
Relative Roles of Instruction Count and Cycles Per
Instruction in WCET Estimation

Archana Ravindar Y. N. Srikant
Department of Computer Science and

Automation
Indian Institute of Science

Bangalore-12, India
{archana,srikant}@csa.iisc.ernet.in

ABSTRACT
Most of the existing WCET estimation methods directly es-
timate execution time, ET, in cycles. We propose to study
ET as a product of two factors, ET = IC * CPI, where IC
is instruction count and CPI is cycles per instruction. Con-
sidering directly the estimation of ET may lead to a highly
pessimistic estimate since implicitly these methods may be
using worst case IC and worst case CPI. We hypothesize
that there exists a functional relationship between CPI and
IC such that CPI=f(IC). This is ascertained by comput-
ing the covariance matrix and studying the scatter plots of
CPI versus IC. IC and CPI values are obtained by running
benchmarks with a large number of inputs using the cycle
accurate architectural simulator, Simplescalar on two differ-
ent architectures. It is shown that the benchmarks can be
grouped into different classes based on the CPI versus IC re-
lationship. For some benchmarks like FFT, FIR etc., both
IC and CPI are almost a constant irrespective of the input.
There are other benchmarks that exhibit a direct or an in-
verse relationship between CPI and IC. In such a case, one
can predict CPI for a given IC as CPI=f(IC). We derive the
theoretical worst case IC for a program, denoted as SWIC,
using integer linear programming(ILP) and estimate WCET
as SWIC*f(SWIC). However, if CPI decreases sharply with
IC then measured maximum cycles is observed to be a bet-
ter estimate. For certain other benchmarks, it is observed
that the CPI versus IC relationship is either random or CPI
remains constant with varying IC. In such cases, WCET is
estimated as the product of SWIC and measured maximum
CPI. It is observed that use of the proposed method results
in tighter WCET estimates than Chronos, a static WCET
analyzer, for most benchmarks for the two architectures con-
sidered in this paper.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

General Terms
Experimentation, Measurement, Performance

Keywords
CPI, WCET analysis, benchmarking, covariance matrix, scat-
ter plot, soft real-time systems

1. INTRODUCTION
The goal of worst case execution time (WCET) analysis

is to estimate the longest execution time of a program on a
given architecture. WCET analysis is valuable in real-time
system design where programs are expected to meet strin-
gent performance goals. It is also valuable in systems using
dynamic task scheduling. The input which causes a program
to execute for the longest amount of time is termed as worst
case input. As WCET depends on both program structure
and effect of the underlying architecture along various paths,
deriving the worst case input is not easy.

Ideally, the estimated WCET is expected to be both safe
and tight. Safe estimates are always greater than or equal to
actual WCET and are critical to hard real time systems. A
tight estimate is typically within a few percent of WCET and
ensures effective resource management. Tight estimates that
are rarely unsafe, are suited for soft real-time systems that
can miss deadlines occasionally without causing significant
change in system behavior.

The survey in [11] summarizes WCET analysis techniques
in use today. A static WCET analyzer typically divides
a program into basic blocks and estimates execution time
of each basic block by modeling the architecture statically.
Techniques like integer linear programming are employed to
compute the worst case path in a program[11]. The static
WCET is given by a weighted sum of the execution time of
basic blocks along the worst case path. Although the esti-
mate given by a static WCET analyzer is safe, it tends to be
pessimistic due to conservative assumptions about program
behavior. Moreover it is difficult to model all architectural
features statically.

A measurement-based WCET analyzer measures execu-
tion time of smaller components like basic blocks[6, 9] or
segments[8] by running the program with a large set of test
inputs directly on the target architecture. These execution
times are typically combined in a manner similar to static
WCET analyzers to provide an estimate of WCET. Mea-
surement based WCET analyzers rely on the availability of
a comprehensive test input set ensuring adequate coverage.

55

The worst case input is often unknown thereby making it
difficult to make any definitive statement on the safety or
tightness of the estimate. Even if test inputs assure 95%
path coverage, the worst case input could lie in the remain-
ing 5%.

Many a times, the actual WCET may occur only very
rarely and it is advantageous to look at WCET associated
with probability of occurrence[6]. For this purpose, prob-
abilistic methods are applied on measured execution times
obtained using various test inputs. The method can be para-
metric or non-parametric. In a non-parametric method[10],
the probability distribution of execution times of a pro-
gram with various inputs is drawn in the form of a his-
togram. Rather than estimating just a single WCET value,
the method allows one to estimate WCET at each percentile
of probability. However the underlying assumption again is
adequate coverage.

In a parametric method, a probabilistic model is fitted
on the cumulative distribution function[7] of the measured
execution times. The model curve is extrapolated to the
point determined by the desired probability of an execution
time ever exceeding a particular WCET value. However, if
the tail of the distribution is very long, this might lead to a
pessimistic estimate. Also, the accuracy of the parameters
of the fitted model need to be validated.

2. PROPOSED STRATEGY
1. A common approach in static and measurement-based

WCET analyzers is to divide a program into basic blocks.
The worst case execution time of a basic block is computed
as a product of the maximum frequency of the basic block
and estimated execution time of a single instance of the basic
block on the target architecture. A sum of such products for
all the blocks gives the estimated WCET.

2. In contrast to point 1 above, the proposed method
views an entire program as a single basic block. We will re-
vert to the issue of dividing the program into blocks later.
We measure program execution time, ET, and instruction
count (IC) for various test inputs using the cycle accurate
simulator, Simplescalar. All the architectural buffers are as-
sumed to be empty before running the programs. The cycles
per instruction(CPI) of the program for each test input is
computed as a ratio of program execution time (ET) in cy-
cles to the number of instructions executed(IC) since,

ET = IC ∗ CPI (1)

3. From equation (1), estimated WCET is equal to,

̂WCET = Worst(IC) ∗ Worst(CPI) (2)

But this estimate can be too pessimistic since both factors
correspond to the worst case. This paper describes our ef-
forts to improvise on this estimate.

4. We derive program worst case instruction count,
SWIC, statically, by modifying the integer linear program
formulation, used to derive WCET in static WCET ana-
lyzers. SWIC is a theoretical upper bound on IC and de-
pends only on program structure and instruction set archi-
tecture. Hence it can be derived for any target with ease.
The method used to obtain SWIC is described in the ap-
pendix.

5. Validation of a measurement-based WCET analyzer
is an intractable problem. If the worst case input, WI, is

known, estimating WCET is trivial since the program can
be run with WI and execution time can be measured di-
rectly. When WI is unknown, there remains always an un-
certainty regarding estimated WCET. Unless complete path
and state coverage is achieved, no guarantee can be made
regarding either safety or tightness of estimated WCET[11].
Hence it becomes essential to take a pragmatic approach
and make certain reasonable assumptions in order to evalu-
ate measurement-based WCET analyzers.

6. Assume for a program, that there exists a relation be-
tween CPI and IC for various inputs, given by an equation
of the form, CPI = f(IC). Note that such a functional rela-
tionship is derived based on direct measurements and hence
reliable. This implies that the CPI can be predicted for any
given IC. If there are multiple CPI points for a given IC,
we consider the maximum CPI to determine the functional
relation.

7. Hence, estimated execution time,

dET = IC ∗ f(IC) (3)

Since we are interested in determining Max dET , assuming
f(IC) to be continuous and differentiable, this occurs at IC
= ICmax obtained by solving the equation,

d(dET)

d(IC)
= 0 (4)

thereby setting, d(IC∗f(IC))
d(IC)

=0, we get,

Max dET = ICmax ∗ f(ICmax) (5)

The value of ICmax very much depends upon the functional
relationship f(IC).

8. Since SWIC is a theoretical upper bound on IC, we
consider SWIC as a candidate for ICmax. Hence estimated
execution time based on SWIC is computed as,

dET = SWIC ∗ f(SWIC) (6)

9. However there may be a function f(IC) such that Max
dET computed by (5) is greater than that computed by (6)

in which case Max dET can be taken as ̂WCET . If ICmax

corresponds to one of the measured points then this estimate
coincides with measured maximum cycles, M.

10. If there is no functional relationship between IC and

CPI then ̂WCET is the maximum of
a) SWIC * Maximum of measured CPI and
b) Measured maximum cycles, M

Now we will demonstrate experimentally that a functional
relationship exists between IC and CPI for many of the
benchmarks considered in this paper.

3. CPI VERSUS IC RELATION
In this section we investigate the relationship between

CPI and IC on two target architectures for each benchmark
shown in Table 1. Work on other architectures and bench-
marks are in progress. The test inputs are derived based on
coverage of statements, decisions, conditions and modified
conditions-decisions [5].

In addition to inputs satisfying coverage, we include in-
puts that make the program execute maximum number of

56

Benchmark Description Number of Inputs
bez [4] (Bezier): Draw a set of 200 lines of 4 reference points on a 800 X 600 image 500 different inputs
bitc[2] (Bitcount): Performs bit operations on an array of 1K numbers having various distributions 500 arrays
bs[3] (Binary search): Search for a key in an array of 10K numbers using binary search 20K (key, array) pairs
bub[3] (Bubble sort): Sort an array of size 3K 500 arrays
crc[3] (CRC): Cyclic redundancy check on a char array of 16KB 500 arrays
cnt[3] (Cnt): Counts positive numbers in a 200 X 200 matrix 500 matrices
dij [2] (Dijkstra): Finds 100 shortest paths in a graph of 200 vertices using Dijkstra’s algorithm 500 graphs
edn[3] (Edn): Implements jpegdct algorithm together with other signal processing algorithms 500 arrays
fir [3] (FIR): Finite impulse response filter algorithms over a 400items long sample 500 real-life audio samples
fft[2] (FFT): Fast fourier transform on a wave of size 16K 500 real-life wave samples
ins[3] (Insertion sort): Sort an array of size 3K 500 arrays
jan[3] (Janne complex): contains a nested loop whose inner loop max iterations depend on outer loop 500 pairs of a, b
lms[3] (LMS) adaptive signal enhancement: The input signal is an array of 1000 coefficients 500 real-life samples
lud[3] (LUD): LU Decomposition algorithm on a 200 X 200 matrix 500 matrices
minv [3] (Minver): Matrix inversion on a 200 X 200 matrix 500 matrices
mat[3] (Matmul): Matrix multiplication of two 200 X 200 matrices 500 matrices
ndes[3] (NDES): Linear Search in a (29 X 29 X 29) array 500 arrays
nsch[3] (Nsch): Simulate an extended petrinet dummyi = 32, 500

initial states
qsort[3] (Quick sort): sort a 3K array 500 arrays

Architecture Description

A
Issue, decode and commit width=1, RUU size=8, I-cache 1 KB L1 direct mapped
2 level branch predictor, Fetch Queue size=4, No D-cache

B
In-order issue, Issue, decode & commit width=1, RUU size=8, I-cache 8KB L1
direct mapped, D-cache 8KB L1 2-way set associative, Unified 64KB 8-way associative L2 cache
2 level branch predictor, Fetch Queue size=4

Table 1: Inputs tested for each benchmark and target architectures on which they are tested.

instructions whenever possible. For Ex: bub(Bubble sort)
executes maximum instructions when the input array is re-
verse sorted. Executing the programs with test inputs gen-
erate IC and CPI vectors that consist of observed instruction
counts, observed average CPI for each test input. The CPI
of a program is influenced mainly by the target architec-
ture on which it runs. When a program begins to execute,
it takes time for architectural buffers to be filled with pro-
gram related data, until then program CPI is comparatively
high. This is referred to as warmup CPI. The measurements
reported in this paper include the effect of warmup.

3.1 Covariance Matrix
The instruction count values are orders of magnitude greater

than corresponding CPI values. Hence we normalize both IC
and CPI vectors with respect to their respective measured
maximum values before computing the covariance matrix.
σ11, σ22 denote the covariance in IC and CPI respectively.
σ12(σ21) denotes the cross covariance between IC and CPI
values. The elements of the covariance matrix of the bench-
marks for both architectures are as shown in Table 2. Since
the instruction set architecture is common for A and B, there
is only one column for σ11. While comparing the values for
different benchmarks, the number of inputs used must be
noted.

3.2 Scatter Plots
Scatter plots of CPI against IC are drawn. Some typical

patterns are shown in Figures 1-6. The input (IC,CPI) that
caused the program to run for the maximum number of cy-
cles, M, is denoted by the symbol ’�’ in the scatter plot.
A vertical dashed line is drawn at IC=SWIC. A horizontal
dashed line is drawn at CPI used to estimate WCET by the
proposed method and is denoted by f(SWIC) in the scatter
plot. The point (SWIC, f(SWIC)) is denoted by a ’�’. The
product of SWIC and f(SWIC) is the WCET estimated by

the proposed method, ̂WCET , unless otherwise specified.
̂WCET is compared with the estimate made by the static

Benchmark σ11 σ22 σ12(σ21)
A B A B

Negligible variance in IC and CPI
crc 0.0000 0.0005 0.0000 0.0000 0.0000
edn 0.0000 0.0087 0.0002 0.0000 0.0000
fft 0.0000 0.0000 0.0000 0.0000 0.0000
fir 0.0000 0.0007 0.0000 0.0000 0.0000
jan 0.0000 0.0002 0.0001 0.0000 0.0000
lms 0.0000 0.0001 0.0000 0.0000 0.0000
mat 0.0000 0.0000 0.0000 0.0000 0.0000
ndes 0.0000 0.0041 0.0000 0.0000 0.0000

Negative correlation
bez 0.0005 0.0012 -0.0008
bitc 1.3144 0.0388 0.0769 -0.2059 -0.2992
bub 6.22 0.3252 1.3191 -1.0191 -2.0332
bs 0.1808 2.0984 0.1229 -0.6088 -0.123
cnt 0.0117 0.0035 0.0048 -0.006 -0.0073
ins 7.194 0.6061 -1.12
minv 1.9851 0.0947 -0.4261
nsch 20.144 3.9855 -7.8

Positive correlation
lud 11.49 0.8259 0.2332 2.6828 1.0353
bez 0.0005 0.0009 0.0002
nsch 20.144 7.1128 11.4716

Constant CPI with varying IC
ins 7.194 0.0277 0.2516
minv 1.9851 0.0022 -0.0613

Random correlation
dij 3.559 0.0172 0.0640 -0.1305 -0.3289
qsort 0.0463 0.1101 0.017 0.0074 -0.0024

Table 2: Elements of Covariance Matrix for archi-
tectures A and B. Grouping is based on values of
covariance matrix and scatter plots.

WCET analyzer Chronos[1] denoted by Chronos Est and
the results are shown in Table 3. The inherent CPI used
by Chronos, computed as Cycles estimated by Chronos

SWIC
is indi-

cated by a horizontal dashed line at CPI=CPIchronos. The
estimated WCET is validated by comparing it with mea-
sured maximum cycles, M. Due to the non-availability of
measurement based WCET analyzers in the public domain,
comparisons with other measurement based WCET analysis
methods are not presented.

57

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

x 10
8

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

C
P

I

IC

mat

CPI
chronos

=1.38

f(SWIC)=1.303

IC=SWIC

Figure 1: Scatter plot for mat for Architecture A.

1.2 1.3 1.4 1.5 1.6 1.7

x 10
8

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

C
P

I

IC

minv

f(SWIC)=4.43

Chronos: out of memory IC=SWIC

Figure 2: Scatter plot for minv for Architecture B.

3.3 Benchmark Classification and WCET Es-
timation

From the covariance matrix and scatter plots it is noted
that there are four groups of benchmarks that exhibit a def-
inite relationship between IC and CPI and one group in
which there exists no predictable correlation between IC and
CPI. In the following discussion, a (benchmark, architec-
ture) combination is denoted by name(arch).

(i) Negligible Variance and Cross Correlation
Benchmarks crc, edn, fir, fft, jan, lms, mat and ndes show
very little variance in both IC and CPI irrespective of input
for both architectures. The scatter plot of mat(A) is shown
in Figure 1. Although 500 test inputs are considered, only
one point is seen in the scatter plot as all measurements of
(CPI,IC) coincide. There is only one CPI that corresponds
to maximum measured cycles M, in the scatter plot which
is considered as f(SWIC).

For mat(A), note that CPIchronos is higher than f(SWIC)
as seen in Figure 1. It can be observed from Table 3 that
Chronos overestimates WCET for all benchmarks in this
class, especially edn(A and B), fir(A and B), lms(A and
B) and mat(B). For ndes(B), Chronos goes out of memory
while statically analyzing the program.

(ii) Negative Cross Correlation
Benchmarks bitc, bub, bs, cnt and minv show an inverse rela-
tionship between IC and CPI for both architectures. bez(B),
ins(B) and nsch(A) show an inverse relationship between IC
and CPI. Figure 2 shows the scatter plot for minv(B). Al-
though 500 test inputs are considered, a large number of

0 2 4 6 8 10 12 14 16 18

x 10
7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
lud

C
P

I

IC

CPI
chronos

=2.29

f(SWIC)=1.7859

IC=SWIC

Figure 3: Scatter plot for lud for Architecture A.

0.5 1 1.5 2 2.5

x 10
5

4

4.5

5

5.5

6

C
P

I

IC

nsch

f(SWIC)=6.13

Chronos: Out of memory

IC=SWIC

Figure 4: Scatter plot for nsch for Architecture B.

measurements overlap resulting in fewer points on the scat-
ter plot. An almost linear trend with negative correlation
is seen. In this paper, optimum curve fitting has not been
done. Instead we assume that if SWIC lies close to (IC,CPI)
corresponding to measured maximum cycles, M, we use the
CPI corresponding to M as f(SWIC). If that is not the case,
we assume piece-wise linear fit and extrapolate the curve up
to SWIC to find f(SWIC). In case of minv, SWIC lies very
close to point corresponding to M on the scatter plot. Hence
we use the CPI corresponding to M as f(SWIC).

Referring to Table 3, Chronos gives a more pessimistic
WCET for bub(B), cnt(B), minv(A). For minv(B), Chronos
goes out of memory. It is important to note that if the
decrease of CPI with IC is very steep then SWIC*f(SWIC)
may be lower than M (as already mentioned in Sec. 2, point
9). This happens for bs(B). In such a case, M is taken as
WCET. This is a classic example of a case where worst case
input is different from the input that causes the worst case
path.

(iii) Positive Cross Correlation
Benchmark lud exhibits a direct relationship between IC
and CPI on both architectures. Benchmarks bez(A) and
ins(A) exhibit a direct relationship between IC and CPI.
The scatter plot for lud(A) is shown in Figure 3. The CPI
appears to be saturating as IC increases. This shows that the
relationship between IC and CPI need not always be linear.
By choosing the saturated CPI as f(SWIC), we observe that
the proposed method gives a more tighter WCET estimate
compared to Chronos.

58

3 4 5 6 7 8 9 10 11 12

x 10
7

1.2

1.3

1.4

1.5

1.6

1.7

C
P

I

IC

insertion sort

f(SWIC)=1.5

CPI
chronos

=1.5

IC=SWIC

Figure 5: Scatter plot for ins for Architecture A.

Figure 6: Scatter plot for qsort for Architecture A.

Benchmark nsch(B) shows a direct relationship between
IC and CPI (Figure 4). The slope of the curve happens to
be very steep. SWIC is much greater than IC corresponding
to M. Ideally, we need more measurements to fill up this
gap. But if SWIC is an overestimate then no matter how
many measurements we make, the gap may not get filled at
all. In the absence of a better alternative, we use the max-
imum observed CPI as f(SWIC) in this case. Given that
our assumption of using maximum observed CPI is reason-
able, Chronos gives a more pessimistic estimate for bez(B),
ins(B) and nsch(A) and goes out of memory while analyzing
nsch(B).

(iv) Constant CPI with varying IC
Benchmarks ins(A) and minv(A) exhibit an almost constant
CPI with varying IC. The scatter plot of ins(A) is shown
in Figure 5. The constant CPI is chosen to be f(SWIC).
Interestingly CPIchronos also corresponds to f(SWIC) in this
case.

(v) Random Cross Correlation
For both architectures, the scatter plot for benchmarks dij
and qsort appear as a random distributed cluster of points
to which no functional relationship can be ascribed. Fig-
ure 6 shows the scatter plot for qsort(A). There are multiple
values of CPI for nearly the same IC. Since we are inter-
ested in WCET, we consider only the maximum CPI for
each IC. However the covariance matrix elements have been
computed retaining all measurements. Considering only the
top most points, the distribution now appears to exhibit a
parabolic relationship between CPI and IC. We choose the

Benchmark
̂WCET

Chronos Est

̂W CET
M Class

A B A B
crc 0.96 OOM 1.04 1.04
edn 0.74 0.79 1.0 1.02
fft 0.97 OOM 1.0 1.01
fir 0.73 0.86 1.06 1.05
jan 0.99 0.99 1.0 1.0 (i)
lms 0.79 0.505 1.0 1.0
mat 0.94 0.13 1.0 1.00
ndes 0.83 OOM 1.0 1.01
bitc 0.93 0.99 1.02 1.02
bub 0.82 0.35 1.01 1.0
bs 1.0 0.97 1.0 1.01 (ii)
cnt 0.87 0.15 1.0 1.00
minv 0.78 OOM 1.0 1.00 (iv) for arch A,

(ii) for arch B
lud 0.77 1.06 5.78 5.7 (iii)
bez 1.0 0.69 1.0 1.0 (iii) for arch A,

(ii) for arch B
ins 1.0 0.33 3.6 3.56 (iv) for arch A,

(ii) for arch B
nsch 0.75 OOM 3.29 5.0 (ii) for arch A,

(iii) for arch B
dij 0.99 OOM 1.14 6.75 (v)
qsort 0.32 0.2 5.5 5.9

Table 3: Comparison of proposed method with
Chronos regarding tightness of WCET.

peak point in this case, which is the maximum observed CPI
as f(SWIC). Referring to Table 3, Chronos gives a more pes-
simistic estimate for qsort on both architectures compared
to the proposed method.

For lud, nsch and qsort, the proposed method gives a much
higher estimate compared to M. It needs to be investigated
if this is indeed the case or could this arise because of over-
estimation of SWIC. On an average, the proposed method
yields a WCET estimate that is 0.85 times the correspond-
ing Chronos estimate for architecture A and 0.6 times the
corresponding Chronos estimate for architecture B.

4. RELATED WORK
There has been prior research in the study of factors in-

fluencing WCET. Colin et al[4] ascertain the influence of
cache, branch predictor, pipeline etc on overall estimated
WCET. Among various architectural components it identi-
fies the data and instruction caches and their properties like
size, organization etc to be having the highest influence on
WCET. In this work however, we investigate the relation-
ship between IC and CPI of a program and how it influences
WCET estimation.

Bünte et al[12] describe the desirable features of a WCET
benchmarking suite tool-set in the context of measurement
based analysis. These features are at the program struc-
ture level. Our work tries to characterize the benchmarks
in terms of variability in IC and CPI and how they corre-
late to each other. Benchmarks that exhibit more variability
in IC and CPI across different inputs are more interesting
and challenging for a WCET analyzer than benchmarks that
display constant behavior in IC and CPI across inputs.

5. CONCLUSIONS AND FUTURE WORK
We begin by considering execution time, ET as a product

of IC and CPI so that WCET is estimated by a product
of Worst case(IC) and Worst case(CPI). Existing methods
may be implicitly using worst case values for both IC and

59

CPI thus resulting in a highly pessimistic estimate. The
paper describes a way to improvise the tightness of the es-
timate. The theoretical upper bound on the program in-
struction count, SWIC, is obtained by appropriately mod-
ifying the integer linear programming framework used by
static WCET analyzers. Measurements of IC and CPI of
a program for a large number of inputs indicate that there
indeed exists a functional relationship between CPI and IC
for many of the benchmarks. In lieu of such a relation-
ship, CPI can be predicted for a given IC. The proposed
method estimates WCET as a product of SWIC*f(SWIC)
to avoid pessimism in both factors IC and CPI. In bench-
marks where CPI decreases sharply with an increase in IC,
measured maximum cycles is taken to be the WCET.

The proposed method is observed to give a WCET that is
0.85 times the corresponding Chronos estimate for an archi-
tecture with only an instruction cache. For an architecture
with both instruction and data cache, the proposed method
gives a WCET that is 0.6 times the corresponding Chronos
estimate. Apart from helping in WCET estimation, the CPI
versus IC relationship also helps in grouping benchmarks
into well defined classes such that one from each class may
be studied in detail.

This study opens up large number of issues for further
investigation. What is the rationale behind the relationship
between CPI and IC? Does the derived relationship between
CPI and IC keep changing with increasing number of mea-
surements or does it get stabilized? If the values of variance
of IC, variance of CPI and their cross-covariance eventually
saturate, it would mean that we have considered sufficient
number of measurements. We could make use of Pearson
coefficient or Eigen value decomposition to infer if a definite
predictable relationship exists between CPI and IC. If need
be we could even consider non-linear scales such as semi-log
or log-log scale to examine if a definite relationship can be
derived.

In this work, the entire program is considered as a single
block to infer any relationship between CPI and IC. This
may be so because many of the benchmarks considered have
either an underlying mathematical algorithm or a clearly
well-defined functionality. Large applications may have to
be divided into functional blocks to infer a relationship be-
tween CPI and IC. Once a relationship is seen to exist be-
tween CPI and IC, either a curve fitting or a functional
modeling has to be derived to capture the relationship op-
timally in mean square sense. We are examining many of
these issues as on-going research.

6. ACKNOWLEDGMENTS
The authors would like to thank Dr. T. V. Ananthapad-

manabha for his valuable suggestions on several aspects of
this paper. We would also like to thank the anonymous
reviewers for their suggestions and feedback.

7. REFERENCES
[1] ”http://www.comp.nus.edu.sg/∼rpembed/chronos/

download.html”.

[2] ”http://www.eecs.umich.edu/mibench”.

[3] ”http://www.mrtc.mdh.se/projects/wcet”.

[4] A. Colin et al. Experimental evaluation of code
properties for WCET analysis. In RTSS, pages
190–199, 2008.

[5] A. Dupuy et al. An empirical evaluation of the mc/dc
coverage criterion on the hete-2 satellite software. In
DASC, 2000.

[6] G. Bernat et al. pWCET: a tool for probabilistic worst
case execution time analysis of real-time systems. In
Technical Report YCS-2003-353, Univ. of York, UK.

[7] J. Hansen et al. Statistical based WCET estimation
and validation. In ECRTS, pages 123–133, 2009.

[8] M. Zolda et al. Towards adaptable control flow
segmentation for measurement-based execution time
analysis. In RTNS, 2009.

[9] Matteo Corti et al. Approximation of worst-case
execution time for preemptive multitasking systems.
In LCTES, pages 178–198, 2000.

[10] P. Keim et al. Extending the path analysis technique
to obtain a soft WCET. In ECRTS, pages 134–142,
2009.

[11] R. Wilhelm et al. The worst-case execution time
problem- overview of methods and survey of tools.
ACM Trans. Embedded. Comp. Syst., 7(3):36–53,
April 2008.

[12] S. Bünte et al. A benchmarking suite for measurement
based WCET analysis. In ICSTW, pages 353–356,
2008.

[13] V. Suhendra et al. Efficient detection and exploitation
of infeasible paths for software timing analysis. In
DAC, pages 358–363, 2006.

APPENDIX
We now discuss the procedure for obtaining the static worst
case instruction count(SWIC) for a given program. Several
static WCET analyzers including Chronos use integer linear
programming to estimate static worst case execution time.
We use a similar formulation to estimate SWIC. Our input
is the control flow graph (CFG) which is constructed from
the program binary. Each basic block, B is associated with
an integer variable NB that indicates B ’s execution count
and an integer constant WB that indicates the weight of
the basic block(number of instructions constituting the basic
block B). The linear objective function is given by,

Maximize Σ∀B(NB ∗ WB) (7)

The parameter NB is controlled by how the control flows
among the edges in the CFG and is constrained by,

ΣB′→B(EB′→B) = NB = ΣB→B′′ (EB→B′′) (8)

The parameter EB is bounded by the maximum number of
times the loop can iterate, L, if it happens to reside inside a
loop else it takes the value 1 by default. We assume avail-
ability of loop iteration bounds for all the loops in the CFG.
Any instances of recursion are converted to iteration.

Ei→j <= L (9)

To improve accuracy of WCET, we account for infeasible
paths and context sensitivity. Infeasible paths are identified
using the approach proposed by Vivy et al[13] and figure as
additional constraints in our linear system of equations. To
deal with context sensitivity, we perform procedure cloning
if a procedure is called in two different locations and treat
each call as a separate one. In this work, we do not perform
any context sensitivity analysis at the loop level.

60

