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ABSTRACT
Globally, vast infrastructures of Information Technology (IT)
equipment are deployed. Much of this infrastructure is un-
der utilized to ensure acceptable response times. This re-
sults in less than ideal use of the capital investment used
to purchase the IT equipment. To improve the sustain-
ability of IT, we focus on increasing the effective utiliza-
tion of computer systems. Our results show that computer
systems running delay-sensitive (e.g., Web) workloads can
be more effectively utilized while still maintaining adequate
(e.g., mean or upper percentile) response times. In partic-
ular, these computer systems can simultaneously support
delay-tolerant workloads, to increase the value of work done
by a computer system over time.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

General Terms
Performance, Design

Keywords
Analytical modeling, effective utilization, percentile analysis

1. INTRODUCTION
The tremendous popularity of the World Wide Web has

resulted in the deployment of vast infrastructures to sup-
port interactive (i.e., delay-sensitive) workloads. These in-
frastructures typically have average utilizations between 10
and 50% [1], owing to the diurnal variations in usage and
the need to keep response times low. The need to support
such workloads cost effectively and the desire to minimize
the environmental footprint of Information Technology (IT)
has motivated many researchers to develop techniques for
reducing the energy consumption of servers and data cen-
ters. While beneficial, such techniques address only a small
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part of the Total Cost of Ownership (TCO) of a data center,
where the capital cost of the IT, power, cooling and related
infrastructure can account for up to 80% of the TCO [2].
Thus, to improve the Return on Investment (ROI) for the
data center owner, the effective utilization of the infrastruc-
ture must be improved [3]. This is similar to what is done in
other industries, such as manufacturing and refining, which
typically operate plants 24 hours a day. A related challenge
is finding workloads that are more valuable than their cost
of operation, so that the increased utilization is economi-
cally feasible. Towards this challenge, we identify general
properties such workloads must exhibit.

Our work leverages the fact that some jobs1 are more tol-
erant to delay than others. As long as progress can be made
on delay-tolerant jobs while completing delay-sensitive jobs
quickly, the effective utilization of the IT infrastructure can
be improved. By showing this approach is theoretically vi-
able, we can help mitigate the conservative use of computer
systems in practice.

We find that it is possible to improve the effective use of
computer systems, up to 100% of capacity in some cases,
by combining delay-tolerant and delay-sensitive workloads
on the same system. An important observation from our
results is that by minimizing the variation in the size of tasks
in the delay-tolerant workload, the mean response times in
delay-sensitive workloads can remain adequately low even
as the computer system’s overall utilization increases. We
also examine the effects on the tail of the response times,
as values such as the 99th percentile often are important
in practice. Our analysis confirms our intuition that the
tail typically is even less sensitive to the addition of delay-
tolerant jobs.

An underlying message of the paper is that there is great
value in understanding the workloads running on a system.
For example, if delay-tolerant workloads with high job-size
variability can be separated from those with low variability,
jobs with low variability can effectively share resources with
the delay-sensitive jobs while any delay-tolerant workloads
with high variability may be better processed separately. As
the demands of the delay-sensitive workloads changes with
time, so may the best way to operate the system. Overall, we
show that there is great value in careful workload scheduling
and server-resource management. Our results also suggest
that most of the benefits of resource management over longer
time periods can be achieved using a relatively simple pol-

1We use the term job generically, to represent any task,
transaction, or process that consumes IT resources.
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icy that greedily maximizes the resource utilization for the
current conditions.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background information and related work.
Section 3 introduces our model framework. Section 4 de-
scribes the steady state analysis of our model. Section 5
analyzes our model under a time-varying workload. Sec-
tion 6 discusses possible extensions to our work. Section 7
summarizes our contributions and lists future research di-
rections.

2. BACKGROUND AND RELATED WORK
Over the past several decades, Information Technology

(IT) has becoming increasingly entwined in everyday life.
This trend is expected to continue, as more uses for IT
and IT services are identified. This trend, coupled with re-
cent global financial uncertainties and concern over climate
change, motivate increased scrutiny of the economic and en-
vironmental sustainability of IT.

In the systems research community, efficiency is a com-
mon topic. Over the past decade, connection scheduling
has been extensively researched to improve the efficiency of
Web servers; [4] includes a thorough summary. A concern
with adopting new scheduling mechanisms is their fairness.
Schroeder and Harchol-Balter demonstrate that even un-
der overload, the SRPT mechanism does not discriminate
against large jobs while making the Web server more effi-
cient [4]. Such works are relevant in that they investigate the
issue of starvation [5]. Our work is similar in that we aim to
keep delay-sensitive workloads (e.g., Web transactions) from
excessive delays. We differ in that we also consider delay-
tolerant workloads, which have less restrictive definitions of
starvation.

Consolidation is another technique for making more effi-
cient use of computer systems. Virtualization is a technology
that facilitates consolidation, by supporting multiple virtual
machines on each physical machine. Kusic et al. [6] and
Zhu et al. [7] both supplement virtualization with control
techniques to improve the effective utilization of physical IT
resources automatically, while maintaining adequate appli-
cation performance. Chen et al. [8] extend this, by coupling
the management of power, cooling and IT resources together
to further reduce energy use.

From a more theoretical perspective, Wierman et al. [9]
examine how to optimally speed scale modern CPUs to bal-
ance mean response time and mean energy consumption un-
der processor sharing scheduling. Andrew et al. [10] ex-
tend this work, and find that the evaluated designs can
only achieve two of fairness, optimality and robustness. Sev-
eral works combine analytical and experimental techniques.
Gandhi et al. [11] look at how to achieve the maximum per-
formance from a fixed power budget. Meisner et al. [12]
propose a method for eliminating the power consumed by a
server during idle periods. While such methods are impor-
tant for reducing operating costs, they do not enable a data
center owner to take full advantage of their capital invest-
ment.

Pruhs et al. [13] consider the“bi-criteria optimization prob-
lem” of minimizing average responses time and energy use.
They point out that most prior works formulate the problem
as a scheduling problem, but that in generalized settings,
most jobs do not have natural deadlines. Abdelzaher et
al. [14] attempt to address this issue by applying real-time

scheduling theory to aperiodic tasks. While this approach
has the potential to improve the utilization of computer sys-
tems, the lack of natural deadlines still limits this in practice.

Pruhs et al. also indicate that mean response time is “by
far the most commonly used QoS measure in the computer
systems literature” [13]. Thus, a gap exists between theory
and practice, as the upper tail of the response time distribu-
tion is of greater interest to operators [15]. Unfortunately,
there is a lack of research that considers percentiles rather
than moments. In 1967, Gaver [16] pointed out that mod-
els that used moments to model computer systems typically
oversimplified the variability of randomness of such systems.
Lazowska [17] proposed the use of percentiles in modeling,
to enable more accurate results. However, since then the
use of percentiles garnered little attention in the modeling
community. An exception to this is the work of Bodik et
al. [18], which model the performance of the tail, motivated
by [15].

Our analysis builds upon theory for M/G/1 queuing sys-
tems with vacation periods [19, 20]. For comprehensive sur-
veys of vacation models, we refer the interested reader to
works by Doshi [19, 20] or Takagi [21], for example. In our
analysis, vacation periods are used to serve delay-tolerant
jobs and/or to model idle periods. Other works have con-
sidered discriminatory processor sharing (DPS) and the per-
formance of server policies for systems with jobs of different
priorities [22, 23, 24]. Perhaps the most similar work where
vacation models have been applied is the work by Nunez-
Queija et al. [25]. They consider the blocking probabili-
ties and file transfer delays over a network link (e.g., ATM
or IP) that serves both (delay-sensitive) streaming traffic
and (delay-tolerant) elastic traffic. Similar to us, they find
that there sometimes is value for the workloads to share
resources, rather than using separate resources for the two
workloads. However, focusing on a different domain they
are concerned with a quite different service model and met-
rics. Further, they do not consider the tail-behavior of the
delay-sensitive workload.

There are tools for executing delay-tolerant workloads on
computer systems that may be running delay-sensitive work-
loads. For example, Condor was developed to more effec-
tively utilize workstations [26], while Condor-G can provide
high throughput computing in a grid environment [27]. Our
theoretical results may motivate increased use of such tools
in practice.

Lastly, Karidis et al. suggest using larger, more expensive
servers to improve data center ROI, as such servers can be
more effectively used than smaller, inexpensive servers [3].
Our work extends theirs by considering the upper tail of
response times, and by combining delay-sensitive and delay-
tolerant workloads, to increase the effective utilization of
computer systems over time. We also consider smaller, less
expensive servers.

3. MODEL FRAMEWORK

3.1 System Abstraction
We are interested in maximizing the utilization of com-

puter system resources. We assume a system for which both
delay-sensitive and delay-tolerant workloads are of interest
to the operator. For example, a system may support a delay-
sensitive Web application as its prioritized workload, and a
more delay-tolerant batch-style analysis application as its
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background workload. We assume the operational cost of
delay-sensitive workloads is less than the value they bring
the operator. For this workload the operator is primarily
interested in maximizing throughput. We further assume
that the operator has provisioned the system to handle the
peak of the delay-sensitive workload. The remainder of the
paper explores how to schedule the delay-tolerant workloads
to obtain maximum value to the operator while maintaining
service guarantees for the delay-sensitive workload.

For our evaluation, we use a simple queueing model to ap-
proximate the response times and to calculate the resource
usage.2 Table 1 defines our notation. We assume that the
system has a total (server) bandwidth of Btot. The system
bandwidth is divided into two partitions: a primary parti-
tion in which both delay-sensitive jobs and delay-tolerant
jobs may be served, and a secondary partition in which only
delay-tolerant jobs may be served. Our analysis of the pri-
mary partition assumes a generalized queuing model of a sin-
gle server with a Poisson request rate of the delay-sensitive
workload and the use of vacation periods [19] to serve the
delay-tolerant workloads. Finally, we note that a series of
infinitesimal vacation periods can be used to capture idle pe-
riods. During these vacation periods, neither delay-sensitive
or delay-tolerant jobs are served, but the system stays ready
to serve the next incoming delay-sensitive job.

3.2 Workload Model
To generalize our analysis, we assume each system can

support K delay-sensitive and C delay-tolerant workload
classes. In this section we describe the characteristics of
each workload type.

Delay-sensitive workloads: In the general case, each
delay-sensitive workload k is assumed to have a time-varying
request pattern, with request rate λk,t at time t. For sim-
plicity, we divide time into smaller intervals called buckets,
for which the requests (approximately) follow a Poisson pro-
cess within each bucket. Furthermore, workload k is as-
sumed to have a service demand Lk (with a first and second

moment Lk and L2
k, respectively). When multiple delay-

sensitive workloads are used, we assume workloads with a
lower index are higher priority.

Delay-tolerant workloads: We assume C delay-tolerant
workloads, each with a service demand of Sc (with a first and

second moment Sc and S2
c , respectively). These workloads

are assumed to have much lower priority than any of the
delay-sensitive workloads. We assume an infinite queue of
delay-tolerant jobs; these are only served if no delay-sensitive
jobs are queued and the server is not intentionally remaining
idle.

Idle periods: To ensure that sufficient service guaran-
tees can be provided, delay-tolerant jobs cannot always be
scheduled whenever the server finishes a job and there are
no outstanding delay-sensitive jobs pending. Instead, the
server may have to remain idle for some time. For the pur-
pose of our analysis, we assume that there is a third type
of job, with infinitesimal job size (S∗ → 0). These jobs can
be thought of as part of idle periods, during which there
are no delay-sensitive jobs to serve and the server selects

2Following standard convention we refer to the response time
as the combined waiting time and service time, where the
waiting time is the time a request is queued in the system
for service and the service time (or holding time) is the time
the request is being served itself.

to not serve any delay-tolerant jobs. As the “idle jobs” are
infinitesimal in size, they can be added without affecting
the (average) waiting time Wk,t of any delay-sensitive job of
class k. We assume that an idle intensity φ∗,t can be selected
such that on average the combined fraction of time in each
bucket that the server is idle approaches pidle

t , as S∗ → 0.

3.3 Important System Properties
Service guarantees: We assume that service guarantees

are either expressed in terms of average response times or
percentiles. With the former, we want to ensure that the
average response time Rk,t is always less than or equal to
the response time target Rm

k (i.e., Rk,t ≤ Rm
k , ∀t). In prac-

tice, however, organizations often want to ensure that some
large fraction (e.g., θ = 99.9%) of their customers get wait-
ing times better than W θ

k . For this, we must ensure that
the cumulative distribution function F (Wk,t) of the waiting
times is greater than θ for W θ

k,t (i.e., F (W θ
k,t) ≥ θ) [28].

Utilization objective: Based on our assumption that
the selected delay-tolerant workloads provide value to the
operator, the system should serve as many of these jobs
as possible, providing the service guarantees of the delay-
sensitive workloads are not affected. This corresponds to

maximizing
P

t

“PK
k=1 λk,tLk +

PC
c=1(φ

f
c,t + φg

c,t)Sc

”
, where

φf
c,t and φg

c,t are the average job throughput of the delay-
tolerant workload c running on the primary and secondary
partition, respectively.

Non-preemptive: Throughout this paper we do not con-
sider preemption of the delay-tolerant jobs. Of course, if
the delay-tolerant jobs can be (instantaneously) preempted,
then running delay-tolerant workloads during (otherwise idle
periods) should not affect the response times of delay-sensitive
workloads.3 Preemption of different classes of delay-sensitive
workloads, and alternative optimization objectives are briefly
discussed in Section 6.

3.4 High-level Policy Classes
Traditionally, many organizations run their delay-sensitive

workloads on systems isolated from those running delay-
tolerant workloads. In this work, we are interested in policies
in which the two workload types (at least partially) share re-
sources. To allow for analytic policy evaluation, we consider
a single server system. However, while some of the analy-
sis may be difficult to generalize, we believe that our results
are more generally applicable. Therefore, we keep the policy
classes as clean as possible so that they are easy to general-
ize.4

We consider two simple policies to establish baseline per-
formance: separated and shared. The first policy divides the
server into two partitions. This policy keeps the workloads
completely separated, with the delay-sensitive workload as-
signed to the primary partition, and the delay-tolerant work-
load assigned to the secondary partition. With this pol-
icy, it is optimal for the system to allocate a bandwidth
Btot −PC

c=1 φg
cSc to the primary partition, and

PC
c=1 φg

cSc

to the secondary partition. This ensures that the size of the

3For the case that preemption is possible, our models can be
thought of as a way to capture the performance impact of the
delay-sensitive jobs when the delay-tolerant load operates on
the granularity with which preemption takes place.
4Nunez-Queija et al. [25] considered a similar set of policies
in the context of a link in an ATM or IP network, that carries
both streaming traffic and elastic traffic.
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Table 1: Notation

Parameter Symbol Definition
Btot Total server (i.e., system) bandwidth capacity

Server Bt Server bandwidth for the primary partition at time t
T Number of time intervals (or buckets)
K Number of delay-sensitive workload classes, with priority order 1 ≤ k ≤ K

λk,t Job generation rate of delay-sensitive workload k at time t
Delay-sensitive Lk Average service demand of delay-sensitive workload k

Workload L2
k Second moment of service demand of delay-sensitive workload k

Wk,t Average waiting time of delay-sensitive workload k at time t
Rk,t Average response time of the delay-sensitive workload k at time t
Rm

k Target threshold of average response time of delay-sensitive workload k
C Number of delay-tolerant workload classes, each with equal low priority

φf
c,t Average throughput of delay-tolerant workload c running on primary partition at time t

Delay-tolerant φg
c,t Average throughput of delay-tolerant workload c running on secondary partition at time t

Workload fc Fraction of throughput of the delay-tolerant workload that should be of class c
Sc Average service demand of delay-tolerant workload c

S2
c Second moment of service demand of delay-tolerant workload c

Idle S∗ Average service demand of infinitesimal “idle” jobs

Workload S2∗ Second moment of service demand of “idle” jobs
pk Probability of being in “sensitive” service state k

Percentile qc Probability of being in “tolerant” service state c
Analysis F (Wk,t) Cumulative distribution function (CDF) of the waiting times Wk,t

W θ
k Target threshold of the θ-percentile waiting times of the sensitive workload k

primary partition is maximized, and the secondary parti-
tion, where there are no delay-sensitive jobs being served, is
fully utilized.

The shared policy uses a single partition to which all
server bandwidth is allocated. The delay-tolerant jobs are
served only when there are no outstanding delay-sensitive
jobs.

We also consider a hybrid policy. It uses two partitions,

but allows a fraction
φf

c

φ
f
c +φ

g
c

of the delay-tolerant jobs to

be served by the primary partition. The remaining frac-

tion
φg

c

φ
f
c +φ

g
c

run in the secondary partition. In this case, we

allocate
PC

c=1 φg
cSc bandwidth to the secondary partition.

4. STEADY-STATE ANALYSIS
We begin our analysis by considering the steady-state

case, where the request rate of the prioritized delay-sensitive
workload is constant. For simplicity, we consider a sin-
gle delay-sensitive workload (but allow for potentially many
delay-tolerant background workloads). In the following we
describe how we model the primary “shared” portion of the
server bandwidth. For the secondary partition, we allocate
sufficient bandwidth to satisfy the desired throughput; i.e.,
we require that the bandwidth for the primary partition is:

B = Btot −
CX

c=1

φg
cSc. (1)

We first consider the average response time for a general
job size distribution of the delay-sensitive jobs. This analysis
is followed by an investigation of the tail behavior of the
waiting time distribution when the job-size distribution is
assumed to be exponential.

4.1 Mean Value Guarantees
We first consider the average response time (including

both the waiting and service times) for a single priority class
(i.e., K = 1). Using known results for an M/G/1 queue
with vacation periods, the expected response time can be
expressed as [29]:

R =
L

B

 
1 +

λ L2

B2

2(1 − ρ)

!
+

U2

2U
, (2)

where ρ = λL
B

is the utilization due to the delay-sensitive

workload, U is the average service duration and U2 is the
second moment of the vacation periods. Again, in our model
the vacation periods are used to serve delay-tolerant jobs, as
well as to capture idle periods.

For the purpose of our analysis, we now derive a more

explicit expression for U2

U
. We assume that after some time

T , Nc(T ) jobs have been served of class c and let “*”be used
as the subscript of the arbitrarily small “idle” jobs. Then,

we can rewrite U2

U
as follows:

U2

U
= lim

T→∞

1P
c Nc(T )

„P
c

PNc(T )
i=1 (

S2
c,i

B2 )

«
1P

c Nc(T )

“P
c

PNc(T )
i=1

Sc,i

B

”

= lim
T→∞

PC
c=1 Nc(T )

S2
c

B2 + N∗(T )
S2∗
B2PC

c=1 Nc(T )Sc
B

+ N∗(T )S∗
B

= lim
T→∞

T
PC

c=1 φf
c

S2
c

B2

T (1 − λL
B

)
=

1

(1 − ρ)

CX
c=1

φf
c

S2
c

B2
. (3)

In the first step, we cancel out the
P

c Nc(T ) parts and
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Figure 1: State transition diagram.

make use of the fact that the sums approach their expected
values as T → ∞. In the second step, we make use of the fol-

lowing properties:
N∗(T )S2∗

PC
c=1 Nc(T )S2

c

= 05, and Nc(T ) → φf
c T as

T → ∞. Also, any unused bandwidth for the delay-sensitive
workload (i.e., BT − λTL) is used for the delay-tolerant

jobs (i.e., must be equal to
PC

c=1 Nc(T )Sc +N∗(T )S∗, when

T → ∞). Finally, in the third step, we substitute ρ = λL/B.
(The T factors cancel out.) As a sanity check, we note that
for the case of a single class C = 1 where the system is never

idle (i.e., for which φf S
B

= 1 − ρ), the above expression re-

duces to S2/B2

S/B
.

4.2 Percentile Guarantees
We now turn our attention to service guarantees expressed

with regards to how large a fraction θ of jobs are served
faster than some threshold W θ. For this section we assume
an exponential job-size distribution, and model the system
as an M/M/1 system with vacation periods. While the ex-
ponential job-size distribution is needed to obtain a closed
form waiting time distribution, we note that there may be
room for similar approximate analysis approaches for more
general job-size distributions.

4.2.1 State probabilities
Before deriving expressions for waiting time probabilities,

we must first analyze the state probabilities for each system
state. For this analysis we assume that service times are ex-
ponential. Figure 1 shows the state transition diagram for
our system. Here, the states on the top row keep track of
the number of delay-sensitive jobs currently in the queue (in-
cluding the job in service) whenever there is a delay-sensitive
job in service, with the k = 0 state corresponding to the idle
state. The c states corresponds to the cases in which a delay-
tolerant job of class c is in service. In the case of these jobs,
we can accumulate more than one delay-sensitive job before
changing state (at the end of a service period), as illustrated
by the longer jumps to k states. We use pk and qc to denote
the probability the system is in states k and c respectively.

Consider first the flow going in and out of the c states.

5To see this, we note that even though pidle = N∗(T )S∗
TB

must stay constant as we let S∗ → 0 for the artificial “idle”

vacation periods, in comparison to the finite S2
c , the term S2∗

decrease much faster in size, such that the condition holds
true.

The rate into these states (always from state p0) is equal to
p0γfc, where γ is the rate with which the server picks up a
delay-tolerant job when idle and fc is the fraction of delay-
tolerant jobs to be processed of class c. Similarly, the flow
out of the state is equal to qc

B
Sc

. From these flow equations,
it is easy to show that:

qc =
p0γfc

B/Sc

=
p0γfcSc

B
(4)

Note that for the case when γ → ∞, the probability p0 of
being idle approaches zero for any finite qc, and when γ → 0,
the probability qc approaches zero (for any finite p0).

Using vertical cuts in the above state transition diagram
and considering the steady-state solution (i.e., for which the
net flow across the cut is zero), we obtain the following equa-
tion for the state probabilities pk:

pk =
pk−1λ

PC
c=1 qc

B
Sc

P∞
i=k rc,i

B/L

= pk−1ρ +
CX

c=1

qc
L

Sc

∞X
i=k

rc,i

= p0ρ
k + p0

CX
c=1

γfcL

B

kX
j=1

ρk−j

 
1 −

j−1X
i=0

rc,i

!
(5)

where ρ = λL
B

, and rc,i = e−λSc/B (λSc/B)i

i!
approximates

the probability that we have i delay-sensitive jobs arriving
during the service period of a delay-tolerant job of class c
(with average duration Sc/B).

To calculate the above probabilities we need to solve for
p0. Before calculating p0, we note that

P∞
k=0 ρk = 1

1−ρ
, andP∞

k=1

Pk
j=1 ρK−j P∞

i=j rc,i =
P∞

i=1 irc,i

P∞
j=0 ρj =

P∞
i=1

irc,i

1−ρ
=

E[rc]
1−ρ

, where E[rc] =
P∞

i=1 irc,i = λSc
B

is the expected num-
ber of requests for delay-sensitive jobs during the service
period of a delay-tolerant job, with average duration Sc/B.

With these observations in mind and the fact that
PC

c=1 qc+P∞
k=0 pk = 1, we can now solve for the idle probability:

p0 =
1PC

c=1
γfcSc

B
+ 1

1−ρ
(1 + L

B

PC
c=1 γfcE[rc])

. (6)

4.2.2 Waiting time distribution
We next derive expressions for the cumulative distribution

function (CDF) of the waiting time distribution. To do this,
we use the PASTA property (Poisson arrivals see time aver-
age) [30], and calculate the CDF as a weighted sum of the
individual CDFs of requests arriving in the different states.

Let F (W ) be the CDF of the waiting times W , and ρ = λL
B

the average utilization due to the delay-tolerant workload.
Then, we can approximate F (W ) as follows:

∞X
k=0

pk

 
1 −

k−1X
n=0

e
− B

L
W (B

L
W )n

n!

!

+

CX
c=1

qc

∞X
k=1

rc,k

1 − rc,0

1

k

kX
i=1

 
1 −

iX
j=0

e
−B

L
W (B

L
W )j

j!

!
. (7)

Here, we have approximated the remaining service time of
the qc states with the service time of a regular request. This
allows us to approximate the combined remaining service
time distribution (CDF) of the outstanding class c job, plus
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Figure 2: Example utilization and average service time un-
der steady state. (Btot = 1, L = L2 = 1, S = S2 = 1.)

the i delay-sensitive jobs in front of the arriving job, using
an Erlang distribution. This provides a reasonable approx-
imation when the average service times are similar in size,
and the assumption is conservative when delay-tolerant jobs
are smaller. We show later in this section that small delay-
sensitive jobs are advantageous to achieve good utilization,
and such conservative operation points therefore may be de-
sirable.

4.2.3 Percentile constraints
Given a reasonable evaluation mechanism of the above ex-

pression, we can now solve the equation F (W θ) = θ, where
θ is the desired percentile and W θ is the threshold for which
we expect that the fraction θ of the requests will have no
greater waiting time than.

A problem with the above expression is that it involves
summations with an unbounded number of terms. To re-
solve this, we truncate the sums over k at k∗. With the
probabilities used within these sums, this results in an error
no larger than:

1 −
k∗X

k=0

pk −
CX

c=1

qc

k∗X
k=1

rc,k

1 − rc,0
. (8)

For our evaluation we pick k∗ large enough that the error is
≤0.01% of the reported value.

4.3 Policy Comparisons
We now apply the results from Sections 4.1 and 4.2 to com-

pare the performance of the policies defined in Section 3.4.
Without loss of generality, the unit of service rate is chosen
to be equal to the total server bandwidth, and a unit of time
is the time the server on average needs to process a single
delay-sensitive job. This gives Btot = 1 and L = 1.

4.3.1 Homogenous baseline scenario
We first consider the utilization achieved using the two

baseline policies: separated and shared. Figure 2 shows
the utilization as a function of the average response times.
Curves are shown for three different workload intensities: λ
= 0.1, 0.5, 0.8. With our normalized units this corresponds
to the delay-sensitive load consuming 10%, 50%, and 80%
of the total server resources, respectively. In these experi-
ments we have a single delay-tolerant workload and assume
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Figure 3: Baseline comparisons using steady state analysis.
(Btot = 1, Rm = 2, λ = 0.5, L = L2 = 1, S = S2 = 1.)

that L = 1, L2 = 1, S = 1, S2 = 1 (our default values
throughout the paper, unless otherwise specified.) With
these parameters the server can achieve a utilization of close
to 100%, without a significant increase in average response
times using the shared policy (“o” points). In none of the
three scenarios does the average response time increase by
more than a factor of two. In contrast, with the separated
policy (“+”points), the response times grow without bound.

Our initial experiment compares the ability of the base-
line and optimal hybrid policies to improve the bandwidth
utilizations of the server. In this experiment, a single delay-
tolerant workload is used, and an average response time that
does not exceed twice that of jobs served individually (i.e.,
Rm = 2) is maintained. In these experiments we vary the
resources required by the delay-sensitive workload (by vary-
ing λ), and the variation in the job-size distribution of the

delay-tolerant workload (by varying S2).
To obtain the optimal operation point of the shared pol-

icy, we rewrite the above problem formulation as a linear
program (LP) in terms of φf

c . Similarly, for the hybrid pol-
icy we rewrite the above problem formulation as a linear
program (LP), for each possible partition B, in terms of φf

c

and φg
c . We can then use the solutions of these LPs to search

for the best partition B.
When there is only a single delay-tolerant workload (in

which the jobs can not be further categorized), the optimal
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policy is to use the better of the two baseline policies (at
each point of the parameter space). As we will show later,
for more general cases this is not always the case.

Figure 3 shows the bandwidth utilizations of the base-
line and optimal hybrid policies for a single delay-tolerant
workload and an average response time that does not ex-
ceed twice that of jobs served individually (i.e., Rm = 2).
In Figure 3(a) we vary the request rate of the delay-tolerant
jobs, and in Figure 3(b) we vary the relative variation of the
job-size distribution of the delay-tolerant jobs. These figures
show that the shared policy can achieve very good utilization
whenever the utilization due to the delay-sensitive workload
itself is small (Figure 3(a)), or the variations in job sizes
are sufficiently low (Figure 3(b)). The largest improvements
(over separated) are achieved when the utilization due to the
delay-sensitive workload itself is smaller. For example, with
the same variation as for the delay-sensitive workload (i.e.,

with S2 = 1) we obtain 100% utilization whenever λ ≤ 0.5.
While there is a drop in utilization for intermediate rates λ,
we note that these utilizations can be improved upon if us-
ing delay-tolerant workloads with smaller variations in the
job-size distribution.

4.3.2 Job-size variations
As seen above, the variation in job-size distribution of

the delay-tolerant jobs can have a significant impact on the
achievable utilization levels. Figure 4 improves our under-
standing of the variation in job sizes. In particular, Figure 4
shows results using two different delay-tolerant workloads:
both with the same average job size, but different variation.
In Figures 4(a) and 4(b) we vary the ratio between the sec-
ond moments of the two delay-tolerant workloads, and in
Figure 4(c) we vary the percentage of jobs of the workload
with small variation. Again, we note that the shared policy
performs best when there are small variations in the job-
size distribution; i.e., when either φ1 << φ2 in Figure 4(c)
or S2

1 ≈ S2
2 in Figures 4(a) and 4(b).

Perhaps the most telling example of when small job-size
variations are beneficial is observed in Figure 4(b), where
the high utilization on the right-hand-side of the graph is
achieved when the dominating delay-tolerant workload class
(φ2, with 90% of the background jobs) has much smaller
variation than the other delay-tolerant workload class (φ1,
with 10% of the background jobs). Similarly, in Figure 4(c)
we can see that the utilization increases as the fraction of
background load with small variance increases. This is intu-
itive, as smaller variations in the service times of these jobs
ensures that there is a very small likelihood that a larger
number of delay-sensitive jobs will get queued up behind
such a job.

In constrast to the homogenous scenario (in Figure 3(b)),
in all cases with two different delay-tolerant workloads (Fig-
ure 4), the hybrid policy outperforms both baseline policies
for some range of the parameter space. In fact, there are re-
gions in the parameter space in which we see an improvement
of more than 30% in utilization (e.g., the right-most regions
of the parameters spaces shown in Figures 4(b) and 4(c)).
Much of this performance advantage comes from the hybrid
policy’s ability to separate the delay-tolerant jobs with high
job-size variation from the rest of the workloads, while allow-
ing the delay-tolerant jobs with low size variation to share
resources with the delay-sensitive workload.

These examples illustrate the importance of understand-
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Figure 4: Two class experiments. (Btot = 1, W m = 2, λ =

0.5, L = L2 = 1, S1 = S2 = 1.)

ing the workloads running on a system, and the value in
separating the workloads with high variability from those
with low variability. If jobs with low variability (in their
job-size distribution) can be separated, then these jobs are
great candidates to share resources with the delay-sensitive
jobs. In contrast, any delay-tolerant workloads with high
variability in job sizes should typically be processed sepa-
rately. Overall, we believe that this illustrates the value
in careful workload scheduling and server-resource manage-
ment.
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4.3.3 Percentile service guarantees
An important consideration in our work is quantifying the

effect that background workloads have on the tail of the
waiting time distribution for the (prioritized) delay-sensitive
workload.

Figure 5 shows the upper percentiles of the waiting time
distributions, using both analytic approximations and simu-
lation. Figure 5(a) shows the CDF of the waiting times in a
system with only a delay-sensitive workload, and load inten-
sities of λ = 0.1, 0.5, or 0.8. In contrast, Figure 5(b) shows
results for a system running at 99% utilization, for various
splits between delay-sensitive and delay-tolerant loads. We
note that the analytic approximations typically are fairly
accurate.

Figure 5(a) shows large variations in the waiting times
as the intensity increases. This motivates operators (as has
been noted before) to over-provision their systems to handle
the peak loads. For example, to achieve a service guaran-
tee (i.e., waiting time) of 8 for 99% of the jobs (or 3 for
90% of the jobs), the system’s peak utilization must remain
at or below 50% (λ = 0.5). Naturally, at lower loads (e.g.,
λ = 0.1) much stricter waiting time guarantees can be main-
tained, whereas at heavier loads the waiting times increase
rather quickly.

Comparing the curves in Figures 5(a) and 5(b), it is in-
teresting to note that the primary difference is that the y-
intercepts have been pushed to zero. With the exception of
scenarios with less delay-sensitive loads (e.g., the λ = 0.1
curves), adding the delay-tolerant loads does not have much
effect on the waiting times of the delay-sensitive workloads.
As the systems typically are sized with regards to satisfying
the tail characteristics of the peak loads, our results indi-
cate that as long as the lightly loaded curves stays on the
left of the highly-loaded curves, the service guarantees are
satisfied.

Based on the above observation, it is interesting to note
that the tail typically is even less sensitive to running delay-
tolerant jobs on the system than the average values. For
systems using strict priority for delay-sensitive jobs, this in
part is due to the service time of any request can at most be
affected by one single delay-tolerant job (the job in service).
In addition, if the service times of these delay-tolerant jobs
typically are small (as is the case when S and S2 both are
small, for example) not many other delay-sensitive jobs will
have queued in the interim. The requests associated with
the tail (i.e., requests that sees longer response times) are
instead typically due to jobs arriving to a server with mul-
tiple queued delay-sensitive jobs. The probability of this
occurring will not be greatly affected by the addition of
delay-tolerant jobs being processed during periods when the
system otherwise would be idle.

Figure 6 shows how well the baseline policies can improve
system utilization. In these experiments we used a single
delay-tolerant workload. We pick S = L = 1 to avoid ap-
proximation errors due to our Erlang assumption (Section
4.2.2) when jobs arrive to a system in which a delay-tolerant
job is being served. With the shared policy the system can
achieve a utilization of 100% with only a slight increase in
the waiting times that can be guaranteed (10 for 99% and
5 for 90%, for λ = 0.5). For λ = 0.1 there are regions for
which separated is better. For λ = 0.8, the waiting times
in a system without any background jobs (as shown in Fig-

ure 5(a)) is higher for the 90th percentile than the full range
used in Figure 6, and is therefore omitted.

5. TIME VARYING WORKLOADS
In this section, we extend the average delay analysis (based

on an M/G/1 queuing system with vacation periods) from
Section 4 to consider time-varying request rates for the delay-
sensitive workload. This is typical of delay-sensitive work-
loads like Web servers [31]. We investigate the benefits
of adaptive workload-management policies, with which the
delay-tolerant workload can be shifted both between the par-
titions and with regards to the current request rate.

5.1 Time Generalization
As in the previous part of the paper we are interested in

maximizing the overall utilization of the system. As before
we assume a single server system with a total service rate
Btot, which can be partitioned into two parts: a primary
partition with bandwidth B(t) and a secondary partition
with bandwidth Btot − B(t). Service times are equal to the
service requirements divided by the bandwidth (or service
rate) of the partition serving that job. For example, a pri-
mary job of size L would have a service time L/B. While
the overall utilization could be calculated exactly as a con-

tinuous integral over time, 1
T

R T

0

λ(t)L+
PC

c=1(φf
c (t)+φg

c(t))Sc

Btot
,

we use a discrete approximation

1

T

TX
t=1

λtL +
PC

c=1(φ
f
c,t + φg

c,t)Sc

Btot
, (9)

and assume that the expected response time in each bucket
is small enough that it can be calculated independently. The
above expression now becomes our objective function, and
within each bucket we must ensure that the average response
time Rt is no greater than the threshold time Rm.

5.2 Optimization Generalization
Similar to Section 4, we can use an optimization formula-

tion to find the best operation point of each policy class. In
general we require that there must be sufficient bandwidth
Bt and Btot − Bt to serve the request in each of the two
partitions; i.e., for feasibility we require that

λtL +
X

c

φf
c,tSc ≤ Bt,∀t (10)

X
c

φg
c,tSc ≤ Btot − Bt,∀t (11)

φg
c,t ≥ 0, φf

c,t ≥ 0, ∀c, t. (12)

Furthermore, under the assumption that the primary par-
tition operates as a M/G/1 server, we can generalize the ex-
pected response time expressions from Section 4 as follows:

Rt =
L

B
+

λt
L2

B2
t

2(1 − ρt)
+

1

2(1 − ρt)
(
X

c

φf
c,t

S2
c

B2
t

), (13)

which must be less than Rm (i.e., Rt ≤ Rm).
Given a partition Bt of the server bandwidth, the above

(linear) constraints for the response times of the delay-sensitive
workload ensure that our problem can be expressed as a
linear program (LP) formulation with (9) as our objective
function. Depending on the flexibility in terms of server

242



0.999

0.99

0.9

0
 0  5  10  15  20  25  30

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

(θ
)

Waiting time (Wθ)

Analytic, λ=0.1
Simulation, λ=0.1

Analytic, λ=0.5
Simulation, λ=0.5

Analytic, λ=0.8
Simulation, λ=0.8

(a) Without background load (φ = 0)

0.999

0.99

0.9

0
 0  5  10  15  20  25  30

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

(θ
)

Waiting time (Wθ)

Analytic, λ=0.1; φ=0.89
Simulation, λ=0.1; φ=0.89

Analytic, λ=0.5; φ=0.49
Simulation, λ=0.5; φ=0.49

Analytic, λ=0.8; φ=0.19
Simulation, λ=0.8; φ=0.19

(b) With background load (99% total utilization)

Figure 5: Cumulative distribution function (CDF) of the waiting times with and wihout any background (delay-tolerant)

workload. (Btot = 1, L = L21, S = S2 = 1.)

100

80

60

40

20

0
 0  2  4  6  8  10

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

Waiting time (Wθ)

Separated, λ=0.5
Shared, λ=0.5

Separated, λ=0.1
Shared, λ=0.1

100

80

60

40

20

0
 0  2  4  6  8  10

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

Waiting time (Wθ)

Separated, λ=0.5
Shared, λ=0.5

Separated, λ=0.1
Shared, λ=0.1

(a) θ = 90% (b) θ = 99%
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bandwidth allocations between the two partitions, a differ-
ent number of linear programs (LPs) must be solved to ob-
tain the optimal policy within each policy class.

5.3 Baseline Policy Classes
A static policy is unlikely to be optimal across all points in

time. In this section, we consider more advanced workload-
scheduling policies to explore how to take full advantage of
the characteristics of the delay-tolerant jobs and the time-
varying characteristics of the delay-sensitive workload.

As established in Section 4, an opportunity exists to opti-
mize the allocation of bandwidth to each partition, as well as
the fraction of the delay-tolerant workloads to run in each
partition. In this section we consider four base classes of
policies. Interestingly, in the next section we show that per-
formance close to the best of these policy classes can be
achieved using a simple heuristic that utilizes the bandwidth
partition of one of the simpler policies.

The policies considered differ in the freedom they allow
along two dimensions: (i) adaptive vs. static bandwidth
partitioning, and (ii) adaptive vs. static mix of the frac-
tion of delay-tolerant jobs processed of each such class. In

other words, does the policy allow Bt and
φc1,t

φc2,t
to vary with

time, or not? Figure 7 illustrates our policy framework,
and Figure 8 shows our four policy classes. Figures 8(c)
and 8(d) show policies that use adaptive bandwidth split,
and Figures 8(b) and 8(d) show policies that allow for adap-
tive delay-tolerant workloads (across time). In summary, we
call the four policies: (a) Static bandwidth split with static
background mix; (b) static bandwidth split with adaptive
background mix; (c) Adaptive bandwidth split with static
background mix; and (d) Adaptive bandwidth split with
adaptive background mix.

5.4 Policy Comparisons
Motivated by the diurnal pattern of many existing work-

loads, we develop a synthetic time-varying workload to eval-
uate the policies described in Section 5.3. Specifically, we
use a sinusoidal workload with a peak load of 60% and min-
imum load of 10%, resulting in a mean utilization of 35%
(before any delay-tolerant workload is applied).6 For this
case, the response times at peak load are very close to two.
In our analysis we therefore select W m = 2 as our desired
average service guarantee target.

6Also the utilization is selected to resemble that of some
existing systems [1].
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Figure 7: Policy framework for improving the effective uti-
lization of a computer system.

Figure 9 shows the results of the comparison of these dif-
ferent policies. The bottom curve shows the bandwidth con-
sumed by the time-varying, delay-sensitive primary work-
load. The other two curves show the utilization with the
best possible policy that adapts the bandwidth Bt at each
point in time, and the best possible policy that use a static
partitioning for which Bt is constant (equal to B), respec-
tively. With both policies we optimize over Bt (or B) and
φc,t, but keep the fraction of delay-tolerant jobs of each class
c constant over time (i.e., we limit the comparision to the
static mix policies). In the particular example shown, we

select the ratio to one, such that φf
1,t + φg

1,t = φf
2,t + φg

2,t at
each point in time.

Both policies achieve a significant improvement in utiliza-
tion. The adaptive policy achieves an average utilization
of 85% and the static policy an average utilization of 48%.
Clearly, there is a significant advantage in using adaptive
bandwidth partitioning. Such policies allow the system to
better adapt to the time-varying characteristics of the work-
load demands, by adjusting both the bandwidth allocated
to each partition, and the volume of delay-tolerant jobs al-
located to each partition based on the current workload con-
ditions.

We now add the second dimension as well. In particu-
lar, we are interested to find out how much advantage may
be gained from also adjusting the mix of the delay-tolerant
jobs processed throughout the day. For the experiments
in Figures 10(a) and 10(b) we vary the ratio between the
maximum and the minimum load and the peak load itself,
respectively. In the first example we set the average load
to λmax+λmin

2
= 0.4 and in the second example we pick a

max-to-min ratio of 2. Since a peak of 80% is possible for
this case, and the response times without any delay-tolerant
workload for this extreme load is 3, we pick the response-
time target for the interactive workload to Rm = 3 (rather
than Rm = 2, which was used in the previous experiment).

While Figure 10 reveals some advantage in adjusting when
to process small versus large (delay-tolerant) jobs over the
course of a day, most of the advantage comes from adap-
tively changing the partitioning (and the fraction of jobs
processed in each partition) over time. This can most eas-
ily be seen by comparing the achieved utilizations with the
policies implementing some form of adaptive bandwidth al-

Figure 8: Example policies for simple workload scenarios.
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locations with the utilizations achieved with those restricted
to static bandwidth allocation. This observation has impor-
tant system implications, as it allows for simpler policies,
which optimize based on current conditions, to reap most of
the possible benefits.

There is, however, also some (small) advantage in higher-
level optimization, such as scheduling jobs on a daily basis
(e.g., small-variation delay-tolerant jobs during peak hours
and large-variation jobs during less busy times). To take ad-
vantage of this, we consider a heuristic policy that greedily
determines a bandwidth allocation one timeslot at a time,
and then uses this bandwidth allocation when solving the
above optimization formulation. For the higher peak loads
(the right part of Figures 10(a) and 10(b)), this heuristic typ-
ically performs slightly better than the policy with a static
mix, but not quite as well as the optimum. We believe the
simplicity of the heuristic, as well as the adaptive bandwidth
split with static background mix policy, together with a low
performance penalty relative to the optimal policy, will make
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them desirable in systems with highly predictable diurnal
workloads.

6. DISCUSSION AND EXTENSIONS
The optimization formulation in Section 5 and the frame-

work used in this paper can be extended to more general
cases in which there are multiple (prioritized) delay-sensitive
workloads. Let k be the index of the delay-sensitive work-
load with the kth highest priority.

Non-preemptive, with K priority classes: Based on
Kella and Yechiali [29]:

Rk,t =
Lk

Bt
+

PK
i=1 λi,tL2

i + (1 − ρt)
U2

t

2Ut

2(1 − σk,t)(1 − σk−1,t)
, (14)

where σk,t =
Pk

i=1 λi,t
Li
B

(with σ0 = 0). Again, note that
σk,t and the denominator is independent of φc,t and the frac-

tion
U2

t

Ut
is the same linear function as above. This linearity

allow for the use of similar LP formulations as used to obtain
optimal mix and allocation of the delay-tolerant background
workloads, between the partitions.

Preemptive, with K priority classes: Based on Kella
and Yechiali [29]:

Rk,t =
Lk

Bt
+

Pk
i=1 λi,tL2

i + (1 − ρ)
U2

t

2Ut

2(1 − σk,t)(1 − σk−1,t)
. (15)

Revenue Extension: The above framework can also be
used to consider alternative design objectives. For example,
if each delay-sensitive workload has a revenue function rc per
served job of class c the objective function can be written as

X
t

CX
c=1

(φf
c,t + φg

c,t)rc (16)

where rc is the revenue associated with processing a job of
class c. We note that as long as these alternative objective
functions (and/or additional constraints) are linear with re-

gards to the φf
c,t and φg

c,t terms, the same methodology can
be used to obtain the optimal allocation of the delay-tolerant
background workloads.

Multi-server: Larger servers can achieve higher utiliza-
tions by processing multiple jobs in parallel. For example,
Karidis et al. [3] use an M/M/m queue (rather than mul-
tiple independent M/M/1 queues) to show the utilization
improvements using multi-socket systems. We will explore
more advanced models in future work.

7. CONCLUSIONS
In this paper we explored how to systematically improve

the effective utilization of computer systems, while main-
taining a desired responsiveness for delay-sensitive work-
loads. We demonstrate that by carefully managing resources,
workloads, and scheduling delay-tolerant workloads around
the higher priority workload(s), achieving our goal is feasi-
ble.

Our work leverages existing queuing theory of systems
with vacation periods, and evaluates the responsiveness with
regards to both average response times and on upper per-
centiles of the response time distribution, as values such as
the 99th percentile often are important in practice. We show
that by minimizing the variation in the size of tasks in the
delay-tolerant workload, the mean response times in delay-
sensitive workloads can remain adequately low even as the
overall utilization of the computer system increases. Inter-
estingly, the tail typically is even less sensitive to the addi-
tion of delay-tolerant jobs. This validates our intuition that
the requests associated with the tail of the response time
distribution are delayed by a queue of other delay-sensitive
jobs rather than the servicing of delay-tolerant jobs. The
delay-tolerant jobs are unlikely to affect the tail of the re-
sponse time distribution for delay-sensitive jobs as service
on a delay-tolerant job can only start if there are no queued
delay-sensitive jobs.

We intend to extend our work in several ways. We plan
to evaluate how well these theoretical properties hold in an
actual system using real workloads. We will also investigate
other pragmatic issues, such as how to extend our findings
to multiple system resources.
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