
Using Observation Ageing to Improve Markovian Model
Learning in QoS Engineering

[Work in Progress]

Radu Calinescu, Kenneth Johnson and Yasmin Rafiq
Computer Science Research Group, Aston University, Birmingham B4 7ET, UK

{R.C.Calinescu,K.H.A.Johnson,rafiqy}@aston.ac.uk

If I am going to have a true memory, there are
a thousand things that must first be forgotten.

Thomas Merton

ABSTRACT
Markovian models are widely used to analyse quality-of-
service properties of both system designs and deployed sys-
tems. Thanks to the emergence of probabilistic model check-
ers, this analysis can be performed with high accuracy. How-
ever, its usefulness is heavily dependent on how well the
model captures the actual behaviour of the analysed sys-
tem. Our work addresses this problem for a class of Marko-
vian models termed discrete-time Markov chains (DTMCs).
We propose a new Bayesian technique for learning the state
transition probabilities of DTMCs based on observations of
the modelled system. Unlike existing approaches, our tech-
nique weighs observations based on their age, to account for
the fact that older observations are less relevant than more
recent ones. A case study from the area of bioinformatics
workflows demonstrates the effectiveness of the technique in
scenarios where the model parameters change over time.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; G.3 [Probability
and statistics]: Markov processes, Reliability and life test-
ing

General Terms
Algorithms, Measurement, Reliability, Theory

1. INTRODUCTION
Markovian models are increasingly used to model and

analyse quality-of-service (QoS) properties of technical sys-
tems. The explanation for this trend is twofold. Firstly,
the use of technical systems in safety- and business-critical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

applications is on the rise, and so is the importance of en-
suring that these systems comply with strict performance
and reliability requirements. Secondly, the last decade has
brought the advent of powerful software tools that assist sys-
tem developers in building Markovian models, and automate
model analysis. These tools are termed probabilistic model
checkers. They take as input a formal system description
expressed in a high-level modelling language, and convert
it into a Markovian chain that they then use to analyse
user-specified QoS properties. Example of such properties
include the probability that a fault occurs within a speci-
fied time period, and the expected response time of a web
service under a given workload. Widely used probabilistic
model checkers include PRISM[7], MRMC[9] and Ymer[14].

Probabilistic model checking can be employed effectively
at several stages in the life cycle of a technical system. Dur-
ing system design, the technique can be used to analyse
alternative solutions and identify those that satisfy the en-
visaged QoS requirements without having to build and test
potentially expensive system prototypes. For existing sys-
tems, probabilistic modelling and analysis can be used to
verify whether QoS requirements are achieved or remedial
action is needed to ensure compliance. A repository of case
studies that fit these descriptions and spawn a broad range of
application domains is available from the PRISM web site.1

More recently, probabilistic model checking has been used
to guide self-optimisation in autonomic IT systems during
their execution stage [2, 3, 4].

Alternative techniques for analysing the QoS properties
of technical systems include simulation and testing. How-
ever, these techniques can only examine a finite (and often
small) number of scenarios that the system may operate in.
As many systems are associated with a very large or even
infinite number of scenarios, the results produced by simula-
tion and testing are approximate and cannot guarantee com-
pliance with QoS requirements. In contrast, probabilistic
model checking performs an exhaustive analysis of the con-
sidered QoS properties, producing precise results that guar-
antee or disprove each analysed property irrefutably [10].

There is one proviso to the above statement: the useful-
ness of probabilistic model checking depends on how accu-
rate the analysed Markovian models are. Any inaccuracies
in the structure or parameters of a model will unavoidably
lead to assessments that do not reflect the actual QoS com-
pliance of the real-world system. Getting the model struc-
ture wrong invalidates completely the analysis, but is less
likely to happen—at least when the model is built by an

1http://www.prismmodelchecker.org/casestudies

505

http://www.prismmodelchecker.org/casestudies

Figure 1: Bioinformatics workflow taken from http://www.myexperiment.org/workflows/28.html

experienced user of the tool. Using the wrong parameter
values, however, could easily be encountered even in models
developed by expert tool users, as Markovian model param-
eters are state transition probabilities or rates that are dif-
ficult to measure accurately. In fact, these parameters often
vary during the lifetime of a system, as a result of changes
in system workload, environment and internal state. When
this is the case, no one set of parameter values exists that
can be used to fully and accurately analyse system QoS com-
pliance. What is required instead is to continually and accu-
rately learn the parameter values as the system is evolving,
and to carry out the assessment each time they change.

We propose a new approach to learning the values of
discrete-time Markov chain (DTMC) parameters based on
observations of the modelled system behaviour. Note that it
is also possible to learn DTMC parameters through analysing
the system specification, code, workload and/or allocated re-
sources. The work described in this paper, however, focuses
on scenarios in which this information is unavailable, e.g.,
because the modelled system components are services pro-
vided by third parties.

Previous work on observation-based estimation of DTMC
parameters [5] has used standard Bayesian learning that
works well when these parameters are unknown but con-
stant. However, this technique places equal importance on
all observations of the modelled system, irrespective of how
recent or old they are. Therefore, the learning approach in
[5] is less suitable for the frequently encountered scenarios in
which parameters change over time. In this case, the most
recent observations of the system are the most relevant.

The main contribution of this paper is to extend the learn-
ing technique from [5] by introducing an ageing coefficient
that is used to weight each observation with its age. That is,
the older the observation, the less relevant it becomes. The
other contributions are an evaluation of the new Bayesian
learning technique using a case study from the area of bioin-
formatics workflows, and an analysis of how to choose its
ageing coefficient.

The paper outline is as follows. Section 2 provides the
necessary definitions and an outline of the standard Bayesian
learning method we have extended. Section 3 gives a formal
description of the new technique, and Section 4 evaluates
its effectiveness in the context of a real-world case study.
Section 5 describes related work. Section 6 summaries our
results and provides directions for further research.

2. BACKGROUND

2.1 Probabilistic model checking of DTMCs
For the purpose of QoS engineering, a DTMC is repre-

sented as a tuple

M = (S, s1, P, L), (1)

where: S = {s1, . . . , sn} is a finite set of n ≥ 1 states; s1 is
the initial state; P is an n×n transition probability matrix;
and L : S → 2AP is a labelling function which assigns a set
of atomic propositions from AP to each state in S. The ele-
ment pij from P represents the probability of transitioning
to state j from state i, 1≤i, j≤n, and

∑n
j=1 pij = 1.

Probabilistic model checkers operate on Markovian mod-
els expressed in a high-level, state-based language. Given a
DTMC description in this language, the low-level represen-
tation (1) is derived automatically. Our work uses the prob-
abilistic model checker PRISM [7], which supports the anal-
ysis of DTMC properties specified in a reward-augmented
version of probabilistic computational tree logic (PCTL) [6].

To illustrate the process, we consider a real-world bioin-
formatics workflow taken from the Taverna repository of sci-
entific workflows myExperiment2 (Figure 1). Taverna [8] is a
workflow engine widely used by research communities from
bioinformatics, astronomy and social sciences. The work-
flow in Figure 1 has been used in studies of an autoimmune
disease that represents the most common cause of hyper-
thyroidism in young people and children (i.e., the Graves
disease). This workflow was chosen for our case study be-
cause it is one of the most complex and most used workflows
from the repository (it invokes 18 different web services run-
ning at four research centres in the UK and Japan; and had
a download count of 166 when last checked by the authors).

A fragment of the PRISM model for this workflow is shown
in Figure 2, where p1 to p18 represent a priori estimates of
the probabilities that the 18 web service invocations com-
plete successfully, and a PRISM module is used to model
each web service. An additional module (Workflow) is used
to model the workflow as a whole, thus enabling the speci-
fication of a reliability QoS requirement such as “the work-
flow must complete successfully with a probability of at least
0.95” as the PCTL reachability property:

”init” => P≥0.95[F wf = SUCC] (2)

2http://www.myexperiment.org

506

http://www.myexperiment.org/workflows/28.html
http://www.myexperiment.org

dtmc

const double p1=0.999;
const double p2=0.998;
...
const int SUCC=1;
const int FAIL=2;

module getEmblld
getEmblld : [0..2] init 0;
[] (getEmblld=0) -> p1:(getEmblld’=SUCC) +

(1-p1):(getEmblld’=FAIL);
endmodule

module Sebi_embl
ebi_embl : [0..2] init 0;
[] ebi_embl=0 & (getEmblId=SUCC)-> p2:(ebi_embl’=SUCC) +

(1-p2):(ebi_embl’=FAIL);
[] (ebi_embl=0) & (getEmblld=FAIL) -> 1:(ebi_embl’=FAIL);

endmodule
...
module WorkFlow

wf : [0..2] init 0; // 0 - init; 1 - success; 2 - fail
[] (wf=0) & (ebi_uniprot=FAIL | calcMeltTemp=FAIL | ...

| getDotFromViz=FAIL) -> 1:(wf’=FAIL);
[] (wf=0) & (ebi_uniprot=SUCC & calcMeltTemp=SUCC & ...

& getDotFromViz=SUCC) -> 1: (wf’=SUCC);
endmodule

Figure 2: PRISM model for the workflow in Figure 1

2.2 DTMC parameter learning
A technique for learning the state transition probabili-

ties pij for the DTMC (1) when only a priori estimates p0ij ,
1≤i, j≤n, are available initially is presented in [5], and suc-
cessfully used in the context of workflow QoS management
in [2]. This Bayesian learning technique is applicable when
the analysed system is operational, and its state transitions
are monitored. Suppose that, as a result of this monitor-
ing, we observe Ni > 0 transitions from state si to other
states in S, for each 1 ≤ i ≤ n. Also, assume that the k-th
observation of a transition from state si to another state,
1 ≤ k ≤ Ni, is a transition to state sjk , and that

σkij =

{
1 if j = jk,

0 otherwise.
(3)

Note that
∑n
j=1 σ

k
ij = 1 since, for each observation k, the

system will transition from state si to precisely one state
from S. The work presented in [2] uses theoretical results
from [13] and the Bayes’ rule to derive the updating rule for
estimating the probability pij after the observation of the
k-th transition from state si to another state in S as

pkij =
c0i

c0i + k
p0ij +

k

c0i + k

∑k
l=1 σ

l
ij

k
, (4)

for 1 ≤ k ≤ Ni. The smoothing parameter c0i ≥ 1 quantifies
the confidence in the accuracy of the a priory estimates p0ij ,
1≤i, j≤n. For a description of the steps involved in deriving
this result the reader is refered to [5].

3. DTMC PARAMETER LEARNING WITH
OBSERVATION AGEING

The updating rule (4) was shown [2, 5] to be effective in
scenarios where the actual probability pij differs from the a

Figure 3: The ageing function α−age is used to weigh
observations (shown for α = 1.001)

priori estimate p0ij , but is a constant. However, in many sce-
narios involving real-world systems, pij is prone to changing
dynamically. For such scenarios, rule (4) is slow to detect re-
quirement violations or—as will be shown in Section 4—may
even fail to detect them when they are short lived.

Our extended DTMC parameter learning technique over-
comes this limitation by weighting the k > 0 observations
from the updating rule (4) based on their “age”. To achieve
this, the extended technique timestamps each observation
σkij from eqs. (3)–(4) with the time instant tk when the obser-

vation was made.3 We assume that the updating rule (4) is
applied as soon as the k-th observation is made, i.e., at time
moment tk. Therefore, when the updating rule is applied,
the age of a generic observation l, 1 ≤ l ≤ k, is precisely

agel = tk − tl. (5)

To reflect the decreasing importance of observations as they
become older in a dynamic scenario, we associate a weight

wl = α−agel =
1

αtk−tl
(6)

with each observation l, 1 ≤ l ≤ k, where α ≥ 1 represents
the observation ageing coefficient (Figure 3). As shown later
in this section, the choice of a negative exponential function
as the ageing function is motivated by the ease with which
it allows the application of the new updating rule.

The extended updating rule is then obtained by multiply-
ing each σlij term from (4) by its associated weight (6):

pkij =
c0i

c0i + k
p0ij +

k

c0i + k

∑k
l=1 wlσ

l
ij∑k

l=1 wl
, (7)

for 1 ≤ k ≤ Ni. Note that the denominator for the last part
of this updating rule was adjusted to

∑k
l=1 wl in order to

satisfy the invariant
∑n
j=1 p

k
ij = 1:

n∑
j=1

pkij =
c0i
c0i+k

n∑
j=1

p0ij +
k

c0i+k

n∑
j=1

∑k
l=1 wlσ

l
ij∑k

l=1 wl
=

=
c0i
c0i+k

× 1 +
k

c0i+k

∑k
l=1

(
wl
∑n
j=1 σ

l
ij

)
∑k
l=1 wl

=

=
c0i
c0i+k

+
k

c0i+k

∑k
l=1(wl × 1)∑k

l=1 wl
=

c0i
c0i+k

+
k

c0i+k
= 1.

3Recording this additional information typically requires
only a small extension to the monitoring part of a system.

507

Figure 4: PRISM analysis of the workflow compli-
ance with requirement (2)

Finally, note that selecting an ageing coefficient α = 1 makes
all weights wl = 1, thus reducing the extended updating
rule (7) to the base updating rule in (4). This property
represents another advantage of using the ageing function
in Figure 3.

Analysis of the extended learning algorithm.
As mentioned earlier, the choice of an exponential neg-

ative ageing function simplifies the application of the up-

dating rule (7). Thus, the first term (i.e.,
c0i
c0i+k

p0ij) and the

multiplicative factor k
c0i+k

can both be calculated in con-

stant, O(1) time. To analyse the complexity of calculating
the remaining part of the rule, we introduce the notation
fkij =

∑k
l=1 wlσ

l
ij and gkij =

∑k
l=1 wl, and observe that:

fkij =

k∑
l=1

wlσ
l
ij =

k∑
l=1

σlij
αtk−tl

=
σkij

αtk−tk
+

k−1∑
l=1

σlij
αtk−tl

=

= σkij +

k−1∑
l=1

σlij
αtk−tk−1αtk−1−tl

= σkij +
fk−1
ij

αtk−tk−1

and, following a similar proof,

gkij = 1 +
gk−1
ij

αtk−tk−1
.

As a result, the part
fkij

gkij
=

∑k
l=1 wlσ

l
ij∑k

l=1
wl

from rule (7) can also

be calculated in O(1) time, by using the recursive defini-
tions above for k ≥ 2, and f1

ij = σ1
ij and g1ij = 1 for k = 1.

Furthermore, calculating the right-hand side of (7) at step
k does not require the technique to maintain a record of all
k observations (i.e., of σlij and tl for all 1≤l≤k). The only
observation-related values required to carry out the calcula-
tion at step k are tk−1, fk−1

ij , gk−1
ij , σkij and tk. Thus, the

memory complexity of the learning algorithm is also O(1).

4. EXPERIMENTS AND RESULTS
The DTMC parameter learning algorithm in Section 3 was

validated through the simulation of a wide range of scenarios
for the bioinformatics workflow from Figure 1. This section
presents a subset of these scenarios that involves learning
the probability of a successful invocation of the web service
ebi embl from the workflow, based on an initial estimate
and on observations obtained through monitoring the ser-
vice. This service was selected because its execution involves

complex bioinformatics database operations that expose its
invocation to variations in performance and reliability.

Assuming that the probabilities of all other service invo-
cations were fixed, the probabilistic model checker PRISM
was used to analyse the impact of changes in the success
probability of service ebi embl on the compliance of the
workflow with requirement (2). Figure 4 depicts the result
of this analysis, showing that the workflow satisfies the re-
quirement if and only if service ebi embl has a probability
of success of at least pRequired = 0.991.4

Figure 5 presents the experimental results for three sce-
narios involving dynamic changes to the actual probability of
success pActual for the simulated web service over 30, 000s
of simulated time. Each scenario corresponds to a differ-
ent pActual change pattern, and the experimental results
were obtained through averaging the results of 100 Matlab
simulations of each of the three patterns. The observation
timestamps tk, 1 ≤ k ≤ Ni, were selected from a Poisson dis-
tribution with a mean inter-arrival time of 1/λ = 1s, and the
observations σkij , 1 ≤ k ≤ Ni, were taken from a Bernoulli
distribution with parameter pActual. The smoothing pa-
rameter was fixed at c0i = 50, and the a priori probability
was set to 0.991, i.e., the minimum probability for which re-
quirement (2) is satisfied. Simulations were carried out for
a large number of values of the ageing coefficient α, though,
in the interest of readability, the diagrams in Figure 5 show
the results for only two of these values, i.e., α = 1 (which
corresponds to the base learning algorithm) and α = 1.001.

In each scenario from Figure 5, the probability of suc-
cess for the simulated service starts and ends at a value
pActual = 0.991 that ensures compliance with requirement (2).
However, this probability drops to a value pActual = 0.99
that violates the requirement during a time interval whose
start and duration are different for each scenario. The time
intervals a, a′, b and b′ marked on each scenario denote
time intervals when the estimated probability of a success-
ful service invocation does not sufficiently reflect the actual
probability pActual. This leads to an erroneous verification
result of requirement (2). Thus, a and a′ are the time in-
tervals during which the requirement violation is undetected
for α = 1.001 and α = 1, respectively; and b and b′ repre-
sent time intervals during which the requirement is satisfied
but wrongly classified as violated for α = 1.001 and α = 1,
respectively.

A comparison of the lenghts of time intervals a and a′,
and of b and b′ shows the our learning method (which cor-
responds to α = 1.001) provides a more precise estimation
of pActual than the base Bayesian learning algorithm. In
particular, Scenario 3 shows that our method provides a
good estimate even for a short degradation in the probabil-
ity of success for the simulated service; in contrast, the base
method is unable to detect this degradation.

Finally, the results from scenarios 1 and 2 show that the
effectiveness of our method does not depend on the timing
of the changes in the value of pActual—the time intervals
a for the two scenarios are of similar length, and so are the
time intervals b. In contrast, when the base method is used,
the length of the time interval a′ is much longer for scenario
1, in which pActual had the same value (i.e., 0.992) for a

4The DTMC PRISM model and the Matlab
simulation code for the case study are avail-
able at http://www1.aston.ac.uk/eas/staff/dr-radu-
calinescu/dtmc-model-and-simulation-code.

508

http://www1.aston.ac.uk/eas/staff/dr-radu-calinescu/dtmc-model-and-simulation-code
http://www1.aston.ac.uk/eas/staff/dr-radu-calinescu/dtmc-model-and-simulation-code

Figure 5: Experimental results contrasting the effectiveness of the observation-ageing and base learning
techniques in scenarios when the actual probability of success pActual changes dynamically.

Figure 6: Effect of different choices for the ageing
coefficient α

longer period of time; and the length of b′ is much longer in
scenario 2, in which pActual maintained a value of 0.99 for
an extended period of time.

Choosing the ageing coefficient α.
The value of the ageing coefficient α determines the age

range of the observations that contribute effectively to the
most significant d > 0 digits of the probability estimate pkij
in (7). If too few of the observations σlij , 1 ≤ l ≤ k, are

within this age range, then the probability estimate pkij will
depend too heavily on the very recent past and will oscillate
as shown in Figure 6.

To avoid this undesirable effect, more of the observations
σlij must contribute to the d most significant digits of pkij ,

i.e., have a coefficient that is larger than 10−d in (7):

k

c0i + k

wl∑k
l=1 wl

≥ 10−d. (8)

Assuming that the mean distance between successive ob-
servations is µ > 0, then, for large values of k, k

c0i+k
≈ 1

and
∑k
l=1 wl =

∑k
l=1

1

αtk−tl ≈
∑k
l=1

1

α(k−l)µ = 1 + 1
αµ

+
1
α2µ + · · ·+ 1

α(k−1)µ =
(
1− 1

αkµ

)
/
(
1− 1

αµ

)
≈ 1/

(
1− 1

αµ

)
=

αµ

αµ−1
, so (8) becomes wl/

(
αµ

αµ−1

)
≈ αµ−1

α(k−l)µαµ
≥ 10−d. The

observations that satisfy this inequality contribute to the d
most significant digits of the probability estimate pkij . To en-
sure that at least m > 0 observations are taken into account,
the inequality must be satisfied for k − l = m (Figure 7).

5. RELATED WORK
Significant research has focused on monitoring performance

and reliability properties of technical systems [11, 12], and
on modelling and analysing these properties formally [1].
However, to the best of our knowledge, very few approaches
have considered combining techniques from the two research
areas [5, 15, 16]. The approach in [5] is described in detail
in Section 2.2, and the way in which its ability to handle
change is improved by our approach to learning DTMC pa-
rameters is presented in Section 3. The approach in [15, 16]
uses Kalman filter estimators to update the parameters of
queueing-network performance models. Our results comple-
ment this approach, as they target DTMC reliability models.

509

Figure 7: Choosing the ageing coefficient: α values
for which (αµ − 1) /α(m+1)µ ≥ 10−d ensure that the m
most recent observations contribute to the d most
significant digits of the probability estimate

6. CONCLUSION AND FUTURE WORK
The work in progress described in this paper addresses the

growing need for techniques capable of learning the param-
eters of the models used in QoS engineering from run-time
observations of the analysed system. The Bayesian learning
technique introduced in the paper estimates the parame-
ters of discrete-time Markov chains for systems operating
in changing environments, and achieves high accuracy by
weighing the importance of individual observations based
on their age.

Our future work aims to evaluate the effectiveness of ob-
servation ageing in learning the parameters of service-based
systems deployed on virtual machines running within cloud
data centres. We envisage that in this environment service
QoS parameters will vary not only with the service work-
load, but also with changes within other applications that
are using the same physical resources as the analysed ser-
vice. As a further step in exploiting the new technique, we
are considering integrating it into the QoS management and
optimisations framework from [2].

7. ACKNOWLEDGEMENTS
This work was partly supported by the UK Engineering

and Physical Sciences Research Council grant EP/H042644/1.

8. REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, and

M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Trans. Softw.
Eng., 30:295–310, May 2004.

[2] R. Calinescu, L. Grunske, M. Kwiatkowska,
R. Mirandola, and G. Tamburrelli. Dynamic QoS
management and optimisation in service-based
systems. IEEE Transactions on Software Engineering,
99(PrePrints), 2010.

[3] R. Calinescu and S. Kikuchi. Formal methods @
runtime. In Modelling, Development and Verification
of Adaptive Computer Systems, Lecture Notes in
Computer Science. Springer, 2011. To appear.

[4] R. Calinescu and M. Kwiatkowska. Using quantitative
analysis to implement autonomic IT systems. In
Proceedings of the 31st International Conference on
Software Engineering (ICSE’09), pages 100–110, 2009.

[5] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time
parameter adaptation. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, pages 111–121, Washington, DC, USA,
2009. IEEE Computer Society.

[6] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5):512–535, 1994.

[7] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In H. Hermanns and
J. Palsberg, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 3920 of
Lecture Notes in Computer Science, pages 441–444.
Springer Berlin / Heidelberg, 2006.

[8] D. Hull, K. Wolstencroft, R. Stevens, C. Goble,
M. Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
Acids Research, 34(Web Server issue):729–732, July
2006.

[9] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A
Markov reward model checker. In Quantitative
Evaluation of Systems, pages 243–244, Los Alamitos,
2005. IEEE Computer Society.

[10] M. Kwiatkowska. Quantitative verification: Models,
techniques and tools. In Proc. 6th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 449–458.
ACM Press, September 2007.

[11] R. Pietrantuono, S. Russo, and K. S. Trivedi. Online
monitoring of software system reliability. European
Dependable Computing Conference, 0:209–218, 2010.

[12] F. Raimondi, J. Skene, and W. Emmerich. Efficient
online monitoring of web-service SLAs. In Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, SIGSOFT
’08/FSE-16, pages 170–180, New York, NY, USA,
2008. ACM.

[13] C. C. Strelioff, J. P. Crutchfield, and A. W. Hübler.
Inferring Markov chains: Bayesian estimation, model
comparison, entropy rate, and out-of-class modeling.
Phys. Rev. E, 76(1):011106, Jul 2007.

[14] H. L. S. Younes. Ymer: A statistical model checker. In
K. Etessami et al., editors, Computer Aided
Verification, volume 3576 of LNCS, pages 429–433.
Springer, Berlin, 2005.

[15] T. Zheng, M. Woodside, and M. Litoiu. Performance
model estimation and tracking using optimal filters.
IEEE Transactions on Software Engineering,
34(3):391–406, 2008.

[16] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and
G. Iszlai. Tracking time-varying parameters in
software systems with extended Kalman filters. In
Proceedings of the 2005 conference of the Centre for
Advanced Studies on Collaborative research, CASCON
’05, pages 334–345. IBM Press, 2005.

510

	Introduction
	Background
	Probabilistic model checking of DTMCs
	DTMC parameter learning

	DTMC parameter learning with observation ageing
	Experiments and Results
	Related work
	Conclusion and future work
	Acknowledgements
	References

