In Search for Contention-Descriptive Metrics in HPC
Cluster Environment

Sergey Blagodurov
Systems Research Lab
Simon Fraser University

sergey_blagodurov @sfu.ca

ABSTRACT

In this paper, we argue that the modern HPC cluster environments
contain several bottlenecks both within cluster multicore nodes and
between them in the cluster interconnects. These bottlenecks rep-
resent resources that can be of high demand to several jobs, con-
currently executing on the cluster. As such, the jobs can compete
for accessing these resources and experience performance degra-
dation due to contention. We point out, that, although the con-
tention for shared resources like memory hierarchy of the cluster
nodes, accessing the cluster interconnects or sharing the floating
point unit can incur severe performance degradation to the cluster
workload, the state-of-the-art cluster schedulers do not contain ad-
equate means of addressing it. To fill this gap, we propose a new
set of metrics that models shared resource contention and repre-
sents a fine-grained information about each job’s resource utiliza-
tion and communication patterns. The necessary information can
be obtained with the performance counters within cluster nodes and
cluster interconnect monitoring between them.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling

General Terms

Algorithms, Management, Measurement, Performance

Keywords

HPC Clusters, Multicore systems, Scheduling, Shared Resource
Contention

INTRODUCTION

Assume the target environment of a High-Performance Comput-
ing (HPC) cluster. The nodes in the cluster are connected through a
cluster network and are managed by a cluster scheduler as one en-
tity. HPC cluster is a batch processing system. It executes a job at a
time chosen by the cluster scheduler according to the requirements
set upon job submission, defined scheduling policy and the avail-
ability of resources (unlike an interactive system where commands

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’11, March 14-16, 2011, Karlsruhe, Germany.

Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

457

Alexandra Fedorova
Systems Research Lab
Simon Fraser University

fedorova@cs.sfu.ca

are executed when entered via the terminal or a transactional sys-
tem, where the jobs are executed as soon as they are initiated by a
transaction request from outside the cluster).

A job submitted to the HPC cluster is typically a shell script
which contains a program invocation and a set of attributes allow-
ing cluster user to manage the job after submission and to request
the resources necessary for the job execution. The attributes specify
the duration of the job (walltime), offer control over when a job is
eligible to be run, what happens to the output when it is completed
and how the user is notified when it completes.

HPC cluster scheduler puts the job in a queue upon submission.
The queue contains the jobs waiting for the execution on the clus-
ter. Once the resources specified in the job submission script are
available, and if the job is eligible to run according to the cluster
policy, the scheduler starts the job and executes it for the duration
specified in the submission script. If the job terminates before that
time, scheduler will try to use the resources freed by the job ter-
mination to run other processes. However, it might be that no jobs
will be eligible to run at that time, so, in general, the cluster user
will be charged for the time specified in the submission script. If
the job needs more time to execute than is specified in the script,
the scheduler might try to allocate additional resources to the job. It
might not be able to do so, as different jobs might be already sched-
uled for execution immediately after. If that happens, scheduler can
terminate the job before its natural completion. In both cases, it is
essential for HPC cluster user to correctly predict the job execu-
tion time so that the user will not be charged for the unnecessary
resources if the job terminates early and so that her job will not be
killed by the cluster scheduler due to its extended execution time.

The right prediction of job execution time relies on knowledge
of what resources are necessary for the job to complete in the re-
quired amount of time. The existing cluster schedulers allow users
to post certain coarse-grained resource demands in the submission
script: the job can request a number of cluster nodes, processors,
the amount of physical memory, the swap or the disk space. All of
this information, however, does not reflect how sensitive the job is
to the resource contention from different jobs that will be simulta-
neously executing in the same cluster with the submitted one. The
possible resource bottlenecks that can result in performance degra-
dation due to job contention for them, include:

o Shared resource contention between the applications in the
memory hierarchy of each cluster node. We assume all nodes
to be multicore systems. In a multicore system (Figure 1),
cores share parts of the memory hierarchy, which we term
memory domains, compete for resources such as last-level

caches (LLC), system request queues and memory controllers [10,

13].

e Contention and overhead of accessing cluster interconnects

1 e
.

Domain 1

-
s

Domain 3 Domain 4

Domain 2

Figure 1: A schematic view of a cluster node with four memory
domains and four cores per domain. There are 16 cores in total,
and a shared L3 cache per domain.

(cluster network). It can occur when (a) cluster uses a file
server to store the data for the cluster jobs, (b) several pro-
cesses of the same job spread among cluster nodes would
want to communicate their data between each other (clus-
ter jobs are usually created using MPI, a Message Passing
Interface, or other APIs that would allow their processes to
exchange the data between each other, even if the processes
are running on different machines).

e Contention for a limited computational resource, most no-
tably Floating-Point Unit (FPU). This contention can occur
on certain processor models (e.g., UltraSPARC T1), where
there is only one Floating-Point Unit, shared between sev-
eral computational cores.

The types of resources specified upon job submission do not al-
low to provide fine grained description of resource requirements
of the job (i.e. how sensitive the application is to the memory re-
source contention, to the internode exchange of the data or to the
shared use of an FPU). Because of that, the application may en-
counter shortage of actual computational resources allocated to it
(e.g. cache space, memory controller bandwidth, internode inter-
connect bandwidth or the percentage of time on FPU), even though
the resource requirements specified during the job submission (the
number of nodes, cores per node, memory and so on) are perfectly
met.

This will in turn result in the incorrectly predicted execution time
for the contention-sensitive job. The probability of an incorrect pre-
diction increases in HPC clusters, as they are often used by many
users and each of them in general does not know which jobs will
be executed concurrently on the cluster at a given time.

We propose to address this problem with a new set of contention
descriptive metrics representing a fine-grained information about
each job’s resource utilization and communication patterns. It can
be used both by the cluster scheduler to help it make scheduling
decisions and by the cluster users to properly describe the jobs they
submit and to estimate the slowdown due to cluster sharing.

The rest of this paper is organized as follows: Section 2 describes
the experimental platform that we used, Sections 3, 4 and 5 each
devoted to a specific Contention-Descriptive Metric that addresses

458

one of the performance degrading factors outlined above. Section 6
concludes the paper with the discussion of possible ways the pro-
posed metrics can be used, the description of our future steps and
the feedback we would like to receive from the community.

2. EXPERIMENTAL PLATFORM

Table 1 shows the tools that we use for this work. We chose
state-of-the-art cluster schedulers (Maui and Moab) to test our tech-
niques with and several benchmarks, representative of a typical
HPC cluster workload. Some of them are clarified in more detail
below.

The High Energy Physics (HEP) SPEC benchmark is a set of
test applications which stress the processor with operations and al-
gorithms used commonly in applications from the physics commu-
nity. HEP-SPEC is based on the SPEC CPU2006 benchmark suite.
The reason why SPEC CPU2006 is not used as is, is because the
percentage of FP tests in the SPEC CPU2006 does not match that
of a typical HEP code. A subset of SPEC CPU2006 benchmarks
called all_cpp, was proposed [1] as a representative HEP bench-
mark suite. All_cpp is a set of seven benchmarks, three (471.om-
netpp, 473.astar, 483.xalancbmk) from the integer suite and four
(444.namd, 447.dealll, 450.soplex, 453.povray) from the floating
point suite, that gives a good match of the integer and FP instruction
set. SPEC HEP is used as a representation of the CERN workload.

HPCC stands for High Performance Computing Challenge bench-
mark and is actually a suite of benchmarks that measure perfor-
mance of the CPU, memory subsystem and interconnect. It consists
of 7 benchmark tests packed into one application - HPL (High Per-
formance LINPACK), DGEMM (Double-precision GEneral Matrix-
Matrix multiply), STREAM, PTRANS (Parallel TRANSpose, Ran-
dom Access, FFT (Fast Fourier Tranform) and communication band-
width/latency. Before testing, HPCC should be configured to run
on a particular cluster. We used Intel recommendations [6] when
we changed the input parameters in the configuration file hpccinf.txt
for this workload.

The NAS Parallel Benchmarks (NPB) is a set of benchmarks
which was derived from computational fluid dynamics (CFD) ap-
plications targeting performance evaluation of highly parallel su-
percomputers. They are developed and maintained by the NASA
Advanced Supercomputing (NAS). In our experiments, we use MPI
implementation of NPB 3.3 with input type C.

We constructed the cluster from the following systems:

Dell-Poweredge-R805 (AMD Opteron 2350 Barcelona) has
eight cores placed on two chips. Each chip has a 2MB 32-way
L3 cache shared by its four cores. Each core also has a private uni-
fied L2 cache and private L1 instruction and data caches. It is a
NUMA system: each CPU has an associated 4 GB memory block,
for a total of 8§ GB main memory. The server was configured with
a single 109 GB SCSI hard drive.

Dell-Poweredge-R905 (AMD Opteron 8435 Istanbul) has 24
cores placed on four chips. Each chip has a SMB 48-way L3 cache
shared by its six cores. Each core also has a private unified L2
cache and private L1 instruction and data caches. It is a NUMA
system: each CPU has an associated 4 GB memory block, for a
total of 16 GB main memory. The server was configured with a
single 76 GB SCSI hard drive.

Dell-Poweredge-R905 (AMD Opteron 8356 Barcelona) has
sixteen cores placed on four chips. Each chip has a 2MB 32-way
L3 cache shared by its four cores. Each core also has a private
unified L2 cache and private L1 instruction and data caches. Itis a
NUMA system: each CPU has an associated 16 GB memory block,
for a total of 64 GB main memory. The server was configured with
a single 109 GB SCSI hard drive.

| System aspect Tool(s) used

Resource allocator and job
scheduler

TORQUE PBS (TORQUE Portable Batch System, a job scheduler for UNIX clusters), Maui
(Open Source, used in conjunction with PBS), Moab (proprietary). Maui and Moab are cluster
schedulers for use on clusters and supercomputers. They are capable of supporting multiple
scheduling policies, dynamic priorities, reservations, and fairshare capabilities.

‘Workload SPEC MPI 2007 V2.0

SPEC CPU2006
HPC Challenge

Intel MPI Benchmarks 3.2

SPEC High Energy Physics (HEP), representative of CERN workload

NAS Parallel Benchmarks 3.3 (MPI version)

Table 1: Tools used within this study.

Sun UltraSPARC T1 has eight cores with 4 thread contexts per
core placed on one chip. The chip has a 3MB 12-way L3 cache
shared by its four cores. Each core also has a private L1 instruction
and data caches. It is a UMA system: the machine has a total of 32
GB main memory. The server was configured with a single 30 GB
SCSI hard drive.

Since we are focused on CPU-bound workloads, which are not
likely to run with more threads than cores [9, 11], we only eval-
uate the scenarios where the number of threads does not exceed
the number of cores. If you schedule more processes to run than
there are available cores, this is referred to as oversubscribing,
which can result in performance degradation and hence is not rec-
ommended [7] (mpirun Linux tool, for example, has a special —
nooversubscribe option which returns an error and does not execute
the command if the number of processes requested is greater than
the cores available on the cluster).

All systems were running Linux Gentoo 2.6.29 release 6.

3. MISSRATE: A METRIC OF CONTENTION

FOR MEMORY HIERARCHY WITHIN
CLUSTER NODE

Multiple studies investigated ways of reducing resource contention

within a mulicore machine (a cluster node). One of the promis-
ing approaches that emerged recently is memory contention-aware
scheduling [10, 13]. Consider a workload of memory-intensive ap-
plications, i.e., applications that are characterized by a high rate of
requests to main memory. Following the terminology adopted in
an earlier study [12] we will refer to these applications as devils.
Applications with a low rate of memory requests are referred to as
turtles.

Our methodology from the earlier work allowed us to identify
the last-level cache (LLC) miss rate, which is defined to include all
requests issued by LL.C to main memory including pre-fetching, as
one of the most accurate predictors of the degree to which appli-
cations will suffer when co-scheduled. We used it to design and
implement a new scheduling algorithm called Distributed Intensity
Online (DIO). DIO separates devils on different levels of memory
hierarchy of the multicore system as far from each other as pos-
sible [10], thus reducing contention for memory hierarchy of the
node. It uses missrate metric to detect the memory intensiveness of
the applications (whether its a devil or a turtle).

We showed experimentally on two different multicore systems
that DIO performs better than the default Linux scheduler, delivers
much more stable execution times than the default scheduler, and
performs within a few percentage points of the theoretical optimal.
DIO dynamically reads miss counters and schedules applications

459

in real time. DIO was implemented at user-level (just like a typi-
cal cluster scheduler), and although it could be easily implemented
inside the kernel, the user-level implementation was sufficient for
evaluation of this algorithm’s key properties [10].

In the rest of this section we provide the experimental results
of comparing performance under DIO to the default contention-
unaware scheduler in Linux (referring to the latter as DEFAULT)
within the cluster environment. The goal of these experiments is
to show, that the LLC missrate metric retains its value for the MPI
and HEP workloads, typical of an HPC cluster.

The prefetching hardware was fully enabled during these exper-
iments. To account for the varied execution times of benchmark
we restart an application as soon as it terminates (to ensure that the
same workload is running at all times). An experiment terminates
when the longest application had executed three times.

SPEC HEP. Figure 2 shows performance of DIO relative to the
default Linux scheduler. The average, the worst-case performance
improvement relative to the default scheduler, as well as reduc-
tion in the standard deviation of completion times are shown. The
results demonstrate that DIO performs better than Default (by as
much as 43% in some cases). Higher numbers are better in both
cases. Worst-case performance improvement is obtained by com-
paring the worst-case performance (across all the runs) under the
both algorithms. These metrics indicate that contention-aware al-
gorithms provide more stable performance for the HEP workloads.
While Figure 2 suggests that in all cases, DI-NUMA outperforms
default, the benefit from contention-aware scheduling is the most
noticeable when scheduling processes with highly distinctive mem-
ory access patterns. Workloads comprised of strong devils (high
miss rate) and strong turtles (low miss rate) reap higher benefit from
DIO (Figure 2(a)). The workloads comprised of semidevils (the ap-
plications whose memory intensiveness slips in between devils and
turtles and so is hard to classify) (Figure 2(b)) do not leave a lot of
room for improvement, so the benefits here are moderate.

It is important to keep in mind that HEP-SPEC is not a traditional
clustered HPC application, and does not require communication
or data coherency across cluster nodes. For this reason, clusters
designed to maximize HEP-SPEC throughput may not be ideally
suited for clustered HPC applications [5]. Hence, scheduling algo-
rithms for general-purpose clusters should not be based solely on
HEP-SPEC results, but should be supplemented with standard clus-
ter benchmarks such as HPC Challenge, NAS, Intel MPI bench-
marks or SPEC MPI.

HPCC and NAS. Figure 3 shows the performance benefit from
using DIO with the workloads comprised of HPCC, HEP SPEC and
NAS benchmarks on AMD machine with 8 cores. A process title
with a pound sign "# next to it means that the process was a part

50 M average time improvement (%)

M worst time improvement (%)
Otime deviation improvement (%)

40
30
20
10

soplex soplex2 soplex3 soplex4 namd namd2 namd3 namd4

40
30
20
10

-10

M average time improvement (%)
B worst time improvement (%)
Otime deviation improvement (%)

(a) Relative performance improvement of the DIO over the DEFAULT for strong devils/turtles.

M average time improvement (%)
M worst time improvement (%)
Otime deviation improvement (%)

O B N W & U

xalan2 xalan3 xalan4

xalan

astarr astarr2 astarr3 astarr4

15

B average time improvement (%)
M worst time improvement (%)
Otime deviation improvement (%)

deal2

deal

astar astar2 astar3 astard deal3 deald

(b) Relative performance improvement of the DIO over the DEFAULT for semi devils.

Figure 2: Relative performance improvement of the DIO over the DEFAULT for HEP SPEC on AMD machine with 8 cores.

300 - M average time increase (%) @ network traffic (mbps) - 170

2 &
3L 250 b 100 &
S 3 E
&2 200 Fr8o o
83 £
£5 150 1 F60 £
g.g ¥
£% 1001 Fao g
Q= -
yg 50 - a0 2
o
Zf o L o

C D D D 2 S AAO DD L PO

(OGN T S S S I I\ P O L & N

& c,%si\\"ov'”o &L ¢ QOQ&\ « $

FEELS NS A

&S ¢

Figure 4: Average time increase and network traffic for the 8
process MPI jobs scheduled on 2 nodes (4 processes per node)
relative to a schedule on one node. The bars represent the ex-
ecution time decrease and the amount of traffic for the entire
job. Correlation between performance degradation and traffic
is 0.73.

of an MPI job. The results are generally similar to those for HEP
SPEC alone showing that contention-aware scheduling algorithms
can be beneficial for MPI and mixed workloads as well.

4. NETWORK TRAFFIC: A METRIC FOR
DEGRADATION DUE TO ACCESSING
CLUSTER INTERCONNECTS

A typical HPC cluster job can span several nodes within the clus-
ter. In case the job processes that are running on different nodes
would want to communicate between each other, they could do so
by explicitly exchanging messages according to a specific protocol,
defined at the program creation. The technology to allow cross-
node communication in a cluster is usually MPI.

Figure 4 shows the degradation that MPI jobs from SPEC MPI2007
suite suffer when their processes are forced to communicate be-
tween each other using cluster interconnect. In these experiments,
each MPI job is comprised of 8 processes. The execution time of
the job was recorded for a setup where 8 processes were spread
across 2 cluster nodes (4 processes on each node) and for a setup
when all the processes were running on the same node. The ex-

460

ecution time degradation (black bars) is given for the first setup
relative to the second one. As can be seen, the slowdown varies
greatly from job to job, but it can be as high as 778% for some MPI
applications. The grey bars on the same graph show the average
traffic that each of the nodes in the two-node setup send and re-
ceive in megabits per second (mbps) of a job execution. The traffic
for the one-node setup was very close to zero, suggesting that the
job processes were primarily exchanging data between each other,
rather than with the NFS server on which job inputs were stored.

We used capstats [3] to measure traffic of each node. Capstats is
apackage that is shipped with Bro (a Unix-based Network intrusion
detection system) [2] to measure the bandwidth used by a network
connection.

The data on Figure 4 suggests a correlation between the degra-
dation due to accessing of cluster interconnects and the amount of
traffic that nodes exchange per second. Hence, the traffic measured
in mbps in real time can be used as a contention descriptive metric.

S. FPINSTRUCTION AMOUNT: A METRIC
FOR DEGRADATION DUE TO FPU SHAR-
ING

The UltraSPARC T1 microprocessor with its 32 thread contexts
spread among 8 cores was designed for network-facing high-demand
servers, such as high-traffic web servers and mid-tier Java applica-
tion servers, which often utilize a large number of separate threads.
Small database applications (e.g. MySQL) which have a large
thread count was also shown to perform well on it [8].

One of the limitations of the T1 design is that a single floating
point unit is shared between all 8 cores, making the T1’s floating
point workload vulnerable for the performance degradation due to
accessing of the shared FPU. Table 2 illustrates this phenomenon.
Here we chose six benchmarks from SPEC CPU2006, three of
those are from Integer category of the benchmark suite and the
rest three are from FP category. The table presents the perfor-
mance degradation of co-running an instance of application in the
left vertical column of the table with the seven instances of an ap-
plication shown in the upper row of the table. Thus, at any point
during the experiments, eight programs were running on the sys-
tem. Each instance run on its own T1 core, so that there were
no sharing of core’s computational resources through thread con-

hpcc#0 hpcc#1 hpcc #2

hpcc#3 hpcc#4 hpcc#5 hpcc#6 hpec #7

M average time improvement (%)
B worst time improvement (%)
Otime deviation improvement (%)

1%
W

(a) Relative performance improvement of the DIO over the DEFAULT for HPCC, NAS and HEP-SPEC for strong devils/turtles on AMD 8§

cores.

M average time improvement (%)
M worst time improvement (%)
Otime deviation improvement (%)

cg.C.4#0 cg.C.4#1 cg.C4#H2 cg.C4#3 povray povray2 povray3 povrayd

(b) Relative performance improvement of the DIO over the DEFAULT for semi devil NAS and HEP SPEC workloads on AMD 8§ cores.

10

M average time improvement (%)
M worst time improvement (%)
Otime deviation improvement (%)

cg.C.4#0 cg.C.4#1 cg.C.4#2 cg.C.A#3 astar astar2 astar3 astar4

Figure 3: Relative performance improvement of the DIO over the DEFAULT for the mixed workloads comprised of HPCC, HEP

SPEC and NAS on AMD 8 cores.

texts. The benchmarks of different memory intensity (devils, tur-
tles) were chosen from each category.

Table 2 suggests that the degradation of co-running an FP bench-
mark with a benchmark from an FP category results in much higher
degradation than in the case where integer benchmarks were in-
volved. So in order to predict, whether the program will experi-
ence contention due to FPU sharing, we could use the number of
FP instructions in the program as a metric.

Sun provides a tool called cooltst for analysing an application’s
level of parallelism and use of floating point instructions to deter-
mine if it is suitable for use on a T1 platform [4]. Cooltst looks
at the workload being executed by the system by all processes and
bases its recommendations on two main criteria:

1. Percentage of instructions which are floating point. If the
floating point content of the workload is high then the workload
may not be suitable for an UltraSPARC T1 processor.

2. Parallelism. cooltst evaluates the degree of potential thread
level parallelism, as measured by the spread of CPU consumption
among software threads, and instruction level parallelism, as mea-
sured by the cycles per instruction (CPI). A highly parallel work-
load may well exploit the hardware parallelism of CMT processors
to achieve high throughput. A workload with low parallelism may
not.

6. CONCLUSION AND FUTURE WORK

The contention-descriptive metrics outlined above can be used in
HPC cluster environment in the following ways:

o Estimation of the job execution time by the user. The metrics
contain valuable information about the sensitivity of a par-
ticular job to the resource contention in an HPC cluster. If
several metrics indicate that the job is not contention sensi-
tive (e.g. profiling during a test run revealed that the job has a
low missrate, close to zero traffic between its processes and
low percentage of FP instructions), then the job will likely
not experience the change in execution time when submit-
ted on cluster, regardless of how its processes will be spread
across cluster nodes or what jobs will run alongside with it.

o Supplying cluster scheduler with the sensitivity profile of the

461

Jjob upon submission. The metrics can be obtained by the
user during a test run and then included in the resource list
specified in the submission script together with the existing
parameters of number of cores, memory, etc. This new infor-
mation will help cluster scheduler to make better decisions
on when and how schedule that job in the cluster. For exam-
ple, if the job appears to be sensitive to accessing the cluster
interconnect, as is suggested by the big network traffic value,
the scheduler might take it into account and try to schedule
the job on as few nodes as possible. The high percentage of
FP instructions is a good reason for a scheduler to prevent
the job submission on T1 nodes together with other FP jobs.

e Online monitoring of cluster workload by the scheduler. The
mechanism of hardware performance counters, that exists on
all major processor models, allows cluster scheduler to ob-
tain the sensitivity metrics of the jobs online, as they exe-
cute. As a result, it can take into account dynamic change
in application behaviour and react accordingly, delaying or
migrating sensitive jobs away from each other.

Designing a cluster scheduler that will accommodate all the points
outlined above is the main future course of this study. We are also
working on improving the precision of our metrics. For exam-
ple, LLC missrate can be potentially used with different parame-
ters that describe the memory access patterns of the workload. The
network traffic metric can be revised to distinguish between dif-
ferent jobs executing on the node'. Another direction of research
would be testing the prediction accuracy of sending/receiving traf-
fic separately and the sensitivity of the performance degradation to
the phases in application execution and traffic intensity. While the
amount of FP instructions can be detected offline with the tools like
cooltst, it is currently not clear how to obtain this metric online, as
hardware counters on T1 lack the information about floating point
calculations in its workload. We are also working on identifying
other sources of performance degradation in HPC clusters and on
devising a descriptive metrics for them.

! Although our data obtained from an industry-size HPC cluster
suggests that running several jobs on the same node is perhaps not
as typical as we initially thought.

Integer Benchmarks FP Benchmarks
sjeng | perlbench | omnetpp | povray | zeusmp | milc
sjeng 0.71 | 0.24 0 0.08 0.94 0.79

Int | perlbench | O 0 0 0 3.17 0
omnetpp | 0.20 | O 0 8.55 3.67 13.24
povray 036 |0 0 62.41 | 27.37 85.04
FP | zeusmp 0 2.33 0 46.51 | 13.95 55.81
milc 0.57 | 0.77 0.77 78.35 | 34.87 82.76

Table 2: Percentage of performance degradation due to FPU sharing for SPEC CPU2006 benchmarks on SPARC T1 machine. The
cases when FP benchmarks were co-scheduled together resulting in increased performance degradation are highlighted in bold.

We would be very interested to hear expert opinions on our ideas
and, possibly, a suggestions about the further direction in which our
research should go.

7. REFERENCES

[1] Benchmark and market analysis of worker node for HEP
farms. [Online] Available: http://www.infn.it/CCR/server/.

[2] Bro Quick Start Guide. [Online] Available:
http://www.bro-ids.org/Bro-quick-start.pdf.

[3] Capstats: a quick hack to get some NIC statistics. [Online]
Available: http://www.icir.org/robin/capstats/.

[4] CoolThreads Selection Tool. [Online] Available:
http://www.opensparc.net/sunsource/cooltools/www/cooltst/.

[5] Designing research computing solutions for the
CERN/ATLAS program. [Online] Available:
http:/fwww.dell.com/downloads/global/power/ps4q09-
20100175-Stemple.pdf.

[6] Hpl application note. [Online] Available:
http://software.intel.com/en-us/articles/performance-tools-
for-software-developers-hpl-application-note/.

[7] Oversubscribing nodes. [Online] Available:
http://docs.sun.com/source/819-7480-
11/ExecutingPrograms.html#50634758_48929.

[8] UltraSPARC T1. [Online] Available:
http://en.wikipedia.org/wiki/UltraSPARC_T1.

[9] D. an Mey, S. Sarholz, and C. Terboven et al. The RWTH
Aachen SMP-Cluster User’s Guide, Version 6.2. 2007.

[10] S. Blagodurov, S. Zhuravlev, and A. Fedorova.
Contention-aware scheduling on multicore systems. ACM
Trans. Comput. Syst., 28:8:1-8:45, December 2010.

[11] R. van der Pas. The OMPlab on Sun Systems. In Proc. of
IWOMP’05, 2005.

[12] Y. Xie and G. Loh. Dynamic Classification of Program
Memory Behaviors in CMPs. In CMP-MSI, 2008.

[13] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
Contention on Multicore Processors via Scheduling. In
ASPLOS, 2010.

462

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

