
Virt-LM: A Benchmark for Live Migration of Virtual Machine∗

Dawei Huang, Deshi Ye, Qinming He, Jianhai Chen, Kejiang Ye
College of Computer Science, Zhejiang University

Hangzhou, 310027, China
{tossboyhdw,yedeshi,hqm,chenjh919,yekejiang}@zju.edu.cn

ABSTRACT
Virtualization technology has been widely applied in data
centers and IT infrastructures, with advantages of server
consolidation and live migration. Through live migration,
data centers could flexibly move virtual machines among
different physical machines to balance workloads, reduce en-
ergy consumption and enhance service availability.

Today’s data centers can grow to a huge scale. This im-
plies that frequent live migration would be desireble for the
economic use of hardware resources. Then, the performance
of the live migration strategy will be an issue. So, we need a
reliant evaluation method to choose the software and hard-
ware environments that will produce the best live migration
performance.

However, there is not a complete live migration bench-
mark available currently. In addition, the existing evaluation
methodologies select different metrics, different workloads
and different test means. Thus, it is difficult to compare
their results.

In this paper we first survey the current research and their
evaluation methods on live migration. We then summarize
the critical issues for the live migration evaluation and also
raise other unreported potential problems.

We propose our solutions and present an implementation
in our live migration benchmark – Virt-LM. This is a bench-
mark for comparing live migration performance among dif-
ferent software and hardware environments in a data center
scenario. We detail its design and provide some experimen-
tal results to validate its effectiveness.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE
OF SYSTEMS—Measurement techniques, Design studies;
D.2.8 [SOFTWARE ENGINEERING]: Metrics—Per-
formance measures

∗This work was supported by National 973 Fundamental
Research Project of China (No. 2007CB310900).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

General Terms
Design, Measurement, Performance

Keywords
Benchmark, Data Center, Live Migration, Performance, Vir-
tual Machine

1. INTRODUCTION
Virtualization technology has been widely applied in data

centers and IT infrastructures, since it provides a solution
to the challenges of a data center: efficient hardware utiliza-
tion, reduced energy consumption, service availability and
reliability, and effective host management. Virtualization
enables server consolidation without interfering with server
isolation. Even more excitingly, virtualization enables live
migration.

Live migration means that a whole VM (Virtual Machine)
can be moved between different physical machines without
disconnecting the client or application. Consequently, a data
center can flexibly remap hardware resources among virtual
machines, to balance workload, save energy and enhance
service availability.

1.1 Motives of Live Migration Benchmark
Many of today’s data centers have grown to a massive

scale. At Microsoft Management Summit 2008, Debra Chra-
paty said Microsoft was adding 10,000 servers a month. At
2008 MYSQL User Conference and Expo, Jeff Rothschld
revealed that Facebook’s data center possessed more than
30,000 servers. Such a huge scale implies there should be
frequent live migration to ensure economic use of the hard-
ware resources.

However, live migration costs. It consumes hardware re-
sources and network bandwidth. This will influence the
QoS(Quality of Service). Many researchers are attracted
to finding new migration strategies that have less impact.
Data center administrators also have to configure a better
hardware and software environment for live migration. In
both cases, they must compare performance among differ-
ent strategies and environments to validate their conclusion.
A reliable and impartial evaluation approach is needed.

1.2 Limitations of Existing Evaluation Method-
ologies

However, there is not an available live migration bench-
mark, not to mention an authenticated one. On virtualiza-
tion, existing benchmarks are all dedicated to the server con-

307

solidation scenario. VMware developed VMmark [11]. Intel
developed vConsolidate [2]. SPEC released SPECvirt sc2010 [15].

In current research on live migration, evaluation method-
ologies are designed just to support their viewpoints. They
choose different metrics, select different workloads and em-
ploy different testing means. Thus, their performance re-
sults are difficult to compare. Moreover, they don’t empha-
size some important aspects concerning their meaningful-
ness, fairness and reliability.

To date recent research has only migrated VMs from an
idle physical machine in their tests. However, in a real data
center scenario, a VM is migrated from a busy machine to
balance workloads. A busy machine consumes even more
resources when enabling live migration, and its performance
will degrade. Furthermore, existing research tests a migra-
tion at only one or at particular times in the whole run of
a workload on a VM. However, when a VM server runs in a
real scenario, it could be migrated at any moment and most
likely will produces different results. Consequently, applying
the results from this research would not achieve a full fair-
ness and reliability. We will discuss more details and more
issues in Section 3.

1.3 Our Contribution
To overcome these limitations, we improve the existing

evaluation methods and present an implementation in our
live migration benchmark – Virt-LM. Our major contribu-
tions are listed as follows.

i) This is a new design and implementation of a live migra-
tion benchmark. Our benchmark Virt-LM can compare live
migration performance among different software and hard-
ware environments in a data center scenario.

ii) We define its specific design goals of the Virt-LM. We
give the reasons for its metrics and workloads choices, and
consider the issues about its meaningfulness, reliability, com-
parability and repeatability. Its design ensures it is easy to
use, stable to run and compatible with some VMM(Virtual
Machine Monitor) platforms.

iii) The critical problems encountered when evaluating live
migration performance are briefly explained. We identified
the problems in Section 3.3.1 and 3.8 that have never been
mentioned in the literature. We provide feasible solutions for
these problems, and give their implementations in Virt-LM.

The rest of this paper is organized as follows. Section 2
investigates the background of live VM migration, and sum-
marizes the limitations of existing evaluation methodologies.
Section 3 defines six design goals of the Virt-LM. It also ex-
plains several critical problems associated with a live migra-
tion benchmark design, and provides some feasible solutions.
Section 4 introduces the Virt-LM implementation details.
Section 5 demonstrates experimental results to show its op-
eration. Conclusion and future work are given in Section 6.

2. RELATED WORK
In this section, we introduce the typical live migration

scenarios, present the live migration strategies of the current
research, and finally examine the evaluation methods in their
papers.

2.1 Background of Live Migration
In data centers, live migration facilitates load balancing,

online maintenance and power management. Its typical sce-
narios are summarized below:

Load balancing. VMs are migrated from congested hosts
to light ones to get optimal resource utilization, max-
imize workload throughput and avoid overload.

Online maintenance To free one physical machine for up-
grade or maintenance, all its VM servers are migrated
away without disconnecting clients. As a result, sys-
tem reliability and availability is improved.

Power management. If many physical machines are light-
loaded, their VMs can be consolidated into fewer ones.
This frees some physical machines and saves power.

Varieties of live migration algorithms have been designed,
and the prevailing ones are Pre-Copy techniques [3, 12, 18].
This have even been applied in WAN environments [1, 10,
5, 16]. The pre-Copy technique is designed to minimize VM
service downtime. It copies memory pages to the destination
node round after round while keeping the VM service still
available. When the applications’ writable working set be-
comes small enough, the VM is suspended and only its CPU
state and dirty pages in the last round are sent out to the
destination. In the pre-copy phase, although the VM service
is still available, great service degradation can happen be-
cause the migration daemon continually consumes network
bandwidth to transfer the dirty pages in each iteration.

Later research introduces approaches using memory com-
pression [6] to reduce the network bandwidth consumption,
and others that use remote direct memory access [5] to re-
duce migration overhead. Other novel strategies include
Checking/Recovery and Trace/Replay approach [8] and Post-
Copy technique [4].

In a WAN environment, VM image files and local block de-
vices have to be transferred for migration. These implemen-
tations include Collective [14], Internet Suspend/Resume [7]
and uDenali [17]. Some work combines Pre-Copy with writ-
ing throttling [1], while some migrate the whole VM system
using block-bitmap [10].

In industry, VMware and XenSource implement VMo-
tion [12] and XenMotion [3] in their virtualization products.
They employ similar LAN schemes. Both migrate physi-
cal memory as well as network connections, and adopt the
Pre-Copy algorithm to reduce migration downtime for QoS.

2.2 Existing Evaluation Methodologies
A huge scale data center may have to migrate its VMs

time and again to optimize the hardware utilization, balance
the workloads, save energy and keep the server maintained.
They must choose a software and hardware environment to
achieve the best live migration performance. However no live
migration benchmark exists currently. Moreover, there are
some limitations in the evaluation methods offered by the
current research papers on live migration strategy design.
These are given below:

Lack of Unified Metrics: There are no unified metrics among
them, as shown in Table 1. We cannot compare the
results produced by the different metrics. Moreover,
their sufficiency is also not proven.

Lack of Unified Workloads: There are no unified work-
loads, as shown also in Table 1. They choose a small
number of light workloads for fast evaluation, rather
than the heavy workloads that resemble the real appli-
cations of a data center. In addition, VMs are migrated

308

from an idle machine. This is not sufficient to repre-
sent realistic load balance scenarios for live migration.

Lack of Efficient Benchmarking Methods: They employ
their evaluation methods to support their conclusions
instead of developing a complete migration benchmark.
Hence usability, compatibility and stability are not em-
phasized in their tests.

3. PROBLEMS AND SOLUTIONS
In this section, we present the design goals of the Virt-

LM, point out the problems encountered for each goal and
provide some feasible solutions. We integrate all our solu-
tions into the implementations of the Virt-LM. The existing
literature only partly cover some goals, especially only a few
works discusses stability and fairness.

3.1 Design goals of Virt-LM
The Virt-LM is designed to compare the live migration

performance among different hardware and software plat-
forms, especially in data center scenarios. We consider the
following 6 goals:

1. Metrics. The performance metrics of a live migration
benchmark must be observable, concise and sufficient
to evaluate the live migration efficiency.

2. Workloads. Workloads must be typical and sufficient
to reflect real applications of suitable size. Any work-
load must have a congruent behavior in any platform
to faciliate the comparison of its performance results.

3. Impartial Scoring Methodology. The scoring method
must be impartial and able to distinguish the per-
formance results among different migration environ-
ments.

4. Stability. The benchmark must be stable to run. Its
results have to be repeatable.

5. Compatibility. The benchmark shall be compatible
to existing popular VMMs and easy to emigrate to
future VMMs.

6. Usability. The benchmark shall provide a user-friendly
interface that facilitates its configuration and running.
Its overall test process should not last too long.

3.2 Metrics
To evaluate live migration performance, recent research

(according to Table 1) usually selects metrics within fol-
lowing four metrics: downtime, total migration time, the
amount of migrated data and migration overhead. Their
definitions and measurement methods are summarized in
Table 2.

Metrics selection is crucial in the design of a benchmark.
A natural problem is as follows.

Problem 1: “Is it reasonable to conclude that these four
metrics are sufficient to represent the influence of live mi-
gration? ”

Solution: We choose all these four metrics as the metrics
in our benchmark. The reason is that they already cover
the prime performance aspects regarding a living migration.
Migration overhead reveals its consumption of the physical

Table 1: Selection of metrics and workloads on the
recent research

Papers Metrics Workloads
VTDC’09 No-
centino et al. [13]

Amount of mi-
grated pages

Small C pro-
grams written by
the author

Cluster’08 Luo et
al. [10]

Downtime; Total
migration time;
Amount of mi-
grated data

SPECweb2005;
Samba server;
Bonnie++

Cluster’07
Huang et al. [5]

Downtime; To-
tal migration
time; Network
contentions

SPEC
CINT2000;
NPB

IWVT’08 Liu et
al. [9]

Downtime; Total
Migration time;
Throughput

Kernel-compile;
Memtest86;
Apache AB
benchmark

HPDC’09 Liu et
al. [8]

Downtime; Total
Migration time;
Total data trans-
mitted

Kernel-build;
Apache 2.0.63;
SPECweb99;
Unixbench;

Cluster’09 Jin et
al. [6]

Down time,
Total Migra-
tion time; Total
data trans-
ferred; Network
throughput;

Small C pro-
grams written
by the au-
thor; Apache
2.0.63; Tomcat5-
5.5.23 Kernel-
compile; Mum-
mer; Dbench;
memtester;

NSDI’05 Clark et
al. [3]

Downtime,
Throughout,
Transfer rate

SPEC
CINT2000;
Linux ker-
nel compile;
OSDB OLTP
benchmark;
SPECweb99
Quake 3 server
MMuncher;

USENIX’05 Nel-
son et al. [12]

Downtime; Total
migration time;
Throughput;

Kernel-compile;
lometer;
Memtest86;
dbhammer

VEE’07 Brad-
ford [1]

Downtime; Total
migration time;
Transferred over-
head;

Static web con-
tent (HTTP);
Dynamic web ap-
plication(phpBB
bulletin board
softeare);
Streaming video;
Diabolical load
bonnie;

VEE’09 Hines et
al. [4]

Downtime; To-
tal migration
time; Pages
transferred;
Application
degradation;

Memory-
intensive C
program; Linux
kernel compi-
lation; Net-
perf TCP;
SPECweb2005;
Bit Torrent-
Client;

309

Table 2: The definitions and measurement methods
of the four metrics
Metric Quantified def-

initions
Measurement
methods

Downtime The time dur-
ing which the
migrating VM’s
execution is
stopped

VM is pinged
during a migra-
tion. Thus its
downtime equals
the time when
packages are lost.

Total migra-
tion time

The period dur-
ing a migration
from start to fin-
ish

Measure the du-
ration of a migra-
tion command.

Amount of mi-
grated data

The total
amount of
migrated data
transferred dur-
ing a whole
migration period

Monitor the
total amount of
data transferred
through the TCP
port dedicated
for a migration.

Migration
overhead

Extra ma-
chine resources
consumed to
perform a migra-
tion.

We compare
a workload’s
performance in
the migration
case to the non-
migration case,
and represent
the overhead
with its declined
percentage.

machine resources. The amount of migrated data measures
its consumption of the network bandwidth. Downtime shows
the service availability. Total migration time represents the
whole duration when the run of workloads is influenced by
live migration.

3.3 Workloads
The selected workloads for a benchmark shall represent

realistic applications as closely as possible. In a live mi-
gration benchmark, the VMM of a System Under Test will
have already determined its live migration behavior, so the
workload is not just the migration itself but includes the
condition of the environment on the platform where the mi-
gration happens. First, we have to investigate the typical
conditions of a live migration in a data center. Next, we will
discuss separately the internal and external conditions of a
migrating VM.

3.3.1 Workloads running externally to the VM
Workloads have to represent the real scenarios of live mi-

gration in data centers. Clearly, some workloads do run
outside the VM when migration occurs in a data center.

Problem 2: “How do we select workloads externally to
the migrating VM?”

Analysis: The typical migration scenarios are load bal-
ancing, online maintenance and proactive fault tolerance,
and power management. In a load balancing scenario, VMs
are migrated from a heavy-loaded machine to a light-loaded
one. For a power management case, the VM is migrated
away from a relevant light-loaded machine such that the

light-loaded machine could be shut down to save energy. For
an online maintenance and proactive fault tolerance case,
migrations may occur under any load condition.

Solution: Our benchmark tests both the heavy-load and
light-load cases. To create the scenario of a heavy load, we
scale the workload by running an increasing number of VMs
until it reaches limit of physical resources available. For a
light-loaded environment, no other application is allowed to
run on the platform. Table 3 gives their implementations.

Table 3: Implementation of Workload outside Envi-
ronment
Environment where
VM is migrated

How to represent and
implement

Heavy-loaded Run an increasing number
of VMs until the machine
is fully utilized – specifi-
cally until a newly added
VM obviously undermines
the workload performance
on each VM.

Light-loaded VM run alone on the ma-
chine

3.3.2 Workloads running internally to the VM
The workloads running internally to a VM are selected to

resemble the real applications in a data center. Hence, a
problem arises here.

Problem 3: “Which workloads are representative for the
data center scenarios? ”

Solution: Data centers’ applications mainly consist of
mail servers, application servers, file servers, web servers,
database servers and standby servers. Thus, we choose the
existing popular benchmarks. They are listed in Table 4.

Table 4: Representative workloads for data centers

Workloads Representative bench-
marks

Mail server SPECmail2008
App server SPECjAppServer2004
File server Dbench
Web server SPECweb2005
Database server Sysbench using MYSQL
Standby Server Idle VM

3.4 Scoring Methodology
The benchmark has to test various kinds of workloads and

then collect a large amount of results. So the next problem
is as follows.

Problem 4: “How do we integrate the many workloads’
results to make an overall evaluation? ”

Solution: To calculate the scores, we take two steps.

• Step 1: We select four sub-metrics which consist of
downtime, total migration time, the amount of mi-
grated data and migration overhead. For each sub-
metric, we merge all the workloads’ results into a single
score.

310

• Step 2: Compute a final overall score.

In Step 1, we normalize the workload results by comparing
them to their reference results (test results from a uniform
reference system). If each workload test is treated as been
equally important, we can add all the normalized results.
More formally, given metric i and workload j, let Pij be the
result of workload j’s metric i on the target platform, and
Rij be its reference result. We can obtain the normalized
result Nij through

Nij =
Pij

Rij
. (1)

Then, the overall score Si for all the n workloads is

Si =
nX

j=1

Nij . (2)

To make it more readable, we scale Si as

S′
i = 1000 ·

Pn
j=1 Nij

n
. (3)

Thus S′
i of the reference system is always 1000, because

each of its Nij equals 1. In this method, a lower score indi-
cates a higher performance.

For example, Table 5 gives an overall score on the “to-
tal migration time” metric (in seconds) from the results of
some SPECJVM workloads, including “Compiler”, “Com-
press”, “Crypto” and “Serial”. The “normalized results” in
the third row are obtained by equation (1). The “single
score” in the last row are derived by equation (3).

Table 5: An example to get a single score for “total
migration time”

Compiler Compress Crypto Serial
Referen-
ce sys-
tem

64.24 63.24 66.63 72.41

System
under
test

43.73(s) 25.41 24.07 28.27

Normali-
zed
results

0.68 0.40 0.36 0.39

Single
score

458.55

It is common to use a reference platform to normalize and
compute benchmark scores. For example, SPEC CPU2000
takes this approach and uses a SUN Ultra5 10 with a 300MHz
processor as its reference platform. However, to choose a
reasonable reference platform, we should gather and inves-
tigate data from a wide range of systems in the following
research.

After Step 1, we obtain 4 distinct scores representing the
4 performance sub-metrics respectively. They have different
properties, and some have more drastic variation than oth-
ers. Furthermore, it is difficult to weigh their importance
objectively. So we keep a four-dimensional final result for
the moment.

3.5 Compatibility
The problem that arises in compatibility is to support as

many virtualization platforms as possible.
Problem 5: “The benchmark shall be available for all

kinds of typical platforms of data centers.”
Analysis: Because tests do not interfere with the internal

operation of VMM, the benchmark is easy to migrate to
different VMMs.

Solution: For the workload components, we provide the
VM images with pre-installed workloads for each VMM plat-
form. For the management agent components, we only need
to change the VMM-related sections such as the commands
responsible for VM management. Up to now, Virt-LM has
successfully been run on XEN and KVM.

3.6 Usability
Usability is expected since complicated operation proce-

dures will be a burden on the end user.
Problem 6: “Can the benchmark be made easy to con-

figure and run?”
Solution: Virt-LM has been designed especially to pro-

vide a user-friendly interface that facilitates the configura-
tion and the running of benchmark.

Firstly, workloads are packaged into pre-created VM im-
ages so that the user doesn’t have to install them.

Secondly, the management agent was designed to be as
automatic as possible, so that the VM management, the
performance measurement and other processes could be ac-
complished without a user’s manual interaction.

Thus, users only have to distribute the VM images and
the management agent, start the test and then wait for all
tests to finish.

3.7 Stability problem during the test of mi-
gration overhead

Stability means the benchmark has a congruent behavior,
whenever it runs and whatever platform it runs on.

Problem 7: “How can the benchmark results be made to
be repeatable?”

Analysis: As stated in Section 3.2, we use the decline of
workload performance to represent the migration overhead.
However, because a VM is migrated between two machines,
then the performance of its internal workloads involves both
machines.

For example, assuming some workload gets a score SA on
some platform A, and a score SB on B, if running without
migration. Then, as the migration can happens at different
times, its score could vary from SA + overhead to SB +
overhead. Therefore, because we cannot precisely control
the migration moment, the results may be unrepeatable.

Fortunately, there are two ways to solve it. We can force
the two machines’ environments to be identical, and then
SA equals SB . Or we can force the VM to be always run
on one machine. To achieve this, the VM is paused once it
is migrated to machine B, and the VM states are saved and
resumes on machine A. This could be accomplished through
a static migration.

Solution: In Virt-LM, we force the VM always run on
one machine, because it concerns only one platform acting
as the System Under Test, and costs only a little extra effort.

3.8 The problem of the migration point
Any migration procedure has two properties as below.

311

1. Each migration has a start point (migration point) and
lasts only for a while.

2. Its performance is determined by its start point. Specif-
ically it is determined by the memory state before the
start point and what happens during the total migra-
tion time.

Problem 8: “Performance varies as migration can com-
mence from different times. How do we control the migration
start point to guarantee its result is repeatable?”

Analysis: Ideally, we expect that each time we run the
benchmark, migration will always occur at the same instruc-
tion points of the workload. Thereby we need to be notified
when the workload has reached a specific instruction. How-
ever, it is very hard to communicate with workloads for this
information, especially when many workloads are not open
source.

Solution: We use time points as opposed to instruction
points in our benchmark since it is easy to monitor the run-
ning time. First, we shall fully run the workload without
a live migration to help compute the “migration overhead”.
Then its total running time, as a byproduct in the first run,
is divided into several sectors. In the second run, the VM is
migrated when each time sector is reached.

Problem 9: “Performance varies as migration occurs at
different times. How to fully represent a workload’s variabil-
ity in performance?”

Analysis:
In real scenarios, migration occurs randomly and thus

could happen at any possible start point. To represent a
workload’s performance, we have to collect the performance
data over a sufficient number of start points.

To illustrate it, we test 483xalancbmk of SPECcpu2006,
which is both CPU and memory intensive, on the same plat-
form as mentioned in Section 5.1. The metric results vary
at different migration points. Figure 1 and Figure 2 show
results of its migration time and downtime.

Solution: Taking only a few random points, the results
would not be satisfying because some metrics could vary
drastically. For example, the results for downtime in figure 2.
Therefore, a large sample of results spread over a whole run
of a workload are required.

Ideally, we could test for every instruction point, but this
costs too much time and effort. To find a tradeoff between
the accuracy and the overhead time, over the whole run of
each workload we collect as many migration point results as
possible. This means each workload has to run only once or
in some cases just a few times.

4. IMPLEMENTATION OF VIRT-LM
We introduce the implementations of Virt-LM in this sec-

tion. We discuss its logical components, the user configu-
ration and run procedures, and its internal processes. The
details are given in the following subsections.

4.1 Logical components
The benchmark has four major logical components: Sys-

tem Under Test, Migration Target Platform, VM image stor-
age and management agent. These logical components of the
benchmark are illustrated in Figure 3.

Figure 1: Total migration time results at different
migration points

Figure 2: Downtime results at different migration
points

Figure 3: Logical components of Virt-LM

312

4.1.1 System Under Test
The SUT(System Under Test) plays a role as the evalua-

tion target of the Virt-LM, and provides both the hardware
and software environments where the migrating VM runs.

More than one virtual machine might run on the SUT,
whereas only one particular VM is migrated. Next, we use
“workload VM”to denote the migrating VM and distinguish
it from other VMs running in the background.

4.1.2 Migration Target Platform
Because live migration must occur between two machines,

the MTP (Migration Target Platform) provides the other en-
vironment that the workload VM would be migrated to. The
MTP and SUT run the same VMM on different machines.

Furthermore, as mentioned in Section 3.7, to ensure a
workload VM is always run on SUT, once a workload VM is
migrated here, it can be moved back to the SUT through a
static migration method.

4.1.3 VM Image Storage
VM images should be stored in a third party to ensure

they are still accessible after migration. Physically it shall
be located externally to the machine of the SUT; otherwise
it may interfere with the test results.

4.1.4 Management Agent
The management agent is intended to manage the whole

test process by communicating with other components. Once
all tests are accomplished, it generates a final report about
the live migration performance of the SUT.

However, it is not necessary to allocate four different ma-
chines for the four components. Because we have promised
the performance result only for the SUT, we could allocate
the SUT at one machine, and integrate the other three com-
ponents at another machine for convenience.

4.2 Configuration and run procedures
Before running Virt-LM, the user has to configure and

initiate each logical component.
First, VM images with pre-installed workloads are dis-

tributed into the file system of the VM Image Storage. Then
the VMs’ configuration files are put on the SUT. In addition,
the management scripts shall be distributed and installed on
the Management Agent. Figure 4 shows the Virt-LM con-
figuration.

Next, the user launches VMMs on both the SUT and the
MTP, and set up a clean environment. Each component’s
IP is given to Management Agent for communication. Fi-
nally, the user runs the executable script on the Manage-
ment Agent. For each workload, the Management Agent
will automatically reset the environment on the SUT, start
a workload VM, run particular workloads inside and outside
the workload VM, migrate it at the appropriate time, collect
the metric results, and clean the environment for the next
test.

Once the Management Agent accomplishes all the tests, it
generates a final report about the live migration performance
on the SUT.

4.3 Internal process
A complete test process consists of a lot of iterations. A

test performs the same operations for each workload and it

Figure 4: Virt-LM configuration

repeats the live migration many times in each workload test,
as illustrated in the following flow diagram Figure 5.

Test initiates on Management Agent after configuration

Select next workload, create corresponding VM, and reset environment on SUT

Start workload in the target VM

When next migration point arrive, migrate workload VM from SUT

Fetch the performance Metric results. And once migration finishes,

Once the workload finish, shutdown the VM and clean the environment on SUT

After all workloads are tested, generate final report

to Migration Target Platform

throw VM back to SUT immediately.

for live migration performance of SUT

Figure 5: A brief flow diagram for Virt-LM internal
process

The process includes three scopes: scope of the entire test,
of each workload, of each migration measurement. Each
scope includes its initialization, main jobs and the environ-
ment reset. All these steps progress automatically under
control of Management Agent. Given the VM management
interface of a VMM, they could be implemented without
ambiguity.

However, to ensure performance is only determined by the
SUT, to keep workload VM always running on the SUT, we
move the VM back to SUT once a migration finishes through
the static migration method. The VM is suspended when a
static migration happens, so it will not run on MTP.

313

It is worth noticing how to repeat the measurements within
each workload. As posed in Section 3.8, this concerns the
strategy of selecting migration points, to fully represent the
workload’s performance.

Here we set a fixed frequency for each workload. The total
running time of a workload is divided into serveral sectors,
and then the benchmark start every round migration when
each time sector is reached.

5. EXPERIMENTAL RESULTS
In this section we give the demonstration the experimen-

tal results of Virt-LM. We run the Virt-LM in two VMMs –
Xen and KVM. We show the specific steps to obtain a final
score from the raw metrics results and compare the perfor-
mance results between Xen and KVM.

Disclaimer: The scope of the tests is limited. However, the
intention is to demonstrate that this prototype application
is working and the principle of operation is established.

5.1 Experimental Setup
A DELL OPTIPLEX 755 containing 2.4GHz Intel Core

Quad CPU Q6600, configured with 2GB of memory and a
SATA disk, was used as demonstration System Under Test
hardware. Our experiments were conducted on two SUT
platforms, one was XEN 3.3 on Linux kernel 2.6.27, and the
other was KVM-84 on Linux kernel 2.6.27.

The other three components are integrated into another
machine with an identical VMM and hardware. Two ma-
chines are connected over a single 100 Mbit network link.

5.2 Experimental Results
Here we illustrate how to get scores from raw measurement

results and how to generate a final performance report.
We choose the workload SPEC-jvm2008 in the light-load

environment to demonstrate, the other workloads can be
done similarly. SPEC-jvm2008 is a benchmark suite for
measuring the performance of Java Runtime Environment
(JRE). It contains several real applications and benchmarks
that focusing on core java functionality. SPEC-jvm2008 rep-
resents an application server’s workload.

The configurations in the VM are Ubuntu 8.10 on Linux
kernel 2.6.27, 512MB memory, and one CPU core.

As Section 3.8 and Section 4.3 shows, we test many mi-
gration points during a run of a workload VM. For each
workload, we get several results of the same metric and cal-
culate their averages. This experiment is repeated three
times, and the standard deviation of each metric score is
within 1 percentage. We also test the memory and CPU
intensive sub-workloads of SPCE-CPU2006. Their results
also show good repeatability even at every migration time
point’s results. It suggests that the migration time points
are stable in a fixed software and hardware environment.

The following Table 6 shows metric results of SPEC-jvm2008’s
workloads on our XEN SUT.

By analogous calculations, we have the 4 metric results
on SUT-KVM in Table 7.

To demonstrate how to normalize and integrate results, we
use SUT-XEN as a reference system. According to Equa-
tion (2) and Equation (3), we have the final scores of “down-
time”, which are given in Table 8.

Likewise for other three metrics, and then we obtain final
results in Table 9.

Table 6: Metric results on SUT-Xen
Work-
loads
of
SPEC-
jvm-
2008
on
SUT-
XEN

Down-
time
(ms)

Total
mi-
gra-
tion
time
(s)

Amount
of mi-
grated
data
(MB)

Work-
load’s
own
per-
for-
mance
in
non-
migra-
tion
case
(ops/m)

Work-
load’s
own
per-
for-
mance
in
migra-
tion
case
(ops/m)

Migra-
tion
over-
head
(%)

Compil-
er

436 64.24 745 33.37 33.09 0.84

Compr-
ess

60 63.24 742 32.95 32.83 0.36

Crypto 119 66.63 748 32.07 31.81 0.81
Serial 247 72.41 844 24.67 24.43 0.97

Table 7: Metric results on SUT-KVM
work-
loads
of
SPEC-
jvm-
2008
on
SUT-
KVM

Down-
time
(ms)

Total
mi-
gra-
tion
time
(s)

Amount
of mi-
grated
data
(MB)

work-
load’s
own
per-
for-
mance
in
non-
migra-
tion
case
(ops/m)

work-
load’s
own
per-
for-
mance
in mi-
gra-
tion
case
(ops/m)

Migra-
tion
over-
head
(%)

Compil-
er

1748 43.73 501 40.27 37.05 8.00

Comp-
ress

1041 25.41 290 34.4 30.67 10.84

Crypto 876 24.07 286 29.86 28.56 4.35
Serial 1053 28.27 312 23.07 20.46 11.31

Table 8: “Downtime” final scores on SUT-XEN and
SUT-KVM

Down-
time
on
SUT-
XEN

Down-
time
on
SUT-
KVM

Down-
time
on ref-
erence
system

normal-
ized
score
on
SUT-
XEN

normal-
ized
score
on
SUT-
KVM

Compil-
er

436 1748 436 1 4.01

Compr-
ess

60 1041 60 1 17.35

Crypto 119 876 119 1 7.36
Serial 247 1053 247 1 4.26
Final
“down-
time”
score

1000.00 8245.92

314

Table 9: Final scores on SUT-XEN and SUT-KVM
Downtime Total mi-

gration
time

Amount
of mi-
grated
data

Migration
overhead

SUT-
XEN

1000 1000 1000 1000

SUT-
KVM

8245 459 454 14075

5.3 Discussions and Analysis
In our scoring method, a lower score indicates a higher

performance. The results in Table 9 show that, by sacrificing
more downtime and migration overhead, SUT-KVM reduces
the amount of migrated data and the total migration time.
To interpret these phenomena, we could review and compare
their raw data from Figure 6.

The clues are “amount of migrated data” and “downtime”.
Because our workload VMs are configured with 512 MB
memory, it seems that the SUT-KVM intensively compresses
the migrated data, which leads to its higher“migration over-
head”. On the other hand, the SUT-XEN restricts its“down-
time” more harshly, which suggest it transfers many more
dirty pages at pre-copy phase, and further increases“amount
of migrated data”. In summary, comparing with the SUT-
KVM, the SUT-XEN has better performance at “downtime”
and “migration overhead”, but places more burden over net-
work.

This pilot experiment demonstrates the principle of op-
eration. One issue that has been not been tackled here is
scalability. However, it was felt that this could raise more
issues that there would have been space to deal with in this
paper.

6. CONCLUSION AND FUTURE WORK
In this paper, we surveyed the current research and their

evaluation methods on live migration, and summarized the
critical issues for live migration evaluation. The current lit-
erature doesn’t mention the issues in Section 3.3.1 and 3.8.
Then we proposed our solutions and gave their implementa-
tions in our live migration benchmark – Virt-LM, a bench-
mark comparing live migration performance among differ-
ent software and hardware environments in a data center
scenario. We introduced its internals and provided some
experimental results to validate its effectiveness.

However, many aspects of the design are far from sat-
isfying, such as how to design a better strategy to select
migration points, how to scale up the VMs to represent a
heavy-load environment. Furthermore, a host in a data cen-
ter could receive multiple migration requests at the same
time. The VMs could be migrated one by one or concur-
rently. These scenarios also need to be tested to get the best
number of the concurrent migrating VMs. It still remains
for our future research to give solutions for those problems.

7. REFERENCES
[1] R. Bradford, E. Kotsovinos, A. Feldmann, and

H. Schiöberg. Live wide-area migration of virtual
machines including local persistent state. In

Figure 6: Comparison of metric results between
SUT-XEN and SUT-KVM

Proceedings of the 3rd International Conference on
Virtual Execution Environments, pages 169–179, 2007.

[2] J.P. Casazza, M. Greenfield, and K. Shi. Redefining
server performance characterization for virtualization
benchmarking. Intel Technology Journal,
10(3):243–251, 2006.

[3] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems
Design & Implementation, pages 273–286, 2005.

315

[4] M.R. Hines and K. Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging
and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pages
51–60, 2009.

[5] W. Huang, Q. Gao, J. Liu, and D.K. Panda. High
performance virtual machine migration with RDMA
over modern interconnects. In Proceedings of the 2007
IEEE International Conference on Cluster Computing,
pages 11–20, 2007.

[6] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live
virtual machine migration with adaptive memory
compression. In Proceedings of 2009 IEEE
International Conference on Cluster Computing, pages
1–10, 2009.

[7] M. Kozuch and M. Satyanarayanan. Internet
suspend/resume. In Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems and
Applications, pages 32–40, 2002.

[8] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live
migration of virtual machine based on full system
trace and replay. In Proceedings of the 18th ACM
international Symposium on High Performance
Distributed Computing, pages 101–110, 2009.

[9] P. Liu, Z. Yang, X. Song, Y. Zhou, H. Chen, and
B. Zang. Heterogeneous live migration of virtual
machines. In Proceedings of the International
Workshop on Virtualization Technology, 2008.

[10] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and
H. Chen. Live and incremental whole-system
migration of virtual machines using block-bitmap. In
Proceedings of the 2008 IEEE International
Conference on Cluster Computing, pages 99–106, 2008.

[11] V. Makhija, B. Herndon, P. Smith, L. Roderick,
E. Zamost, and J. Anderson. VMmark: A scalable
benchmark for virtualized systems. VMware Inc, CA,
Tech. Rep. VMware-TR-2006-002, September, 2006.

[12] M. Nelson, B.H. Lim, and G. Hutchins. Fast
transparent migration for virtual machines. In
Proceedings of the USENIX Annual Technical
Conference, pages 391–394, 2005.

[13] A. Nocentino and P.M. Ruth. Toward
dependency-aware live virtual machine migration. In
Proceedings of the 3rd International Workshop on
Virtualization Technologies in Distributed Computing,
pages 59–66, 2009.

[14] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S.
Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. ACM SIGOPS Operating Systems
Review, 36(SI):377–390, 2002.

[15] SPECvirt sc2010. http://www.spec.org/virt sc2010/.

[16] F. Travostino, P. Daspit, L. Gommans, C. Jog,
C. De Laat, J. Mambretti, I. Monga,
B. Van Oudenaarde, and S. Raghunath. Seamless live
migration of virtual machines over the MAN/WAN.
Future Generation Computer Systems, 22(8):901–907,
2006.

[17] A. Whitaker, R.S. Cox, M. Shaw, and S.D. Grible.
Constructing services with interposable virtual
hardware. In Proceedings of the 1st Conference on
Symposium on Networked Systems Design and
Implementation-Volume 1, pages 13–13, 2004.

[18] T. Wood, P. Shenoy, A. Venkataramani, and
M. Yousif. Black-box and gray-box strategies for
virtual machine migration. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design &
Implementation, pages 229–242, 2007.

316

