
Instrumentation-based Tool for Latency Measurements

Pekka Pääkkönen
VTT Technical Research

Centre of Finland
Kaitoväylä 1

90571, Oulu, Finland

Pekka.Paakkonen@vtt.fi

 Jarmo Prokkola
VTT Technical Research

Centre of Finland
Kaitoväylä 1

90571, Oulu, Finland

Jarmo.Prokkola@vtt.fi

Ali Lattunen
VTT Technical Research

Centre of Finland
Tekniikankatu 1

33101, Tampere, Finland

Ali.Lattunen@vtt.fi

ABSTRACT
Software has to be tested from functional and performance
viewpoints in order to create products, which fulfill customer
demands. The need for testing has led to the development of a
plethora of testing tools. Performance measurement of SW
latencies on local and distributed SW platforms hasn’t yet been
completely solved, which is the research problem of this paper. In
particular, GPS-based time synchronization and performance of
the proof-of-concept has been concentrated on. The approach is to
instrument the SW implementation under study, and to collect
measurement data with the presented tool. The results indicate a
resolution of ~590 ns, which can be achieved with high
performance reference clocks. CPU processing can be kept lower
than 5% even with a high event transmission rate. In addition, the
presented GPS synchronization method can be used for other
purposes such as data packet time-stamping in network
monitoring solutions.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Distributed debugging.

General Terms: Measurement, Performance,
Experimentation, Verification.

Keywords: Event-based, debugging, SW instrumentation,
latency, time synchronization, GPS.

1. INTRODUCTION
The need to validate functional or performance requirements of
SW has been fulfilled with many commercial tracing tools. SW
functionality under study may consist of one or several modules,
which have events of interest to the test personnel. In addition, the
modules may be executed in the same or different computing
systems with heterogeneous SW platforms (Unixes, Windows,
Symbian etc.). Currently a plethora of tools exist for SW
performance measurements for different SW platforms.

Different parameters of SW processing may be interesting to the
users of testing tools. For example CPU processing share,
memory usage and power consumption may have value to the
user. The focus of this paper is on the measurement of SW
latencies on local and distributed computing systems, which is
based on instrumentation of SW. The contribution is presentation

of a proof-of-concept, which is aimed to be used for measurement
of simple and complex events of interest. The main focus of the
concept is in the method for time synchronization with the GPS
(Global Positioning System), which is needed for distribution
support. In addition, performance results of the implemented tool
for the Linux Operating System (OS) are presented. The results
indicate that ~590 ns resolution can be achieved with high
performance system clocks, and CPU processing can be kept
lower than 5% even with a large event transmission frequency.

The structure of the paper is as follows. Related work for SW
event tracing is described in Chapter 2. The proposed
measurement concept is presented in Chapter 3. In particular,
motivation, requirements and main features of the tool are
provided. Proof-of-concept and performance results of the tool are
presented in Chapter 4. The tool is analyzed in terms of the stated
requirements and compared to existing research in Chapter 5.
Conclusion of the work is presented in Chapter 6. The final
chapter discusses the results and possibilities for improvements.

2. RELATED WORK
Previous work related to the subject of this paper deals with
capturing of time, and synchronization of clocks for distributed
systems, and development of measurement tools.

2.1 Time and synchronization
When the SW of interest resides in different computing systems
and time is measured, synchronization between the clocks is
important for validity of the results. These problems have been
studied decades ago [8]. In the system defined, distributed
processes have separate clocks, which can be used for
synchronization and ordering of events with the presented
algorithms.

Clock synchronization for parallel embedded systems has been
designed [2]. It presents a model for synchronizing clocks
between processor nodes with the reference clock of a global
server. Drifting of the clock in the nodes of the centralized system
is corrected with synchronization pulses.

Most current clock synchronization techniques for One-Way
Delay (OWD) measurements have been compared [5]. It was
noticed that Network Time Protocol (NTP) doesn’t provide
enough accuracy for industrial applications. GPS and IEEE
1588/Precision Time Protocol (PTP) offer high accuracy (sub-
microseconds), but have limitations in effort to use and
dependency of LANs for high accuracy.

PTP is based on the exchange of timing messages between
distributed nodes, and provides up to 30 ns clock accuracy with
an implementation based on the latest version of the standard
(2008) [20]. The problem is performance in wireless networks
where accuracy is in the range of few to hundreds of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

403

microseconds or even worse, and may depend on the layer of SW
where the measurements are performed on [21][22]. In addition, a
clock with higher accuracy needs support from HW.

PC-based system clocks can also be applied for timing purposes.
Accuracy of the system clock is dependent on the quartz crystal it
is made of, and thus its accuracy depends on temperature.
Accuracy and drifting of the clock over time were found to be
modest in modern microprocessor architectures [3]. However, the
resolution is constrained by frequency of the crystal to around 1µs
[25]. As an alternative to system clocks of the operating system,
CPU clock cycle register (TSC) based clock has been proposed,
which offers 1 ns resolution on Real-Time Linux [25]. Standard
Linux kernel provides also support for high resolution timers
(Performance API/PAPI) [26] [28]. In Windows OS, system
performance counters can be used easily. Based on the tests made
by the authors, the resolution is dependent on the HW. In many
computers, the counter frequency is 3.58 MHz, providing ~ 280
ns resolution. However, in some newer computers, the frequency
is the same as the processor clock speed, providing thus very high
resolution. In reality, however, processor load, and the timestamp
request decrease the achievable resolution.

2.2 Measurement tools
Tools have been developed for measurement of processing delays
based on instrumentation of SW. ARM (Application Response
Measurement) [13] standard is based on this approach. It defines
an API to a library for measurement of application response
delays. The library is linked to the measured SW, which executes
the needed transactions with calls to the API. The approach has
been successfully verified in a business case [14], where
performance data has been gathered in a multi-radar air-situation
display system.

NetLogger follows a similar approach as ARM [15]. The toolkit
provides an API for logging application events to a file, and
provides APIs for different programming languages. A Real-time
Collector receives the events and aggregates the data for the
purpose of visualization.

TAU performance measurement system [17] also follows the SW
instrumentation-based approach. The main difference between
ARM and NetLogger is that different instrumentation alternatives
are supported (source, preprocessor, compiler, wrapper library,
binary etc.) with TAU. In addition, TAU has been integrated for
programming environments with IDE plug-ins [18].

In addition, other performance debugging tools have been
developed. Accuracy of high resolution timestamps on Linux
platform was measured by the authors of [3] for the development
of the Linux Trace Toolkit. It enables the tracing of program
execution flow without instrumentation based on timestamps
embedded to the kernel [4].

A system has also been developed for the performance assessment
of Embedded HW/SW Systems [1]. The solution is to use a
separate HW-system, which is plugged into the system under
study. The system consists of an ASIC (for timestamp collection),
a serial bus and a set of probe-chips, which are connected to the
bus for event collection. The purpose of the tool is to enable real-
time performance measurement of HW/SW systems according to
the specified performance indexes.

In addition, there are plenty of commercial debuggers available,
which enable tracing of program flow on the target HW. An
example is Mentor’s Majic (www.mentor.com), which enables

tracing of SW via the standardized JTAG interface to the target
HW.

Tools are available for estimating CPU/memory consumption of
SW on target HW in run-time. A web-based toolkit has been
proposed for tracking performance of applications in grid
platforms, which can be used for visualization of CPU, memory
usage and network bandwidth [10]. A method has been developed
for monitoring CPU and heap memory usage of Java-based
software components (bundles) on OSGi platform [11].

Finally, tools have been developed for integration of SW
development with performance testing processes [9]. In the
presented approach performance tests are specified, implemented
and executed during the SW development process in order to
track critical problems early in the process. Performance tests
were implemented by inserting timestamps at the desired
measurement points, and data was collected with JUnit test
software.

Methods for simulating software performance without target HW
have been proposed in order to aid decision making in SW/HW
design. The existing approaches have been reviewed, and a new
solution has been proposed, which targets micro-architecture
issues with source code instrumentation [12].

2.3 The contribution
Although there exists plenty of techniques for measurement of
SW performance, a contribution is missing, which presents the
integration of SW instrumentation approach with GPS-based
clock synchronization for measurement of processing delays on
local and distributed systems. In addition, performance of the
approach hasn’t been properly studied (to the best of the author’s
knowledge). The afore-mentioned issues are the main contribution
of this paper.

The basic synchronization principle of this paper is based on
VTT’s earlier work on data packet time-stamping
synchronization. Qosmet tool was developed for passive
monitoring of Quality of Service (QoS) in communications [7]. In
order to perform accurate OWD measurements, an analogous
synchronization problem is faced as when measuring SW process
performances. For this, a special GPS synchronization driver was
developed for accurate time-stamping of packets in remote
machines. The driver has been developed for Windows OS and
uses system performance counters. The synchronization accuracy
is better than 50 µs.

3. CONCEPT
Motivation of the developed concept is described in Section 3.1,
which is followed by the statement of requirements in Section 3.2.
The main features of the tool are described in Section 3.3. In
particular, architecture, measurement of different events, API of
the developed Event-library and GPS-based time synchronization
is described.

3.1 Motivation
The presented concept is aimed to be implemented by a tool,
which can be used for latency measurement of SW related events
on target HW. An event is defined here as any processing
performed by the SW implementation(s) over local or distributed
computing systems. Latency characterizes performance of the
event on the target platform. The expected latency depends at
least on the HW/SW platform, real-time requirements and use

404

case related to the event(s). Thus, the goal is to enable
performance measurement of events, which have value for the
end-user.

3.2 Requirements
In order to have a tool for measurement of different events, which
is usable on different SW platforms and programming
environments, the following requirements have been defined:

Req. 1: Reduce time for measurement and analysis: In
addition, measurement data should be easily visualized for the
purpose of analysis.

Req. 2: Measurement of different events: The functionality of
interest may be simple such as parsing of XML data. In addition,
there may be multiple events related to each other, which are of
interest e.g. encoding and transmission of XML document to the
end point. Such an event is defined as a chained event.
Measurement of both types of events must be supported.

Req. 3: Support local and distributed computing systems:
Measurement of events on local and distributed computing
systems should be supported.

Req. 4: Independency on programming language, SW
process/platform and operating system: The tool should be
independent of the process/platform it is executed on and it
should support as many programming languages as possible in
order to be usable in heterogeneous test environments and SW
platforms.

3.3 Main features
3.3.1 Measurement of different events
In order to fulfill Req. 1, a unique identifier is used for mapping
to the event of interest. An example would be to map ‘XML
message decoding delay’ user level concept to events with ID=1.
In order to identify different measurements of an event, a
sequence number is applied for each measurement.

A simple event has a start and end time associated with it, and
latency of the event is calculated based on the difference. A
complex chained event is comprised of multiple steps, each of
which is a component of the total latency. The event types consist
of the following data:

Simple-event: identifier, sequence-number, start-time, stop-time

Chained-event: identifier, sequence-number, step-number, time

3.3.2 Architecture
Figure 1 describes architecture of the tool on a local computing
system. The tool is comprised of event producers, an
EventLibrary and a Collector. An event producer is any SW
process, which sends events to the Collector. The Event Library
enables transmission of events from event producers to the
Collector. The role of the Collector is to process the received
events for the purpose of visualization. The visualization tool may
be co-located with the Collector or may be implemented as a
separate tool.

In the example of Figure 1, functionality 1 is under study. It is
measured with a simple event in SW process X, which has been
implemented with C-programming language. The event producer
transmits start and stop time of the simple event, and associates
them with a unique identifier (ID=1). The event is sent via the
Event Library to the Collector. The former provides an
Application Programming Interface (API) to event producers. As
soon as the event is received by the Event Library, time is

captured. Any accurate clock can be used as the reference clock
for time-stamping. The Event Library associates time with the
event, and sends the event to the Collector. In addition, the Event
Library associates a sequence number with the event for the
purpose of identification.

Figure 1 provides also an example for inter-process
measurements. In this case the functionality of interest is chained
(ID=2), and starts in process X (step 1), continues in process Y
(steps 2-3) and finally completes in process X (step 4). The
chained event is identified (ID=2).

Figure 1. System architecture of the tool.

3.3.2.1 Event library API
The event library offers the following simple API for the event-
producers:

sendSimpleEvent(event-identifier,startStop);

sendChainedEvent(event-identifier,step);

The purpose is to define a very simple API, which can be
implemented with different programming languages.

3.3.2.2 Collection of events
The events produced by the instrumented SW are recorded by the
Collector, and thus a method has to be defined for
communication. The interface between the Collector and the
EventLibrary has not been defined in the architecture. In practice
any suitable communication method may be used. For example on
a local computing system shared memory, loopback sockets or
Web Services may be used. For distributed systems firewalls and
applied Network Address Translators (NAT) between the
collector and the library limit the selection of communication
protocols.

3.3.2.3 Time-stamping of captured events
When an event is captured in the Event-library, time is associated
with it. Time may be captured with any accurate clock in the
Event Library. Candidates are at least system clock of the OS,

405

GPS, NTP and PTP/IEEE 1588. The choice of the clock depends
mostly on the requirement of time accuracy and resolution, mode
of measurements (local/distributed) and accuracy provided by
system clocks of the OS. For example, many Windows based OSs
suffer from low resolution system clock, providing only
millisecond level accuracy. Thus, system performance counters
must be used for high resolution. In the local mode it is possible
to rely on the local reference clocks. In the distributed mode
clocks must be synchronized between the platforms by using e.g.,
GPS/NTP/PTP.

3.3.3 Distribution: GPS-based time synchronization
In order to achieve synchronization of time on distributed SW
platforms, the usage of GPS is defined. Retrieval of accurate
time-stamps from GPS device is not straightforward. Cheap GPS
receivers do not output accurate time. Thus, GPS devices
equipped with Pulse-Per-Second (PPS) functionality are needed.
PPS enabled devices output RF pulses at even seconds via a BNC
output in contrary to the standard GPS protocol messages (e.g.
NMEA/proprietary GPS data). GPS devices with PPS
functionality are equipped with an internal clock, which is
synchronized to the UTC time received from satellites.

Figure 2. Time synchronization based on GPS device
equipped with PPS functionality.

Retrieval of UTC time and PPS signal from the GPS device for
time-stamping purposes in the user space is described in Figure 2.
Time service stores UTC time and Start of second, which are used
for calculation of accurate time to be associated with the captured
event. UTC time is the current time without fraction, and it is
synchronized with the PPS signal in the GPS receiver. Start of
second corresponds to the beginning of each second, which is
retrieved from the local clock (system clock, system performance
counter, etc.). It is used for calculation of fraction to be
concatenated with UTC time.

UTC time is received from the GPS device with standard protocol
messages and is saved in Time service after GPS device has
configured a position and time fix. At each PPS signal, time is
captured from the local clock and saved as Start of second. At the
same moment, UTC time is incremented by one second. The
procedure enables a running clock in Time service.

When the user of Time service calls sendEvent(), current time is
received from the local clock, and Start of second is subtracted
from it in order to get fraction for the current time. Finally, UTC
time is concatenated with the fraction in order to get an accurate
time-stamp, to be associated with the captured event.

When SW is executed in different processes and linked to the
Event-library, different instances of Time service are executed. In

order to enable synchronization of time, Start of second is saved
into shared memory. When multiple instances of Time service get
the PPS signal from the GPS device, the first process updates
Start of second from local system clock to the shared memory
(saveTime()). The other processes get Start of second from the
shared memory (getTime()), and thus stay synchronized.

An alternative option for implementation (as done in Windows
environment in [7]), is to run the functionality of Time service as
a driver in kernel. In this case, several user processes can ask
timing information from the single driver entity. The kernel-mode
operation also provides better accuracy than the user-mode.

Synchronization of time with GPS between distributed nodes
depends naturally on the accuracy provided by the GPS device.
Trimble Lassen iQ GPS manual reports up to 50 ns accuracy for
the rising edge of PPS, which is synchronized with UTC time.
Delay for the signal propagation from GPS device via the adapter
to the laptop should be constant [3]. However, the internal delay
of the interrupt handler in PC is variable and dependent on the
processing load in non-real-time operating systems. For a PC
(Pentium III) the delay has been measured to vary between 8-50
µs, but with special PPS capture cards the delay can be reduced to
tens of nanoseconds [27]. Here it is assumed that propagation
delay in the PC is the same at both ends of the distributed system,
and thus compensated.

4. VALIDATION
The presented concept described in the previous chapter has been
validated with a real prototype system, which is described in this
Chapter. In addition, performance tests of clocks are presented.
HW architecture of the prototype is depicted in Section 4.1.1 and
SW architecture is described in Section 4.1.2. Implementation of
different event types is presented in Section 4.1.3, and capturing
of time in Section 4.1.4. Finally, results of performance tests are
described in Section 4.2.

4.1 Proof of concept
4.1.1 HW architecture
The HW architecture of the prototype system is presented in
Figure 3. The used GPS-terminal is Trimble Lassen IQ. It uses
USB for communicating location and UTC time data to the
receiving device (laptop). It also provides PPS output with a
separate BNC connector (1-PPS). A converter was constructed in
order to transform BNC signal into serial format. PPS pulse is
output to the CTS pin of the serial line connector (RS-232).

406

Figure 3. HW architecture of the tool.

4.1.2 SW architecture
The main features of the concept were implemented with C++ for
the Linux OS running on the laptop. Architecture of the
implementation has been depicted in Figure 4. The tool is
comprised of an executable Collector and dynamically shared
library (EventLibrary). Only one Collector is executed on a SW
platform. However, multiple EventLibraries can be executed, and
the Collector gathers events from each over shared memory. This
enables measurement from multiple processes.

Figure 4. SW architecture of the tool.

EventEncoder is used for encoding and decoding of events to be
exchanged over shared memory between the Collector and the
EventLibrary. ClockService encapsulates the retrieval of time
from the different clock services. StorageService processes and
saves the captured events to a file for the purpose of visualization.

GPSTimer implements the algorithm (described in Section 3.3.3)
for getting accurate time from GPS. It communicates with the

GPS Daemon, which is executed in the background for accessing
the GPS receiver over USB.

4.1.3 Implementation of event types
The mapping of events between the EventLibrary and Collector
has been described in Figure 5. The events are exchanged
between the EventLibraries and the Collector over shared
memory. The System V Linux implementation of shared memory
was applied for Inter-Process Communication (IPC).

ID, seq-nbr, start, stop

ID, seq-nbr, start
Event-library A

Collector

ID, seq-nbr, stop
Event-library B

ID, seq-nbr, step-1, time ID, seq-nbr, step-2, time

Event-library A Event-library B

Collector

ID, seq-nbr, total-steps
{step1,time;step2,time}

Figure 5. Mapping of events with the tool.

4.1.4 Capturing of time
Time is captured immediately after the user calls the
EventLibrary API. Subsequently the event is passed to the
EventEncoder, which adds the event into a queue for encoding
and transmission to the Collector. It is critical to capture time
quickly, and to return from the EventEncoder, since processing in
the library shouldn’t skew results of the event under study.

ClockService uses timers offered by the Linux OS or PAPI library
and gets accurate time from GPSTimer. Functions gettimeofday()
and clock_gettime() are used as local system clocks by the
module.

GPSTimer reads UTC time over shared memory from GPSd. It
uses separate sysctl() function calls for getting Start of second
signals over the serial line based on PPS output of the GPS
receiver.

4.2 Performance results
4.2.1 Resolution of reference clocks
Resolution of reference clocks was tested with the tool. The
laptops under testing were Dell Latitude D400 (Slow CPU-
(1.6GHz Pentium M) and Acer Travelmate 8371 (Fast CPU-Intel
Centrino 2). Ubuntu 9.10 operating system with 2.6.31 Linux
kernel had support for the Performance API (PAPI) clock on both
laptops.

In the tests two consecutive calls to the clock API was executed.
A short delay (1 ms) was included after the function calls. The
test procedure included 100’000 iterations, and it was executed
three times.

The results of the experiments are described in Table 1. System
clock resolution based on the PC clock crystal is ~ 1 µs. PAPI

407

timers can be used for reaching a much higher resolution for time-
stamping as was expected. The resolution depends on the CPU,
which is used as a time source.

Table 1. Average resolution and confidence interval (99%) of
different reference clocks. The values are provided as
nanoseconds.

Conf-(99%) Clock

Resolution
 min max

clock_gettime() 1148 1095 1201
gettimeofday() 1125 1118 1131
PAPI-Slow CPU 140 138 141

PAPI-Fast CPU 49 48 50

In order to achieve high resolution with the tool, processing
during capturing of time has to be minimized. When processing
was minimized, resolution of the tool decreased up to ~ 0.5-1.3 µs
compared to the reference clock (see Table 2). The experiments
were performed similarly as the tests for reference clocks.

Table 2. Average resolution and confidence interval (99%) of
resolution with the tool for different reference clocks. The
values are provided as nanoseconds.

Conf-(99%) Clock

Resolution
 min max

clock_gettime() 2217 2213 2220

gettimeofday() 2465 2461 2469

PAPI-Slow CPU 811 809 813

PAPI-Fast CPU 585 583 586

4.2.2 Overhead and error
Overhead and error was measured by using PAPI as the reference
clock for the tool. The goal was to study how much usage of the
tool affects the measured event. The processing length of the
event under measurement was modified and delays were
measured with simple events and without the tool (as reference).
The event of interest was execution of a for()-loop, where the
number of loops was modified. Overhead and error of the tool
were compared to the reference.

The results are provided in Figures 6 and 7 and cover 100’000
iterations from three test cases. The following metric was used for
estimation of overhead and error:

Events = Number of events in a test case

toolLen = Total length of a test case with the tool

refLen = Total length of a test case in the reference

ieventLen , = Measured length of an event in test iteration (i)

Events

Len
tAvgLenEven tool
tool = Average length of an event

with the tool

Events

Len
tAvgLenEven ref

ref = Average length of an event

in the reference

Events

Len
dLenEventAvgMeasure

Events

i
ievent

tool

 1

,

 =

Average length of an event, which is measured with the tool

 tAvgLenEven

)tAvgLenEven-nt(AvgLenEve*100

ref

reftoolOverhead

 tAvgLenEven

)tAvgLenEven-edLenEvent(AvgMeasur*100

ref

reftoolError

The tests were executed with the slow and fast CPUs mentioned
before.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

2.6 6.3 12.7 25.1 62.7

Error/
overhead

(%)

Event delay (µs)

Slow CPU:
Overhead
vs. ref

Slow CPU:
Error vs. ref

Figure 6. Overhead and error produced by the tool, when
experiments were conducted with the slow CPU.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1.4 3.2 6.2 12.2 30.4

Error/
overhead

(%)

Event delay (µs)

Fast CPU:
Overhead
vs. ref

Fast CPU:
Error vs.
ref

Figure 7. Overhead and error produced by the tool, when
experiments were conducted with the fast CPU.

Based on the results it can be seen that overhead and error caused
by the tool depends on the CPU power. With the slow CPU error
is less than 10%, when the event to be measured is longer than ~
13 µs. With the fast CPU the same level of error is achieved,
when the event is longer than ~ 6 µs.

4.2.3 CPU consumption of the tool
CPU processing caused by execution of the tool was measured.
The test procedure consisted of execution of a simple event
measurement after expiration of an application timer. The length
of the timer was 1 ms. In the tests the frequency of shared
memory access for transmission of events in the tool was
modified in order to discover the effect on CPU power
consumption.

408

CPU processing was measured with top Unix-tool, as a function
of application timer length. The results are provided in Figure 8,
and average CPU consumption is calculated from three test cases,
where 100’000 events were transmitted with the slow CPU.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1 10 100 1000 10000

CPU-load
(%)

Shared memory access timer (µs)

Total-
avg.

Collect
or avg.

Sender
avg.

Figure 8. CPU-processing caused by the tool as a function of
shared memory access. ‘Total avg.’ is the average of total

CPU-processing. Average CPU-consumption caused by the
Collector, and Sender (EventLibrary) is also described.

From the results it can be noticed that CPU-processing is lower
than 10%, when shared memory is not accessed more frequently
than 0.1 ms.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

10 1 0.1 0.01

Average
CPU-load

(%)

Event transmission rate (ms)

1ms-Total-avg.

1ms-Collector
avg.
1ms-Sender
avg.
0.1ms-Total-
avg.
0.1ms-Collector
avg.
0.1ms-Sender
avg.

Figure 9. CPU-processing caused by the tool as a function of
event transmission rate. The curves describe processing for

different rates of shared memory access.
Figure 9 describes CPU consumption as a function of event
transmissions triggered by an application timer, when shared
memory access rate is kept constant (0.1 ms/1 ms). The test
procedure is similar as described above.

When shared memory is accessed with a rate of 1 ms, CPU-
processing stays lower than 5% even with a high message
transmission rate (100’000 messages/second). Messages are
queued at the sender, because transmission rate is higher than the
memory access rate. When shared memory access is higher (0.1
ms), CPU-processing increases, because messages are transmitted
over shared memory with a higher rate than in the previous case.

5. ANALYSIS OF THE TOOL
In this chapter the tool is evaluated in terms of the stated
requirements. Finally, performance of the implementation is
evaluated and the tool is compared to existing commercial
solutions and published work.

5.1 Reduce time for measurement and
analysis
The biggest value of the tool for the user should be reduced time
between measurement setup and analysis phases achieved with
automated measurements. Usage of the tool consists of the
following steps:

1.) Identify events of value. Allocate identifiers for the events.

2.) Instrument the SW implementation with function calls to the
EventLibrary. Compile and link the implementation.

3.) Start the Collector and execute test cases with the
instrumented SW.

4.) Extract data from the measurement file for the purpose of
analysis with a visualization tool (Excel/Matlab/proprietary tool
etc.).

Alternatively testing could be performed without the tool or with
a SW/HW tracer. If the tool is not used, determination of the
correct reference clock, synchronization between processes and
calculation of statistics becomes problematic and requires effort.
If SW/HW tracer is used, SW doesn’t have to be instrumented.
However, calculation of statistics from trace files and increased
CPU processing may create problems.

Instrumentation of SW could potentially be shortened with
binary-based instrumentation as in the TAU approach [17]. In this
case the executable code is instrumented instead of the source
code, and compiling and linking of SW would be avoided.

5.2 Measurement of different events
The most important solution related to the proposal in previous
research is ARM [13] [24]. API calls of ARM and our approach
are compared in Figure 10. The main difference is in the usage of
event identifiers and amount of function calls between the
application and the library. ARM defines an identifier for the
application and measured transactions. In addition, it uses
correlators for mapping different transactions together. This adds
complexity to the API. Our approach is kept as simple as possible.
Event-producer provides the identifier of the measured event to
the EventLibrary, which reduces the amount of function calls.

The obvious downside of our proposal is the need to keep
identifiers unique in the applications, which use services of the
EventLibrary.

Our approach defines the chained event for measurement of
interrelated events. When the measurement files are integrated in
the Collector, the user gets a unified view of the processing
between different steps in the chained event. ARM uses
correlators for the same purpose. ARM doesn’t specify how
correlators are mapped together between libraries, which are
executed in different processes. In the proposed approach,
responsibility is left for the user to apply the same identifier in
different instances of an EventLibrary, when different steps of
interrelated events are measured with chained events.

409

Figure 10. Comparison of API calls between ARM and the
proposal.

5.3 Support local and distributed computing
systems
If measurements are performed on a local SW platform, system
clocks provided by the OS or high performance timers can be
applied. For distributed platforms clock synchronization is achieved
with GPS, and thus each SW platform has to support GPS with PPS
functionality. Distribution could also be supported with other clock
synchronization techniques such as PTP.

In the distributed mode clock synchronization requires that PPS
signals from the OS are synchronized between multiple processes.
The Linux OS notifies each of the processes, which has called
sysctl(), when a PPS is detected. Thus, only the first process should
update Start of second to shared memory, which is used as the
reference for all the EventLibraries executed in multiple processes.

5.4 Independency on programming language,
SW process/platform and operating system
In order for the tool to be usable on different SW platforms and
operating environments, portability issues have to be taken into
account. In the current architecture one Collector is executed on
each SW platform, which collects data from all EventLibraries
executed on the same SW platform. The data saved on multiple SW
platforms can be merged by any of the Collectors. At the moment
measurement files have to be manually transferred to a centralized
location for merging.

The usage of the EventLibrary API is transparent to the application,
even if measurements are performed on multiple SW processes.
However, sequence numbers are unique to the process EventLibrary
is executed in. The user is responsible that events of a chained event
always occur in the same order.

EventLibrary API has been developed for Java, Javascript, C and
C++ programming languages. When API of the extension API is
called, the native implementation of EventLibrary is executed.
Support may also be provided for other languages such as Python.

The current full implementation exists for Linux, but it should be
possible to be ported also for other OSs. The critical parts in porting
are access to shared memory, support for GPS drivers and API, and
accurate timers provided by the OS. As stated earlier, for Windows,
a GPS time-stamping driver has been implemented for providing
synchronization. Thus, the most difficult part for Windows already
exists.

5.5 Performance
The results indicate that system clocks of Linux achieve accuracy in
the range of 1 microsecond. The results are within the same range of
resolution, which has been reported earlier for system clocks [25].
PAPI achieves higher resolution (~ 80 – 140 ns) due to usage of
CPU counters as a time source. The resolution depends on the
power of the CPU as expected. However, nanosecond resolution for
CPU based clocks wasn’t achieved on Linux. Other OSs (e.g.
Windows) may reach higher resolution as was reported in earlier in
the related work.

It was noticed during measurements that processing should be
minimized, when the timestamp is captured. In the current
implementation captured time is saved into a circular buffer (pre-
created C++ object). With this approach overhead of capturing is ~
0.5 – 1.3 µs, and highest resolution achieved with PAPI ~590 ns.

Tests were executed in order to find out the level of error and
overhead caused by execution of the tool. It seems that error and
overhead depends on the HW the tool is executed on. Error was
lower than 10% with a high power laptop, when length of the
measured event was longer than 6 µs. Inaccuracy is most probably
caused by overhead of the tool, which becomes significant with very
short events. The tests described an extreme, where a very short
event was measured in a loop.

Tests indicated that CPU-processing reduces, when the frequency of
memory access is reduced for transmission of events, which was
expected. With a transmission rate of 1 ms, the tool produces up to ~
5% CPU load. It can be seen that CPU-processing doesn’t
significantly increase, even if event transmission frequency is
increased above the frequency of shared memory access. In such a
case the events are queued in the sender implementation, which
doesn’t lead to excessive CPU load.

5.6 Comparison to related work
The contribution of this paper is presentation of GPS-based time
synchronization method for an instrumentation-based delay
measurement tool. In addition, similar performance results of the
approach haven’t been discovered by the authors. However, similar
approaches have been published and this work is compared here for
the purpose of argumentation.

ARM [13] proposes a very similar instrumentation-based approach.
As described in Section 5.2, our approach is simpler and requires
less function calls between the application and the tool. In addition,
ARM doesn’t specify any time synchronization method, which is
left open for implementation of the specification. TAU [17] is also
based on instrumentation, but similar contributions on time
synchronization weren’t found either. NetLogger [16] applies a
more verbose approach as it dumps timestamps of events directly to
an instrumentation file. The results indicate that overhead of the

410

solution is low (5% CPU load) with a frequency of 10000
events/second. The results are similar as in our approach, if the
frequency of shared memory access is set lower than 1 ms.

PTP [19] offers also an approach for time synchronization, and it
could be applied with the proposed tool. The problem is accuracy,
which deteriorates in wireless networks.

Some other proposals are also worth of comparison. Source code
instrumentation proposal [12] aims at SW performance estimation
before the target HW is available with a simulator. In comparison
our approach is instead focused on SW performance on target
SW/HW platform. The authors of [9] presented measurements of
SW latency during the SW performance process, but the
implementation was manually instrumented without automation.
The SW/HW tracer described in [1] is close to the concept proposed
in this paper. The system under study has to be instrumented, and
measurement is carried out with HW probes. Only the interesting
events are measured, as in the approach presented in this paper. The
downside of the presented approach [1] is dependency of the
measurement HW and lack of implementation details provided.
Mentor’s solution is also HW-based, and provides detailed tracing
of the program flow in the system. The downside is lack of support
for distributed systems, and possibly overhead produced by the
measurement method. The approaches for measuring CPU and
memory usage [10] [11] of SW components can be considered as
complementary to the tool proposed in this paper. Qosmet [7] has
the initial implementation of the time synchronization method, but
aims at different goals (data network monitoring) than the presented
tool.

6. CONCLUSION
This paper presented a proof-of-concept for latency measurements,
which is based on instrumentation of SW. The generic goal is to
enable latency measurement of events on local and distributed
systems. Latency characterizes performance of SW, which is
valuable to the test person. HW/SW architecture and
implementation were presented as a proof-of-concept. The solution
was analyzed in terms of the stated requirements, and performance
of the proposal was studied. In addition, a method for time
synchronization with the GPS was presented. The presented time
synchronization method can also be used independently for different
purposes, such as data packet time-stamping for network monitoring
[7].

The presented tool supports the measurement of simple and
complex events, the measurement and analysis processes can be
automated, and the method incurs low overhead to the event(s)
under study. The tool supports various programming languages and
inter-process communication. It is argued to have a simpler API
than competing solutions based on the ARM specification. The
presented time synchronization method has been implemented for
Windows and Linux, which indicates portability for different
operating systems. Experiments showed that a resolution of ~590
nanoseconds can be achieved with high performance clocks (PAPI)
on Linux SW platform, which is lower than optimal. It is caused by
processing related to the saving of the captured timestamp. It was
discovered that measurement error becomes significant, when very
small events (smaller than 15 µs) are captured. The level of error
depended on the HW the tool was executed on. CPU consumption
of the approach should remain lower than 5%, if the rate of shared
memory access for event transmission is kept lower than 1 ms.

7. DISCUSSION
Achievement of optimal resolution remains as an open issue. The
problem is minimization of processing related to the saving of
timestamps. In the current solution data related to the event was
saved to a pre-initialized data structure. When this minimal
operation was performed in between time-stamping, the optimal
resolution of time reduced significantly.

Nanosecond level resolution of time wasn’t achieved on Linux
platform. The performance is partly dependent on the CPU of the
computing platform, the tool is executed on. Also frequency scaling
of the CPU may affect performance [28]. In addition, higher
resolution may be achieved with other operating systems (e.g.
Windows).

GPS based time synchronization should not be affected by drifting
of time, when compared to a solution based on system clocks. In our
approach reference time for time-stamping from system clock is
fetched during each second, and thus drifting doesn’t have an effect.
The delay and variance of the PPS signal from serial port to user
space wasn’t measured. However, this should be taken into account,
because it has an effect on accuracy. The delay of the signal may be
reduced with special PPS measurement HW [27].

The proposed approach for time synchronization requires
investment to GPS HW. The tool could also be used with PTP based
technology. However, high accuracy with PTP also requires
investment to HW [5]. In some use case scenarios, where high
accuracy is not needed for measurements, PTP could be used as
reference time without HW support [22].

Portability of the concept for mobile terminals is very challenging.
GPS chip sets in current mobile phones have been optimized for
price and PPS is not usually supported. Thus, accuracy for time
synchronization can be difficult to be achieved without PPS only
based on UTC time.

The SW mentioned in this publication: The developed tool,
Windows’ timestamping driver, and Qosmet, are property of VTT.
Do not hesitate to contact the authors for more information.

8. ACKNOWLEDGEMENT
The author acknowledges Daniel Pakkala (VTT) for providing
funding for the work and Tommi Aihkisalo (VTT) for testing of the
tool.

9. REFERENCES
[1] Calvez J.P, Pasquier O. 1995. Performance Assessment of

Embedded Hw/Sw Systems. In Proc. of the International
Conference on Computer Design: VLSI in Computers and
Processors (Austin, Texas, USA, October 02-04, 1995).
ICCD’95. IEEE, New York, NY, 52-57.
DOI=http://dx.doi.org/10.1109/ICCD.1995.528790.

[2] Fleury M., et al. 1997. Design of a clock synchronization sub-
system for parallel embedded systems. In Proc. of the IEE
Proc. Comput. Digit. Tech., 144, 2 (March, 1997), 65-73.
DOI= http://dx.doi.org/10.1049/ip-cdt:19971155.

[3] Marouani H., Dagenais M.R. 2005. Comparing high resolution
timestamps in computer clusters. In Proc. of the Canadian
Conference on Electrical and Computer Engineering
(Saskatoon, Canada, May 01-04, 2005). IEEE, New York, NY,
400-403. DOI=
http://dx.doi.org/10.1109/CCECE.2005.1556956.

411

[4] Linux Trace Toolkit, URL: “http::/www.opersys.com/LTT”.

[5] De Vito L., Rapuano S., Tomaciello L. 2008. One-Way Delay
Measurement: State of the Art. IEEE Transactions on
Instrumentation and Measurement. 57, 12 (December. 2008),
2742-2750. DOI= http://dx.doi.org/10.1109/TIM.2008.926052.

[6] Kannisto J. et al. 2005. Software and Hardware Prototypes of
the IEEE 1588 Precision Time Protocol on Wireless LAN. In
Proc. of the 14th IEEE Workshop Local Metropolitan Area
Networks (Chania, Greece, September 18-21, 2005). IEEE,
New York, NY. DOI=
http://dx.doi.org/10.1109/LANMAN.2005.1541513.

[7] Prokkola J. et al. 2007. Measuring WCDMA and HSDPA
Delay Characteristics with QoSMeT. In Proc. of the
International Conference on Communications, (Glasgow,
Scotland, June 24-28, 2007). IEEE, New York, NY, 492-498.
DOI= http://dx.doi.org/10.1109/ICC.2007.87.

[8] Lamport L. 1978. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM. 21,7 (July,
1978), ACM, New York, NY, 558-565. DOI=
http://dx.doi.org/10.1145/359545.359563.

[9] Johnson M..J. 2007. Incorporating Performance Testing in
Test-Driven Development. IEEE Software. 24, 3 (May/June,
2007), 67-73, DOI= http://dx.doi.org/10.1109/MS.2007.77.

[10] Li H. et al. 2005. Design Issues of a Novel Toolkit for Parallel
Application Performance Monitoring and Analysis in Cluster
and Grid Environments. In Proc. of the 8th International
Symposium on Parallel Architectures, Algorithms and
Networks (Las Vegas, Nevada, December 7-9, 2005). IEEE,
New York, NY. DOI=
http://dx.doi.org/10.1109/ISPAN.2005.35.

[11] Miettinen T. et al. 2008. A Method for the resource monitoring
of OSGi-based software components. In Proc. of the 34th
Euromicro Conference on Software Engineering and Advance
Applications (Parma, Italy, September 3-5, 2008). IEEE, New
York, NY, 100-107. DOI=
http://dx.doi.org/10.1109/SEAA.2008.24.

[12] Wang Z. et al. 2008. SciSim: A Software Performance
Estimation Framework using Source Code Instrumentation. In
Proc. of the 7th International Conference on Software and
Performance (Princeton, New Jersey, USA, June 23-26, 2008).
ACM, New York, NY, 33-42. DOI=
http://dx.doi.org/10.1145/1383559.1383565.

[13] Application Response Measurement (ARM), Issues 4.0, Open
Group, URL: http://www.opengroup.org/
management/arm.htm/.

[14] Engels K. and Heidger R. ARM instrumentation of the
PHOENIX ATC System for Performance evaluation. In Proc.
of the Computer Management Group (San Diego, CA, USA,
December 2-7, 2007).

[15] Tierney B. et al., 2003. NetLogger: A toolkit for distributed
system performance tuning and debugging. In Proc. of the
Eight International Symposium on Integrated Network
Management (Colorado Springs, USA, March 24-28, 2003).
DOI: http://dx.doi.org/10.1109/INM.2003.1194164.

[16] Gunter et al. Log Summarization and Anomaly Detection for
Troubleshooting Distributed Systems. In Proc. of the 8th

IEEE/ACM International Conference on Grid Computing (
Austin, Texas, USA, September 19-21, 2007). IEEE, New
York, NY, 226-234. DOI=
http://dx.doi.org/10.1109/GRID.2007.4354137.

[17] Shende S. S. Malony A. D. The TAU Parallel Performance
System. The International Journal of High Performance
Computing Applications, 20, 2 (May, 2006). IEEE/ACM, New
York, NY, 287-311.
DOI=http://dx.doi.org/10.1177/1094342006064482.

[18] Spear W. et al. Making Performance Analysis and Tuning Part
of the Software Development Cycle. In Proc. of the High
Performance Computing Modernization Program Users Group
Conference (San Diego, CA, USA, June 15-18, 2009).

[19] Han J. and Jeong D. A Practical Implementation of IEEE
1588-2008 Transparent Clock for Distributed Measurement
and Control Systems. IEEE Transactions on Instrumentation
and Measurement, 59, 2 (February, 2010). IEEE, New York,
NY, 433-439.
DOI=http://dx.doi.org/10.1109/TIM.2009.2024371.

[20] Cooklev T. An Implementation of IEEE 1588 Over 802.11b
for Synchronization of Wireless Local Are Network Nodes.
IEEE Transactions on Instrumentation and Measurement, 56,
5 (October, 2007), 1632-1639. DOI=
http://dx.doi.org/10.1109/TIM.2007.903640.

[21] Bang Y. et al. Wireless Network Synchronization for
Multichannel Multimedia Services. In Proc. of the 11th
international conference on Advanced Communication
Technology (Phoenix Park, Korea, February 15-18, 2009).
IEEE, New York, NY, 1073-1077.

[22] Correll K. and Barendt N. Design Considerations for Software
Only Implementations of the IEEE 1588 Precision Time
Protocol, In Proc. of the IEEE-1588 Standard for a Precision
Clock Synchronization Protocol for Networked Measurement
and Control Systems, NIST and IEEE, 2005.

[23] GPS Daemon, URL: http://gpsd.berlios.de/.

[24] Elarde J. V. and Brewster G. B. Performance Analysis of
Application Response Measurement (ARM) Version 2.0
Measurement Agent Software Implementations. In Proc. of
the Performance, Computing, and Communications
Conference (Phoenix, Arizona, USA, February 20-22, 2000).
IEEE, New York, NY, 190-198.
DOI=http://dx.doi.org/10.1109/PCCC.2000.830318.

[25] Psztor A. and Veitch D. 2002. PC based precision timing
without GPS. In Proc. of the ACM SIGMETRICS international
conference on Measurement and modeling of computer systems
(Marina del Rey, California, USA, June 15-19, 2002). ACM,
New York, NY, 1-10. DOI=
http://dx.doi.org/10.1145/511399.511336.

[26] Performance API project, URL:
http://icl.cs.utk.edu/papi/overview/index.html.

[27] Smotlacha V. Measurement of Time Servers. CESNET
Technical Report. 2001.

[28] Zaparanuks D. 2008. Accuracy of Performance Counter
Measurements. Technical Report, University of Lugano.

412

