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ABSTRACT 
Security in a distributed system often comes at the cost of a 
performance penalty. Due to the CPU time consuming security 
algorithms used, transferring data using SSL is known to be 
significantly slow. This paper presents an initial set of research 
results of a university-industry collaborative research focusing on 
a performance enhancement technique called security sieve that 
separates the classified and non-classified components in a 
document and sends these on a secure and a (faster) non-secure 
channel respectively.  Experimental results presented in the paper 
demonstrate the effectiveness of the technique. 

Categories and Subject Descriptors 
D4 Software, D.4.4 Message sending, D4.8 Modeling and 
prediction, D.4.8 Measurements 

General Terms 
Performance, Design, Security, Measurement. 

Keywords 
Secure Sockets Layer (SSL), SSL performance, performance 
engineering of SSL, performance optimization, security system 
performance. 

1. INTRODUCTION 
Performance optimization as well as performance modeling and 
analysis are important components of performance engineering. 
Existing work analyzing the performance of the Secure Sockets 
Layer (SSL) protocol shows that the incorporation of system 
security slows down data transfer rates significantly. This research 
concerns engineering SSL-based systems for enhancing system 
performance. 
Classified documents are often transmitted over secure channels 
that perform various security related operations (discussed in 
more detail later in this section) such as data encryption and 
decryption that consume a significant amount of processing time 
resulting in long document transmission times. Such classified 
documents are typically characterized by both classified and non-
classified components. A classified component may correspond to 
a chapter, paragraph or even a single sentence that needs to be 

protected. The non-classified components contain information that 
need not be protected. For example, only the name, the social 
insurance number and the address of a patient may need to be 
protected when sending a lengthy document on a patient’s 
medical history. Determining which components are classified is a 
responsibility of the user transmitting the document. In some 
cases the user may decide that protecting only certain key 
components as indicated in the previous example may be 
sufficient. In other cases designating additional information that 
can lead to the revelation of the classified information may be 
required. Sending only the classified components over the secure 
channel and sending the remaining components over (a faster) 
non-secure channel can potentially reduce the overall document 
transmission time and give rise to bandwidth savings. This paper 
proposes a security sieve that separates the non-classified 
components from the classified components and transmits them 
over non-secure and secure channels, respectively. The 
components are re-assembled at the receiving end to reconstruct 
the original document. The secure components can be “marked” 
by the author of the document. It may also be possible to 
automatically identify them based on a set of keywords. For the 
work discussed in this paper a “marked by author approach” is 
followed. Devising techniques for automatically marking a 
document can form an interesting direction for future research. A 
short discussion of SSL including a representative set of works on 
related performance issues is presented next.  
SSL (also known as the Transport Layer Security, TLS, protocol) 
is one of the common protocols used for providing secure 
communications between clients and servers over the Internet [9]. 
There are three main aspects of security [5], [9]: (1) 
confidentiality (and privacy), (2) message integrity, and (3) 
authentication. Confidentiality ensures the information that is 
transferred cannot be seen by a third party, whereas message 
integrity ensures that the information is not modified during the 
transfer. Authentication ensures that the communicating parties 
are the entity they claim they are. SSL uses cryptography, digital 
signatures, and certificates to provide confidentiality, integrity, 
and authentication, respectively. There are two types of 
cryptography: symmetric (private key) cryptography (SC) and 
asymmetric (public key) cryptography (AC). SC, which uses the 
same key for encryption and decryption, is commonly used to 
encrypt data for bulk data transfers. AC uses different keys for 
encryption and decryption, and is commonly used to exchange the 
private key used for SC. The SSL protocol has two main phases 
[5]: (1) the handshake phase and (2) the bulk data transfer phase. 
The handshake phase consists of cipher suite negotiation, 
authentication, and secret key exchange. The cipher suite specifies 
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the algorithms to use for: authentication, bulk data 
encryption/decryption, and secret key exchange. The secret key 
exchange mutually establishes the private key that is going to be 
used for bulk data encryption/decryption. In the bulk data transfer 
phase, encrypted data is exchanged between the client and the 
server. Each message exchanged is appended with a message 
authentication code (MAC) (also known as a digital signature) to 
ensure data integrity. 
Sending data through a secure channel can result in long transfer 
times due to the CPU-intensive operations that need to be applied 
to the data. These expensive operations include: operations 
performed by cryptography algorithms (to encrypt/decrypt data), 
and hash algorithms (to sign the data) [9]. Additional overheads 
are also incurred when opening (e.g., during the handshake phase) 
and closing the SSL channel. The performance impact of using 
SSL/TLS and the cryptography algorithms it uses was extensively 
studied in [2], [3], [7], [9]. As a result, much effort has been 
invested into developing techniques to improve the performance 
of secure communications. One common technique to improve the 
performance of secure communications is to speed up the crypto 
algorithms. There are two common approaches to speedup crypto 
operations [5]: (1) use specialized hardware accelerators with 
dedicated modular arithmetic units [4], and (2) use software 
optimized crypto algorithms and techniques (e.g. [13]). There 
have also been other approaches to improving secure 
communications. In [1], [12], and [15] the concept of selective 
security is used. The idea is to apply security only to the most 
sensitive information. A key benefit of selective security is that 
the use of the costly crypto operations can be reduced by applying 
the operations only to the data that requires it. The authors of [1] 
proposed a Dynamic Key Size (DKS) architecture that can be 
integrated into security protocols to provide more efficient secure 
mobile communications. The proposed approach uses information 
sensitivity level (specified by the user) and device capability to 
select a suitable algorithm key length. In [12], the authors 
proposed a simple extension to SSL/TLS protocol by specifying a 
new record layer type for the TLS protocol stack. The new record 
type, Cleartext Application Data, is used to transport the non-
classified documents. The main purpose of the virtual cleartext 
channel is to allow the non-secure information to be exposed to 
any intermediate system for content adaptation purposes. An 
extension to the SSL protocol called multiple channel SSL (MC-
SSL) was proposed in [15]. The idea was to have multiples 
channels between the client and server at different levels of 
security for various levels of data sensitivity. With MC-SSL the 
client is able to negotiate multiple SSL channels each with its own 
security characteristics (e.g. cipher suite).  
This research concerns engineering performance into the data 
transmission software that is responsible for the transfer of 
classified documents between two sites. The proposed security 
sieve approach is also based on the concept of selective security; 
however the main difference between our approach and existing 
research in [1], [12], and [15] is that these other techniques 
transfer separate documents with different security requirements 
over different channels. Our work, however; focuses on the 
transmission of a single classified document using the standard 
SSL/TLS protocol and introduces a mechanism to separate and re-
combine the non-classified and the classified components in the 
document. The secure components are transferred over a secure 
channel whereas the non-secure components over a non-secure 

channel. To the best of our knowledge such a technique has not 
been deployed by systems described in the existing literature. This 
paper presents some preliminary results of the research. The 
contributions of the paper include the following: 

• Security Sieve: a technique for separating/re-combining the 
non-classified components from the classified components in a 
document is introduced. An experimental demonstration of the 
performance improvement produced by security sieve is 
provided. 

• A discussion of the design and implementation of a prototype 
client-server system that supports the security sieve technique is 
presented. 

• Performance evaluation of the security sieve technique, 
comparing the prototype system with a client-server system that 
uses a single secure channel is performed.  A queueing 
network-based analysis is then used to investigate the impact of 
queueing on system performance. Insights gained into system 
behavior are described. 

The rest of the paper is organized as follows. A detailed 
description of the security sieve technique is provided in Section 
2. In Section 3, we describe the implementation of a prototype 
client-server system that supports the security sieve technique. 
Section 4 focuses on the performance evaluation of the security 
sieve technique compared to a client-server system that uses a 
single secure channel.  Lastly, Section 5 presents our conclusions 
and plans for future work. 

2. SECURITY SIEVE 
The security sieve technique is explained with the help of Figure 
1. First the original data (document to be transferred) is sieved (or 
separated) into classified and non-classified components. The 
non-classified data is sent using the non-secure channel and the 
classified information is sent using the secure channel (using 
SSL/TLS). At the receiving end, the data is reconstructed by 
integrating the separated data components received from the 
secure and non-secure channels.  

DataData Sieve
Secure Channel

Non-Secure Channel

Integrator

 
Figure 1: Overview of Security Sieve. 

2.1 Sieve and Integration Algorithms 
This section explains the sieve and integration algorithms (see 
Section 2.1.1-2.1.2). In this short paper we have used ASCII text 
files as the classified documents to be transferred. The 
performance benefits observed are expected to accrue for other 
types of documents as well. Adapting our techniques to handle 
other types of data files such as MS Word and PDF files is 
currently underway. To distinguish between classified and non-
classified text, a document is marked by the user with the 
following tags: (1) Secure Start Tag, <$S>: indicates where the 
classified text begins and (2) Secure End Tag, <$E>: indicates 
where classified text ends. Furthermore, the classified and non-
classified texts are stored in two lists: (1) Non-secure List: stores 
the non-classified text and (2) Secure List: stores the classified 
text components (transmitted securely).    
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2.1.1 Sieve Algorithm 
The sieve algorithm separates the classified and non-classified 
components in the original document, and stores the appropriate 
data in the Secure List or Non-secure List (as shown in Figure 2). 
The sieve algorithm uses two indices to specify the position that is 
being examined in the document: (1) Current Index: stores current 
position in the document, and (2) Previous Index: stores previous 
current index position in the document. 

Secure insecure Secureinsecure insecure

Original Data

Non-secure List

insecureinsecure insecureFirst

Secure List Secure Secure

Indicates the data in this list should be taken from first in the integration phase. 
1.

2.

3.

4.

5.

6.

Sieve Example

 
Figure 2: Example of sieve algorithm. 

First, it is determined whether the original document starts with 
classified or non-classified data by checking for the <$S> tag. 
The First List Tag, <!First!>, is added to the appropriate list so 
that the receiver knows which list, data should be taken from first 
during the integration phase. If the document starts with classified 
data, the algorithm searches for the <$E> tag, stores the position 
in the Current Index, and copies the data between the Previous 
Index and the Current Index (i.e. the text segment between the 
<$S> and <$E> tags), and stores copied data in the Secure List. 
The Previous Index is updated by assigning the Current Index 
value to it. Next, the document is searched for more Secure Start 
Tags starting from the Current Index position. If the tag is found, 
the data between the Previous and Current indices is copied, and 
stored in the Non-secure List. The Previous Index is then updated 
again. Next, the algorithm searches for <$E> and the data 
between the <$S> and <$E> tags is copied, and added to the 
Secure List. The operations continue in this fashion until there are 
no more <$S> tags found. The algorithm then checks if the end of 
the document has been reached and if not the data between the 
Previous Index and end of the document is copied, and added in 
the Non-secure List. 
2.1.2 Integration Algorithm 
The integration algorithm puts the separated data elements 
contained in the Secure and Non-secure Lists back to its original 
order in a new list called the Integrated Data List (IDL). First, the 
first entry of the Secure and Non-secure lists is checked to 
determine which list contains the First List Tag. If the first list is 
the Secure List, the first data element from Secure List is removed, 
and is added to the IDL. Otherwise, the first list is the Non-secure 
List, and only the First List Tag needs to be removed since the 
second phase of the algorithm starts by removing data items from 
the Non-secure List. The second phase algorithm involves 
removing data items from the Non-secure and Secure lists 
(alternating between the lists in sequence) and stores them in the 
IDL until both Secure and Non-secure lists are empty. This 
restores the original sequence of data segments since the Secure 
and Non-secure lists also keep the data segments in order. 

3. PROTOTYPE IMPLEMENTATION 
Java was used to implement a prototype security sieve client-
server system. Section 3.1 discusses the security sieve client, 
whereas Section 3.2 discusses the security sieve server. The 
sieving operations are performed by the client who transmits the 
components of the classified document, and the integration of the 
components is performed by the server.  

3.1 Security Sieve Client 
A class diagram of the security sieve client implemented for our 
prototype is shown in Figure 3. A client is created by invoking the 
SecuritySieveClient() constructor and specifying the following 
parameters: (1) server host name, (2) secure port number, (3) non-
secure port number, and (4) the cipher suite to be used for the 
secure channel. The start() method is used to run the client, and 
when invoked the client tries to connect to the server using the 
hostname and port number attributes. Details about the client 
connection establishment are discussed in Section 3.1.1. The 
askForInputFile() and readInputFile() private methods are used 
to get input from the user, and read the document that will be sent 
to the server. The sieve() method implements the sieve algorithm 
discussed in Section 2.1.1. The send() method writes the supplied 
data to the specified channel (explained further in Section 3.1.2). 
ArrayList objects (provided by Java’s Collections Framework) are 
used to implement the Secure and Non-secure lists. 

+ SecuritySieveClient(insecPortNum : int, 
secPortNum : int, servHostname : String, 
cipherSuite: String)
+ start()
- askForInputFilename() : String
- readInputFile(filename : String): String
- sieve(data : String, out secureData : ArrayList<>, 
out insecureData : ArrayList())
- send (bw : BufferedWriter, data : ArrayList<>) 

+ FirstListTag : String = "<!FIRST!>"
+ SecureStartTag : String = "<$S>"
+ SecureEndTag : String = "<$E>"
+MSG_DONE : String = "<!=DONE=!>"
+MSG_CLOSE  : String = "<!=CLOSE=!>"
+ Separator_Symbol : String = "<!$!>"
- insecurePortNum : int
- securePortNum : int
- serverHostName : String
- cipherSuite : String

SecuritySieveClient

+ SecuritySieveServer(insecPortNum : int, 
securePortNum: String)
+ start()
- receive (br : BufferedReader, out dataRead : 
ArrayList<>) : boolean
- integrate(secureData : ArrayList<>, 
insecureData : ArrayList()) : ArrayList<>
- processData (buffer : char[], charsRead : int, out 
dataRead : ArrayList<>) : boolean

+ FirstListTag : String = "<!FIRST!>"
+ SecureStartTag : String = "<$S>"
+ SecureEndTag : String = "<$E>"
+MSG_DONE : String = "<!=DONE=!>"
+MSG_CLOSE  : String = "<!=CLOSE=!>"
+ Separator_Symbol : String = "<!$!>"
- insecurePortNum : int
- securePortNum : int

SecuritySieveServer

 
Figure 3: Class diagram of the security sieve client and server. 

3.1.1 Client Connection Establishment 
The non-secure channel is established using Java’s TCP Socket 
API [10], and the secure channel is established using Java’s 
SSL/TLS Socket API. The SSL/TLS socket API is a part of the 
Java Secure Socket Extension (JSSE) [11].  First, the client 
attempts to establish the non-secure channel with the server by 
creating a Socket object (using Java’s Socket constructor).  The 
non-secure channel is established after the server accepts the 
connection.  Next, the client tries to establish a secure channel 
with the server by invoking the createSocket() method (using 
Java’s SSLSocketFactory API) with the hostname and secure port 
number private attributes as the parameters. Once the server 
accepts the connection, the secure channel is established, and the 
client sets the cipher suite to be used, and starts the SSL/TLS 
handshake. After both channels are established, the client retrieves 
the input/output (I/O) streams from both the secure and non-
secure sockets, and creates BufferedReader and BufferedWriter 
objects (part of Java’s I/O package) which are used to read/write 
data to/from the channels.  
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3.1.2 Client send() Method 
A sequence diagram of the send() method is shown in Figure 4. 
The send method writes the supplied data list to a channel using 
the specified BufferedWriter (created during the connection 
establishment phase).  Each element (or text segment) in the data 
list is sent separately by sending a Separator Symbol, <!$!>, 
between elements in the list (as shown in Figure 4). After all the 
data is written, the MSG_DONE message is sent to inform the 
receiver that all the data has been written. Each element in the 
data list is sent separately because the BufferedWriter/ 
BufferedReader objects cannot write/read ArrayList objects. The 
receive() method is explained in Section 3.2.2. 

Client : 
SecuritySieveClient

 

bw : 
Buffered

Writer

write(s)
 [ for each String s in data ]

loop

[not the last String] 
write(Separator_Symbol)

write(MSG_DONE)

Server : 
SecuritySieveServer

 

br : 
Buffered
Reader

charsRead = read(buffer[])
 [ isDone = true ]

loop

isDone = processData 
(buffer[], charsRead, sb, 
dataRead)

data

send() method

receive() method

data

Figure 4: Sequence diagrams of security sieve client send() and 
server receive() methods. 

3.2 Security Sieve Server  
A class diagram of the security sieve server implemented for our 
prototype is shown in Figure 3. The server is created by invoking 
the SecuritySieveServer() constructor, which accepts two 
parameters: (1) the port number for the non-secure socket, and (2) 
the port number for the secure socket. The start() method is used 
to start the server, and when invoked the server creates the secure 
and non-secure sockets, and listens for client connection requests. 
The server connection setup is explained in more detail in Section 
3.2.1. The receive() method reads data from the specified channel 
using the supplied BufferedReader and stores the data in the given 
dataRead parameter. The processData() method is invoked by the 
receive method, and is explained in more detail in Section 3.2.2. 
The integrate() method implements the integration algorithm 
discussed in Section 2.1.2. As in case of the client, ArrayList 
objects are used to implement the Secure and Non-secure lists. 
3.2.1 Server Connection Setup 
To listen for client requests, the server creates a secure (SSL/TLS) 
server socket by invoking the createServerSocket() method 
(provided by SSLServerSocketFactory API) using the 
securePortNum private attribute. Next, the non-secure (TCP) 
socket is created using the ServerSocket() constructor (provided 
by Java’s ServerSocket API) using the insecurePortNum attribute. 
Afterwards, the server waits for incoming client connection 
requests, and invokes the accept() method (on the socket objects) 
to accept the client requests. The secure and non-secure channels 
between the client and the server are now established. As in the 
case of the client, the server then retrieves the I/O streams from 
the sockets, and creates BufferedReader and BufferedWriter 
objects.  
 

3.2.2 Server receive() Method 
A sequence diagram of the receive() method is shown in Figure 4.   
The receive method reads 8192 characters from the channel at 
time via the supplied BufferedReader. The text segment that is 
read is passed to the processData() method. This method 
continually stores the text segments in a temporary String until a 
Separator Symbol, which separates the elements in the data list 
that was sent, is found. Once found, the data in the temporary 
String is added to the supplied data list. The processData() 
method returns true if MSG_DONE is received to indicate all the 
data has been read; otherwise, false  is returned, and reading 
continues. The goal is to construct a local ArrayList that is 
identical to the original ArrayList that the client sent. 

4. PERFORMANCE EVALUATION 
To evaluate the performance of the security sieve client-server 
system, we compared it to a conventional secure-only client-
server system. The secure-only system is an example of the state 
of the art: the client sends the entire document to the server over a 
secure channel. The goal is to compare the end-to-end response 
time of sending a document, which contains both classified and 
non-classified data, using the security sieve technique and using 
the conventional approach of sending the entire file securely. The 
client and server were connected via a LAN using a 100Mbps 
Ethernet connection. The client runs on a computer equipped with 
a 2.0 GHz Intel Core 2 Duo CPU and 2.0 GB RAM, running 
under the Windows 7 operating system. The server computer uses 
a 3.2 GHz Intel Core 2 Duo CPU and 2.0 GB RAM, running 
under the Windows 7 operating system. The exact nature of the 
machines is not important in the context of this research and we 
expect similar relative performances of the systems under 
comparison when different machines are used.  In the system 
deploying the security sieve technique, the client creates two 
threads: one thread each to send the non-classified data and 
classified data. Similarly, the security sieve server uses two 
threads: one thread to read data from the non-secure channel, and 
the other thread to read from the secure channel. The cipher suite 
used for the secure channels was SSL_RSA_WITH_3DES_ 
EDE_CBC_SHA. Rivest Shamir Adleman (RSA) algorithm [14] 
is used for public key cryptography and key exchange (1024-bit 
key size).  The Triple DES (3DES) algorithm [16] was used for 
private key cryptography. The Data Encryption Standard (DES) 
uses a 56-bit key. Triple DES applies the DES algorithm three 
times to each data block using different keys each time (for an 
effective key strength of 168-bit) [16]. Secure Hash Algorithm 
(SHA) is used for signing the data to ensure message integrity [6]. 
The experiments consisted of performing a document file transfer 
between two machines: one acting as the client and the other 
acting as the server. There were two file sizes used in the data 
transfer: 1MB, and 10MB. For the security sieve client-server 
experiments, the files were transferred using various percentages, 
P, of classified information in the document: 10, 50, and 90 
percent. We have used synthetic ASCII text documents for 
achieving this. The files contain the appropriate number of 
characters (and appropriate tags) but do not have any semantic 
value. In the experiments described a 1MB-P file contained 5 
equal segments of secure and 5 equal segments of non-secure 
segments. The length of a segment is computed from the length of 
the file and P.  A 10 MB-P file is obtained by copying the data 
generated for a 1MB file 10 times. We plan to investigate other 
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distributions of data segments in the future. For each file size, 
multiple experimental runs were conducted. The number of runs 
was chosen in such a way such that a confidence interval of ± 
0.5% at a confidence level of 95% was achieved.  The client 
makes one file transfer, records the total time, and then closes the 
channel(s). The total time measurements include both the 
connection establishment time and response time. To measure the 
response time, the data transfer time is measured first. A 
timestamp is taken (using the nanoTime() method provided by 
Java’s System class) before the data is sent, and when the client 
receives an ACK from the server. The data transfer time is the 
difference between the two timestamps. For the secure-only 
system the response time is the same as data transfer time, and the 
connection establishment time includes the time to setup the 
secure channel, and the handshake time. In the experiments with 
the security sieve system, in addition to the data transfer time, the 
response time also includes the time it takes to sieve the file, and 
integrate the components (re-combine the file). These values are 
measured by taking a timestamp before and after the respective 
method (sieve() or integrate()) is called, and then taking the 
difference between the timestamps. For security sieve system, the 
connection establishment time includes the time to setup the 
secure channel, the handshake time, as well as the time to setup 
the non-secure channel. The average response time, and average 
total time of each file transfer was calculated and plotted in Figure 
5 and Figure 6, respectively. Note that the “-P” suffix in an x-axis 
label means that P% of the data in the file was confidential and 
needed to be transmitted over the secure channel. Note that for the 
secure-only system, the entire document is transmitted  over a 
single secure channel, and both the average response time and the 
average total time depend on the size of the files transferred but 
are independent of P, the proportion of secure data  in the files. 
For all the 1 MB and 10 MB file transfers, the client-server 
system using the security sieve technique outperforms the single 
secure channel client-server system. The reason for the increased 
performance is that fewer CPU-intensive security algorithm 
operations needed to be executed which translated to shorter 
response times. This improvement in response time was large 
enough to compensate for the non-secure channel connection 
time, and sieve/integration time overheads. The average sieve and 
integration times for the 1MB files were 1.72 ms and 0.01 ms, 
respectively; and for the 10MB files, they were 16.9 ms and 0.03 
ms, respectively. The average non-secure channel connection 
establishment time was measured to be 25 ms. As expected; the 
largest improvement in performance is gained when transferring a 
file with a small percentage of classified information. For the 
1MB-10 and 10MB-10 files, the improvement in average response 
time was 67%, and 68%, respectively. For the 1MB-90 and 
10MB-90 files, for which most of the data is classified, the 
improvement in average response time is lower: 7% and 8% 
respectively. When we examine the average total time (see Figure 
6), security sieve improves the average total time only by 18% and 
54% for the 1MB-10 and 10MB-10 files, respectively. The 
decrease in improvement (compared to Figure 5) is due to the 
following: (1) the secure channel connection time and handshake 
time (on average 755 ms) makes up a large part of the total time 
for both the security sieve and secure-only cases, and (2) the 
additional non-secure channel connection time overhead incurred 
due to the security sieve. The reason for the larger decrease in 
improvement for the 1MB-10 file compared to the 10MB-10 file 
is because when transferring a smaller file, the connection 

establishment overhead makes up a more significant part of the 
total time compared to the response time; therefore, improving the 
response time does not have as much impact on the overall total 
time improvement. Note that on systems in which multiple 
documents are transfered bewteen a given site the overheads 
related to channles set up are incurred only once and the response 
time becomes the performance metric of interest. 

 
Figure 5: Security sieve vs. Secure-only response time 
comparison. 

  
Figure 6: Security sieve vs. Secure-only total time comparison. 
The performance improvement from the security sieve is 
dependent on the size of the document and P. Analyzing system 
performance to determine the minimum document size required 
for achieving a performance improvement for various values of P 
form an important direction for further research. 

4.1 Effect of Queueing 
The performance analysis presented in Section 4 focused on 
systems in which a single transfer request is processed at a time. A 
preliminary analysis of the impact of queueing delays incurred on 
systems in which multiple document transfer requests compete for 
the secure and non-secure channels is presented in this section. 
We have used a separable single class open queueing network 
model (QNM) [8] in this preliminary analysis for modeling both 
the security sieve and the secure-only systems that are subjected to 
a Poisson arrival stream of document transfer requests with an 
arrival rate of λ. As used in the queueing analysis of many real 
systems we have assumed that the requirements for the application 
of a separable QNM are met. The single server in each system 
models all the operations performed by the corresponding system. 
Using the response times obtained from the measurements on a 
single file transfer reported in Section 4 as service times (DSS for 

473



the security sieve system and DSO for the secure-only system), the 
average response times can be computed as [8]: 

R (security sieve) = DSS/(1- λ DSS) (1a) 
R (secure-only) = DSO/(1- λ DSO) (1b) 

Such an analysis that ignores the connection establishment time is 
important in the context of systems in which the receiver of the 
document is the same and multiple transfers are performed over 
the same connection. A sample graph for the 1MB-50 file is 
presented in Figure 7. As the arrival rate increases, more and more 
queuing occurs on the system and the performance improvement 
due to security sieve increases significantly. A similar relative 
performance between the two systems is expected when the total 
time is used as service times in the QNM. Such an analysis is 
useful when each document transfer involves a separate server and 
a new connection needs to be established for each transfer. 
Clearly, the utility of the security sieve increases substantially on 
systems that transfer multiple documents between sites. Almost an 
order of magnitude of improvement in performance is observed at 
λ = 0.003 requests/ms. 

  
Figure 7: 1MB-50 file average response time with queuing 
analysis. 

5. SUMMARY AND CONCLUSIONS 
This short paper introduces a security sieve technique for 
engineering secure document transfer systems for enhancing 
system performance. The technique separates the document into 
secure and non-secure components and transfers them over a 
secure and a non-secure channel respectively. An initial prototype 
of the system has been built. Performance measurements made on 
the prototype demonstrates the effectiveness of the security sieve 
that leads to a significant performance improvement. A single 
class QNM based analysis is performed to investigate 
performance of systems handling a stream of multiple document 
transfer requests arriving on the system. The modeling results 
show that the performance improvement that accrues from the 
security sieve increases substantially with the request arrival rate. 
Further research is being planned and includes the following: 

• Improving the system design by incorporating additional 
performance optimization techniques such as batching of 
multiple requests to be transferred, and using parallel 
transmission over multiple secure and non-secure channels. 

• A detailed modeling of the prototype using a layered queuing 
model [8] for identifying and stretching software bottlenecks. 
This will include modeling of systems that do not satisfy the 
assumptions underlying separable queuing networks. 

• Devising a tool for marking document components as classified, 
a graphical user interface, and an API (to be used when the 
request for transfer is made by an application). 

• Devising techniques for automatically marking a document, and 
adapting our algorithms to handle other types of data files such 
as MS Word and PDF files.  
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