
 Analysing the Fidelity of Measurements
Performed with Hardware Performance Counters

Michael Kuperberg
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe, Germany

michael.kuperberg@kit.edu

Ralf Reussner
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe, Germany

reussner@kit.edu

ABSTRACT
Performance evaluation requires accurate and dependable
measurements of timing values. Such measurements are usu-
ally made using timer methods, but these methods are often
too coarse-grained and too inaccurate. Thus, direct usage of
hardware performance counters is frequently used for fine-
granular measurements due to higher accuracy. However,
direct access to these counters may be misleading on mul-
ticore computers because cores can be paused or core affin-
ity changed by the operating system, resulting in misleading
counter values. The contribution of this paper is the demon-
stration of an additional, significant flaw arising from the
direct use of hardware performance counters. We demon-
strate that using JNI and assembler instructions to access
the Timestamp Counter from Java applications can result
in grossly wrong values, even in single-threaded scenarios.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.2.5 [Software]: Software Engineering–Testing
and Debugging

General Terms
Performance, timer selection

Keywords
Timer Method, Performance Counter, Fidelity, Dependabil-
ity, Accuracy, Timestamp Counter, TSC

1. INTRODUCTION
Timer methods are provided by APIs of operating systems

and virtual machines (e.g. JVM), and also by third-party li-
braries. When using timer methods to perform fine-granular
or accuracy-sensitive measurements, scientists already have
the tools [5] to choose among the timer methods on the basis
of accuracy and invocation costs (which vary significantly).

However, timer methods are often too coarse for measur-
ing short (nanosecond-level) durations while the underly-
ing hardware offers more accurate facilities. Thus, hard-
ware performance counters such as the TSC [4] (Timestamp
Counter) are used alongside available timer methods. Un-
like timer methods provided by platform APIs, third-party

Copyright is held by the author/owner(s).
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
ACM 978-1-4503-0519-8/11/03.

methods for accessing hardware performance counters are
not tested for correct functioning in the light of dynamic
frequency scaling, CPU core affinity changes etc. While
published issues such as the TSC drift/instability [1] are
concerned with concrete cases on individual execution plat-
forms, there exist no vendor-independent test cases to as-
sess dependability of self-written, counter-based timer meth-
ods. Additionally, most performance counter users assume
that no problems will occur while measuring single-threaded
workloads.

The contribution of this paper is a first step towards a
platform-independent approach for testing the suitability of
hardware performance counters for measuring time inter-
vals. The developed approach is evaluated on different exe-
cution platforms using Java Native Interface access to the
TSC hardware performance counter.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the setup of the proposed test scenario. Sec-
tion 3 applies its Java implementation to the Timestamp
Counter (TSC) on different execution platforms and shows
that the TSC is not dependable and is impacted by the use
of standard methods from the Java platform API. Section 4
concludes and discusses future work.

2. EXPERIMENT SETUP
The main idea of the test scenario is to measure the same

task execution both with an existing, proven timer method
and using the direct access to a hardware performance coun-
ter. The two measurements are compared to each other, as
captured in the following pseudocode:

time1 = firstTimer(); //proven API timer method

time2 = secondTimer(); //new, based on HW counter

workload(); //single-threaded task

time3 = firstTimer();

time4 = secondTimer();

durationFirst = time3 - time1;

durationSecond = time4 - time2;

Let firstTimer() be a proven, platform-provided API timer
method, for example System.nanoTime() in Java. In con-
trast to firstTimer(), secondTimer() is a self-written me-
thod accessing a hardware performance counter, and second-

Timer() needs to be tested for dependability.
Assume that workload() does not start separate threads

or processes, and that only one thread is executing the above
code. Also assume that no other concurrent accesses to
firstTimer() or secondTimer() will be taking place.

413

Then, the difference between durationFirst and dura-

tionSecond will only be dictated by the accuracies and in-
vocation costs of firstTimer() and secondTimer(), as well
as external disturbances (e.g. interrupts) in executing the
above listing. Configuring the duration of workload() to be
large enough allows to ignore the accuracies and invocation
costs of firstTimer() and secondTimer(). Thus, uninter-
rupted executions of the example should lead to duration-

First and durationSecond being very close to each other.

3. EVALUATION
For evaluation, java.lang.System.nanoTime() served as

firstTimer(); its accuracy is at most 1000 ns [5]. A JNI im-
plementation [2] of Java access to the Timerstamp Counter
(TSC) served as secondTimer(). As workload(), the java.-
util.Thread.sleep(long) method was used. TSC mono-
tonicity on every platform has been confirmed separately
through repeated invocations in a single thread. The ex-
ecution platform is a computer with Core 2 Duo T9600
CPU (2.8 GHz), running Mac OS X 10.6.4 with Apple JDK
1.6.0 22.

During the evaluation, the requested sleep durations pas-
sed as parameter to Thread.sleep() started at 20 ms and
were increased in steps of 10 ms to 160 ms. For each re-
quested sleep duration, 20 repetitions were made, resulting
in a total of 300 measurements. As expected, the values
measured with firstTimer() (i.e. nanoTime()) were virtu-
ally identical to the requested sleep times and are therefore
used as reference values for analysing TSC-based measure-
ments.

Yet for TSC-based measurements, the outcome is a nega-
tive surprise, as shown by Fig. 1: the zigzagged blue line con-
nects the 300 measurements and shows that the TSC-measu-
red sleep times vary significantly between samples with the
same requested sleep time. Even worse, the TSC-measured
values (which are CPU ticks [4]) are significantly below the
number of CPU ticks that correspond to the requested sleep
time (shown as the straight red line in Figure 1; 1 tick=2.8
ns).

This means that the TSC cannot be used for dependable
(let alone accurate) time interval measurements. Since the
TSC-measured values are too small, it appears that the TSC
failure is not related to OS scheduling or execution inter-
ruptions, but rather related to the usage of java.util.-

Thread.sleep for workload().
Therefore, we have replaced Thread.sleep with single-

threaded code that computes Fibonacci numbers (the work-
load size is then the amount of numbers to compute). Af-
ter this replacement, TSC produces dependable measure-
ments: durationFirst and durationSecond values are vir-
tually identical. Also, for the samples with the same Fi-
bonacci problem size, the spread of the values of duration-
Second became negligible.

We have also observed these Thread.sleep-caused prob-
lems with the TSC on several other platforms, e.g. on a
computer with Intel Pentium M 1.73 GHz CPU, running
openSUSE Linux with Kernel 2.6.34.

4. CONCLUSION
In this paper, we have shown that using hardware per-

formance counters for measuring time intervals can lead to
grossly wrong values even in a simple, single-threaded sce-

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Planned sleep time in ns

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000

M
ea

su
re

d
 t

ic
ks

 o
f

R
D

T
S

C

Figure 1: TSC is not dependable: Zigzagged blue
line shows the relation between requested sleep
times (x-axis, in ns) and values measured with TSC
(y-axis, in CPU ticks; 1 tick = 1/2.8 ns); straight
red line shows the number of CPU cycles (y-axis)
corresponding to the requested sleep time (x-axis)

nario. On several studied platforms, the usage of the Java
platform API method java.lang.Thread.sleep means that
JNI-based reading of the Timestamp Counter (TSC) returns
TSC values that result in incorrect time intervals. The pre-
sented black-box test case detects this issue by comparing
the measurements obtained with a proven timer method to
those of the considered hardware performance counter.

In the future work, the presented approach should be ap-
plied to other performance counters; its simplicity makes it
easy to apply it to other programming languages as well. It
can also be integrated into tool suites such as LTTng [3] or
TimerMeter [5]. Possible extensions of the presented al-
gorithm include the testing in multi-threaded scenarios, and
tests involving forced changes of the CPU core affinity.

5. REFERENCES
[1] Bhavana Nagendra (AMD Developer Central). AMD

TSC Drift Solutions in Red Hat Enterprise Linux, 2006.
http://developer.amd.com/pages/1214200692.aspx.

[2] R. Green. Pentium RDTSC Access using JNI, 2008.
http://www.mindprod.com.

[3] P. Heidari, M. Desnoyers, and M. Dagenais.
Performance analysis of virtual machines through
tracing. In Canadian Conference on Electrical and
Computer Engineering, 2008, pages 261–266. IEEE,
2008.

[4] Intel. Time Stamp Counter, Intel 64 and IA-32
Architectures Software Developer’s Manual Volume 2B:
Instruction Set Reference, N-Z, Pages 251–252.
http://developer.intel.com/design/pro-
cessor/manuals/253667.pdf.

[5] M. Kuperberg, M. Krogmann, and R. Reussner.
TimerMeter: Quantifying Accuracy of Software Times
for System Analysis. In Proceedings of the 6th
International Conference on Quantitative Evaluation of
SysTems (QEST) 2009, 2009.

414

