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ABSTRACT 
Software has to be tested from functional and performance 
viewpoints in order to create products, which fulfill customer 
demands. The need for testing has led to the development of a 
plethora of testing tools. Performance measurement of SW 
latencies on local and distributed SW platforms hasn’t yet been 
completely solved, which is the research problem of this paper. In 
particular, GPS-based time synchronization and performance of 
the proof-of-concept has been concentrated on. The approach is to 
instrument the SW implementation under study, and to collect 
measurement data with the presented tool. The results indicate a 
resolution of ~590 ns, which can be achieved with high 
performance reference clocks. CPU processing can be kept lower 
than 5% even with a high event transmission rate. In addition, the 
presented GPS synchronization method can be used for other 
purposes such as data packet time-stamping in network 
monitoring solutions.     

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]: Distributed debugging.  

General Terms: Measurement, Performance, 
Experimentation, Verification. 

Keywords: Event-based, debugging, SW instrumentation, 
latency, time synchronization, GPS. 

1. INTRODUCTION 
The need to validate functional or performance requirements of 
SW has been fulfilled with many commercial tracing tools. SW 
functionality under study may consist of one or several modules, 
which have events of interest to the test personnel. In addition, the 
modules may be executed in the same or different computing 
systems with heterogeneous SW platforms (Unixes, Windows, 
Symbian etc.). Currently a plethora of tools exist for SW 
performance measurements for different SW platforms.  

Different parameters of SW processing may be interesting to the 
users of testing tools. For example CPU processing share, 
memory usage and power consumption may have value to the 
user. The focus of this paper is on the measurement of SW 
latencies on local and distributed computing systems, which is 
based on instrumentation of SW. The contribution is presentation 

of a proof-of-concept, which is aimed to be used for measurement 
of simple and complex events of interest. The main focus of the 
concept is in the method for time synchronization with the GPS 
(Global Positioning System), which is needed for distribution 
support. In addition, performance results of the implemented tool 
for the Linux Operating System (OS) are presented. The results 
indicate that ~590 ns resolution can be achieved with high 
performance system clocks, and CPU processing can be kept 
lower than 5% even with a large event transmission frequency.   

The structure of the paper is as follows. Related work for SW 
event tracing is described in Chapter 2. The proposed 
measurement concept is presented in Chapter 3. In particular, 
motivation, requirements and main features of the tool are 
provided. Proof-of-concept and performance results of the tool are 
presented in Chapter 4. The tool is analyzed in terms of the stated 
requirements and compared to existing research in Chapter 5. 
Conclusion of the work is presented in Chapter 6. The final 
chapter discusses the results and possibilities for improvements.          

2. RELATED WORK 
Previous work related to the subject of this paper deals with 
capturing of time, and synchronization of clocks for distributed 
systems, and development of measurement tools. 

2.1 Time and synchronization 
When the SW of interest resides in different computing systems 
and time is measured, synchronization between the clocks is 
important for validity of the results. These problems have been 
studied decades ago [8]. In the system defined, distributed 
processes have separate clocks, which can be used for 
synchronization and ordering of events with the presented 
algorithms.      

Clock synchronization for parallel embedded systems has been 
designed [2]. It presents a model for synchronizing clocks 
between processor nodes with the reference clock of a global 
server. Drifting of the clock in the nodes of the centralized system 
is corrected with synchronization pulses.  

Most current clock synchronization techniques for One-Way 
Delay (OWD) measurements have been compared [5]. It was 
noticed that Network Time Protocol (NTP) doesn’t provide 
enough accuracy for industrial applications. GPS and IEEE 
1588/Precision Time Protocol (PTP) offer high accuracy (sub-
microseconds), but have limitations in effort to use and 
dependency of LANs for high accuracy. 

PTP is based on the exchange of timing messages between 
distributed nodes, and provides up to 30 ns clock accuracy with 
an implementation based on the latest version of the standard 
(2008) [20]. The problem is performance in wireless networks 
where accuracy is in the range of few to hundreds of 
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microseconds or even worse, and may depend on the layer of SW 
where the measurements are performed on [21][22]. In addition, a 
clock with higher accuracy needs support from HW.             

PC-based system clocks can also be applied for timing purposes. 
Accuracy of the system clock is dependent on the quartz crystal it 
is made of, and thus its accuracy depends on temperature. 
Accuracy and drifting of the clock over time were found to be 
modest in modern microprocessor architectures [3]. However, the 
resolution is constrained by frequency of the crystal to around 1µs 
[25]. As an alternative to system clocks of the operating system, 
CPU clock cycle register (TSC) based clock has been proposed, 
which offers 1 ns resolution on Real-Time Linux [25]. Standard 
Linux kernel provides also support for high resolution timers 
(Performance API/PAPI) [26] [28]. In Windows OS, system 
performance counters can be used easily. Based on the tests made 
by the authors, the resolution is dependent on the HW. In many 
computers, the counter frequency is 3.58 MHz, providing ~ 280 
ns resolution. However, in some newer computers, the frequency 
is the same as the processor clock speed, providing thus very high 
resolution. In reality, however, processor load, and the timestamp 
request decrease the achievable resolution.           

2.2 Measurement tools 
Tools have been developed for measurement of processing delays 
based on instrumentation of SW. ARM (Application Response 
Measurement) [13] standard is based on this approach. It defines 
an API to a library for measurement of application response 
delays. The library is linked to the measured SW, which executes 
the needed transactions with calls to the API. The approach has 
been successfully verified in a business case [14], where 
performance data has been gathered in a multi-radar air-situation 
display system.  

NetLogger follows a similar approach as ARM [15]. The toolkit 
provides an API for logging application events to a file, and 
provides APIs for different programming languages. A Real-time 
Collector receives the events and aggregates the data for the 
purpose of visualization.   

TAU performance measurement system [17] also follows the SW 
instrumentation-based approach. The main difference between 
ARM and NetLogger is that different instrumentation alternatives 
are supported (source, preprocessor, compiler, wrapper library, 
binary etc.) with TAU. In addition, TAU has been integrated for 
programming environments with IDE plug-ins [18]. 

In addition, other performance debugging tools have been 
developed. Accuracy of high resolution timestamps on Linux 
platform was measured by the authors of [3] for the development 
of the Linux Trace Toolkit. It enables the tracing of program 
execution flow without instrumentation based on timestamps 
embedded to the kernel [4].  

A system has also been developed for the performance assessment 
of Embedded HW/SW Systems [1]. The solution is to use a 
separate HW-system, which is plugged into the system under 
study. The system consists of an ASIC (for timestamp collection), 
a serial bus and a set of probe-chips, which are connected to the 
bus for event collection. The purpose of the tool is to enable real-
time performance measurement of HW/SW systems according to 
the specified performance indexes.  

In addition, there are plenty of commercial debuggers available, 
which enable tracing of program flow on the target HW. An 
example is Mentor’s Majic (www.mentor.com), which enables 

tracing of SW via the standardized JTAG interface to the target 
HW.           

Tools are available for estimating CPU/memory consumption of 
SW on target HW in run-time. A web-based toolkit has been 
proposed for tracking performance of applications in grid 
platforms, which can be used for visualization of CPU, memory 
usage and network bandwidth [10]. A method has been developed 
for monitoring CPU and heap memory usage of Java-based 
software components (bundles) on OSGi platform [11].    

Finally, tools have been developed for integration of SW 
development with performance testing processes [9]. In the 
presented approach performance tests are specified, implemented 
and executed during the SW development process in order to 
track critical problems early in the process. Performance tests 
were implemented by inserting timestamps at the desired 
measurement points, and data was collected with JUnit test 
software.    

Methods for simulating software performance without target HW 
have been proposed in order to aid decision making in SW/HW 
design. The existing approaches have been reviewed, and a new 
solution has been proposed, which targets micro-architecture 
issues with source code instrumentation [12].  

2.3 The contribution 
Although there exists plenty of techniques for measurement of 
SW performance, a contribution is missing, which presents the 
integration of SW instrumentation approach with GPS-based 
clock synchronization for measurement of processing delays on 
local and distributed systems. In addition, performance of the 
approach hasn’t been properly studied (to the best of the author’s 
knowledge). The afore-mentioned issues are the main contribution 
of this paper.  

The basic synchronization principle of this paper is based on 
VTT’s earlier work on data packet time-stamping 
synchronization. Qosmet tool was developed for passive 
monitoring of Quality of Service (QoS) in communications [7]. In 
order to perform accurate OWD measurements, an analogous 
synchronization problem is faced as when measuring SW process 
performances. For this, a special GPS synchronization driver was 
developed for accurate time-stamping of packets in remote 
machines. The driver has been developed for Windows OS and 
uses system performance counters. The synchronization accuracy 
is better than 50 µs.   

3. CONCEPT 
Motivation of the developed concept is described in Section 3.1, 
which is followed by the statement of requirements in Section 3.2. 
The main features of the tool are described in Section 3.3. In 
particular, architecture, measurement of different events, API of 
the developed Event-library and GPS-based time synchronization 
is described.   

3.1 Motivation 
The presented concept is aimed to be implemented by a tool, 
which can be used for latency measurement of SW related events 
on target HW. An event is defined here as any processing 
performed by the SW implementation(s) over local or distributed 
computing systems. Latency characterizes performance of the 
event on the target platform. The expected latency depends at 
least on the HW/SW platform, real-time requirements and use 
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case related to the event(s). Thus, the goal is to enable 
performance measurement of events, which have value for the 
end-user.      

3.2 Requirements 
In order to have a tool for measurement of different events, which 
is usable on different SW platforms and programming 
environments, the following requirements have been defined: 

Req. 1: Reduce time for measurement and analysis:  In 
addition, measurement data should be easily visualized for the 
purpose of analysis.   

Req. 2: Measurement of different events: The functionality of 
interest may be simple such as parsing of XML data. In addition, 
there may be multiple events related to each other, which are of 
interest e.g. encoding and transmission of XML document to the 
end point. Such an event is defined as a chained event. 
Measurement of both types of events must be supported.   

Req. 3: Support local and distributed computing systems: 
Measurement of events on local and distributed computing 
systems should be supported.  

Req. 4: Independency on programming language, SW 
process/platform and operating system: The tool should be 
independent of the process/platform it is executed on and it 
should support as many programming languages as possible in 
order to be usable in heterogeneous test environments and SW 
platforms.      

3.3 Main features 
3.3.1 Measurement of different events 
In order to fulfill Req. 1, a unique identifier is used for mapping 
to the event of interest. An example would be to map ‘XML 
message decoding delay’ user level concept to events with ID=1. 
In order to identify different measurements of an event, a 
sequence number is applied for each measurement.          

A simple event has a start and end time associated with it, and 
latency of the event is calculated based on the difference. A 
complex chained event is comprised of multiple steps, each of 
which is a component of the total latency. The event types consist 
of the following data: 

Simple-event: identifier, sequence-number, start-time, stop-time 

Chained-event: identifier, sequence-number, step-number, time 

3.3.2 Architecture 
Figure 1 describes architecture of the tool on a local computing 
system. The tool is comprised of event producers, an 
EventLibrary and a Collector. An event producer is any SW 
process, which sends events to the Collector. The Event Library 
enables transmission of events from event producers to the 
Collector. The role of the Collector is to process the received 
events for the purpose of visualization. The visualization tool may 
be co-located with the Collector or may be implemented as a 
separate tool.  

In the example of Figure 1, functionality 1 is under study. It is 
measured with a simple event in SW process X, which has been 
implemented with C-programming language. The event producer 
transmits start and stop time of the simple event, and associates 
them with a unique identifier (ID=1). The event is sent via the 
Event Library to the Collector. The former provides an 
Application Programming Interface (API) to event producers. As 
soon as the event is received by the Event Library, time is 

captured. Any accurate clock can be used as the reference clock 
for time-stamping. The Event Library associates time with the 
event, and sends the event to the Collector. In addition, the Event 
Library associates a sequence number with the event for the 
purpose of identification.  

Figure 1 provides also an example for inter-process 
measurements. In this case the functionality of interest is chained 
(ID=2), and starts in process X (step 1), continues in process Y 
(steps 2-3) and finally completes in process X (step 4). The 
chained event is identified (ID=2).  

 

Figure 1. System architecture of the tool.  

3.3.2.1 Event library API 
The event library offers the following simple API for the event-
producers: 

sendSimpleEvent(event-identifier,startStop); 

sendChainedEvent(event-identifier,step); 

The purpose is to define a very simple API, which can be 
implemented with different programming languages.  

3.3.2.2 Collection of events 
The events produced by the instrumented SW are recorded by the 
Collector, and thus a method has to be defined for 
communication. The interface between the Collector and the 
EventLibrary has not been defined in the architecture. In practice 
any suitable communication method may be used. For example on 
a local computing system shared memory, loopback sockets or 
Web Services may be used. For distributed systems firewalls and 
applied Network Address Translators (NAT) between the 
collector and the library limit the selection of communication 
protocols.  

3.3.2.3 Time-stamping of captured events 
When an event is captured in the Event-library, time is associated 
with it. Time may be captured with any accurate clock in the 
Event Library. Candidates are at least system clock of the OS, 
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GPS, NTP and PTP/IEEE 1588. The choice of the clock depends 
mostly on the requirement of time accuracy and resolution, mode 
of measurements (local/distributed) and accuracy provided by 
system clocks of the OS. For example, many Windows based OSs 
suffer from low resolution system clock, providing only 
millisecond level accuracy. Thus, system performance counters 
must be used for high resolution. In the local mode it is possible 
to rely on the local reference clocks. In the distributed mode 
clocks must be synchronized between the platforms by using e.g., 
GPS/NTP/PTP.           

3.3.3 Distribution: GPS-based time synchronization 
In order to achieve synchronization of time on distributed SW 
platforms, the usage of GPS is defined. Retrieval of accurate 
time-stamps from GPS device is not straightforward. Cheap GPS 
receivers do not output accurate time. Thus, GPS devices 
equipped with Pulse-Per-Second (PPS) functionality are needed. 
PPS enabled devices output RF pulses at even seconds via a BNC 
output in contrary to the standard GPS protocol messages (e.g. 
NMEA/proprietary GPS data). GPS devices with PPS 
functionality are equipped with an internal clock, which is 
synchronized to the UTC time received from satellites.     

 

Figure 2. Time synchronization based on GPS device 
equipped with PPS functionality.  

Retrieval of UTC time and PPS signal from the GPS device for 
time-stamping purposes in the user space is described in Figure 2. 
Time service stores UTC time and Start of second, which are used 
for calculation of accurate time to be associated with the captured 
event. UTC time is the current time without fraction, and it is 
synchronized with the PPS signal in the GPS receiver. Start of 
second corresponds to the beginning of each second, which is 
retrieved from the local clock (system clock, system performance 
counter, etc.). It is used for calculation of fraction to be 
concatenated with UTC time.      

UTC time is received from the GPS device with standard protocol 
messages and is saved in Time service after GPS device has 
configured a position and time fix. At each PPS signal, time is 
captured from the local clock and saved as Start of second. At the 
same moment, UTC time is incremented by one second. The 
procedure enables a running clock in Time service.   

When the user of Time service calls sendEvent(), current time is 
received from the local clock, and Start of second is subtracted 
from it in order to get fraction for the current time. Finally, UTC 
time is concatenated with the fraction in order to get an accurate 
time-stamp, to be associated with the captured event.         

When SW is executed in different processes and linked to the 
Event-library, different instances of Time service are executed. In 

order to enable synchronization of time, Start of second is saved 
into shared memory. When multiple instances of Time service get 
the PPS signal from the GPS device, the first process updates 
Start of second from local system clock to the shared memory 
(saveTime()). The other processes get Start of second from the 
shared memory (getTime()), and thus stay synchronized. 

An alternative option for implementation (as done in Windows 
environment in [7]), is to run the functionality of Time service as 
a driver in kernel. In this case, several user processes can ask 
timing information from the single driver entity. The kernel-mode 
operation also provides better accuracy than the user-mode.       

Synchronization of time with GPS between distributed nodes 
depends naturally on the accuracy provided by the GPS device. 
Trimble Lassen iQ GPS manual reports up to 50 ns accuracy for 
the rising edge of PPS, which is synchronized with UTC time. 
Delay for the signal propagation from GPS device via the adapter 
to the laptop should be constant [3]. However, the internal delay 
of the interrupt handler in PC is variable and dependent on the 
processing load in non-real-time operating systems. For a PC 
(Pentium III) the delay has been measured to vary between 8-50 
µs, but with special PPS capture cards the delay can be reduced to 
tens of nanoseconds [27]. Here it is assumed that propagation 
delay in the PC is the same at both ends of the distributed system, 
and thus compensated.       

4. VALIDATION 
The presented concept described in the previous chapter has been 
validated with a real prototype system, which is described in this 
Chapter. In addition, performance tests of clocks are presented. 
HW architecture of the prototype is depicted in Section 4.1.1 and 
SW architecture is described in Section 4.1.2. Implementation of 
different event types is presented in Section 4.1.3, and capturing 
of time in Section 4.1.4. Finally, results of performance tests are 
described in Section 4.2. 

4.1 Proof of concept 
4.1.1 HW architecture 
The HW architecture of the prototype system is presented in 
Figure 3. The used GPS-terminal is Trimble Lassen IQ. It uses 
USB for communicating location and UTC time data to the 
receiving device (laptop). It also provides PPS output with a 
separate BNC connector (1-PPS). A converter was constructed in 
order to transform BNC signal into serial format. PPS pulse is 
output to the CTS pin of the serial line connector (RS-232).    
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Figure 3. HW architecture of the tool.  

4.1.2 SW architecture 
The main features of the concept were implemented with C++ for 
the Linux OS running on the laptop. Architecture of the 
implementation has been depicted in Figure 4. The tool is 
comprised of an executable Collector and dynamically shared 
library (EventLibrary). Only one Collector is executed on a SW 
platform. However, multiple EventLibraries can be executed, and 
the Collector gathers events from each over shared memory. This 
enables measurement from multiple processes.      

 

Figure 4. SW architecture of the tool.  

EventEncoder is used for encoding and decoding of events to be 
exchanged over shared memory between the Collector and the 
EventLibrary. ClockService encapsulates the retrieval of time 
from the different clock services. StorageService processes and 
saves the captured events to a file for the purpose of visualization. 

GPSTimer implements the algorithm (described in Section 3.3.3) 
for getting accurate time from GPS. It communicates with the 

GPS Daemon, which is executed in the background for accessing 
the GPS receiver over USB.      

4.1.3 Implementation of event types 
The mapping of events between the EventLibrary and Collector 
has been described in Figure 5. The events are exchanged 
between the EventLibraries and the Collector over shared 
memory. The System V Linux implementation of shared memory 
was applied for Inter-Process Communication (IPC).    

ID, seq-nbr, start, stop

ID, seq-nbr, start
Event-library A

Collector

ID, seq-nbr, stop
Event-library B

ID, seq-nbr, step-1, time ID, seq-nbr, step-2, time

Event-library A Event-library B

Collector

ID, seq-nbr, total-steps 
{step1,time;step2,time}  

Figure 5. Mapping of events with the tool.  

4.1.4 Capturing of time  
Time is captured immediately after the user calls the 
EventLibrary API. Subsequently the event is passed to the 
EventEncoder, which adds the event into a queue for encoding 
and transmission to the Collector. It is critical to capture time 
quickly, and to return from the EventEncoder, since processing in 
the library shouldn’t skew results of the event under study. 

ClockService uses timers offered by the Linux OS or PAPI library 
and gets accurate time from GPSTimer. Functions gettimeofday() 
and clock_gettime() are used as local system clocks by the 
module.   

GPSTimer reads UTC time over shared memory from GPSd. It 
uses separate sysctl() function calls for getting Start of second 
signals over the serial line based on PPS output of the GPS 
receiver.       

4.2 Performance results 
4.2.1 Resolution of reference clocks  
Resolution of reference clocks was tested with the tool. The 
laptops under testing were Dell Latitude D400 (Slow CPU- 
(1.6GHz Pentium M) and Acer Travelmate 8371 (Fast CPU-Intel 
Centrino 2). Ubuntu 9.10 operating system with 2.6.31 Linux 
kernel had support for the Performance API (PAPI) clock on both 
laptops.  

In the tests two consecutive calls to the clock API was executed. 
A short delay (1 ms) was included after the function calls. The 
test procedure included 100’000 iterations, and it was executed 
three times.  

The results of the experiments are described in Table 1. System 
clock resolution based on the PC clock crystal is ~ 1 µs. PAPI 
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timers can be used for reaching a much higher resolution for time-
stamping as was expected. The resolution depends on the CPU, 
which is used as a time source.    

Table 1. Average resolution and confidence interval (99%) of 
different reference clocks. The values are provided as 
nanoseconds.   

Conf-(99%) Clock 
 

Resolution 
 min max 

clock_gettime() 1148 1095 1201
gettimeofday() 1125 1118 1131
PAPI-Slow CPU 140 138 141

PAPI-Fast CPU 49 48 50

 
In order to achieve high resolution with the tool, processing 
during capturing of time has to be minimized. When processing 
was minimized, resolution of the tool decreased up to ~ 0.5-1.3 µs 
compared to the reference clock (see Table 2). The experiments 
were performed similarly as the tests for reference clocks.   

Table 2. Average resolution and confidence interval (99%) of 
resolution with the tool for different reference clocks. The 
values are provided as nanoseconds.  

Conf-(99%) Clock 
 

Resolution 
 min max 

clock_gettime() 2217 2213 2220

gettimeofday() 2465 2461 2469

PAPI-Slow CPU 811 809 813

PAPI-Fast CPU 585 583 586

 
4.2.2 Overhead and error 
Overhead and error was measured by using PAPI as the reference 
clock for the tool. The goal was to study how much usage of the 
tool affects the measured event. The processing length of the 
event under measurement was modified and delays were 
measured with simple events and without the tool (as reference). 
The event of interest was execution of a for()-loop, where the 
number of loops was modified. Overhead and error of the tool 
were compared to the reference.  

The results are provided in Figures 6 and 7 and cover 100’000 
iterations from three test cases. The following metric was used for 
estimation of overhead and error: 

Events  = Number of events in a test case 

toolLen = Total length of a test case with the tool 

refLen = Total length of a test case in the reference 

ieventLen , = Measured length of an event in test iteration (i) 

Events

Len
tAvgLenEven tool
tool  = Average length of an event 

with the tool  

Events

Len
tAvgLenEven ref

ref  = Average length of an event 

in the reference  

Events

Len
dLenEventAvgMeasure

Events

i
ievent

tool


 1

,

 = 

Average length of an event, which is measured with the tool 

 tAvgLenEven

)tAvgLenEven-nt(AvgLenEve*100

ref

reftoolOverhead
 

 tAvgLenEven

)tAvgLenEven-edLenEvent(AvgMeasur*100

ref

reftoolError
 

The tests were executed with the slow and fast CPUs mentioned 
before.   
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Figure 6. Overhead and error produced by the tool, when 
experiments were conducted with the slow CPU.  
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Figure 7. Overhead and error produced by the tool, when 
experiments were conducted with the fast CPU. 

Based on the results it can be seen that overhead and error caused 
by the tool depends on the CPU power. With the slow CPU error 
is less than 10%, when the event to be measured is longer than ~ 
13 µs. With the fast CPU the same level of error is achieved, 
when the event is longer than ~ 6 µs.      

4.2.3 CPU consumption of the tool   
CPU processing caused by execution of the tool was measured. 
The test procedure consisted of execution of a simple event 
measurement after expiration of an application timer. The length 
of the timer was 1 ms. In the tests the frequency of shared 
memory access for transmission of events in the tool was 
modified in order to discover the effect on CPU power 
consumption.    
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CPU processing was measured with top Unix-tool, as a function 
of application timer length. The results are provided in Figure 8, 
and average CPU consumption is calculated from three test cases, 
where 100’000 events were transmitted with the slow CPU.  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1 10 100 1000 10000

CPU-load
(%)

Shared memory access timer (µs)

Total-
avg.

Collect
or avg.

Sender 
avg.

 

Figure 8. CPU-processing caused by the tool as a function of 
shared memory access. ‘Total avg.’ is the average of total 

CPU-processing. Average CPU-consumption caused by the 
Collector, and Sender (EventLibrary) is also described.  

From the results it can be noticed that CPU-processing is lower 
than 10%, when shared memory is not accessed more frequently 
than 0.1 ms.  
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0.1ms-Total-
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0.1ms-Collector 
avg.
0.1ms-Sender 
avg.

 

Figure 9. CPU-processing caused by the tool as a function of 
event transmission rate. The curves describe processing for 

different rates of shared memory access.  
Figure 9 describes CPU consumption as a function of event 
transmissions triggered by an application timer, when shared 
memory access rate is kept constant (0.1 ms/1 ms). The test 
procedure is similar as described above.    

When shared memory is accessed with a rate of 1 ms, CPU-
processing stays lower than 5% even with a high message 
transmission rate (100’000 messages/second). Messages are 
queued at the sender, because transmission rate is higher than the 
memory access rate. When shared memory access is higher (0.1 
ms), CPU-processing increases, because messages are transmitted 
over shared memory with a higher rate than in the previous case.     

5. ANALYSIS OF THE TOOL 
In this chapter the tool is evaluated in terms of the stated 
requirements. Finally, performance of the implementation is 
evaluated and the tool is compared to existing commercial 
solutions and published work.   

5.1 Reduce time for measurement and 
analysis  
The biggest value of the tool for the user should be reduced time 
between measurement setup and analysis phases achieved with 
automated measurements. Usage of the tool consists of the 
following steps:  

1.) Identify events of value. Allocate identifiers for the events.   

2.) Instrument the SW implementation with function calls to the 
EventLibrary. Compile and link the implementation.   

3.) Start the Collector and execute test cases with the 
instrumented SW. 

4.) Extract data from the measurement file for the purpose of 
analysis with a visualization tool (Excel/Matlab/proprietary tool 
etc.).  

Alternatively testing could be performed without the tool or with 
a SW/HW tracer. If the tool is not used, determination of the 
correct reference clock, synchronization between processes and 
calculation of statistics becomes problematic and requires effort.  
If SW/HW tracer is used, SW doesn’t have to be instrumented. 
However, calculation of statistics from trace files and increased 
CPU processing may create problems.   

Instrumentation of SW could potentially be shortened with 
binary-based instrumentation as in the TAU approach [17]. In this 
case the executable code is instrumented instead of the source 
code, and compiling and linking of SW would be avoided.      

5.2 Measurement of different events 
The most important solution related to the proposal in previous 
research is ARM [13] [24]. API calls of ARM and our approach 
are compared in Figure 10. The main difference is in the usage of 
event identifiers and amount of function calls between the 
application and the library. ARM defines an identifier for the 
application and measured transactions. In addition, it uses 
correlators for mapping different transactions together. This adds 
complexity to the API. Our approach is kept as simple as possible. 
Event-producer provides the identifier of the measured event to 
the EventLibrary, which reduces the amount of function calls.  

The obvious downside of our proposal is the need to keep 
identifiers unique in the applications, which use services of the 
EventLibrary.  

Our approach defines the chained event for measurement of 
interrelated events. When the measurement files are integrated in 
the Collector, the user gets a unified view of the processing 
between different steps in the chained event. ARM uses 
correlators for the same purpose. ARM doesn’t specify how 
correlators are mapped together between libraries, which are 
executed in different processes. In the proposed approach, 
responsibility is left for the user to apply the same identifier in 
different instances of an EventLibrary, when different steps of 
interrelated events are measured with chained events.        
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Figure 10. Comparison of API calls between ARM and the 
proposal.  

5.3 Support local and distributed computing 
systems 
If measurements are performed on a local SW platform, system 
clocks provided by the OS or high performance timers can be 
applied. For distributed platforms clock synchronization is achieved 
with GPS, and thus each SW platform has to support GPS with PPS 
functionality.  Distribution could also be supported with other clock 
synchronization techniques such as PTP.  

In the distributed mode clock synchronization requires that PPS 
signals from the OS are synchronized between multiple processes. 
The Linux OS notifies each of the processes, which has called 
sysctl(), when a PPS is detected. Thus, only the first process should 
update Start of second to shared memory, which is used as the 
reference for all the EventLibraries executed in multiple processes. 

5.4 Independency on programming language, 
SW process/platform and operating system 
In order for the tool to be usable on different SW platforms and 
operating environments, portability issues have to be taken into 
account. In the current architecture one Collector is executed on 
each SW platform, which collects data from all EventLibraries 
executed on the same SW platform. The data saved on multiple SW 
platforms can be merged by any of the Collectors. At the moment 
measurement files have to be manually transferred to a centralized 
location for merging.  

The usage of the EventLibrary API is transparent to the application, 
even if measurements are performed on multiple SW processes. 
However, sequence numbers are unique to the process EventLibrary 
is executed in. The user is responsible that events of a chained event 
always occur in the same order.     

EventLibrary API has been developed for Java, Javascript, C and 
C++ programming languages. When API of the extension API is 
called, the native implementation of EventLibrary is executed. 
Support may also be provided for other languages such as Python.  

The current full implementation exists for Linux, but it should be 
possible to be ported also for other OSs. The critical parts in porting 
are access to shared memory, support for GPS drivers and API, and 
accurate timers provided by the OS. As stated earlier, for Windows, 
a GPS time-stamping driver has been implemented for providing 
synchronization. Thus, the most difficult part for Windows already 
exists.       

5.5 Performance 
The results indicate that system clocks of Linux achieve accuracy in 
the range of 1 microsecond. The results are within the same range of 
resolution, which has been reported earlier for system clocks [25]. 
PAPI achieves higher resolution (~ 80 – 140 ns) due to usage of 
CPU counters as a time source. The resolution depends on the 
power of the CPU as expected. However, nanosecond resolution for 
CPU based clocks wasn’t achieved on Linux. Other OSs (e.g. 
Windows) may reach higher resolution as was reported in earlier in 
the related work.      

It was noticed during measurements that processing should be 
minimized, when the timestamp is captured. In the current 
implementation captured time is saved into a circular buffer (pre-
created C++ object). With this approach overhead of capturing is ~ 
0.5 – 1.3 µs, and highest resolution achieved with PAPI ~590 ns.  

Tests were executed in order to find out the level of error and 
overhead caused by execution of the tool. It seems that error and 
overhead depends on the HW the tool is executed on. Error was 
lower than 10% with a high power laptop, when length of the 
measured event was longer than 6 µs. Inaccuracy is most probably 
caused by overhead of the tool, which becomes significant with very 
short events. The tests described an extreme, where a very short 
event was measured in a loop.  

Tests indicated that CPU-processing reduces, when the frequency of 
memory access is reduced for transmission of events, which was 
expected. With a transmission rate of 1 ms, the tool produces up to ~ 
5% CPU load. It can be seen that CPU-processing doesn’t 
significantly increase, even if event transmission frequency is 
increased above the frequency of shared memory access. In such a 
case the events are queued in the sender implementation, which 
doesn’t lead to excessive CPU load.  

5.6 Comparison to related work 
The contribution of this paper is presentation of GPS-based time 
synchronization method for an instrumentation-based delay 
measurement tool. In addition, similar performance results of the 
approach haven’t been discovered by the authors. However, similar 
approaches have been published and this work is compared here for 
the purpose of argumentation. 

ARM [13] proposes a very similar instrumentation-based approach. 
As described in Section 5.2, our approach is simpler and requires 
less function calls between the application and the tool. In addition, 
ARM doesn’t specify any time synchronization method, which is 
left open for implementation of the specification. TAU [17] is also 
based on instrumentation, but similar contributions on time 
synchronization weren’t found either. NetLogger [16] applies a 
more verbose approach as it dumps timestamps of events directly to 
an instrumentation file. The results indicate that overhead of the 
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solution is low (5% CPU load) with a frequency of 10000 
events/second.  The results are similar as in our approach, if the 
frequency of shared memory access is set lower than 1 ms.  

PTP [19] offers also an approach for time synchronization, and it 
could be applied with the proposed tool. The problem is accuracy, 
which deteriorates in wireless networks.   

Some other proposals are also worth of comparison. Source code 
instrumentation proposal [12] aims at SW performance estimation 
before the target HW is available with a simulator. In comparison 
our approach is instead focused on SW performance on target 
SW/HW platform. The authors of [9] presented measurements of 
SW latency during the SW performance process, but the 
implementation was manually instrumented without automation. 
The SW/HW tracer described in [1] is close to the concept proposed 
in this paper. The system under study has to be instrumented, and 
measurement is carried out with HW probes. Only the interesting 
events are measured, as in the approach presented in this paper. The 
downside of the presented approach [1] is dependency of the 
measurement HW and lack of implementation details provided. 
Mentor’s solution is also HW-based, and provides detailed tracing 
of the program flow in the system. The downside is lack of support 
for distributed systems, and possibly overhead produced by the 
measurement method. The approaches for measuring CPU and 
memory usage [10] [11] of SW components can be considered as 
complementary to the tool proposed in this paper. Qosmet [7] has 
the initial implementation of the time synchronization method, but 
aims at different goals (data network monitoring) than the presented 
tool.            

6. CONCLUSION 
This paper presented a proof-of-concept for latency measurements, 
which is based on instrumentation of SW. The generic goal is to 
enable latency measurement of events on local and distributed 
systems. Latency characterizes performance of SW, which is 
valuable to the test person. HW/SW architecture and 
implementation were presented as a proof-of-concept. The solution 
was analyzed in terms of the stated requirements, and performance 
of the proposal was studied. In addition, a method for time 
synchronization with the GPS was presented. The presented time 
synchronization method can also be used independently for different 
purposes, such as data packet time-stamping for network monitoring 
[7]. 

The presented tool supports the measurement of simple and 
complex events, the measurement and analysis processes can be 
automated, and the method incurs low overhead to the event(s) 
under study. The tool supports various programming languages and 
inter-process communication. It is argued to have a simpler API 
than competing solutions based on the ARM specification. The 
presented time synchronization method has been implemented for 
Windows and Linux, which indicates portability for different 
operating systems. Experiments showed that a resolution of ~590 
nanoseconds can be achieved with high performance clocks (PAPI) 
on Linux SW platform, which is lower than optimal. It is caused by 
processing related to the saving of the captured timestamp. It was 
discovered that measurement error becomes significant, when very 
small events (smaller than 15 µs) are captured. The level of error 
depended on the HW the tool was executed on. CPU consumption 
of the approach should remain lower than 5%, if the rate of shared 
memory access for event transmission is kept lower than 1 ms.      

7. DISCUSSION 
Achievement of optimal resolution remains as an open issue. The 
problem is minimization of processing related to the saving of 
timestamps. In the current solution data related to the event was 
saved to a pre-initialized data structure. When this minimal 
operation was performed in between time-stamping, the optimal 
resolution of time reduced significantly.  

Nanosecond level resolution of time wasn’t achieved on Linux 
platform. The performance is partly dependent on the CPU of the 
computing platform, the tool is executed on. Also frequency scaling 
of the CPU may affect performance [28]. In addition, higher 
resolution may be achieved with other operating systems (e.g. 
Windows).   

GPS based time synchronization should not be affected by drifting 
of time, when compared to a solution based on system clocks. In our 
approach reference time for time-stamping from system clock is 
fetched during each second, and thus drifting doesn’t have an effect. 
The delay and variance of the PPS signal from serial port to user 
space wasn’t measured. However, this should be taken into account, 
because it has an effect on accuracy. The delay of the signal may be 
reduced with special PPS measurement HW [27].  

The proposed approach for time synchronization requires 
investment to GPS HW. The tool could also be used with PTP based 
technology. However, high accuracy with PTP also requires 
investment to HW [5]. In some use case scenarios, where high 
accuracy is not needed for measurements, PTP could be used as 
reference time without HW support [22].  

Portability of the concept for mobile terminals is very challenging. 
GPS chip sets in current mobile phones have been optimized for 
price and PPS is not usually supported. Thus, accuracy for time 
synchronization can be difficult to be achieved without PPS only 
based on UTC time.  

The SW mentioned in this publication: The developed tool, 
Windows’ timestamping driver, and Qosmet, are property of VTT. 
Do not hesitate to contact the authors for more information.             
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