
Automatic Performance Model Synthesis

From Hardware Verification Models
Robert H. Bell, Jr., Matyas Sustik, David W. Cummings, Jonathan R. Jackson

IBM Systems and Technology Group
Austin, Texas

{robbell, sustik, dwcummin, jrj1}@us.ibm.com

ABSTRACT
Performance models are typically written by hand for a new
model or assembled piece-meal from the prior simulation code
of an old model. In either case, many man-months of work may
be required to write the new model and validate design details
against a prior or current design. In reality, the majority of
information about the performance of the design already exists
in the design structure of either the old hardware model or the
new model or both.

To harvest this information and eliminate the significant
duplicate coding and validation efforts, we propose that a
performance model be automatically synthesized from a prior or
current hardware design using a bottom-up, design-oriented
approach. We demarcate the performance-critical boundaries of
the design and perform backward-trace cone analysis to identify
logic to include in the performance model. We then abstract
specific components for design changes and expend modeling
effort only on the few functions relevant to a particular design
study. Engineering effort then becomes focused on workload
selection and quality, defining and projecting new designs, and
assessing design tradeoffs and sensitivities – the small set of
tasks with the highest potential to improve design performance.

We present a case-study that shows that even the simplest
proposed transformations on a high-performance IBM L2 cache
design result in a simulation speedup of 3.9, with evidence that
an order of magnitude speedup can be obtained using a few
additional modeling abstractions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance, Design, Verification, Hardware Acceleration

Keywords
Benchmarking, Performance Modeling, Hardware Description
Languages, Hardware Acceleration

1. INTRODUCTION
Performance models that are developed to assess computer

performance in the early stages of design are traditionally
written by hand or assembled piece-meal from prior code long
before actual hardware is available. Development is generally
top-down, starting with analysis of overall instruction flow and
finishing with detailed microarchitectural tradeoffs. In a
development environment, a new hardware design is usually
based on an old prior design, and, likewise, the associated old
performance model is enlisted for the new modeling effort, but
only after the old model has been validated against the old
hardware using a functional model compiled from a hardware
description language (HDL) or by executing on a physical
machine if it is available [4].

In general, validation with hardware alone is difficult due
to limited performance monitor events, the coarse granularity of
the logical functions expressed by events, or imprecise counts,
so usually validation against an HDL functional simulation
model is employed. Experience shows that instruction latencies
and throughput through serial logic components of the system
must be correctly understood and accurately modeled, which
calls for direct compare with internal random logic macro
(RLM) and logical unit signals, the details of which may only be
available in a HDL functional model.

Validation of a hand-written performance model using an
HDL model or hardware is a laborious and error prone process
[5, 7, 4]. On a large, custom microprocessor design, many man-
months may be expended validating elements of the
performance model against the hardware. Hand-coded
microbenchmarks [5] or synthetic codes [14] may be used to
quickly validate specific instruction sequences. Automatic
benchmark synthesis improves the process by reducing the
number of instructions to be executed while assuring the
representativeness of the codes [3, 4]. Hardware acceleration
systems built from FPGA arrays or custom hardware may be
used to speedup processor simulations [4]. Despite these
techniques, HDL model simulation speeds may be orders of
magnitude slower than native hardware execution [4].

In this paper, we show that additional simulation speedups
may be obtained by reducing the size and complexity of the
HDL functional model itself. The implication is that a useful
performance model may be created by transforming a functional
HDL model into a reduced model that executes more efficiently.
This process of functional model reduction is a form of
performance model synthesis in which the design logic and
structures that are not performance-critical are identified and
pruned from the synthetic performance model. This bottom-up,
design-oriented performance model synthesis starts with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE ’10, March 14-16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

463

low-level logic blocks of a fully-functional design and ends with
a smaller control network that is capable of obtaining
representative performance running real workloads. Also
available are techniques specific for modeling data-dependent
design performance and design space exploration.

Significant benefits accrue from such a famework. Since
HDL models are frequently required for functional verification
as the design development proceeds, every verified HDL model
is potentially a more accurate performance model, in lockstep
with the design itself, and simulation of the synthesized model –
with only a few limitations – may proceed on the same
simulation platforms as the design verification, consolidating
verification and simulation resources. Automatic model
synthesis relaxes the need for hand-coded performance models
which, in turn, eliminates or reduces laborious and expensive
model validations against hardware. Engineering effort then
becomes focused on workload selection and quality, defining
and projecting new designs, and assessing design tradeoffs and
sensitivities – the small set of tasks with the highest potential to
improve design performance.

Essentially, we suggest that the HDL hardware model and
the performance model, including model compilation, analysis
and simulation, are two sides of the same coin. To our
knowledge, this is the first case study to combine a functional
verification environment with performance model synthesis.

The rest of this paper is organized as follows. Section 2
describes the performance model synthesis approach. Section 3
presents our case study, experimental results and current status.
Section 4 presents related work, and the final sections present
conclusions, future work and references.

2. PERFORMANCE MODEL SYNTHESIS
 To be automatic and current, a performance model must be

synthesized from the most recent HDL model, the same model
required for functional verification of the design.

Figure 1 shows a typical performance model development
effort for a real-world billion-transistor microprocessor. The
writing of the initial performance model (version “0”) begins
before the first HDL model (also version “0”) has been

compiled from the design and verified. Once both performance
and HDL models are in a relatively stable state,
microbenchmarks are executed on performance model 0 and on
HDL model 0, and any performance differences are resolved.
Meanwhile, HDL models 1 through 3 have been generated by
the design team as they check in code to fix bugs and add
function, prompting more validations. There is a large lag
between the start of the validation process and the perception
that the performance model is accurate and can project design
tradeoffs correctly. If the lag is too long, the final design
changes may go into the design before the performance model is
ready to assess them.

Eventually, the performance team codes the model for the
next pass design. When the performance model and HDL design
again reach stable states, another validation effort is undertaken,
again paralleling several iterations of new designs. Eventually,
code changes stabilize and validations become easier, but each

464

effort is still a lengthy process. The design-oriented approach
described below merges these efforts such that each verified
HDL model may be automatically processed into an equivalent
performance model. Note that design verification is required
before manufacture, and therefore a performance model
generated from a verified model is practically already validated.

2.1 Model Synthesis Overview
Figure 2 shows an overview of performance model

synthesis. The verification model in the upper left of Figure 2 is
a complex jumble of logic blocks and associated RLM
interfaces that have been compiled from an HDL design and are
ready to be simulated in a verification environment [10], labeled
“RTX”. We then verify that real workloads execute on the
design in the verification framework.

A design can be perceived from its several dimensions of
functionality, but the two most significant aspects of a design
are its control and data paths. The throughput of a modern
machine is generally determined by the control paths
independent of the data being used. In addition to the data path,
many other structures such as those related to reliability,
availability and serviceability (RAS), test and bring up, debug
switches, distributed clock buffers, and error checking and
handling have no impact on machine performance and can be
removed for the purposes of building the synthetic performance
model. In addition, depending on the type of performance model
desired, such as a basic model or specific unit test model, we
may remove large chunks of logic, eg. whole units, accelerator
functions, I/O units, non-cacheable instruction units, coherency
and synchronization operation logic, bus and memory prediction
structures, etc. In the case of a memory-subsystem only model,
entire cores of a chip multiprocessor may be pruned out.

We manually maintain a file of Keep/Cut nets for the
design, or, equivalently, annotate the HDL nets as necessary, so
as to define the set of nodes that will be preserved in or pruned
from the design. To enable high-level abstraction and design
studies (discussed below), we preserve the RLM and unit
boundary names in the final compiled HDL model, unless the
entire RLM can be removed in the synthesis process. As shown
in Figure 2, nets are also annotated for use by RTX control input
drivers, statistics collection, and output checker verification.

Figure 3 shows a simple example of the synthesis process.
In this case the Keep/Cut file or net annotations specify cuts at

points A and O2, and a keep for output O1. The process then
starts at the kept outputs and carries out a backwards cone trace
to inputs or cut nodes, marking as kept each node encountered.
When the cone analysis is finished, all unmarked nodes are
removed from the model.

Figure 4 shows a flowchart of the overall synthesis process.
Analogously to how design logic is removed in the cone
analysis, much of the RTX simulation environment may also be
removed. The “Lite-RTX” no longer contains drivers and
checkers for the datapath, RAS, error handlers, bring up, etc.,
and therefore is much smaller and faster.

If the synthesized performance model executes too slowly,
the Keep/Cut file may be augmented to further reduce the
performance model and RTX environment and thereby speed up
simulation run time more. Units or specialized functions may be
targeted, or nest or even unit performance models synthesized.
When the Lite-RTX monitors a chip model, it may do very little
other than check inputs and drive control grants for a memory
behavioral or check for the proper control signals on unit
interfaces as execution-driven workload instructions exercise
the model control paths. For a unit or nest model, it may provide
input driver stimulus from a performance verification pattern
(PVP) file or random pattern generator and check control signals
on outputs. All of these functions would exist already and
separately for the control interfaces in a properly-partitioned
verification environment [10]. In any case, the performance of
the synthesized performance model – in the form of the cycle-
accurate statistics monitored by the RTX - is equivalent to the
actual design performance at the desired level of model size and
complexity, without the need for additional laborious
simulations and validations.

2.2 Model Synthesis for Throughput Studies
Figure 5 shows an example of a trace-driven synthesized

performance model for a core-nest design. Since the data paths
have been removed from the model by the synthesis process, the
instruction trace consisting of addresses without any data feeds

465

naturally into the control functions of a throughput model
consisting of a reduced core and memory subsystem. The Lite-
RTX supports a DIMM memory behavioral and tracks system
performance but otherwise is required to do very little, which
improves simulation time. The Trace Interface Module formats
the trace into model-readable addresses and opcodes, and may
be written in high-level C-code or in HDL itself for compilation
and linkage into the performance model. The IBM HDL
simulation model permits linkage of VHDL compiled code with
high-level C-compiled code as long as the interface signal
definitions match and clocking semantics are understood [10].

2.3 Extensions for Data-Dependent Models
In modern processor designs, there are several cases in

which system performance is dependent on the particular data
set being processed. Examples include value prediction, bus
power reduction techniques, barriers, locking and
synchronization of multiprocessor threads. These structures can
still be studied using the reduced HDL model.

Figure 6 gives an example of extending the model to
support data-dependent performance simulation. A fast, register
transfer level (RTL) simulation of the application binary is
executed in parallel with the synthetic performance model. The
RTL simulator either interfaces to the trace formatter or formats
the instructions for the model itself, and it also supplies the
required data for instructions that are data-dependent. In the
PowerPC ISA, for example, the core HDL that compares a
cached data value with a reservation register value for a STCX
instruction would be provided with the data associated with the
instruction address, so that the correct locking behavior would
ensue. In the case of value prediction, a datum retrieved from
memory could be compared to a value previously predicted for
an execution unit calculation, which could lead to instruction
rollbacks and predictor updates. In the throughput case, data is
not needed to project performance, but for accurate multi-
threaded simulation, synchronization and locking may come to
dominate performance [8].

2.4 Design Space Exploration
With a framework as described above, an accurate

performance model can be synthesized from a functional HDL
model. But in addition to projecting the performance of a
design, performance models are required to carry out design
space explorations. Figure 7 depicts a reduced HDL model with
one RLM abstracted from low-level HDL to high-level C-code,
with a final transformation of the C-code to new design
functionality for a design study. As alluded to earlier, it is a
good idea to generously annotate the boundaries of units or
logic function in the HLD in order to enable design studies. The
performance engineer writes a high-level C-code replacement
for a unit or function, compiles and links it with the rest of the
compiled C-HDL complex, and quantifies its performance by

466

simulating workloads on it. He then replaces the high-level
function with the new design and compares the performance.

2.5 Model Validation Elimination
As described above, performance model synthesis virtually

eliminates the validation effort. In the traditional methodology,
the performance engineer must validate the old performance
model against the old hardware, update the model for the new
design, project performance, and, when available many months
later, hand-validate the new hardware against the new model. In
the new methodology, the performance model is synthesized
such that either old or new model is automatically valid versus
the target design. Synthesis based on an old design and model
can be carried out in order to confirm a correct synthesis
methodology prior to synthesizing the new model.

For design studies, the engineer abstracts and changes just
the few units or functions necessary for a particular design
study. RLM boundaries rarely change, so that as new designs
are generated, new performance models can be synthesized and
similarly modified by linking in previously-written high-level
code. Whereas in the past the vast majority of effort and
resources went to hand-code and/or validate a base performance
model for an old or new design, now the performance engineer
puts effort only into workload selection and quality, defining
and projecting new designs, and assessing tradeoffs. This results
in a more productive performance engineer focused on the tasks
with the most impact on design improvement.

3. MODEL SYNTHESIS CASE STUDY
The performance model synthesis process was applied to

the L2 unit of the POWER6 microprocessor. The POWER6 L2
is a 4 MB, 8-way set-associative, store-through, unified data and
instruction cache consuming a significant portion of the 341mm2
of the POWER6 chip die [9]. It contains 32 read-claim
machines, 8 castout machines, 8 bus snoop machines and runs at
half the frequency of the high-performance 5GHz+ frequency
core [9]. The L2 possesses well over one hundred unique RLMs

and custom logic blocks that comprise the L2 directory and
cache control, L3 castout control, bus snoop logic, error
correction and detection logic, distributed clock buffers,
datapath control, and coherency management and control.

3.1 Experimental Setup
The L2 VHDL compilation into an IBM HDL simulation

model for design verification replaces the directory SRAM cells
with high-level RTX behaviorals, which were retained for
performance model synthesis. The chip RTX was already well
partitioned into separate drivers and checkers for control and
datapath logic, which simplified development of the L2 Lite-
RTX as well as for mapping the unit and cache SRAM I/Os and
structures to nodes in the Keep/Cut file for model reduction.
Other nets internal to the L2 VHDL on datapath boundaries
were identified, annotated in the VHDL before compilation if
necessary, and placed in the Cut file. We focused on
synthesizing a model for throughput studies, so structures and
signals in the retained RLMs that rely on particular values for
reservation logic or coherency logic were tied to non-controlling
values using explicit assertions on annotated nodes.

The resulting Keep/Cut file was used for cone analysis and
pruning of the compiled L2 design. Of the unique RLM classes
in the design, about half operated only on the datapath and were
completely removed in the synthesis process. Well over two-
thirds of the total nodes in the original design were removed.

Figure 8 shows the resulting synthetic L2 performance
model simulation environment. The Lite-RTX can drive random
loads and store addresses into the control paths and check for
the proper addresses and store ordering on the directory, cache,
and bus interfaces, and it can drive the resulting grants and
acknowledgements back into the logic. As an alternative, a unit
PVP interface can drive specific sequences of strided addresses
and bursty traffic onto the interfaces, with the Lite-RTX
continuing to check ordering and drive expected return flow.

3.2 Experimental Results and Status
Experiments on random and PVP workloads show that the

synthesized performance model achieves equivalent
performance, including throughput, while experiencing a 3.9x
speedup in simulation time versus the original full L2 hardware
model. We hypothesize that an additional 2x speedup or more
may be obtained by abstracting the latch-clocking framework
and simulating latches logically, the so-called single-phase
clock simulation that is supported in the IBM HDL simulation
environment. For our experiments, we ran the simulation
environment without this feature, simulating both up and down
phases of clocks at the inputs of latches to accurately simulate
various latch design styles, such as L1-only or L2-only cycle-
stealing designs.

In addition, the current environment simulates both up and
down edges of clocks and signals in time to correctly handle the
special case of pulse generators. An additional speedup may be
obtained by removing clock generators and simulating logical
single-clock the design, also supported in the IBM HDL
simulation environment.

Overall, current results indicate that an order of magnitude
speedup over the base HDL model simulation is quite possible,
even without high-level abstraction of logic function. With high-
level abstraction as shown in Figure 7 and described in Section
2, simulation runtimes would improve further by consolidating
RLMs, simplifying control functions, and removing duplication

467

of function in different parts of the design.

4. RELATED WORK
There has been much work on synthesizing hardware

designs from high-level descriptions or co-design based on
performance descriptions (eg. [11]) but not on the reverse
process of synthesizing a performance model from a hardware
design. However, the need for more automatic performance
model synthesis from a design, especially for large system-on-
chip designs, is well-established [2]. Darringer, et al. [2]
recommend a top-down approach in which the system design is
mapped into a performance model either at a low-level for
accuracy or at a high-level in C++ for simulation speed.

Performance model functions can be mapped to design
blocks to ease model validation. Pimentel et al. [13] calibrate
the inter-component latencies in system-level simulation models
based on static latency tables and dynamically perturb the
system latencies to better match expected latencies.

Software and compiler studies can benefit from inferring
processor performance at a high-level. Cavazos et al. [6] predict
machine performance for compiler development using execution
results of a small set of benchmarks operated on by some
compiler transformations. Similarly, Augonnet et al. [1]
calibrate high-level models used for estimating performance of
code-scheduling algorithms in multi-processor pipelines. At a
higher level, Nurmi et al. [12] schedule workflow tasks in a grid
based on component simulation results on specific machines.
These techniques are suitable for fast performance estimation at
a static design point but are not appropriate for detailed
processor design studies.

5. CONCLUSIONS AND FUTURE WORK
Most of the information necessary for accurate

performance simulation and design studies already exists in old
or new hardware models compiled for the purposes of functional
verification. We propose that a performance model be
automatically synthesized from a prior or current hardware
design by demarcating the performance-critical boundaries of
the design and performing cone analysis to identify the logic to
include in the performance model, a bottom-up, design-oriented
approach. We then abstract components for design changes and
expend modeling effort on only the few functions relevant to a
particular design study. Engineering effort focuses on workload
selection and quality, defining and projecting new designs, and
assessing design tradeoffs and sensitivities – the small set of
tasks with the highest potential to improve design performance.

We provide a case-study showing that even the simplest
proposed transformations on a high-performance IBM L2 cache
design result in a simulation speedup of 3.9, with evidence that
an order of magnitude speedup can be obtained using a few
additional logical abstractions. Future work will focus on
extending the methodology to nest and system models, and
incorporating a functional simulator to project data-dependent
performance.

6. REFERENCES
[1] C. Augonnet, S. Thibault and R. Namyst, “Automatic

Calibration of Performance Models on Heterogenous
ulticore Architectures,” Proceedings of the 3rd Workshop
on Highly-Parallel Processing on a Chip, August 25, 2009.

[2] J. A. Darringer, R. A. Bergamaschi, S. Bhattacharya, D.
Brand, A. Herkersdorf, J. K. Morrell, I. I. Nair, O.
Sagmeister, and Y. Shin, “Early Analysis Tools For
System-On-Chip Design,” IBM. J. Res. & Dev., Vol. 46,
No. 6, November 2002, pp. 691-707.

[3] R. H. Bell, Jr. and L. K. John, “Improved Automatic
Testcase Synthesis for Performance Model Validation,”
International Conference on Supercomputing (ICS), June
20-23, 2005.

[4] R H. Bell, Jr., R. R. Bhatia, L. K. John, J. Stuecheli, J
Griswell, L. Capps, A. Blanchard, R. Thai, “Automatic
Testcase Synthesis and Performance Model Validation for
High-Performance PowerPC Processors,” International
Symposium on Performance Analysis of Systems and
Software (ISPASS), March 19-21, 2006.

[5] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer, May 1998, pp. 59-
65.

[6] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P.
O’Boyle, G. Fursin, and O. Temam, “Automatic
Performance Model Construction for the Fast Software
Exploration of New Hardware Designs,” International
Conference on Compilers, Archtectures and Synthesis for
Embedded Systems, October 23-25, 2006.

[7] R. Desikan, D. Burger and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation,”
International Symposium on Computer Architecture
(ISCA), 2001.

[8] C. Hughes and T. Li, “Accelerating Multi-Core Processor
Design Space Evaluation using Automatic Multi-Threaded
Workload Synthesis,” International Symposium on
Workoad Characterization (IISWC), September 2008.

[9] H. Le, W. J. Starke, J. S. Fields, S. J. O’Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz and
M. T. Vaden, “IBM POWER6 Microarchitecture,” IBM J.
Res. & Dev., Vol. 51, No. 6, November 2007, pp. 639-662.

[10] J. M. Ludden, et al., “Functional Verification of the
Power4 Microprocessor and the Power4 Multiprocessor
Systems,” IBM J. Res. & Dev., Vol. 46, 2002, pp. 53-76.

[11] P. Mishra, A. Kajariwal, and N. Dutt, “Rapid Exploration
of Pipelined Processors Through Automatic Generation of
Synthesizable RTL Models,” Proceedings of the 14th IEEE
Workshop on Rapid Systems Prototyping, 2003.

[12] D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wolski and
K. Kennedy, “Evaluation of a Workload Scheduler using
Integrated Performance Modeling and Batch Queue Wait
Time Prediction,” International Conference for High
Performance Computing, Networks, Storage and Analysis
(Supercomputing), November 2006.

[13] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas,
“Calibration of Abstract Performance Models for System-
Level Design Space Exploration,” J. of Signal Processing
Systems, Vol. 50, No. 2, February 2008.

[14] R. P. Weiker, “Dhrystone: A Synthetic Systems
Programming Benchmark,” Communications of the ACM,
Vol. 27, No. 10, October 1984, pp. 1013-103.

468

