
Quantitative System Evaluation with Java Modeling Tools
(Tutorial Paper)

Giuliano Casale∗

Imperial College London
Dept. of Computing

London, SW7 2AZ, U.K.
g.casale@imperial.ac.uk

Giuseppe Serazzi
Politecnico di Milano

Dip. Elettronica e Informazione
I-20133 Milan, Italy

giuseppe.serazzi@polimi.it

ABSTRACT
Java Modelling Tools (JMT) is a suite of open source ap-
plications for performance evaluation and workload charac-
terization of computer and communication systems based on
queueing networks. JMT includes tools for workload charac-
terization (JWAT), solution of queueing networks with an-
alytical algorithms (JMVA), simulation of general-purpose
queueing models (JSIM), bottleneck identification (JABA),
and teaching support for Markov chain models underlying
queueing systems (JMCH). This tutorial summarizes the
main features of the tools that compose the suite. Further-
more, using a composite case study, we provide intuition on
the versatility of JMT in dealing with the different aspects
of quality-of-service (QoS) evaluation, what-if analysis, and
software performance tuning.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Performance

Keywords
Tools, Performance Evaluation, Modeling, Simulation, Load
Balancing, Bottlenecks detection, Queueing Networks

1. INTRODUCTION
Ongoing work in the software performance modeling com-

munity has significantly stressed the importance of devel-
oping automated or semi-automated frameworks for perfor-
mance optimization and management of complex applica-
tions [8,9]. This is especially important in the design phases

∗The work of Giuliano Casale has been funded by the Im-
perial College Junior Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

of a large-scale software in order to avoid taking choices that
result in poor quality of service (QoS).

The Java Modelling Tools suite (JMT) is here proposed
as tool to visually help software and system performance en-
gineers to predict the performance of a system and quickly
answer what-if questions. JMT is released as an open source
tool suite that can be downloaded free from http://jmt.

sourceforge.net. Thanks to the availability of Java sources,
JMT functionalities may be freely integrated or interfaced
via XML with other tools, as done for example in Opedo [1].

JMT consists of six applications that communicate using
XML with a core algorithmic module composed by the sim-
ulation engine (JSIMengine) and by a library of analytical
functions for performance model evaluation.

• JSIMgraph is a graphical design environment for queue-
ing network models which is tightly coupled to the JSI-
Mengine for running discrete-event simulation. JSIMwiz
replaces the graphical framework of JSIMgraph with a
set of wizards that guide the user through the definition
of a queueing model. The tools generate XML specifica-
tions of simulation models, pretty-print visualization of
complex networks, automatic model debugging, support
for what-if analyses, and dynamical presentation of sim-
ulation state, performance metrics estimates and related
confidence intervals. JSIMengine supports the evalua-
tion of the most popular types of queueing models and
several constructs that cannot be solved with exact ana-
lytical techniques like multiclass queueing networks with
blocking, priorities, fork-and-join elements, burstiness,
and state-dependent routing schemes.

• JMVA is a graphical user interfaces for the analytical
evaluation of queueing network models. The tool re-
lies on an implementation of the Mean value Analysis
(MVA) algorithm for closed networks, together with its
extensions for open and mixed networks.

• JABA is an analytical tool for automatic identification of
the bottlenecks in multiclass closed queueing networks.
The tool receives in input a set of service demands spec-
ifying the speed of each server in processing requests of
the different classes. JABA identifies the mixes of re-
quests of the different classes that saturate concurrently
more than one resource. It uses efficient convex-hull al-
gorithms. This saves the computational costs of a long
simulative analysis over different mixes of requests.

• JWAT tool supports the workload characterization pro-
cess. Algorithms for data scaling, sample extraction, out-
lier filtering, k-means and fuzzy k-means clustering for

449

http://jmt.sourceforge.net
http://jmt.sourceforge.net

Application Servers Storage ServersWeb Server

presentation
tier

business
tier

data
tier

workload 2

workload 1

Figure 1: The topology of the example 3-tier system

identifying similarities in the input data are provided.
These techniques allow the identification of cluster of
customers having similar characteristics. The clusters
centroids represent the mean values of the parameters of
the classes (e.g., CPU time, number of I/Os, number of
web pages accessed) that can be used for the workload
parameterization. The characterization of time-varying
workloads (e.g., burstiness analysis) and the fitting of in-
put data with exponential and Pareto distributions are
also supported.

• JMCH application is a graphical simulator of M/M/c
and M/M/c/K queues. The simulation state is visual-
ized both on the queue buffer and on a Markov model
representing the system state.

2. LEARNING JMT BY EXAMPLE
In this section, we provide a case study to illustrate two

applications of the JMT suite, namely JAVA and JMVA.
The case study considers the performance analysis and op-
timization of the 3-tier enterprise system illustrated in Fig-
ure 1. This is composed by a Web Server (presentation tier),
2 Application Servers (business logic tier), and 3 Storage
Servers (data tier) for DBs. The evaluation of performance
metrics such as throughputs and response times is here ob-
tained using the JMVA tool, which considers product-form
queueing networks hence it implicitly takes assumptions re-
garding exponentiality of service times for first-come first-
server queues and other properties of the queueing network
model [3]. For systems where such assumptions are not sat-
isfied, JMVA results can be equivalently replaced by the
simulation-based estimated provided by JSIMgraph or JSIMwiz [4].

The workload of the system consists of two classes of ap-
plications which have different requirements in terms of the
amount of resources requested. Furthermore, each applica-
tion may be subject to a different QoS constraints. The
two application classes are data intensive: data processing
for the first class and data updating the second class. We
assume that, for performance reasons, the maximum num-
ber of requests simultaneously in execution is limited to N ,
therefore we consider a closed queueing model. This is a con-
venient assumption to model load balancing based on admis-
sion control or to describe the performance of systems which
use a finite number of software threads to serve requests. For
the sake of illustration, let us set N = N1 + N2 = 100 as
the constant number of requests in execution, where N1 ≥ 0
and N2 ≥ 0 are the number of requests in execution for the
two application classes, respectively. The objectives of the
case study are twofold:

Figure 2: Service demands of the requests of the two
classes for the resources of the system.

• to study the performance behavior of the system as a
function of the different mix of requests in concurrent
execution;

• to determine the optimal load balancing of the system
that maximizes the global application throughput while
satisfying the QoS constraints.

In order to achieve these goals, we can follow a methodology
that combines the features of JMVA and JABA. JMVA is
used to estimate the performance of the system for a given
parameter range. Conversely, JABA is used to drive in a
computationally efficient manner the guessing of the optimal
load balancing for the system. The main steps of the case
study are:

1. Identify with JABA the bottlenecks of the system with
respect to all the possible mixes of requests in execu-
tion. This allows to quickly identify what resources
may limit the performance of the system under all pos-
sible workload mixes (N1, N2) under the assumption
that N = N1 +N1 is asymptotically large.

2. Evaluate with JMVA the most important performance
measures, e.g., throughput, response time, resource
utilization, system power, per-class and at the system
level with respect to all the possible mixes of requests
in execution. This refines the information obtained
in the previous step by considering the actual value
N = 100 in place of the asymptotic one. For large
models, it may be useful to restrict the range of analy-
sis to a subset of workload mixes following the insights
obtained from JABA.

3. Compute with JABA the optimal load balancing that
maximizes the system throughput. JABA supports the
dynamic re-evaluation of a system’s asymptotic perfor-
mance without the need of solving the models with
a computationally intensive procedure as in JMVA.
Hence, one could visually retune the system load bal-
ancing in order to obtain a more performing configu-
ration.

4. Evaluate with JMVA the new performance metric val-
ues with respect to all the possible mixes of requests
in execution. This validates for N = 100 the load bal-
ancing reconfigurations suggested by JABA.

To characterize the requests of the applications in terms of
processing requirements a set of service demands, one for
each resource and for each class, is used. The service demand
of a request of class r at resource i, Di,r, is the total amount
of time the request requires at that resource in order to be
completely executed. The service demand value is computed
ignoring contention by other requests and may be estimated

450

Figure 3: Bottleneck migration as a function of the
fraction of requests of the two classes (population
mix) in execution.

directly from measured utilizations according to the rela-
tion Ui,r = XrDi,r, where Xr is the system throughput for
workload class r and Ui,r is its utilization at resource i. The
parameters of our system, in ms, are shown in Fig. 2. The
amount of work requested from the Web Server is much less
demanding than the one requested from the Application and
Storage Servers. The computations required by the business
logic place a medium load on the Application Servers while
the high number of data manipulated, uploaded and down-
loaded, generate a high load on the Storage Servers.

In the asymptotic analysis phase [2], JABA derives the set
of bottlenecks as a function of all the possible mix of requests
(see Fig. 3). Indeed, keeping the total population of the sys-
tem constant, and large, and varying the population mix, we
may observe a bottleneck migration phenomenon. When the
fraction of class 1 requests is between 18.2% and 72.7% of
the total population, two resources, namely StorageServer1

and StorageServer2, saturate concurrently. This is in con-
trast with the other segments of Fig. 3 where it is shown
that some mixes of requests result in only StorageServer1

or StorageServer2 being saturated.
The identification of the interval of joint saturation for

StorageServer1 and StorageServer2, referred to as com-
mon saturation sector, is important in order to find the load
of the system that satisfy the performance criteria related
to the QoS. Indeed, it can be shown that the equiutilization
point, i.e., the mix that causes the two bottlenecks to be
equally utilized, lies into this interval and provides the max-
imum system throughput [10]. Furthermore, the existence
of such saturation sectors, despite being derived under the
assumptions of product-form theory, has been independently
observed to exist in real-world multi-tier applications [7,11].
The graph of Fig. 4, generated by JABA, provides a visual
representation of the resources that may become saturated
as a function of the mix of requests.

In [5] it is shown that the potential bottlenecks lie on the
convex hull of the service demands (Storage1 and Storage2

in this case). To evaluate the exact values of the performance
metrics corresponding to all the possible population mix we
used the What-if feature of JMVA varying from 100% to 0%
the requests in execution of one class and the opposite (from

Figure 4: Visual representation of the service de-
mands and identification of the bottlenecks as re-
sources that lie on the convex hull.

0% to 100%) the fraction of the other class. Fig. 5 shows
the throughput X of the system, global and per-class. The
x -axis represents the fraction of class 1 requests (referred to
as β1) with respect to the total number of requests in execu-
tion. It is evident that X is maximized for all the mixes of
requests that belong to the common saturation sector while
the per-class throughput is constant in the interval. Simi-
larly, Fig. 6 illustrates the response time R, of the system
and per class. As can be seen, the system response time R is
constant for all the mixes of the common saturation sector.
The response times of the two classes are identical when the
two bottlenecks are equiloaded and it can be shown that the
corresponding equiload mix lies inside the common satura-
tion sector [10].
The utilizations of the three storage servers are shown in
Fig. 7. As predicted, the StorageServer1 and Storage-

Server2 saturate together for all the mixes of the common
saturation sector while the utilization of StorageServer3 is
definitively lower, UStoSer3 = 0.58, since its service demands
are smaller with respect to the ones of the two bottlenecks.
In Fig. 8 the Power measures, at the system level and per-
class, are shown. The Power measure, first introduced in [6],
is an interesting metric that combines the throughput X
and the response time R. This metric is the ratio Φ = X/R
of throughput and response time and captures the level of
efficiency in executing a workload. The maximum Power

corresponds to the optimal operating point for the system,
i.e., the point in which the throughput is maximized with
the minimum response time. This concept is directly related
with the one of QoS. JMVA plots the Power for the requests
of each class and at the aggregate level. As shown in Fig. 8,
the population mixes close to the extremes of the common
saturation sector provides a better QoS to the requests of
one class or of the other. When the fraction of requests of
class 1 is about 0.21 the QoS of class 1 is maximized, while
with a fraction of about 0.69 the QoS of class 2 is maximized.

451

Figure 5: Throughput of the system (red curve) and
per-class (blue curve for class 1 and light blue for
class 2), as a function of the fraction of requests of
the two classes in execution.

To enhance the performance of the system we need to take
into consideration the most heavily loaded servers, namely
StorageServer1 and StorageServer2, since reducing the
service demands at resources other than the bottlenecks
produces only marginal improvements. The total load on
the two StorageServers 1 and 2 is well balanced, DSto1 =∑2

r=1 DSto1,r = 110ms, DSto2 =
∑2

r=1 DSto2,r = 110ms,
while the load of the third server is much smaller, 64s. We
want to assess the effect of alleviating the bottlenecks, bal-
ancing the load of the three storage servers. Thus, we as-
sume that it is possible to move data across them, more pre-
cisely from Storage1 and Storage2 to Storage3, in order to
have their total service demands similar. This is possible
since shifting some data from one resource to another may
alter the time that a request takes to access it, e.g., due
to use of different hardware technologies (flash memories,
larger caches, different disk drives, etc). Let us remark that
the global service demand to all the three servers must re-
main the same as the one of the original workload, namely
D = 284ms. Fig. 9 shows the new service demands.

Fig. 10 shows the convex hull of the optimized system.
Since the load of the three storage servers is balanced, the
points corresponding to their service demands lie on the
same edge of the convex hull. This configuration denotes
perfect balancing since the load equally loads all resources
and no server is underutilized.

Fig. 11 shows the utilization of the three storage servers.
By comparing their behavior with the ones obtained by the
original system (see Fig. 7) it is evident that their values are
maximized. The point in which the utilizations of the three
storage servers are equal, i.e., the equiutilization point, lies
inside the common saturation sector [10]. The corresponding
load, consisting of the fraction β1 = 0.48 of class 1 requests,
represents the optimal operating point since it maximizes
the sum of the utilizations and thus the system through-
put. The maximum throughput of the original system with
the mix β1 = 0.48 was Xmax Orig = 0.0181req/ms while
the one obtained after the balancing action (see Fig. 12) is

Figure 6: Response time of the system (red curve)
and per-class (blue curve for class 1 and light blue
for class 2), as a function of the mix of requests in
execution.

Xmax Bal = 0.0209req/ms, with an improvement of about
15%. The minimum system response times corresponding to
the same mix were Rmin Orig = 5.5s and Rmin Bal = 4.78s
with a reduction of about 13%. The behavior of the resi-
dence times of the three storage servers is shown in Fig. 13.
The residence time of StorageServer3, the lower one in
the graph, clearly emphasizes the set of mixes, close to
β1 = 0.48, that utilize all the three servers similarly.

Summarizing, the above case study shows that the com-
bined application of tools such as JABA and JMVA may
help gaining qualitative understanding on the best configu-
ration decisions for a system. Indeed, due to the open source
nature of JMT, it would be possible to automize the above
methodology by reusing in an external application the Java
library functions offered by JABA and JMVA to estimate
asymptotic performance, systems bottlenecks, and perfor-
mance measures for finite population sizes.

3. CONCLUSIONS
In this paper, we have illustrated the application of JMT

to a basic QoS optimization problem. The study aimed
at the bottleneck identification, performance evaluation and
optimization of an enterprise system and proves the simplic-
ity of studying a system’s performance in a graphical way
by means of JMT. Further examples and case studies are
provided in the bibliography section of the JMT websites at
http://jmt.sourceforge.net.

4. REFERENCES
[1] M. Arns, P. Buchholz, and D. Müller. OPEDo: a tool

for the optimization of performance and dependability
models. SIGMETRICS Performance Evaluation
Review, 36(4):22–27, 2009.

[2] G. Balbo and G. Serazzi. Asymptotic analysis of
multiclass closed queueing networks: Multiple
bottlenecks. Performance Evaluation, 30(3):115–152,
1997.

452

http://jmt.sourceforge.net

Figure 7: Utilization of the three storage servers
(red curve for Storage 1, blue curve for Storage 2,
and light blue curve for Storage 3) as a function of
the mix of requests in execution.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G.
Palacios. Open, closed, and mixed networks of queues
with different classes of customers. Journal of the
ACM, 22(2):248–260, 1975.

[4] M. Bertoli, G. Casale, and G. Serazzi. User-friendly
approach to capacity planning studies with Java
Modelling Tools. In Proc. of Int. Conf. SIMUTools
2009, pages 1–9. ACM, 2009.

[5] G. Casale and G. Serazzi. Bottlenecks identification in
multiclass queueing networks using convex polytopes.
In Proc. of IEEE MASCOTS Symposium, pages
223–230. IEEE Press, 2004.

[6] L. Kleinrock. On flow control in computer networks.
In Proc. of the Conference in Communication ICC78,
pages 27.2.1–27.2.5. IEEE Press, 1978.

[7] S. Malkowski, M. Hedwig, and C. Pu. Experimental
evaluation of N-tier systems: Observation and analysis
of multi-bottlenecks. In IISWC, pages 118–127. IEEE,
2009.

[8] A. Martens, H. Koziolek, S. Becker, and R. Reussner.
Automatically improve software architecture models
for performance, reliability, and cost using
evolutionary algorithms. In WOSP/SIPEW, pages
105–116, 2010.

[9] D. A. Menasce, J. M. Ewing, H. Gomaa, S. Malek,
and J. P. Sousa. A framework for utility-based service
oriented design in SASSY. In A. Adamson, A. B.
Bondi, C. Juiz, and M. S. Squillante, editors,
WOSP/SIPEW, pages 27–36. ACM, 2010.

[10] E. Rosti, F. Schiavoni, and G. Serazzi. Queueing
network models with two classes of customers. In
Proc. of IEEE MASCOTS Symposium, pages 229–234.
IEEE Press, 1997.

[11] J. W. J. Xue, A. P. Chester, L. He, and S. A. Jarvis.
Dynamic resource allocation in enterprise systems. In
Proc. 14th International Conference on Parallel and
Distributed Systems (14th ICPADS’08), pages

Figure 8: Behavior of the Power (the ratio of X
to R) at the system level (red curve) and per-class
(blue curve for class 1 and light blue for class 2).

Figure 9: Service demands of the optimized system

203–212, Melbourne, Victoria, Australia, Dec. 2008.
IEEE.

453

Figure 10: Identification of the bottlenecks in the
optimized system. The load of the three Storage
Servers is balanced.

Figure 11: Utilization of the storage servers (red
curve for Storage 1, blue curve for Storage 2, and
light blue curve for Storage 3) with the balanced
load

Figure 12: Throughput behavior of the optimized
system (red curve for system throughput, blue curve
for class 1 and light blue for class 2).

Figure 13: Response time of the system (red curve)
and residence times of the three storage servers
(light blue curve for Storage 1, blue curve for Stor-
age 2, and black curve for Storage 3).

454

	Introduction
	Learning JMT by Example
	Conclusions
	References
	Acknowledgement

