
Engineering SSL-Based Systems for Enhancing System
Performance

Norman Lim
Real Time and Distributed Systems

Research Centre,
Dept. of Systems and Computer Eng.,

Carleton University, Ottawa,
CANADA.

nlim@sce.carleton.ca

Shikharesh Majumdar
Real Time and Distributed Systems

Research Centre,
Dept. of Systems and Computer Eng.,
Carleton University, Ottawa, CANADA

+1-613-731-5296,

majumdar@sce.carleton.ca

Vineet Srivastava,
Cistech Limited

210 Colonnade Road, Unit#3
Ottawa, CANADA.

vineet@cistech.ca

ABSTRACT
Security in a distributed system often comes at the cost of a
performance penalty. Due to the CPU time consuming security
algorithms used, transferring data using SSL is known to be
significantly slow. This paper presents an initial set of research
results of a university-industry collaborative research focusing on
a performance enhancement technique called security sieve that
separates the classified and non-classified components in a
document and sends these on a secure and a (faster) non-secure
channel respectively. Experimental results presented in the paper
demonstrate the effectiveness of the technique.

Categories and Subject Descriptors
D4 Software, D.4.4 Message sending, D4.8 Modeling and
prediction, D.4.8 Measurements

General Terms
Performance, Design, Security, Measurement.

Keywords
Secure Sockets Layer (SSL), SSL performance, performance
engineering of SSL, performance optimization, security system
performance.

1. INTRODUCTION
Performance optimization as well as performance modeling and
analysis are important components of performance engineering.
Existing work analyzing the performance of the Secure Sockets
Layer (SSL) protocol shows that the incorporation of system
security slows down data transfer rates significantly. This research
concerns engineering SSL-based systems for enhancing system
performance.
Classified documents are often transmitted over secure channels
that perform various security related operations (discussed in
more detail later in this section) such as data encryption and
decryption that consume a significant amount of processing time
resulting in long document transmission times. Such classified
documents are typically characterized by both classified and non-
classified components. A classified component may correspond to
a chapter, paragraph or even a single sentence that needs to be

protected. The non-classified components contain information that
need not be protected. For example, only the name, the social
insurance number and the address of a patient may need to be
protected when sending a lengthy document on a patient’s
medical history. Determining which components are classified is a
responsibility of the user transmitting the document. In some
cases the user may decide that protecting only certain key
components as indicated in the previous example may be
sufficient. In other cases designating additional information that
can lead to the revelation of the classified information may be
required. Sending only the classified components over the secure
channel and sending the remaining components over (a faster)
non-secure channel can potentially reduce the overall document
transmission time and give rise to bandwidth savings. This paper
proposes a security sieve that separates the non-classified
components from the classified components and transmits them
over non-secure and secure channels, respectively. The
components are re-assembled at the receiving end to reconstruct
the original document. The secure components can be “marked”
by the author of the document. It may also be possible to
automatically identify them based on a set of keywords. For the
work discussed in this paper a “marked by author approach” is
followed. Devising techniques for automatically marking a
document can form an interesting direction for future research. A
short discussion of SSL including a representative set of works on
related performance issues is presented next.
SSL (also known as the Transport Layer Security, TLS, protocol)
is one of the common protocols used for providing secure
communications between clients and servers over the Internet [9].
There are three main aspects of security [5], [9]: (1)
confidentiality (and privacy), (2) message integrity, and (3)
authentication. Confidentiality ensures the information that is
transferred cannot be seen by a third party, whereas message
integrity ensures that the information is not modified during the
transfer. Authentication ensures that the communicating parties
are the entity they claim they are. SSL uses cryptography, digital
signatures, and certificates to provide confidentiality, integrity,
and authentication, respectively. There are two types of
cryptography: symmetric (private key) cryptography (SC) and
asymmetric (public key) cryptography (AC). SC, which uses the
same key for encryption and decryption, is commonly used to
encrypt data for bulk data transfers. AC uses different keys for
encryption and decryption, and is commonly used to exchange the
private key used for SC. The SSL protocol has two main phases
[5]: (1) the handshake phase and (2) the bulk data transfer phase.
The handshake phase consists of cipher suite negotiation,
authentication, and secret key exchange. The cipher suite specifies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

469

the algorithms to use for: authentication, bulk data
encryption/decryption, and secret key exchange. The secret key
exchange mutually establishes the private key that is going to be
used for bulk data encryption/decryption. In the bulk data transfer
phase, encrypted data is exchanged between the client and the
server. Each message exchanged is appended with a message
authentication code (MAC) (also known as a digital signature) to
ensure data integrity.
Sending data through a secure channel can result in long transfer
times due to the CPU-intensive operations that need to be applied
to the data. These expensive operations include: operations
performed by cryptography algorithms (to encrypt/decrypt data),
and hash algorithms (to sign the data) [9]. Additional overheads
are also incurred when opening (e.g., during the handshake phase)
and closing the SSL channel. The performance impact of using
SSL/TLS and the cryptography algorithms it uses was extensively
studied in [2], [3], [7], [9]. As a result, much effort has been
invested into developing techniques to improve the performance
of secure communications. One common technique to improve the
performance of secure communications is to speed up the crypto
algorithms. There are two common approaches to speedup crypto
operations [5]: (1) use specialized hardware accelerators with
dedicated modular arithmetic units [4], and (2) use software
optimized crypto algorithms and techniques (e.g. [13]). There
have also been other approaches to improving secure
communications. In [1], [12], and [15] the concept of selective
security is used. The idea is to apply security only to the most
sensitive information. A key benefit of selective security is that
the use of the costly crypto operations can be reduced by applying
the operations only to the data that requires it. The authors of [1]
proposed a Dynamic Key Size (DKS) architecture that can be
integrated into security protocols to provide more efficient secure
mobile communications. The proposed approach uses information
sensitivity level (specified by the user) and device capability to
select a suitable algorithm key length. In [12], the authors
proposed a simple extension to SSL/TLS protocol by specifying a
new record layer type for the TLS protocol stack. The new record
type, Cleartext Application Data, is used to transport the non-
classified documents. The main purpose of the virtual cleartext
channel is to allow the non-secure information to be exposed to
any intermediate system for content adaptation purposes. An
extension to the SSL protocol called multiple channel SSL (MC-
SSL) was proposed in [15]. The idea was to have multiples
channels between the client and server at different levels of
security for various levels of data sensitivity. With MC-SSL the
client is able to negotiate multiple SSL channels each with its own
security characteristics (e.g. cipher suite).
This research concerns engineering performance into the data
transmission software that is responsible for the transfer of
classified documents between two sites. The proposed security
sieve approach is also based on the concept of selective security;
however the main difference between our approach and existing
research in [1], [12], and [15] is that these other techniques
transfer separate documents with different security requirements
over different channels. Our work, however; focuses on the
transmission of a single classified document using the standard
SSL/TLS protocol and introduces a mechanism to separate and re-
combine the non-classified and the classified components in the
document. The secure components are transferred over a secure
channel whereas the non-secure components over a non-secure

channel. To the best of our knowledge such a technique has not
been deployed by systems described in the existing literature. This
paper presents some preliminary results of the research. The
contributions of the paper include the following:

• Security Sieve: a technique for separating/re-combining the
non-classified components from the classified components in a
document is introduced. An experimental demonstration of the
performance improvement produced by security sieve is
provided.

• A discussion of the design and implementation of a prototype
client-server system that supports the security sieve technique is
presented.

• Performance evaluation of the security sieve technique,
comparing the prototype system with a client-server system that
uses a single secure channel is performed. A queueing
network-based analysis is then used to investigate the impact of
queueing on system performance. Insights gained into system
behavior are described.

The rest of the paper is organized as follows. A detailed
description of the security sieve technique is provided in Section
2. In Section 3, we describe the implementation of a prototype
client-server system that supports the security sieve technique.
Section 4 focuses on the performance evaluation of the security
sieve technique compared to a client-server system that uses a
single secure channel. Lastly, Section 5 presents our conclusions
and plans for future work.

2. SECURITY SIEVE
The security sieve technique is explained with the help of Figure
1. First the original data (document to be transferred) is sieved (or
separated) into classified and non-classified components. The
non-classified data is sent using the non-secure channel and the
classified information is sent using the secure channel (using
SSL/TLS). At the receiving end, the data is reconstructed by
integrating the separated data components received from the
secure and non-secure channels.

DataData Sieve
Secure Channel

Non-Secure Channel

Integrator

Figure 1: Overview of Security Sieve.

2.1 Sieve and Integration Algorithms
This section explains the sieve and integration algorithms (see
Section 2.1.1-2.1.2). In this short paper we have used ASCII text
files as the classified documents to be transferred. The
performance benefits observed are expected to accrue for other
types of documents as well. Adapting our techniques to handle
other types of data files such as MS Word and PDF files is
currently underway. To distinguish between classified and non-
classified text, a document is marked by the user with the
following tags: (1) Secure Start Tag, <$S>: indicates where the
classified text begins and (2) Secure End Tag, <$E>: indicates
where classified text ends. Furthermore, the classified and non-
classified texts are stored in two lists: (1) Non-secure List: stores
the non-classified text and (2) Secure List: stores the classified
text components (transmitted securely).

470

2.1.1 Sieve Algorithm
The sieve algorithm separates the classified and non-classified
components in the original document, and stores the appropriate
data in the Secure List or Non-secure List (as shown in Figure 2).
The sieve algorithm uses two indices to specify the position that is
being examined in the document: (1) Current Index: stores current
position in the document, and (2) Previous Index: stores previous
current index position in the document.

Secure insecure Secureinsecure insecure

Original Data

Non-secure List

insecureinsecure insecureFirst

Secure List Secure Secure

Indicates the data in this list should be taken from first in the integration phase.
1.

2.

3.

4.

5.

6.

Sieve Example

Figure 2: Example of sieve algorithm.

First, it is determined whether the original document starts with
classified or non-classified data by checking for the <$S> tag.
The First List Tag, <!First!>, is added to the appropriate list so
that the receiver knows which list, data should be taken from first
during the integration phase. If the document starts with classified
data, the algorithm searches for the <$E> tag, stores the position
in the Current Index, and copies the data between the Previous
Index and the Current Index (i.e. the text segment between the
<$S> and <$E> tags), and stores copied data in the Secure List.
The Previous Index is updated by assigning the Current Index
value to it. Next, the document is searched for more Secure Start
Tags starting from the Current Index position. If the tag is found,
the data between the Previous and Current indices is copied, and
stored in the Non-secure List. The Previous Index is then updated
again. Next, the algorithm searches for <$E> and the data
between the <$S> and <$E> tags is copied, and added to the
Secure List. The operations continue in this fashion until there are
no more <$S> tags found. The algorithm then checks if the end of
the document has been reached and if not the data between the
Previous Index and end of the document is copied, and added in
the Non-secure List.
2.1.2 Integration Algorithm
The integration algorithm puts the separated data elements
contained in the Secure and Non-secure Lists back to its original
order in a new list called the Integrated Data List (IDL). First, the
first entry of the Secure and Non-secure lists is checked to
determine which list contains the First List Tag. If the first list is
the Secure List, the first data element from Secure List is removed,
and is added to the IDL. Otherwise, the first list is the Non-secure
List, and only the First List Tag needs to be removed since the
second phase of the algorithm starts by removing data items from
the Non-secure List. The second phase algorithm involves
removing data items from the Non-secure and Secure lists
(alternating between the lists in sequence) and stores them in the
IDL until both Secure and Non-secure lists are empty. This
restores the original sequence of data segments since the Secure
and Non-secure lists also keep the data segments in order.

3. PROTOTYPE IMPLEMENTATION
Java was used to implement a prototype security sieve client-
server system. Section 3.1 discusses the security sieve client,
whereas Section 3.2 discusses the security sieve server. The
sieving operations are performed by the client who transmits the
components of the classified document, and the integration of the
components is performed by the server.

3.1 Security Sieve Client
A class diagram of the security sieve client implemented for our
prototype is shown in Figure 3. A client is created by invoking the
SecuritySieveClient() constructor and specifying the following
parameters: (1) server host name, (2) secure port number, (3) non-
secure port number, and (4) the cipher suite to be used for the
secure channel. The start() method is used to run the client, and
when invoked the client tries to connect to the server using the
hostname and port number attributes. Details about the client
connection establishment are discussed in Section 3.1.1. The
askForInputFile() and readInputFile() private methods are used
to get input from the user, and read the document that will be sent
to the server. The sieve() method implements the sieve algorithm
discussed in Section 2.1.1. The send() method writes the supplied
data to the specified channel (explained further in Section 3.1.2).
ArrayList objects (provided by Java’s Collections Framework) are
used to implement the Secure and Non-secure lists.

+ SecuritySieveClient(insecPortNum : int,
secPortNum : int, servHostname : String,
cipherSuite: String)
+ start()
- askForInputFilename() : String
- readInputFile(filename : String): String
- sieve(data : String, out secureData : ArrayList<>,
out insecureData : ArrayList())
- send (bw : BufferedWriter, data : ArrayList<>)

+ FirstListTag : String = "<!FIRST!>"
+ SecureStartTag : String = "<$S>"
+ SecureEndTag : String = "<$E>"
+MSG_DONE : String = "<!=DONE=!>"
+MSG_CLOSE : String = "<!=CLOSE=!>"
+ Separator_Symbol : String = "<!$!>"
- insecurePortNum : int
- securePortNum : int
- serverHostName : String
- cipherSuite : String

SecuritySieveClient

+ SecuritySieveServer(insecPortNum : int,
securePortNum: String)
+ start()
- receive (br : BufferedReader, out dataRead :
ArrayList<>) : boolean
- integrate(secureData : ArrayList<>,
insecureData : ArrayList()) : ArrayList<>
- processData (buffer : char[], charsRead : int, out
dataRead : ArrayList<>) : boolean

+ FirstListTag : String = "<!FIRST!>"
+ SecureStartTag : String = "<$S>"
+ SecureEndTag : String = "<$E>"
+MSG_DONE : String = "<!=DONE=!>"
+MSG_CLOSE : String = "<!=CLOSE=!>"
+ Separator_Symbol : String = "<!$!>"
- insecurePortNum : int
- securePortNum : int

SecuritySieveServer

Figure 3: Class diagram of the security sieve client and server.

3.1.1 Client Connection Establishment
The non-secure channel is established using Java’s TCP Socket
API [10], and the secure channel is established using Java’s
SSL/TLS Socket API. The SSL/TLS socket API is a part of the
Java Secure Socket Extension (JSSE) [11]. First, the client
attempts to establish the non-secure channel with the server by
creating a Socket object (using Java’s Socket constructor). The
non-secure channel is established after the server accepts the
connection. Next, the client tries to establish a secure channel
with the server by invoking the createSocket() method (using
Java’s SSLSocketFactory API) with the hostname and secure port
number private attributes as the parameters. Once the server
accepts the connection, the secure channel is established, and the
client sets the cipher suite to be used, and starts the SSL/TLS
handshake. After both channels are established, the client retrieves
the input/output (I/O) streams from both the secure and non-
secure sockets, and creates BufferedReader and BufferedWriter
objects (part of Java’s I/O package) which are used to read/write
data to/from the channels.

471

3.1.2 Client send() Method
A sequence diagram of the send() method is shown in Figure 4.
The send method writes the supplied data list to a channel using
the specified BufferedWriter (created during the connection
establishment phase). Each element (or text segment) in the data
list is sent separately by sending a Separator Symbol, <!$!>,
between elements in the list (as shown in Figure 4). After all the
data is written, the MSG_DONE message is sent to inform the
receiver that all the data has been written. Each element in the
data list is sent separately because the BufferedWriter/
BufferedReader objects cannot write/read ArrayList objects. The
receive() method is explained in Section 3.2.2.

Client :
SecuritySieveClient

bw :
Buffered

Writer

write(s)
 [for each String s in data]

loop

[not the last String]
write(Separator_Symbol)

write(MSG_DONE)

Server :
SecuritySieveServer

br :
Buffered
Reader

charsRead = read(buffer[])
 [isDone = true]

loop

isDone = processData
(buffer[], charsRead, sb,
dataRead)

data

send() method

receive() method

data

Figure 4: Sequence diagrams of security sieve client send() and
server receive() methods.

3.2 Security Sieve Server
A class diagram of the security sieve server implemented for our
prototype is shown in Figure 3. The server is created by invoking
the SecuritySieveServer() constructor, which accepts two
parameters: (1) the port number for the non-secure socket, and (2)
the port number for the secure socket. The start() method is used
to start the server, and when invoked the server creates the secure
and non-secure sockets, and listens for client connection requests.
The server connection setup is explained in more detail in Section
3.2.1. The receive() method reads data from the specified channel
using the supplied BufferedReader and stores the data in the given
dataRead parameter. The processData() method is invoked by the
receive method, and is explained in more detail in Section 3.2.2.
The integrate() method implements the integration algorithm
discussed in Section 2.1.2. As in case of the client, ArrayList
objects are used to implement the Secure and Non-secure lists.
3.2.1 Server Connection Setup
To listen for client requests, the server creates a secure (SSL/TLS)
server socket by invoking the createServerSocket() method
(provided by SSLServerSocketFactory API) using the
securePortNum private attribute. Next, the non-secure (TCP)
socket is created using the ServerSocket() constructor (provided
by Java’s ServerSocket API) using the insecurePortNum attribute.
Afterwards, the server waits for incoming client connection
requests, and invokes the accept() method (on the socket objects)
to accept the client requests. The secure and non-secure channels
between the client and the server are now established. As in the
case of the client, the server then retrieves the I/O streams from
the sockets, and creates BufferedReader and BufferedWriter
objects.

3.2.2 Server receive() Method
A sequence diagram of the receive() method is shown in Figure 4.
The receive method reads 8192 characters from the channel at
time via the supplied BufferedReader. The text segment that is
read is passed to the processData() method. This method
continually stores the text segments in a temporary String until a
Separator Symbol, which separates the elements in the data list
that was sent, is found. Once found, the data in the temporary
String is added to the supplied data list. The processData()
method returns true if MSG_DONE is received to indicate all the
data has been read; otherwise, false is returned, and reading
continues. The goal is to construct a local ArrayList that is
identical to the original ArrayList that the client sent.

4. PERFORMANCE EVALUATION
To evaluate the performance of the security sieve client-server
system, we compared it to a conventional secure-only client-
server system. The secure-only system is an example of the state
of the art: the client sends the entire document to the server over a
secure channel. The goal is to compare the end-to-end response
time of sending a document, which contains both classified and
non-classified data, using the security sieve technique and using
the conventional approach of sending the entire file securely. The
client and server were connected via a LAN using a 100Mbps
Ethernet connection. The client runs on a computer equipped with
a 2.0 GHz Intel Core 2 Duo CPU and 2.0 GB RAM, running
under the Windows 7 operating system. The server computer uses
a 3.2 GHz Intel Core 2 Duo CPU and 2.0 GB RAM, running
under the Windows 7 operating system. The exact nature of the
machines is not important in the context of this research and we
expect similar relative performances of the systems under
comparison when different machines are used. In the system
deploying the security sieve technique, the client creates two
threads: one thread each to send the non-classified data and
classified data. Similarly, the security sieve server uses two
threads: one thread to read data from the non-secure channel, and
the other thread to read from the secure channel. The cipher suite
used for the secure channels was SSL_RSA_WITH_3DES_
EDE_CBC_SHA. Rivest Shamir Adleman (RSA) algorithm [14]
is used for public key cryptography and key exchange (1024-bit
key size). The Triple DES (3DES) algorithm [16] was used for
private key cryptography. The Data Encryption Standard (DES)
uses a 56-bit key. Triple DES applies the DES algorithm three
times to each data block using different keys each time (for an
effective key strength of 168-bit) [16]. Secure Hash Algorithm
(SHA) is used for signing the data to ensure message integrity [6].
The experiments consisted of performing a document file transfer
between two machines: one acting as the client and the other
acting as the server. There were two file sizes used in the data
transfer: 1MB, and 10MB. For the security sieve client-server
experiments, the files were transferred using various percentages,
P, of classified information in the document: 10, 50, and 90
percent. We have used synthetic ASCII text documents for
achieving this. The files contain the appropriate number of
characters (and appropriate tags) but do not have any semantic
value. In the experiments described a 1MB-P file contained 5
equal segments of secure and 5 equal segments of non-secure
segments. The length of a segment is computed from the length of
the file and P. A 10 MB-P file is obtained by copying the data
generated for a 1MB file 10 times. We plan to investigate other

472

distributions of data segments in the future. For each file size,
multiple experimental runs were conducted. The number of runs
was chosen in such a way such that a confidence interval of ±
0.5% at a confidence level of 95% was achieved. The client
makes one file transfer, records the total time, and then closes the
channel(s). The total time measurements include both the
connection establishment time and response time. To measure the
response time, the data transfer time is measured first. A
timestamp is taken (using the nanoTime() method provided by
Java’s System class) before the data is sent, and when the client
receives an ACK from the server. The data transfer time is the
difference between the two timestamps. For the secure-only
system the response time is the same as data transfer time, and the
connection establishment time includes the time to setup the
secure channel, and the handshake time. In the experiments with
the security sieve system, in addition to the data transfer time, the
response time also includes the time it takes to sieve the file, and
integrate the components (re-combine the file). These values are
measured by taking a timestamp before and after the respective
method (sieve() or integrate()) is called, and then taking the
difference between the timestamps. For security sieve system, the
connection establishment time includes the time to setup the
secure channel, the handshake time, as well as the time to setup
the non-secure channel. The average response time, and average
total time of each file transfer was calculated and plotted in Figure
5 and Figure 6, respectively. Note that the “-P” suffix in an x-axis
label means that P% of the data in the file was confidential and
needed to be transmitted over the secure channel. Note that for the
secure-only system, the entire document is transmitted over a
single secure channel, and both the average response time and the
average total time depend on the size of the files transferred but
are independent of P, the proportion of secure data in the files.
For all the 1 MB and 10 MB file transfers, the client-server
system using the security sieve technique outperforms the single
secure channel client-server system. The reason for the increased
performance is that fewer CPU-intensive security algorithm
operations needed to be executed which translated to shorter
response times. This improvement in response time was large
enough to compensate for the non-secure channel connection
time, and sieve/integration time overheads. The average sieve and
integration times for the 1MB files were 1.72 ms and 0.01 ms,
respectively; and for the 10MB files, they were 16.9 ms and 0.03
ms, respectively. The average non-secure channel connection
establishment time was measured to be 25 ms. As expected; the
largest improvement in performance is gained when transferring a
file with a small percentage of classified information. For the
1MB-10 and 10MB-10 files, the improvement in average response
time was 67%, and 68%, respectively. For the 1MB-90 and
10MB-90 files, for which most of the data is classified, the
improvement in average response time is lower: 7% and 8%
respectively. When we examine the average total time (see Figure
6), security sieve improves the average total time only by 18% and
54% for the 1MB-10 and 10MB-10 files, respectively. The
decrease in improvement (compared to Figure 5) is due to the
following: (1) the secure channel connection time and handshake
time (on average 755 ms) makes up a large part of the total time
for both the security sieve and secure-only cases, and (2) the
additional non-secure channel connection time overhead incurred
due to the security sieve. The reason for the larger decrease in
improvement for the 1MB-10 file compared to the 10MB-10 file
is because when transferring a smaller file, the connection

establishment overhead makes up a more significant part of the
total time compared to the response time; therefore, improving the
response time does not have as much impact on the overall total
time improvement. Note that on systems in which multiple
documents are transfered bewteen a given site the overheads
related to channles set up are incurred only once and the response
time becomes the performance metric of interest.

Figure 5: Security sieve vs. Secure-only response time
comparison.

Figure 6: Security sieve vs. Secure-only total time comparison.
The performance improvement from the security sieve is
dependent on the size of the document and P. Analyzing system
performance to determine the minimum document size required
for achieving a performance improvement for various values of P
form an important direction for further research.

4.1 Effect of Queueing
The performance analysis presented in Section 4 focused on
systems in which a single transfer request is processed at a time. A
preliminary analysis of the impact of queueing delays incurred on
systems in which multiple document transfer requests compete for
the secure and non-secure channels is presented in this section.
We have used a separable single class open queueing network
model (QNM) [8] in this preliminary analysis for modeling both
the security sieve and the secure-only systems that are subjected to
a Poisson arrival stream of document transfer requests with an
arrival rate of λ. As used in the queueing analysis of many real
systems we have assumed that the requirements for the application
of a separable QNM are met. The single server in each system
models all the operations performed by the corresponding system.
Using the response times obtained from the measurements on a
single file transfer reported in Section 4 as service times (DSS for

473

the security sieve system and DSO for the secure-only system), the
average response times can be computed as [8]:

R (security sieve) = DSS/(1- λ DSS) (1a)
R (secure-only) = DSO/(1- λ DSO) (1b)

Such an analysis that ignores the connection establishment time is
important in the context of systems in which the receiver of the
document is the same and multiple transfers are performed over
the same connection. A sample graph for the 1MB-50 file is
presented in Figure 7. As the arrival rate increases, more and more
queuing occurs on the system and the performance improvement
due to security sieve increases significantly. A similar relative
performance between the two systems is expected when the total
time is used as service times in the QNM. Such an analysis is
useful when each document transfer involves a separate server and
a new connection needs to be established for each transfer.
Clearly, the utility of the security sieve increases substantially on
systems that transfer multiple documents between sites. Almost an
order of magnitude of improvement in performance is observed at
λ = 0.003 requests/ms.

Figure 7: 1MB-50 file average response time with queuing
analysis.

5. SUMMARY AND CONCLUSIONS
This short paper introduces a security sieve technique for
engineering secure document transfer systems for enhancing
system performance. The technique separates the document into
secure and non-secure components and transfers them over a
secure and a non-secure channel respectively. An initial prototype
of the system has been built. Performance measurements made on
the prototype demonstrates the effectiveness of the security sieve
that leads to a significant performance improvement. A single
class QNM based analysis is performed to investigate
performance of systems handling a stream of multiple document
transfer requests arriving on the system. The modeling results
show that the performance improvement that accrues from the
security sieve increases substantially with the request arrival rate.
Further research is being planned and includes the following:

• Improving the system design by incorporating additional
performance optimization techniques such as batching of
multiple requests to be transferred, and using parallel
transmission over multiple secure and non-secure channels.

• A detailed modeling of the prototype using a layered queuing
model [8] for identifying and stretching software bottlenecks.
This will include modeling of systems that do not satisfy the
assumptions underlying separable queuing networks.

• Devising a tool for marking document components as classified,
a graphical user interface, and an API (to be used when the
request for transfer is made by an application).

• Devising techniques for automatically marking a document, and
adapting our algorithms to handle other types of data files such
as MS Word and PDF files.

6. REFERENCES
[1] Almuhaideb, A.; Alhabeeb, M.; Le, P.D; Srinivasan, B.,

"Beyond Fixed Key Size: Classifications Toward a Balance
Between Security and Performance," 24th IEEE International
Conference on Advanced Information Networking and
Applications, pp.1047-1053, 20-23 April 2010.

[2] Argyroudis, P.G.; Verma, R.; Tewari, H.; O'Mahony, D.,
"Performance analysis of cryptographic protocols on
handheld devices," Third IEEE International Symposium on
Network Computing and Applications, 2004., pp. 169- 174,
30 Aug.-1 Sept. 2004.

[3] Berbecaru, D., "On Measuring SSL-based Secure Data
Transfer with Handheld Devices," 2nd International
Symposium on Wireless Communication Systems, 2005.,
pp.409-413, 7-7 Sept. 2005.

[4] Chou, W., "Inside SSL: the secure sockets layer protocol," IT
Professional, vol.4, no.4, pp. 47- 52, Jul/Aug 2002.

[5] Cicso Systems, Inc. “White Paper: Introduction to Secure
Sockets Layer,” 2002.

[6] Eastlake, D.; Jones, P., US Secure Hash Algorithm (SHA1),
IETF RFC 3174, September 2001;
http://www.ietf.org/rfc/rfc3174.txt.

[7] Kant, K.; Iyer, R.; Mohapatra, P., "Architectural impact of
secure socket layer on Internet servers," International
Conference on Computer Design, pp.7-14, 2000.

[8] Lazowska, E. D.; Zahorjan, J.; Graham, G. S.; Sevcik, K. C.
Quantitative System Performance, Prentice Hall, 1984.

[9] Li, Z.; Iyer, R.; Makineni, S.; Bhuyan, L., "Anatomy and
Performance of SSL Processing," International Symposium
on Performance Analysis of Systems and Software, 2005.,
pp.197-206, 20-22 March 2005.

[10] Oracle Corporation, “All about Sockets,” [Online].Available:
http://download.oracle.com/javase/tutorial/networking/socket
s/ [Accessed October 16, 2010].

[11] Oracle Corporation, “Java Secure Socket Extension:
Reference Guide,” [Online]. Available:
http://download.oracle.com/javase/6/docs/technotes/guides/s
ecurity/jsse/JSSERefGuide.html [Accessed Oct.16, 2010].

[12] Portmann, M.; Seneviratne, A., "Selective security for TLS,"
Networks, 2001. Ninth IEEE International Conference, pp.
216- 221, 10-12 Oct. 2001.

[13] Potlapally, N.R.; Ravi, S.; Raghunathan, A.;
Lakshminarayana, G., "Optimizing public-key encryption for
wireless clients," International Conference on
Communications, 2002. , vol.2, pp. 1050- 1056.

[14] Rivest, R. L.; Shamir, A. ; Adleman, L., “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM 21, 2 (February 1978), 120-126.

[15] Song, Y.; Leung, V.; Beznosov, K. , "Supporting End-to-end
Security Across Proxies with Multiple Channel SSL," in
IFIP18th World Computer Conference (WCC’2004),
Toulouse, France, 2004, pp. 32.

[16] The SANS Technology Institute, “Security Laboratory:
SSL/TLS,” [Online]. Available: http://www.sans.edu
/resources/securitylab/ssl_tts.php. [Accessed Jan. 7, 2011].

474

	1. INTRODUCTION
	2. SECURITY SIEVE
	2.1 Sieve and Integration Algorithms
	2.1.1 Sieve Algorithm
	2.1.2 Integration Algorithm

	3. PROTOTYPE IMPLEMENTATION
	3.1 Security Sieve Client
	3.1.1 Client Connection Establishment
	3.1.2 Client send() Method

	3.2 Security Sieve Server
	3.2.1 Server Connection Setup
	3.2.2 Server receive() Method

	4. PERFORMANCE EVALUATION
	4.1 Effect of Queueing

	5. SUMMARY AND CONCLUSIONS
	6. REFERENCES

