
Reusable QoS Specifications for Systematic
Component-based Design

Lucia Kapova
Software Design and Quality Group,

Karlsruhe Institute of Technology (KIT),
Germany

Email: kapova@ipd.uka.de

ABSTRACT
For successful and effective software development the ability to
predict impact of design decisions in early development stages
is crucial. Typically, to provide accurate predictions the models
have to include low-level details such as used design patterns (e.g.,
concurrency design patterns) and underlying middleware platform.
These details influence Quality of Service (QoS) metrics, thus are
essential for accurate prediction of extra-functional properties such
as performance and reliability. Existing approaches do not con-
sider the relation of actual implementations and performance mod-
els used for prediction. Furthermore, they neglect the broad variety
of implementations and middleware platforms, possible configura-
tions, and varying usage scenarios. To allow more accurate perfor-
mance predictions, we extend classical performance engineering by
automated model refinements based on a library of reusable perfor-
mance completions.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering

General Terms
Performance Engineering, Model-Driven Development

Keywords
Model Refinement, Completion, Palladio Component Model

1. INTRODUCTION
In software performance engineering, abstract design models are

used to predict and evaluate response time, throughput, and re-
source utilisation of the target system during early development
stages prior to implementation. In model-driven (or model-based)
software performance engineering [1], software architects use ar-
chitectural models of the system under study and base their anal-
yses on them. Transformations map the architectural models to
simulation-based or analytical prediction models, such as queue-
ing networks, stochastic Petri nets, or stochastic process algebras.
However, to provide accurate predictions, performance models
have to include many low-level details. For example, the configura-
tion of a message-oriented middleware (e.g., a size of a transaction)
can affect the delivery time of messages [5]. Unfortunately, soft-
ware architects cannot include these details into their architectural
models. The middleware’s complexity and the specific knowledge

Copyright is held by the author/owner(s).
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
ACM 978-1-4503-0519-8/11/03.

on the implementation (that is required to create the necessary mod-
els) would increase the modelling effort dramatically. While most
of the implementation details are not known in advance, a rough
knowledge about the design patterns that are to be used might be
already available. This knowledge can be exploited for further anal-
ysis, such as performance and reliability prediction, and for code
generation.

Including low-level details in prediction models conflicts with
the abstract architecture paradigm and leads to a significant effort
for software architects. Additionally, such models are very com-
plex leading to a decreased understandability, reusability and mod-
els credibility. The resulting challenge in a form of conflict be-
tween including low-level details into prediction models and main-
taining highly-abstract models is addressed by this work. The pre-
sented solution is based on the parametrized model completions
that include extra-functional properties of lower levels into high-
level architecture. We call model refinements that specifically ad-
dress quality attributes of software systems completions [6]. In the
original approach of Woodside et al. [6], performance completions
have to be added manually to the prediction model. Model com-
pletions express low-level details as reconfigurable black-box con-
structs. This way the resulting model complexity is hidden from
software architects. Software architects only have to provide a con-
figuration of modeled low-level detail. To support software archi-
tects in building more accurate prediction models, they need a li-
brary of such completions (e.g., configurations models for different
middleware platforms) to build on.

In literature, this problem was already identified. However, the
proposed approaches suggest only annotation models that extend
prediction models through parametrization of resource demands
by results of measurements on real systems (in the case of perfor-
mance prediction, for example, number of processor cycles). They
concentrate on the properties of the underlying platform and do not
consider architectural changes such as inclusion of certain design
pattern (such as Replication, Barrier, Connector patterns etc). One
reason why such details are not considered is the high level of vari-
ability in the architecture that would be required. It is not feasible
to create such models manually. Therefore, for building such de-
tailed models the automation of their development process is cru-
cial, the lack of automation for performance modelling has been
clearly stated in [6]. However, to automate this process we have to
deal with a classical problem of a conflict between variability and
automation. The solution for this problem is based on the transfor-
mation generation by Higher-Order Transformations (HOT).

The difficulty of automation is a result of the flexibility and vari-
ability required for performance completions [6]. In order to pro-
vide tool support and to apply performance completions, we have to
address this problem. Model-driven development can provide the

415



needed automation by means of model transformations. For exam-
ple, the authors of [2] analyse design patterns for Message-oriented
Middleware. They use the selected combination of messaging pat-
terns as configuration (also called mark model) for model-to-model
transformations. Basically, existing solutions [2, 4] focus on the in-
tegration of only one completion at a time. The scenarios where
more than one completion is applied to model element are dis-
cussed in [3].

We present an approach to define domain-specific languages that
capture the performance-relevant configurations of different imple-
mentation details. The configuration (feature model) provides the
necessary variability. The transformations are applied to model el-
ements specified by the software architect. We realised the comple-
tions by means of model-to-model transformations. Depending on
a given configuration, these transformations inject the completion’s
behaviour into performance models.

2. THE CHILIES APPROACH
The contribution of this work is a novel approach called

CHILIES to automated feature model-based generation of refine-
ment transformations that are used to integrate variants of model
completions into prediction models. The feature model is used as a
definition of the variation space. The completions in a completion
library are implemented in a form of feature models with so-called
feature effects specifications. Considering that a model could re-
quire more than one completion to be integrated the approach has
to deal with the chains of such refinement transformations. Fur-
thermore, this approach was extended by domain-specific reusable
templates for architectural refinement transformations. This way it
is easier for the developer of the feature model (that defines possi-
ble configuration options of modeled details) to specify the effects
of feature selection on the transformed model.

The automated model refinement process is based on a chain of
Higher-Order Transformations (HOTs): the first one for transfor-
mation synthesis from the feature model; the second one for trans-
formation composition based on the structure of completion library
(mapping the metamodel structure) and the rule-based composi-
tion; the third one for the instantiation of parametrized domain-
specific templates as a partial transformation synthesis. This pro-
cess is integrated in the Palladio Component Model (PCM). The
tool takes a complete PCM instance as input and produces a new
PCM instance by refining the model based on a configuration of
completion variant.

Unlike existing approaches, CHILIES, does not require heavy
development effort, which limits what can be attempted. Intro-
duced solution automates development and integration of perfor-
mance abstractions in form of completions into the prediction mod-
els and closes the semantic gap between performance concerns
and functional concerns, which prevents many developers from ad-
dressing performance at all. For the same reason many developers
do not trust or understand performance models, even if such mod-
els are available. Performance modeling is effective but it is often
costly; models are approximate, they leave out detail that may be
important, and are difficult to validate. Consequently, Chilies pro-
vides more accurate predictions, decrease development costs, in-
crease usability and maintainability of prediction models.

To validate performance prediction capabilities of presented ap-
proach for a systematic refinement of performance models was an
initial set of completions for concurrent component-based systems
in a completion library introduced, where were design patterns for
concurrency (such as Replication, Internal State, Locking) anal-
ysed. Additionally, completions for connectors were included to
illustrate the high-level of variability in the architecture that is in

this case required. To validate completions the prediction results
based on the refined model were compared to the measurements on
the real systems. The validation was performed in an end-to-end
manner, by using the PCM workbench extensions.

Finally, for a completeness of introduced approach, this work
discusses the quality of generated transformations. The transfor-
mations maintainability is evaluated through a set of introduced
code metrics for model-to-model transformations. In the analysis
the classical parametrized model transformations are compared to
the generated transformations by introduced HOT-based approach.
Lastly, the collection of transformation metrics is automated by
a higher-order transformation, too (transforming into the metrics
model).

3. CONCLUSIONS AND VISIONS
The automated integration of performance completions helps

software architects and performance analysts to systematically de-
sign and apply performance completions. Performance comple-
tions reduce the necessary modelling effort (for software architects
and performance analysts) as well as the complexity of the software
architecture models. The transformation include the necessary in-
formation about low-level details and allows more accurate per-
formance predictions. The presented work is a part of continuous
research on the automatic transformation composition and gener-
ation. Support for presented techniques would allow performance
architects to evaluate different implementation variant for combi-
nation of different sets of completions.

4. REFERENCES
[1] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and

Marta Simeoni. Model-Based Performance Prediction in
Software Development: A Survey. IEEE Transactions on
Software Engineering, 2004.

[2] Jens Happe, Holger Friedrich, Steffen Becker, and Ralf H.
Reussner. A Pattern-Based Performance Completion for
Message-Oriented Middleware. In International Workshop on
Software and Performance (WOSP ’08). ACM, 2008.

[3] Lucia Kapova and Steffen Becker. Systematic refinement of
performance models for concurrent component-based
systems. In International Workshop on Formal Engineering
approaches to Software Components and Architectures
(FESCA). Elsevier, 2010.

[4] Lucia Kapova and Thomas Goldschmidt. Automated feature
model-based generation of refinement transformations. In
EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2009.

[5] Lucia Kapova, Barbora Zimmerova, Anne Martens, Jens
Happe, and Ralf H. Reussner. State dependence in
performance evaluation of component-based software
systems. In International Conference on Performance
Engineering (WOSP/SIPEW ’10). ACM, 2010.

[6] Murray Woodside, Greg Franks, and Dorina C. Petriu. The
Future of Software Performance Engineering. In International
Conference on Software Engineering (ICSE). IEEE, 2007.

416




