reduced workload
that executes faster will also reduce the overall compiler space explo-
ration time.

Hide proprietary information

Because benchmark synthesis is a bottom-up approach, it succeeds the
most in hiding proprietary information, followed by code mutation. On
the other hand, code mutation yields more accurate synthetic clones be-
cause of its top-down approach. The intrinsic checkpointing approach
[Ringenberg et al., 2005] also complicates the understanding of a (pro-
prietary) application; however, representative sampling units will most
likely contain valuable information. An important application for these
techniques would be to generate synthetic clones for real-world propri-
etary workloads. This would enable sharing codes among companies
in industry. Also, it would be an enabler for industry to share their ap-
plications with their research partners in academia without revealing
proprietary information.

Architecture and compiler exploration

All techniques can be used to drive microarchitecture research and
development; however, only a few can be used for compiler and ISA
exploration. The reason is that techniques, such as code mutation,
sampling, statistical simulation and benchmark synthesis at the binary
level, operate on binaries and not on source code which eliminates their
usage for compiler and ISA exploration. On the other hand, sampling
that identifies representative loops and function calls can be used to

117

5.3 Comparison

‘[q40T0T ‘Mo 09y pue ap[aANIy UeA | soanbrunos; uononpar pue uonersussd peopfIom jo uostredwo)) :1°g a[qer,

SoxX S9X ON ON ON SpeopIom SUrdIauwe [opowr ue))
SOX. ON Arenred ON S9xX uonerordxs yg[29 serrduwod sspqeuy
S9X SIX S9X SOx SIX uoryeIO[dXa 9IN3093IIILOIDTW SI[qRUL
SOx SOX ON SOX ON uonyeurtoyut Arejaridoid sapipy
Sax Sax Sax ON Sax QWIT} UOTJRNIS S9ONPIY
WINIPa WNIPIA Y3111 YSI-WNIPSJN I00J-WNIPIA] SPEOYIOM 3DUSIDJAI JIM ADBInddy
® o D o W Q) =)
T 2 g 3 z 2 S
9 =3O & =
=y 2 = o, ®© =X
=3 55 5 2 G
o R =B aq =) Q.
g ~ g A 23 &
Tz g : 4
2 ! : 5
= =
(97 o
2. 2.
95} 2]

118 Comparing workload design techniques

drive compiler research, as does benchmark synthesis at the HLL level.

Model emerging workloads

Benchmark synthesis can also be used to generate emerging and fu-
ture workloads. In particular, one can generate a workload profile with
performance characteristics that are to be expected for future emerg-
ing workloads. For example, one could generate a synthetic workload
with very large working sets, or random memory access patterns, or
complex control flow behavior. The synthetic benchmarks generated
from these profiles can then be used to explore design alternatives for
future computer systems.

Multi-threaded workloads

Contemporary computer systems all feature multicore processors,
which obviously has its repercussions on benchmarking for both hard-
ware and software. Recent work in workload generation and reduction
has focused almost exclusively on single-threaded workloads, except
for a few studies in sampling (see for example [Wenisch et al., 2006b])
and benchmark synthesis (see for example [Hughes and Li, 2008]).

5.4 Summary

In this chapter, we compared recently proposed workload generation
and reduction techniques, and we came to the conclusions that there is
no clear winner, i.e., the different techniques represent different trade-
offs. The trade-off between code mutation and benchmark synthesis is
that synthetic benchmarks may be less accurate and representative with
respect to the real applications compared to mutated binaries; however,
benchmark synthesis hides proprietary information more adequately
and it yields short-running benchmarks.

Chapter 6

Conclusion

We can chart our future clearly and wisely only when we know the path
which has led to the present.
Adlai Stevenson

This dissertation investigated several challenges when using benchmarks in
computer architecture research and development. In this chapter, we first sum-
marize these challenges and then detail the conclusions that can be drawn from
this research work. In addition, we highlight interesting research topics that
could be investigated further in the future, with special emphasis on code mu-
tation and benchmark synthesis.

6.1 Summary

The growing complexity of contemporary microarchitectures neces-
sitates the use of benchmark programs in computer science and en-
gineering research and development, i.e., computer architects and
compiler designers use benchmarks to evaluate their products and re-
search ideas. Consequently, several organizations such as SPEC, TPC,
EEMBC, etc., have released standard application benchmark suites to
streamline this performance evaluation process. Nevertheless, com-
puter architects and engineers still face several important benchmark-
ing challenges.

For one, industry vendors hesitate to disseminate proprietary ap-
plications to academia and third-party vendors. By consequence, the
benchmarking process is typically driven by standardized, open-source

120 Conclusion

benchmarks which may be very different from and likely not repre-
sentative of the real-world applications of interest. In addition, avail-
able benchmark suites are often outdated because the application space
is constantly evolving and developing new benchmark suites is ex-
tremely time-consuming (and costly).

Second, contemporary application benchmark suites like SPEC
CPU2006 execute trillions of instructions in order to stress contem-
porary and future processors in a meaningful way. This has significant
implications for simulation-based design space exploration, i.e., it is
infeasible to simulate entire application benchmarks using detailed
cycle-accurate simulators. Simulating only one second of real time
may lead to multiple hours or days of simulation time, even on today’s
fastest simulators running on today’s fastest machines.

Finally, coming up with a benchmark that is representative, short-
running yet versatile is another major challenge. A benchmark should
enable both (micro)architecture and compiler research and develop-
ment. Although existing benchmarks satisfy this requirement, this is
typically not the case for workload reduction techniques that reduce
the dynamic instruction count in order to address the simulation chal-
lenge. These techniques often operate on binaries and not on source
code which eliminates their utility for compiler exploration and ISA
exploration.

In the following subsections, we briefly highlight the major findings
and contributions of this dissertation to the workload generation for
microprocessor performance evaluation.

6.1.1 Code mutation

Code mutation is a novel methodology for constructing benchmarks
that hide the functional semantics of proprietary applications while ex-
hibiting similar performance characteristics. The benchmark mutants
then can serve as proxies for the proprietary applications during bench-
marking experiments. The code mutation framework derives bench-
marks from proprietary applications by exploiting two key observa-
tions: (i) miss events have a dominant impact on performance on con-
temporary microprocessors, and (ii) many variables of contemporary
applications exhibit invariant behavior at run-time. The novelty of our
idea is to approximate application performance characteristics by re-
taining memory access and control flow behavior while mutating the

6.1 Summary 121

remaining application code. We therefore compute program slices for
memory access and/or control flow operations trimmed through value
and branch profiles, and subsequently mutate the instructions not ap-
pearing in these slices. The end result is a benchmark mutant that can
be shared among third-party industry vendors, as well as between in-
dustry and academia. This could make the benchmarking process in
industry both more accurate and more straightforward, and the perfor-
mance evaluation process in academia more realistic.

We explored a number of approaches to code mutation — these ap-
proaches differ in the way they preserve the proprietary application’s
memory access and control flow behavior in the mutant. We found
CFO plus ECF (Control Flow Operation slicing and Enforced Control
Flow) the approach that represents the best trade-off between accuracy
and information hiding. This approach computes control flow slices
for frequently executed, non-constant branches, and mutates instruc-
tions that are not part of any of these slices. The slices are trimmed us-
ing constant value profiles to make more instructions eligible for code
mutation. For this approach, code mutation mutates up to 90% of the
binary, up to 50% of the dynamically executed instructions, and up to
35% of the at-run-time-exposed inter-operation data dependencies. We
also demonstrated that the performance characteristics of the mutants
correspond well with those of the original applications; for CFO plus
ECEF, the average execution time deviation on hardware is 1.4%.

6.1.2 Cache state warmup for sampled simulation through
NSL-BLRL

Architectural simulation is an essential tool for microarchitectural re-
search to obtain insight into the cycle-level behavior of current mi-
croprocessors. However, architectural simulations are extremely time-
consuming, especially if contemporary benchmarks suites need to be
simulated to completion. Sampled simulation is a well-known solu-
tion for speeding up architectural simulation; the key idea is to only
simulate a small sample from a complete benchmark execution in a
cycle-accurate manner. An important problem in sampled simulation is
to warmup the microarchitectural state at the beginning of a sampling
unit.

We proposed a hybrid cache state warmup approach that combines
cache state checkpointing through NSL (No-State-Loss) with BLRL

122 Conclusion

(Boundary Line Reuse Latency) into NSL-BLRL. The key idea is to
truncate the NSL stream of memory references in a pre-sampling unit
using BLRL information; the truncated NSL stream then serves as a
cache state checkpoint.

We demonstrated that this approach yields several benefits over
prior work: it yields substantial simulation time speedups compared to
BLRL (up to 1.4x under fast-forwarding and up to 14.9x under check-
pointing) and significant reductions in disk space requirements com-
pared to NSL (30% on average). Also, NSL-BLRL is more broadly ap-
plicable than the MHS and TurboSMARTS approach because the NSL-
BLRL warmup info is independent of the cache block size.

6.1.3 High-level language benchmark synthesis

We presented a novel benchmark synthesis framework for generating
synthetic benchmarks that are small though representative for other ap-
plications. The framework comprises two key steps: (i) profiling a real-
world (proprietary) application (that is compiled at a low optimization
level) to measure its execution characteristics, and (ii) modeling these
characteristics into a synthetic benchmark clone. The key novelty is
that the synthetic benchmarks are generated in a high-level program-
ming language to enable both architecture and compiler research —
prior work in benchmark synthesis generated synthetic benchmarks at
the binary level.

Furthermore, we introduced a novel structure to capture a pro-
gram’s control flow behavior in a statistical way. This structure enables
our framework to generate conditional control flow behavior, (nested)
loops and function calls in the synthetic benchmark — prior work in-
stead generated a linear sequence of basic blocks. We demonstrated
that modeling this behavior is necessary to show good correspondence
between the synthetic and original applications across instruction-set
architectures, microarchitectures and compiler optimizations.

We also elaborated on the potential applications of this benchmark
synthesis paradigm: distributing proprietary applications as proxies,
drive architecture and compiler research and development, speed up
simulation, model emerging and hard-to-setup workloads, and bench-
mark consolidation.

6.2 Future work 123

6.2 Future work

If we examine our thoughts,
we shall find them always occupied with the past and the future.
Blaise Pascal

The past is but the past of a beginning.
H. G. Wells

Because both code mutation and high-level language benchmark
synthesis are novel methodologies, there are several research oppor-
tunities that can be investigated in the future. These opportunities lie
mainly in improving the accuracy, efficacy and applicability of both ap-
proaches. In the remaining of this chapter, we detail this possible future
work.

6.2.1 Code mutation

A first interesting area of research could be to further improve the in-
formation hiding aspect of our code mutation methodology. The cur-
rent number of instructions that can be mutated may still be insufficient
to persuade companies to distribute their proprietary applications as
benchmark mutants. To further remove and/or hide the intellectual
property of a proprietary application, we can employ novel and more
aggressive program analyses and transformations. More in particular,
we can make the following suggestions:

e A study by Calder et al. [1997] shows that many variables ex-
hibit semi-invariant behavior. A semi-invariant variable is one
that cannot be identified as a constant at compile time, but has a
high degree of invariant behavior at run time. One potential re-
search direction could be to exploit this semi-invariant program
behavior in order to mutate an even larger fraction of the propri-
etary application. Currently, program slices are trimmed using
invariant program behavior only. An improvement could be to
also use semi-invariant behavior to reduce the size of these slices
even further. This could be achieved by recording the different
values of the semi-invariant variables, and then replay these val-
ues in the mutant at run time. By doing so, more instructions

124 Conclusion

become eligible for code mutation.

e Another research direction could be to deploy existing obfusca-
tion techniques. Although the obfuscation techniques that we
evaluated had a significant impact on the performance behav-
ior of an application, other code transformations may be more
appropriate for code mutation — Collberg et al. [1997] evaluate
a number of obfuscating transformations in terms of how much
overhead they add to the obfuscated application. It may also be
possible to strengthen existing obfuscation techniques: (i) by ex-
ploiting the fact that code transformations are allowed to change
the functional behavior of a program, and (ii) by specializing ob-
fuscation techniques for a particular input.

e Yet another research direction is to study the feasibility of inter-
mingling two or more benchmark mutants together into one sin-
gle mutant. A single mutant would enable us to make reverse
engineering even more difficult, e.g., by introducing artificial de-
pendencies between two or more merged mutants. Furthermore,
a single mutant could represent an entire suite of applications in
one individual package.

e Finally, because input data sets are often proprietary, it might be
interesting to examine if code mutation can be applied to input
data sets as well, i.e.,, by mutating the parts of the input that do
not affect control flow behavior.

Another possible research area is to improve the applicability of our
code mutation methodology. We identify the following key research
directions along this line:

e Extending the code mutation concept to multi-threaded work-
loads as well as applications written in type-safe managed lan-
guages such as Java and C#. We believe that both are possible —
the general concept of code mutation applies to these workloads
as well while posing a number of additional constraints. In par-
ticular, multi-threaded workloads incur an additional constraint
in that accesses to shared memory should be preserved in the
mutated benchmark in order to exhibit similar inter-thread com-
munication in the mutant as in the original application. Hence,
slices will need to be computed for shared-memory accesses, and

6.2 Future work 125

instructions appearing in these slices should not be overwritten
through code mutation. For type-safe managed languages, code
mutation will be restricted by type safety, i.e., an operation can
only be overwritten by another operation if both operate on the
same type.

e Our current framework mutates the proprietary application at the
binary level. An alternative approach would mutate the applica-
tion at an intermediate code level or even at the source code level,
so that the mutant can be compiled and optimized for a particular
ISA of interest.

e It may be possible to combine code mutation with intrinsic check-
points in order to generate mutants that are short running. Intrin-
sic checkpointing [Ringenberg et al., 2005] decreases simulation
time by augmenting binaries to contain checkpointing instruc-
tions that allow for the rapid execution of important portions of
code. The intrinsic checkpointing instructions recreate the archi-
tecture state prior to such a code interval. Hence, instructions
between two code intervals do not need to be simulated.

Finally, yet another interesting research topic is to further quantify
the effectiveness of code mutation, i.e., quantify to what extent code
mutation is able to make reverse engineering — in the form of disas-
sembly followed by decompilation — more difficult to be performed.
One possibility is to map our proposed metrics for quantifying the ef-
fectiveness of code mutation onto a couple of threat models. However,
the difficulty here is that there is always a ‘human factor” involved.

6.2.2 High-level language benchmark synthesis

The initial results of our benchmark synthesis framework are promis-
ing and therefore we believe there are many opportunities for future
work. A first interesting area of research could be to improve the accu-
racy of our methodology. The key challenge is to model (most of) the
program characteristics that impact a program’s performance, but do
this without revealing proprietary information — there is a trade-off
in representativeness versus hiding proprietary information. More in
particular, the following aspects could be modeled more accurately:

e We use a stride-based memory access model that is microarchi-
tecture dependent and does not model memory-level parallelism.

126 Conclusion

Although this model accurately mimics the overall miss rate of
the original application, it may not resemble the performance of
the original application closely. Future work could investigate
more complicated access behavior models. Ganesan et al. [2010]
investigate a stride-based memory access model that incorporates
memory-level parallelism information. An additional challenge
is to model data dependencies following dependence patterns
seen in the original workload. This can be done by capturing the
number of instructions between the production and the consump-
tion of a data value (at the source level).

e If the goal is to generate shorter workloads only, without worry-
ing about intellectual property, we could borrow techniques from
reverse-engineering to enhance our pattern matcher. This may
translate in more accurate synthetic benchmarks.

In order to improve the applicability of our benchmark synthesis
methodology, we present the following research directions:

e An important research direction is to extend our framework to-
wards multithreaded workloads. Hughes and Li [2008] propose
to construct synchronized statistical flow graphs that incorporate
inter-thread synchronization and sharing behavior to capture the
complex characteristics and interactions among multiple threads.
It is worth investigating whether similar techniques can be used
in order to synthesize multithreaded workloads at a high-level
programming language.

e Subsequently, it would be interesting to extend our framework to-
wards more complex workloads, i.e., commercial workloads such
as databases and web servers. Commercial workloads typically
exhibit more I/O behavior, leading to a potential performance
bottleneck. The key challenge here is thus to model these po-
tential performance bottlenecks. Modeling this behavior can be
done using existing application programming interfaces — this is
an advantage of generating synthetic benchmarks at a high level
programming language. This will enable our framework to be
used in the high-end server market segment as well.

A final research topic concerns the determination of an applica-
tion’s optimal reduction factor, i.e., different applications probably re-

6.2 Future work 127

quire different reduction factors to reproduce the behavior in a syn-
thetic benchmark. If the reduction factor is underestimated, we sacri-
fice simulation speed. If the reduction factor is overestimated, simula-
tion results will be inaccurate. One possibility is to tune the reduction
factor so that the major program phases are still preserved in the syn-
thetic benchmark.

128 Conclusion

Bibliography

[Agarwal et al., 2000] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and
D. Burger. Clock rate versus IPC: the end of the road for conven-
tional microarchitectures. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), pages 248-259, 2000.

[Agrawal and Horgan, 1990] H. Agrawal and J. R. Horgan. Dynamic
program slicing. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 246~
256, 1990.

[Aho et al., 2006] A.V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
2006.

[Aiken, 2003] A. Aiken. Moss: A system for detecting software plagia-
rism, http://theory.stanford.edu/~aiken/moss, 2003.

[Auslander et al., 1996]]J. Auslander, M. Philipose, C. Chambers, S. J.
Eggers, and B. N. Bershad. Fast, effective dynamic compilation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 149-159, 1996.

[Austin et al., 2002] T. M. Austin, E. Larson, and D. Ernst. Sim-
pleScalar: An infrastructure for computer system modeling. IEEE
Computer, 35(2):59-67, 2002.

[Bader et al., 2005] D. Bader, Y. Li, T. Li, and V. Sachdeva. Bioperf: A
benchmark suite to evaluate high-performance computer architec-
ture on bioinformatics applications. In Proceedings of the IEEE Inter-
national Symposium on Workload Characterization (IISWC), pages 163—
173, 2005.

130 BIBLIOGRAPHY

[Barr et al., 2005] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic. Accel-
erating multiprocessor simulation with a memory timestamp record.
In Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 6677, 2005.

[Bell et al., 2006] R. H. Bell, R. R. Bhatia, L. K. John, J. Stuecheli, J.
Griswell, P. Tu, L. Capps, A. Blanchard, and R. Thai. Automatic test-
case synthesis and performance model validation for high perfor-
mance PowerPC processors. In Proceedings of the International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages
154-165, 2006.

[Bell and John, 2005] R. H. Bell and L. K. John. Improved automatic
testcase synthesis for performance model validation. In Proceedings
of the International Conference on Supercomputing (ICS), pages 111-120,
2005.

[Black and Shen, 1998] B. Black and]. P. Shen. Calibration of micropro-
cessor performance models. [EEE Computer, 31(5):59-65, 1998.

[Blackburn et al., 2006] S. M. Blackburn, R. Garner, C. Hoffman, A. M.
Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the annual ACM SIG-
PLAN conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA), pages 169-190, 2006.

[Calder et al., 1997] B. Calder, P. Feller, and A. Eustace. Value profil-
ing. In Proceedings of the Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO), pages 259-269, 1997.

[Calder et al., 1999] B. Calder, P. Feller, and A. Eustace. Value profiling
and optimization. Journal of Instruction-Level Parallelism, 1, 1999.

[Cao Minh et al., 2008] C. Cao Minh, J. Chung, C. Kozyrakis, and K.
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), pages 35—46, 2008.

[Chiou et al., 2007] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H.
Reinhart, D. E. Johnson, J. Keefe, and H. Angepat. FPGA-accelerated

BIBLIOGRAPHY 131

simulation technologies (fast): Fast, full-system, cycle-accurate sim-
ulators. In Proceedings of the Annual ACM/IEEE International Sympo-
sium on Microarchitecture (MICRO), pages 249-261, 2007.

[Collberg et al., 1997] C. Collberg, C. Thomborson, and D. Low. A tax-
onomy of obfuscating transformations. Technical Report 148, 1997,
http://www.cs.auckland.ac.nz/~collberg/.

[Conte et al., 1998] T. M. Conte, M. A. Hirsch, and W. mei W. Hwu.
Combining trace sampling with single pass methods for efficient
cache simulation. IEEE Transactions on Computers, 47(6):714-720,
1998.

[Conte et al., 1996] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Re-
ducing state loss for effective trace sampling of superscalar proces-
sors. In Proceedings of the International Conference on Computer Design
(ICCD), pages 468-477, 1996.

[Cooper et al., 1999] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic algorithms. In
Workshop on Languages, Compilers, and Tools for Embedded Systems,
pages 1-9, 1999.

[Curnow and Wichmann, 1976] H. J. Curnow and B. A. Wichmann. A
synthetic benchmark. The Computer Journal, 19(1):43-49, 1976.

[De Bus et al., 2003] B. De Bus, D. Kistner, D. Chanet, L. Van Put, and
B. De Sutter. Post-pass compaction techniques. Communications of
the ACM, 46(8):41-46, 2003.

[Desikan et al., 2001] R. Desikan, D. Burger, and S. W. Keckler. Measur-
ing experimental error in microprocessor simulation. In Proceedings
of the Annual International Symposium on Computer Architecture (ISCA),
pages 266277, 2001.

[Eeckhout et al., 2004] L. Eeckhout, R. H. Bell, B. Stougie, K. De Boss-
chere, and L. K. John. Control flow modeling in statistical simulation
for accurate and efficient processor design studies. In Proceedings of
the Annual International Symposium on Computer Architecture (ISCA),
pages 350-363, 2004.

[Eeckhout et al., 2005] L. Eeckhout, Y. Luo, K. De Bosschere, and L. K.
John. BLRL: Accurate and efficient warmup for sampled processor
simulation. The Computer Journal, 48(4):451-459, 2005.

132 BIBLIOGRAPHY

[Eeckhout et al., 2003] L. Eeckhout, H. Vandierendonck, and K. De
Bosschere. Designing computer architecture research workloads.
IEEE Computer, 36(2):65-71, 2003.

[Ekman and Stenstrom, 2005] M. Ekman and P. Stenstrom. Enhanc-
ing multiprocessor architecture simulation speed using matched-

pair comparison. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pages 89-99, 2005.

[Eyerman et al., 2008] S. Eyerman, L. Eeckhout, and J. E. Smith. Study-
ing compiler optimizations on superscalar processors through inter-
val analysis. In Proceedings of the International Conference on High Per-
formance and Embedded Architectures and Compilers (HiPEAC), volume
4917, pages 114129, 2008.

[Ganesan et al., 2010] K. Ganesan, J. Jo, and L. K. John. Synthe-
sizing memory-level parallelism aware miniature clones for SPEC
CPU2006 and ImplantBench workloads. In Proceedings of the Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 33—44, 2010.

[Ge et al., 2005] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based
obfuscation. In Proceedings of the ACM Workshop on Digital Rights
Management (DRM), pages 83-92, 2005.

[Genbrugge et al., 2006] D. Genbrugge, L. Eeckhout, and K. De Boss-
chere. Accurate memory data flow modeling in statistical simula-

tion. In Proceedings of the International Conference on Supercomputing
(ICS), pages 87-96. ACM, 2006.

[Gupta et al., 2005] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating
faulty code using failure-inducing chops. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 263-272, 2005.

[Guthaus et al., 2001] M. R. Guthaus,]. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In Proceedings of
the Workload Characterization (WWC), pages 3-14, 2001.

[Haskins et al., 2002] Haskins, K. Skadron, A. KleinOsowski, and D. J.
Lilja. Techniques for accurate, accelerated processor simulation:

Analysis of reduced inputs and sampling. Technical report, Char-
lottesville, VA, USA, 2002.

BIBLIOGRAPHY 133

[Haskins and Skadron, 2003] J. W. Haskins and K. Skadron. Memory
reference reuse latency: Accelerated warmup for sampled microar-
chitecture simulation. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 195-203,
2003.

[Haungs et al., 2000] M. Haungs, P. Sallee, and M. K. Farrens. Branch
transition rate: A new metric for improved branch classification
analysis. In Proceedings of the International Symposium on High Per-
formance Computer Architecture (HPCA), pages 241-250, 2000.

[Hennessy and Patterson, 2003] J. Hennessy and D. Patterson. Com-
puter Architecture - A Quantitative Approach. Morgan Kaufmann Pub-
lishers, third edition, 2003.

[Henning, 2000] J. L. Henning. SPEC CPU2000: Measuring CPU per-
formance in the new millennium. IEEE Computer, 2000.

[Henning, 2006] J. L. Henning. SPEC CPU2006 benchmark descrip-
tions. SIGARCH Computer Architecture News, 34(4):1-17, 2006.

[Hill and Smith, 1989] M. D. Hill and A. J. Smith. Evaluating associa-
tivity in CPU caches. IEEE Transactions on Computers, 38(12):1612—
1630, 1989.

[Hughes and Li, 2008] C. Hughes and T. Li. Accelerating multi-core
processor design space evaluation using automatic multi-threaded
workload synthesis. In Proceedings of the IEEE International Sympo-
sium on Workload Characterization (IISWC), pages 163-172, 2008.

[lyengar et al., 1996] V.S. Iyengar, L. Trevillyan, and P. Bose. Represen-
tative traces for processor models with infinite cache. In Proceedings
of the International Symposium on High Performance Computer Architec-
ture (HPCA), pages 62-72, 1996.

[Joshi et al., 2006a] A.Joshi, A. Phansalkar, L. Eeckhout, and L. K. John.
Measuring benchmark similarity using inherent program character-
istics. IEEE Transactions on Computers, 55(6):769-782, 2006.

[Joshi et al., 2006b] A. M. Joshi, L. Eeckhout, R. H. Bell, and L. K. John.
Performance cloning: A technique for disseminating proprietary ap-
plications as benchmarks. In Proceedings of the IEEE International Sym-
posium on Workload Characterization (IISWC), pages 105-115, 2006.

134 BIBLIOGRAPHY

[Joshi et al., 2008a] A. M. Joshi, L. Eeckhout, R. H. Bell., and L. K.
John. Distilling the essence of proprietary workloads into miniature
benchmarks. ACM Transactions on Architecture and Code Optimization
(TACO), 5(2), 2008.

[Joshi et al., 2007] A. M. Joshi, L. Eeckhout, and L. K. John. Exploring
the application behavior space using parameterized synthetic bench-
marks. In Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), page 412, 2007.

[Joshi et al., 2008b] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen.
Automated microprocessor stressmark generation. In Proceedings of
the International Symposium on High Performance Computer Architecture
(HPCA), pages 229-239, 2008.

[Karkhanis and Smith, 2004] T. Karkhanis and J. E. Smith. A first-order
superscalar processor model. In Proceedings of the Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 338-349,
2004.

[KleinOsowski and Lilja, 2002] A. J. KleinOsowski and D. J. Lilja.
MinneSPEC: A new SPEC benchmark workload for simulation-

based computer architecture research. Computer Architecture Letters,
1,2002.

[Kulkarni et al., 2004] P. Kulkarni, S. Hines, J. Hiser, D. B. Whalley, J. W.
Davidson, and D. L. Jones. Fast searches for effective optimization
phase sequences. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 171-
182, 2004.

[Laha et al., 1988] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-
cost methods for performance evaluation of cache memory systems.
IEEE Transactions on Computers, 37(11):1325-1336, 1988.

[Lee etal., 1997] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing multimedia and
communicatons systems. In Proceedings of the Annual ACM/IEEE In-
ternational Symposium on Microarchitecture (MICRO), pages 330-335,
1997.

[Lipasti and Shen, 1996] M. H. Lipasti and]. P. Shen. Exceeding the
dataflow limit via value prediction. In Proceedings of the Annual

BIBLIOGRAPHY 135

ACMY/IEEE International Symposium on Microarchitecture (MICRO),
pages 226237, 1996.

[Lipasti et al., 1996] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value
locality and load value prediction. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 138-147, 1996.

[Luk et al., 2005] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. PIN: building
customized program analysis tools with dynamic instrumentation.
In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 190-200, 2005.

[Luo etal., 2005] Y. Luo, L. K. John, and L. Eeckhout. Sma: A self-
monitored adaptive cache warm-up scheme for microprocessor sim-
ulation. International Journal of Parallel Programming, 33(5):561-581,
2005.

[Malpohl, 1996] G. Malpohl. JPlag: Detecting software plagiarism,
https://www.ipd.uni-karlsruhe.de/Jjplag, 1996.

[Martin et al., 2005] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset. SIGARCH Computer Architecture News, 33(4):92—
99, 2005.

[Maynard et al., 1994] A. M. G. Maynard, C. M. Donnelly, and B. R.
Olszewski. Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 145-156, 1994.

[McMahon, 1986] F. H. McMahon. Livermore FORTRAN kernels: A
computer test of the numerical performance range. Technical report,

Lawrence Livermore National Laboratories, Livermore, California,
1986.

[Moore, 1998] G. Moore. Cramming more components onto integrated
circuits. Proceedings of the IEEE, 86(1):82-85, 1998.

136 BIBLIOGRAPHY

[Mukherjee et al., 2002] S. S. Mukherjee, S. V. Adve, T. Austin, J. Emer,
and P. S. Magnusson. Performance simulation tools. IEEE Computer,
35:38-39, 2002.

[Narayanasamy et al., 2006] S. Narayanasamy, C. Pereira, H. Patil, R.
Cohn, and B. Calder. Automatic logging of operating system effects
to guide application-level architecture simulation. In Proceedings of
the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pages 216-227, 2006.

[Noonburg and Shen, 1997] D. B. Noonburg and J. P. Shen. A frame-
work for statistical modeling of superscalar processor performance.
In Proceedings of the International Symposium on High Performance Com-
puter Architecture (HPCA), pages 298-309, 1997.

[Nussbaum and Smith, 2001] S. Nussbaum and J. E. Smith. Modeling
superscalar processors via statistical simulation. In Proceedings of the
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 15-24, 2001.

[Olukotun et al., 1996] K. Olukotun, B. A. Nayfeh, L. Hammond, K. G.
Wilson, and K. Chang. The case for a single-chip multiprocessor. In
The International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 2-11, 1996.

[Oskin et al., 2000] M. Oskin, F. T. Chong, and M. K. Farrens. HLS:
combining statistical and symbolic simulation to guide microproces-
sor design. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), pages 71-82, 2000.

[Perelman et al., 2007] E. Perelman, J. Lau, H. Patil, A. Jaleel, G.
Hamerly, and B. Calder. Cross binary simulation points. In Proceed-
ings of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 179-189, 2007.

[Phansalkar et al., 2004] A. Phansalkar, A. Joshi, L. Eeckhout, and L.
John. Four generations of SPEC CPU benchmarks: what has changed
and what has not. Technical report, ECE, The University of Texas at
Austin, 2004.

[Phansalkar et al., 2007] A. Phansalkar, A. Joshi, and L. K. John. Anal-
ysis of redundancy and application balance in the SPEC CPU2006
benchmark suite. In Proceedings of the Annual International Symposium
on Computer Architecture (ISCA), pages 412—-423, 2007.

BIBLIOGRAPHY 137

[P6ss and Floyd, 2000] M. Poss and C. Floyd. New TPC benchmarks
for decision support and web commerce. SIGMOD Record, 29(4):64—
71, 2000.

[Ringenberg et al., 2005] J. Ringenberg, C. Pelosi, D. W. Oehmke, and
T.N. Mudge. Intrinsic checkpointing: A methodology for decreasing
simulation time through binary modification. In Proceedings of the In-
ternational Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 78-88, 2005.

[Shao et al., 2005] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench:
fast and accurate database workload representation on modern mi-
croarchitecture. In Proceedings of the 2005 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), pages 254-267,
2005.

[Sherwood et al., 2002] T. Sherwood, E. Perelman, G. Hamerly, and B.
Calder. Automatically characterizing large scale program behavior.
In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
45-57,2002.

[Skadron et al., 2003] K. Skadron, M. Martonosi, D. I. August, M. D.
Hill, D. J. Lilja, and V. S. Pai. Challenges in computer architecture
evaluation. IEEE Computer, 36(8):30-36, 2003.

[Smith and Sohi, 1995] J. E. Smith and G. S. Sohi. The microarchitecture
of superscalar processors. Proceedings of the IEEE, 83:1609-1624, 1995.

[Sreenivasan and Kleinman, 1974] K. Sreenivasan and A. J. Kleinman.
On the construction of a representative synthetic workload. Commu-
nications of the ACM, 17(3):127-133, 1974.

[Srivastava and Eustace, 1994] A. Srivastava and A. Eustace. ATOM -
a system for building customized program analysis tools. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 196-205, 1994.

[Tip, 1995] E. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121-189, 1995.

[Van Biesbrouck et al., 2005] M. Van Biesbrouck, L. Eeckhout, and B.
Calder. Efficient sampling startup for sampled processor simulation.

138 BIBLIOGRAPHY

In Proceedings of the International Conference on High Performance and
Embedded Architectures and Compilers (HIPEAC), pages 47-67, 2005.

[Van Ertvelde and Eeckhout, 2008] L. Van Ertvelde and L. Eeckhout.
Dispersing proprietary applications as benchmarks through code
mutation. In The International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 201—
210, 2008.

[Van Ertvelde and Eeckhout, 2010a] L. Van Ertvelde and L. Eeckhout.
Benchmark synthesis for architecture and compiler exploration. In
Proceedings of the IEEE International Symposium on Workload Character-
ization (IISWC), pages 106-116, 2010.

[Van Ertvelde and Eeckhout, 2010b] L. Van Ertvelde and L. Eeckhout.
Workload reduction and generation techniques. IEEE Micro, 30(6),
Nov/Dec 2010.

[Van Ertvelde et al., 2008] L. Van Ertvelde, F. Hellebaut, and L. Eeck-
hout. Accurate and efficient cache warmup for sampled processor
simulation through NSL-BLRL. The Computer Journal, 51(2):192-206,
2008.

[Van Ertvelde et al., 2006] L. Van Ertvelde, F. Hellebaut, L. Eeckhout,
and K. De Bosschere. NSL-BLRL: Efficient cache warmup for sam-

pled processor simulation. In Proceedings of the Annual Simulation
Symposium (ANSS), pages 168-177, 2006.

[Verplaetse et al., 2000] P. Verplaetse, J. Van Campenhout, and D.
Stroobandt. On synthetic benchmark generation methods. In Pro-
ceedings of the International Symposium on Circuits and Systems (IS-
CAS), pages 213-216, 2000.

[Weicker, 1984] R. Weicker. Dhrystone: A synthetic systems program-
ming benchmark. Communications of the ACM, 27(10):1013-1030,
1984.

[Weiser, 1981] M. Weiser. Program slicing. Proceedings of the 5th Interna-
tional Conference on Software Engineering (ICSE), pages 439-449, 1981.

[Weiser, 1982] M. Weiser. Programmers use slices when debugging.
Communications of the ACM, 25(7):446—452, 1982.

BIBLIOGRAPHY 139

[Wenisch et al., 2006a] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and
J. C. Hoe. Simulation sampling with live-points. In Proceedings of the
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 2-12, 2006.

[Wenisch et al., 2006b] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A.
Ailamaki, B. Falsafi, and J. C. Hoe. Simflex: Statistical sampling of
computer system simulation. I[EEE Micro, 26(4):18-31, 2006.

[Williams, 1977] J. N. Williams. The construction and use of a general
purpose synthetic program for an interactive benchmark on demand
paged systems. In Communications of the ACM, pages 459465, 1977.

[Wong and Morris, 1988] W. S. Wong and R. J. T. Morris. Benchmark
synthesis using the LRU cache hit function. IEEE Transactions on
Computers, 37(6):637-645, 1988.

[Wunderlich et al., 2003] R. E. Wunderlich, T. F. Wenisch, B. Falsafi,
and J. C. Hoe. SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In Proceedings of the Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 84-95, 2003.

[Yietal, 2005] J.J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M.
Hawkins. Characterizing and comparing prevailing simulation tech-
niques. In Proceedings of the International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 266-277, 2005.

[Yietal., 2006] J.J.Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja.
The exigency of benchmark and compiler drift: Designing tomor-
rows processors with yesterdays tools. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS), pages 75-86, 2006.

[Yourst, 2007] M. T. Yourst. PTLsim: A cycle accurate full system x86-
64 microarchitectural simulator. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 23-34, 2007.

[Zhang et al., 2005] X. Zhang, R. Gupta, and Y. Zhang. Cost and preci-
sion tradeoffs of dynamic data slicing algorithms. ACM Transactions
on Programming Language Systems (TOPLAS), 27(4):631-661, 2005.

[Zilles and Sohi, 2000] C. B. Zilles and G. S. Sohi. Understanding the
backward slices of performance degrading instructions. In Proceed-

140 BIBLIOGRAPHY

ings of the Annual International Symposium on Computer Architecture
(ISCA), pages 172-181, 2000.

	titelpg_recto_verso_Van_Ertvelde
	franse_pg_recto_Van_Ertvelde.pdf
	franse_pg_verso_Van_Ertvelde.pdf

	drs_lvertvel
	white

