

A New Approach to Introduce Aspects
in Software Architecture

Hadjer Khider Djamal Bennouar
Saad Dahlab University Saad Dahlab University

09000 Blida, Algeria 09000 Blida, Algeria
Khetude@gmail.com, dbennouar@gmail.com

ABSTRACT:
The techniques of programming and methodologies strongly
evolved throughout the history of data processing with the
evolution of the software systems, these systems indeed tend to
become increasingly complex. Component-Based Software
Development proved its interests in the control of the complexity
of the conceived software, and became a critical factor in the
success of development of the software projects by facilitating the
maintenance and the evolution of the software and authorizing the
development of the bulky systems in terms of size but also of
complexity.
This style of programming promises the re-use, but is confronted
with the problems of code scattering and tangling. The
application of Aspect-Oriented Programming on the software
components makes it possible to face these problems.
Programming called by aspect allowing managing, in a modular
way, these concerns by separating them from the basic code.
Aspect-Oriented Programming, a new paradigm of the
programming which made possible to simplify the writing of the
programs data-processing, while making them more modular and
easier has to make evolve.
Today, the software Aspects and components are two very
promising paradigms; who support the re-use and simplify the
software development. To date, implementation the simultaneous
of these two paradigms remains a field of research very slightly
explored. To date no model of component supports in an explicit
way the aspects and several questions remain open. Among them:
How to integrate the representation of the aspects in the software
components? How to manage the interactions and overlappings
between aspects?

We present in this paper 3ADL, an extension of the
model of component IASA defined in the laboratory LRDSI
which supports the Aspect-Oriented Programming. This extension
consists in equipping approach IASA with the aspect components
and aspect ports.
The objective of work is to make supports to the model of
component IASA the concept of aspect in its entire dimension:
Once this concept supported, an architect could define his own
Aspect components which it instantiated in the part controls of a
component.

Categories and Subject Descriptors
D.2.11 Software, SOFTWARE ENGINEERING,
 Software Architectures: Domain-specific architectures

General Terms: Design

Keywords: AOSD, Advice, Aspect, Aspect-Oriented
Programming, Component, JoinPoint, PointCut, Software
architecture, Weaving

1. INTRODUCTION:
IASA approach is a specific component model for the
specification of software architecture. The separation into
components and provide a first level hierarchy to modularize a
software architecture and provide an affordable according to a
variable granularity for the architect. It is then possible, through
the hierarchy of the model to imagine an incremental construction
starting from the specification of composite greater granularity to
the specification of primitive components. Indeed, some concerns
can not be properly modularized using such an approach and then
find themselves embedded within a software architecture
description. That is why we propose in this paper 3ADL extension
of component model IASA for the integration of new concerns in
software architecture to designing software architecture step by
step.

1. THE FUNDAMENTAL CONCEPTS
AND MODELS IN IASA

The IASA approach is based on a unified component model
oriented to support system design where some components may
be deployed as software components and others as hardware
components. IASA is based on the following concepts: access
point, port, component, envelope, connector and action.
The component is a fundamental element in defining software
architecture. The component model distinguishes between two
broad categories of components The primitive components and
composite components.
The component model defines two views in a component, an
external view which must adhere to any component and an
internal view, applicable only to composites. The external view is
represented by the concept of the envelope or the ports are located
modeling component. The internal view is organized into two
main parts: the operative part and control part.

In IASA, a component interacts with the external world through a
set of ports. A port has a structure made of access points and a
behavior. A port is the unique place where joinpoints are
localized. Aspect management is achieved through two main
directives: injection and removal. The aspect injection weaves the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

419

advice type into the behavior of the port and places a connector
between the port providing an advice and the advised port.
The instantiation of a component is realized in the context of the
envelope concept. An envelope is used to isolate the pure instance
of a component of its operating environment by providing it the
necessary elements for the operation of the proceeding. In 3ADL,
an envelope is used to instantiate a component type. The external
view of any component is formed of an envelope having one or
more ports.

1.1. The Access Point Concept

The main purpose of the 3ADL access point concept is to provide
a unified way to represent component’s interaction points in the
specification of a system architecture using software component
and/or hardware components. An access point is either a Data
Oriented Access Point (DOAP) or an Action Oriented
Access Point (ACTOAP). An ACTOAP represents a
service which may support many distinct actions. A DOAP
is provided with an attribute specifying the data direction
(in, out, and inout).

2. Aspect Oriented Software Architecture
with 3ADL

Any behavioral element of a port is considered as a potential
joinpoint. The behavioral elements include the actions attached to
an ACTOAP, the implicit actions associated with a DOAP (i.e.
send, receive, updated, changed) and the rules defining the port’s
behavior. An ACTOAP (server or client) associated with
Aspect Oriented Actions is called an ASPOAP (Aspect
Oriented Access Point). An ASPOAP server is also called
an advice ASPOAP. Aspect oriented actions are actually
represented as a set of predefined aliases called aspect
aliases. Each aspect alias is associated with a specific
advice type. The number of actions associated with an
advice ASPOAP does not depend on the number of
supported advice types. The widely accepted advice type
(after, before and around) are supported through five basic
aspect aliases: aroundFirstAction, AroundLastAction,
proceeedAction, beforeAction and afterAction. Once
instantiated and connected to an advice ASPOAP, the client
ASPOAP is provided with extended aspect aliases. Each
extended aspect alias is built by prefixing a basic aspect
alias with the name of the port containing the advice
ASPOAP and an aspect ordering number (e.g
pAuthAdvice_1_ aroundFirstAction). This later is used to
determine the launching order of advices when two or more
aspects are attached to the same joinpoint.
2.2 Advice insertion mechanism
The advice injection modifies the structure and the behavior of
advised ClientPort, advised DataPort and all ClientPort
connected to the advised ServerPort. The advice injection
specifies the pointcut, an advice type (before, after, around) and a
possible mapping of a DOAP of an advice port to a DOAP
associated with a jointpoint. Usually we use the term aspectual
connector to refer to the connector linking a Client ASPOAP to an
advice ASPOAP. In the 3ADL graphic notations, a dotted line is
used to represent an aspectual connector.

2 Conclusion:
The main difference between AOSA in IASA and in the just
introduced approaches is mainly due to the level of abstraction of
the basic model elements of IASA. The IASA aspect orientation is
achieved at a level of abstraction totally independent from any
software mechanism, even from interface concept which
represents the fundamental interaction point in the other
approaches. In these later approaches, the joinpoints are reduced
to the main operations specified at the interface level. Elements
involved in such operations cannot be reached and considered as
joinpoint. In IASA, all elements present at port level may be
considered as potential joinpoints. Hence, implicit actions on
DOAP (i.e. send, receive, updated, changed) may be considered
as joinpoints even if the DOAP is a resource associated with an
ACTOAP or is a part of a complex DOAP.

The IASA aspect orientation may be seen as a symmetric or
asymmetric AOSA approach. The use of the same component
model for aspect space and business space make IASA a
symmetric approach. The predefinition of a set of aspect
components provided at the port level with a catalogued aspect
oriented action may make IASA an asymmetric approach.
However, the IASA asymmetry is not against the reusability of an
aspect component in the business space, despite the fact that the
IASA elaboration process does not recommend such practice.
IASA natively supports Aspect Oriented Software Architecture
Specification. The concept of aspect is part of IASA main model
elements. The concept of separating cross cutting concern
represents the key element in the definition of the internal
structure organization of the IASA component model.

/// IASA 3ADL: File X25CM.3adl
/// X25CM component type
………
 controlpart {
 components { X25CMOPCtrl starter;}
 connetors {// controlpart's connector s description }
 }
 optionpart { // the keyword aspectpart may be used here
 components { LogCmp logCmp;}
 connetors { //option's connector s description }
 // Aspect management specification
 pointcuts {
 log_alarm = {alarm.receive};
 log_enable = {pEnable.*.receive};
logall = {serverport, clientport, outdataport};
 logfire = {serverport.*.fire};
 // Advise services only, not data
 logpOnServices = logpall – {send, receive};
 // a trace pointcut
 secFTPTrace={FTPClientPort.getTicketFile.rule};
 }
 advices {
 inject LogCmp.log after log_alaena;
 // The previous construct is equivalent to the following
 // inject logCmp.log after log_alaena
 // bind {log} to {alarm}, {enable};
 inject LogCmp.log around logFTPTrace;
 log_alaena = log_alarm + log_enable;

l ll { li d }
Figure 1. Pointcut definition and advice injection

420

