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ABSTRACT 
Power consumption is a critical consideration in high computing 
systems. We propose a novel job scheduler that optimizes power 
and energy consumed by clusters when running parallel 
benchmarks with minimal impact on performance. We construct 
accurate models for estimating power consumption. These models 
are based on measurements of power consumption on benchmarks 
with different characteristics and on systems with processors 
using different micro-architectures. We show the power 
estimation models achieve less than 2% error versus actual 
measurements.  We show a job scheduler can be enhanced to 
make it “power-aware” and to optimize power consumption of 
jobs with similar performance characteristics. The enhanced 
scheduler can estimate the power consumed by a particular job 
using the power estimation model, configure the nodes in the 
cluster via suitably adjusting processor frequency on each of the 
nodes to maximize performance, minimize power, or minimize 
energy with a predictable impact on power, energy and 
performance.   

Categories and Subject Descriptors 
B.8.2 [Hardware]: Performance Analysis and Design Aids 

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
Power Analysis, Performance, Power Estimation, Power 
Optimization. 

1. INTRODUCTION 
Recently, power consumption has become a serious concern 

to managers of HPC data centers due to the rising cost of power 
and cooling. While data center managers are interested in optimal 
management of server system power allocation to minimize total 
operational cost of the data center, a typical HPC user is 
interested in the best turnaround time or for overall throughput of 
his job. Realizing the importance of power management, 
hardware vendors are building more and more dynamic power 
management capabilities into microprocessors and server systems 
as well as providing software tools to obtain and view the power 

consumption data from the server systems. Some of the available 
tools can also be used to set limits on the power delivered to the 
server systems and thus help data center managers in the 
management of power and cooling costs. However, these software 
tools are not targeted to parallel applications and do not predict 
the impact of processor frequency scaling on total energy. For 
example, cases are described in this paper in which decreasing the 
processor frequency increases the energy consumed by the 
application while power consumption is decreasing. Since current 
schedulers cannot predict the power dissipation of their 
applications, optimized power and energy management of the 
cluster nodes is difficult. 

Recognizing the HPC application community’s need, we 
study performance and power consumption on a selection of HPC 
applications. Our first objective is to experimentally obtain 
generalized power-performance correlations for HPC applications 
that can be used to estimate the power consumption and energy of 
an application, on any platform, and at any frequency. Then, a 
scheduler is implemented to obtain an executing job’s power 
dissipation and make use of the derived power-performance 
correlations to optimize the power dissipation and energy of the 
job executing on the HPC cluster. We use IBM POWER6 and 
Intel Harpertown and Nehalem server results and analysis to carry 
out these tasks. 

Floyd et al. [2] and McCreary et al. [3] describe the system 
power management support in the POWER6 processor. 
Techniques such as core throttling and power and temperature 
monitoring capabilities are discussed. Allarey et al. [5] describe 
idle and multicore dynamic power reduction features in Intel’s 
65nm cores, and they introduce a deep power-down idle state and 
power-performance tradeoffs for single threads, as well as 
enhanced sleep states. 

Rajamani et al. [6] propose real-time power and performance 
prediction capabilities that can be used for dynamic control of 
system resources such as DVFS and clock throttling to improve 
power-performance. They extend prior work related to average 
power prediction to predicting instantaneous processor power to 
enable applications such as operating system scheduling. Lee et 
al. [7] dynamically predict performance and power using 
regression models and apply them to controlling DVFS for 
program regions of 100M instructions. 

Our work is distinguished from prior work by its focus on 
power-performance in large, high-performance systems of many 
clustered nodes. The possible dynamic variations of node power, 
application power and energy in such a system, including a 
maximal system power constraint, require accurate, dynamic 
power prediction on an application basis and unique algorithms 
for predicting and controlling power and energy system-wide, as 
proposed here. 

The rest of the paper is organized as follows. Section 2 gives 
a brief description of the machines used in the power-performance 
experiments performed for this paper. Section 3 gives a 
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description of the performance data gathering process for both 
Power6 and Core 2 micro-architectures and the derived metrics 
used in the models. Section 4 presents the tools used to measure 
power consumption. Section 5 presents the applications used for  
this study. Section 6 presents performance and power 
measurements gathered on the various platforms and the model 
used for power and performance projections. Section 7 presents 
the impact of frequency scaling on power and energy for the 
benchmarks on the various platforms. Section 8 uses the data 
from previous sections and proposes the power and energy aware 
scheduling methodology and policies and quantifies the power-
performance impact of the methodology. Section 9 presents the 
conclusions. 

2. Experimental Systems 
The systems used in our experiments are an IBM JS22 blade, 

an IBM HS21-XM Harpertown blade, and a Nehalem “white box” 
described below. 

 
Table 1 shows configuration details for the systems used in 

the current work. JS22 is a blade that has two POWER6 modules 
running at 4.0 GHz. Each module has two cores capable of 
running in either single threaded (ST) mode or multi-threaded 
(SMT) mode, with two threads per core. The POWER6 chip is a 
high frequency, in-order superscalar processor with 8MB of L2 
cache, an L3 controller, an on-board fabric with controller, and 
integrated  memory controller. In the blade, each POWER6 chip 
is a single-chip module without an L3, one memory controller, 
with only two channels attached to the memory DIMMs through 
buffer chips [1]. The POWER6 core pipeline has two binary 
floating-point units each capable of two floating-point operations 
per cycle, for a total of eight sustained floating-point operations 
per cycle per chip. 

A number of JS22 blades can be inserted into the IBM 
BladeCenter-H chassis, which modularizes the blade power 
supplies, switch bays, and point-to-point wiring through the 
backplane [4]. Each blade contains four angled DIMM slots of 
8GB DDR2-533 DIMMs or 1GB, 2GB, or 4GB DDR2-667 
DIMMs, for up to 32GB of memory, supporting ECC, chip-kill 
and redundant bit steering. The blade also integrates the 
peripheral chips. Linux RHEL 4.6 and AIX 53L operating 
systems are supported. The BladeCenter integrates a management 
module with support for tools such as IBM Director, Power 
Executive, and the Active Energy Manager (AEM). 

The IBM HS21-XM blade (characteristics listed in Table 1) 
is also deployed in the IBM BladeCenter-H chassis, and is 
managed by the same tools as the JS22.  It has two sockets of 
Intel Harpertown Core 2 quad-core processors running at 2.8 
GHz. The Harpertown processor cores also execute 4 floating 
point operations per cycle giving a total 16 floping point 
operations per cyle per chip. The Harpertown processor is an 

MCM consisting of two dual core processor chips. The two cores 
share a common 6MB L2. The MCMs connect to a central 
memory contoller chip via a “front side bus” running at 1333 
Mhz.  

The Nehalem system is a 2U “whitebox” with 2 sockets, 
each socket with one quad-core Nehalem processor running at 
2.93GHz and 12 direct-attach 2GB DIMMs running at 1066MHz. 
It has private L1 and L2 caches per core and a shared 8MB L3. 
Nehalem also features an integrated memory controller and QPI 
interconnect.  

3. Applications  
For an effective analysis of power-performance, a set of 

floating point benchmarks was chosen that stress either the 
processor or the memory in the system, or both. A subset of 8 out 
of a possible 17 of the SPEC CPU2006 benchmarks was chosen in 
order to speed up the data collection and analysis tasks and to 
represent different benchmarks that are important to HPC as well 
as for their different performance characteristics in terms of CPI 
(cycles per instruction) and memory bandwidth. These are not 
true parallel applications but measurements show little difference 
in power between the parallel versions of these workloads and the 
SPEC FP counterpart. Table 2 shows the selected applications.  

Table 2: List of applications and HPC areas 
Benchmark Area 

416.gamess Quantum Chemistry 

433.milc Physics 

435.gromacs Molecular Dynamics 

437.leslie3d Fluid Dynamics 

444.namd Molecular Dynamics 

454.calculix Structural Analysis 

459.GemsFDTD Electromagnetics 

481.wrf Weather Forecasting 

4. Performance Metrics 
To carry out our experiments, performance counter data from 

all three machines was collected.  
For gathering the counter data, we used hpmcount tool on 

JS22, oprofile on HS21-XM and perfmon on the Nehalem 
platforms. Performance metrics like CPI (cycles per instruction) 
and memory bandwidth were computed for each of the SPEC 
benchmarks based on the hardware counter data collected using 
these tools. We ran the SPEC benchmarks in the throughput mode 
to assess the capability of each system.  A number of copies of 
each of the benchmarks in Table 1 were on each platform for 
gathering the hardware counter data. On JS22 and the Nehalem 
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platforms, we used the systems in SMT (simultaneous multi-
thread) mode which implies that we would run twice the number 
of copies as the number of cores in the system. In other words, we 
ran one copy of the benchmark for each logical CPU in the 
system. Based on the elapse time for the throughput benchmarks 
to complete on a system, one can also compute the throughput 
performance called “rate” according to SPEC benchmark rules. In 
Table 3, CPI and memory bandwidth metrics are shown for each 
of the benchmarks on each of the three systems. 

 
Significant differences between these applications are 

apparent. Life Science applications like 416.games, 435.gromacs 
444.namd are very core intensive and have very little memory 
bandwidth. 454.calculix which is a structural analysis application 
is also core dominant. The remaining applications 433.milc, 
437.leslie3D, 459.GemsFDTD and 481.wrf have high memory 
bandwidth requirements.  

5. Tools for power measurement 
Two system management tools were used to collect the 

power data used in our experiments. Amester is a tool that is 
internal to IBM that we have used to measure power at a 
component level in the blade server while AEM (Active Energy 
Manager) is a commercially available tool that can be used to 
measure power at the server level as well as power at chassis 
level.  

5.1 Amester   
The Autonomic Management of Energy (AME) project was 

started at the IBM Research Lab in Austin in 2004 with the goal 
of controlling server or blade power-performance to within a 
specified power and temperature budget [2]. JS22 and HS21-XM 

blades were provided with on-board power-measurement circuits 
and firmware additions to monitor the circuit outputs. An AME 
circuit places a very low impedance resistor in series with a power 
rail. Circuits are placed on the various rails feeding the voltage 
regular modules that power the system. The on-blade temperature 
and power management device (TPMD) then converts the voltage 
drop on each resistor to digital, which allows it to project the 
current and power at the rails. The Blade Center management 
module can then interface digitally to the TPMD through the 
service processor to read the power and other information coming 
from the rails and control the behavior of the POWER6 through 
actuators positioned on the die [2].  

The rails that are accessible readily are denoted in this paper 
in the following way:  

Core Power (or Vdd): Power to the on-chip cores, internal 
fabric, memory controller, L2 cache controller, and other internal 
chip logic except for the L2 cache arrays (Vcs), I/O pins (Vio), and 
standby logic (Vsb). 

Total Power (or 12V Power Supply): Power to the entire 
blade, including the POWER6 chip, L2 cache arrays, I/O pins, 
standby circuitry, blade service processor, and TPMD. 

DIMM Power (or Vdram): Power to the memory DRAM and 
DIMM subsystem. 

In the following paragraphs, one additional category of 
power dissipation, Other, consists of the blade components, other 
than the chips and memory subsystem, that have relatively static 
power dissipation (except for the L2 cache arrays, I/Os, and 
standby logic). This is computed as: 

 
Other Power = Total Power – 2*Core Power – DIMM Power 

 
The power dissipation in the L2 cache arrays and I/Os can 

vary with the benchmark, but the swing in power is small relative 
to the overall power of the POWER6 chips and the rest of the 
system, usually less than 6W, or 2% of the Total Power. 

Amester is a companion API tool [2] that provides several 
interface capabilities: 1) robust network connectivity, 2) timely 
collection of data, 3) a command line interface to access AME 
firmware commands, and 4) A GUI to provide visual feedback of 
the AME firmware and demonstrate power management 
algorithms.  
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Amester is executed from a remote machine and passes 
control commands through the BladeCenter management module 
to each blade it monitors.  The service processor executes the 
commands by interfacing to the TPMD and returns the requested 
data. Amester is written entirely in TCL for fast prototyping of 
power management algorithms and for portability.  It runs on any 
Windows or Linux system.  The Tk graphics allow for easy 
visualization of data using strip charts in the BLT library. 
Amester can sample the power dissipation at intervals from 1ms 
on up, but 32ms to 256ms gives a good tradeoff between 
resolution and data volume collected. In the following 
experiments a sampling interval of 256ms to collect power 
measurements of blade total power, core power, and DIMM 
power as described above. 

5.2 AEM 
The Active Energy Manager (AEM) tool version 3.1, built 

on the Power Executive tool, provides management and control of 
the chassis and individual blade energy use [1].  It supports 
analysis and control such as power trending and capping, thermal 
trending, and CPU trending at the chassis or individual blade 
levels. The tool supports HS21-XM and JS22 blades. 

6. Power and Performance Data and Models  
 The Amester tool was used to measure overall power 

consumption, core power consumption and DIMM power 
consumption as explained in Section 3. Figure 1 shows a typical 
total power consumption graph for JS22 and HS21-XM. Note that 
idle power sits at about 210 Watts for the JS22 and 107 Watts for 
HS21-XM, which is about two-thirds of the power consumed 
when the benchmark 437.leslie3D is running. 

 
Tables 4, 5, and 6 below summarize the different 

components of power consumption per benchmark by platform. 
The different components are the processor sockets (labeled Proc 
0 and Proc 1 for JS22 and HS21-XM), the memory DIMMS 
(labeled Memory for JS22 and HS21-XM ) and Others for JS22 
and HS21-XM which include  the IO chip, off-chip memory 
controller and  off-chip cache  if they exist. 

 

 
 

 
 

 
Due to the recent availability of Nehalem systems, we did 

not have sufficient time to port Amester on Nehalem. Thus we 
have only the total power consumption data for the Nehalem 
system gathered using a power meter (Table 6). As expected, 
processor power consumption accounts for the majority of the 
total power consumption. Coming in second, off-chip cache and 
IO chips consume a large amount of power regardless of the 
application execution characteristics.  

We now derive a model to predict the power consumption of 
a given benchmark at frequency fn given its characteristics 
measured at frequency f0 and the platform characteristics 
measured at frequency fn: 

 
PWR(fn) =  An*GIPS(f0) + Bn*GBS(f0) + Cn                                 (1) 

 
where, PWR, GIPS and GBS are respectively power 
consumption, giga instructions per second, giga bytes per second 
at a given frequency. For workloads that are completely cache-
contained, equation (1) may not be valid and may need additional 
terms to address cache activity.  

GIPS(f0) and GBS(f0) are application characteristics 
measured at the nominal frequency (f0). An, Bn and Cn are 
coefficients for a given platform at all possible clock frequencies, 
n, that the processor in the platform can be set. This model 
provides a better fit than using separate models for the other 
power, memory power, and core power, and then adding them up. 
The physical meaning is less evident in the combined model, but 
it is  designed specifically to serve the purpose of projecting 
power at some frequency fn based on the nominal frequency f0, 
thereby hiding the dependency of GIPS and GBS on clock 
frequency for a given benchmark. The model uses multiple linear 
regression analysis using the method of least squares for 
determining the power equation (1). 

In Table 7, we present the resulting values of the A, B and C 
coefficients for the power equation. The average error using this 
model on all benchmarks over all machines is less than 1.6%. In 
Tables 8 and 9, we present CPI and total memory bandwidth 
measured for all workloads on JS22 and HS21-XM at different 
frequencies. 
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7. Impact of Frequency on Power and Energy  
We now present the impact of frequency scaling on power 

and energy for the various benchmarks and platforms. The power 
and energy response of the benchmarks shown here provides an 
opportunity for a new scheduling mechanism and policy that can 
significantly reduce power and energy in high-performance 
computing systems.  

Tables 10 and 11 show the power and energy effects of down 
clocking, or reducing frequency, on the JS22. Table 12 shows the 
effects of over clocking, or increasing frequency, on the JS22. 
Similarly, Tables 13 through 15 show the effects of down 
clocking and over clocking on the HS21-XM. 

 

 

 

 

 
 

 
 
In all the following tables, energy is defined as 
 

Energy = Power*Elapse Time 
 
From the tables, it can be seen that down clocking frequency 

on some platforms like the JS22 always saves power and energy 
regardless of the benchmark, while on other machines like the 
HS21-XM, down clocking always saves power but increases 
energy on the benchmarks with low memory bandwidth, as, for 
example, on 416.gamess, 435.gromacs, 444.namd, and 
454.calculix. 

This behavior arises when power saving is less than the 
performance degradation. This may happen for low memory 
bandwidth applications as the performance of these benchmarks is 
directly affected by CPU frequency. On the other hand, power 
saving on HS21-XM is less than power saving on JS22 since 
HS21 has a lower frequency processor. In other words down 
clocking has a bigger payback on high frequency platforms since 
the core power consumption is much higher (see Tables 4 and 5).   
Therefore, for platforms like the HS21-XM, over clocking can be 
an option for optimizing energy on low memory bandwidth 
applications.  

8. Power and Energy-aware scheduling  
Based on these observations, we propose a power and 

energy-aware job scheduling method. With traditional job 
schedulers, all jobs on a cluster are run at the same frequency as 
in Figure 2.  The power and energy-aware scheduler, on the other 
hand, schedules parallel jobs such that all the nodes executing the 
various tasks or threads of one job are running at the same 
frequency, but different jobs may run at different frequencies, as 
shown in Figure 3. 
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The total power consumption for the cluster, P, is used by the 

new scheduler to manage the maximum system power. P is 
provided by the administrator or by any external tool like AEM 
[4], and it can be static or dynamic. If P is not provided, it can be 
determined by the algorithm.  

All nodes in the cluster have a power limit, p(i), i={1,..,n}, 
which can be different for each node and can be also static or 
dynamic. An admissible frequency is a frequency below this 
power limit for each node. Although each set of nodes will be 
running at a given frequency, power is managed globally at the 
cluster level. 

The proposed algorithm has two phases. The first phase 
captures all the characteristics of the cluster in order to build the 
power and the performance models. This is done once at 
scheduler installation, when new components are introduced in 
the cluster, or when a new job is first executed on the system. 
Given the specific node and job characteristics, the first phase will 
also generate a report, used by the system administrator or a user 
that suggests the optimal approach to manage energy for a 
particular job on particular nodes. 

 The second phase determines the target frequency for a set 
of nodes when a user re-submits a job with the same 
characteristics and the job scheduling policy selected by the 
user/administrator.  

In a first approach, we propose three scheduling policies: 
Maximum  performance, Minimum power within a maximum 
performance degradation and a maximum energy reduction, and 
Minimum  energy within a maximum performance 
degradation.All job policies set a frequency which is within the 
maximum power limits for each node. We now give example 
scheduling policies and the power and energy implications of 
these policies using the machines and data shown previously. 

8.1 Maximum Performance Policy 
On a JS22 running at 3.8 GHz, a low memory bandwidth 

application would see up to  5.6%  performance gain  with a 
power degradation of up to 9.8 % and energy degradation of up to 
3.4 % if the clock frequency was raised to 4 GHz. A high memory 
bandwidth application would see no gain. 

On an HS21-XM running at 2.67 GHz, a low bandwidth 
application would see up to  6%  performance gain  with a power 
degradation of up to 5 % and no energy reduction, or even a 1% 
energy saving,  if the clock frequency was raised to 2.8 GHz. A 
high bandwidth application would see no gain. 

8.2 Minimum Power Policy 
On a JS22 running at 4GHz, a low bandwidth application 

would benefit with about 19% power saving, but with 15% 
performance degradation, if frequency was down clocked from 4 
GHz to 3.5 GHz. A high bandwidth application would benefit 
with about 15% power saving but with a 3% performance 
degradation if frequency was down clocked from 4 GHz to 3.5 
GHz. 

On an HS21-XM running at 2.8 GHz, a low bandwidth 
application would benefit with about 25% power saving, but with 
40% performance degradation, if frequency was down clocked 
from 2.8 GHz to 2.0 GHz. A high bandwidth application would 
benefit with about 15% power saving, but with  3% performance 
degradation, if frequency was down clocked from 2.8 GHz to 2.0 
GHz. 

8.3 Minimum Energy Policy 
On a JS22 running at 4GHz, a low bandwidth application 

would benefit with about 7% energy saving, but with 15% 
performance degradation, if frequency was  down clocked from 
4.0 GHz to 3.5 GHz,  or with about 4% energy saving, but with 
6% performance degradation if frequency was  down clocked 
from 4.0  GHz to 3.8 GHz   A high bandwidth application would 
benefit with about 14% energy saving, but  with up to 2% 
performance degradation, if frequency was down clocked from 
4.0 GHz to 3.5GHz, or with 6% energy saving, but  with up to 1% 
performance degradation, if frequency was  down clocked from 
4.0  GHz to 3.8 GHz. 

On a HS21-XM running at 2.8 GHz, a low bandwidth 
application would lose up to about 7% energy, but with up to 40% 
performance degradation, if frequency was down clocked from 
2.8 GHz to 2.0 GHz. A high bandwidth application would benefit 
with about 15% energy saving, but with 1% performance  
degradation, if frequency was down clocked from 2.8 GHz to 2.0 
GHz. 

As can be seen, some of those policies do not make sense 
from an energy standpoint, since, for example on the HS21-XM 
with low bandwidth applications, down clocking frequency would 
degrade performance much more than the associated power 
saving, leading to an increase of energy. But the policy may still 
be useful if a maximum power limit P must be maintained. 

Based on these measurements and analysis, we therefore 
propose a single job scheduling policy to optimize power and 
energy. Based on the characteristics of both the application and 
the platform, the algorithm will either over clock or down clock 
the frequency in order to minimally degrade performance while 
still being within the total power limit P. 

It will also provide the impact of this power and energy 
aware policy to the user/administrator in a report such that the 
percent of performance degradation and energy saving can be 
assessed and traded off as desired.  

A couple of examples illustrate the reporting capabilities: 
On JS22 running at 4GHz, a low bandwidth application 

would benefit by about 7% energy saving with about 15% 
performance degradation if the frequency was  down clocked 
from 4.0  GHz to 3.5 GHz  or  about 4% energy saving with 6% 
performance degradation if the frequency was  down clocked 
from 4.0 GHz to 3.8 GHz. A high bandwidth application would 
benefit by about 14% energy saving with up to 2% performance  
degradation if the frequency was down clocked from 4.0 GHz to 
3.5GHz or  by about 6% energy saving with up to 1% 
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performance degradation if the frequency was  down clocked 
from 4.0  GHz to 3.8 GHz. 

On an HS21-XM running at 2.67 GHz, a low bandwidth 
application would see no energy reduction or even a 1% energy 
saving with up to  6%  performance gain  and a power reduction 
of up to 5 %  if the clock frequency was raised to 2.8 GHz. A high 
bandwidth application would benefit by about 12% energy saving 
with no performance degradation and a power saving of up to 
13% if the frequency was down clocked from 2.67 GHz to 2.0 
GHz. 

9. Conclusions  
This paper proposes a new job scheduler implementation that 

can optimize power and energy consumed by clusters when 
running parallel applications.  The scheduler uses a simple 
multiple regression model to project the power consumed by a 
particular job, configure the characteristics of the nodes in the 
systems, and thereby maximize performance, minimize power, or 
minimize energy with a predictable impact on power, energy or 
performance.  

The scheduler implements a model that predicts the power 
consumption and performance of a parallel HPC benchmark at 
any frequency based on performance metrics gathered when 
running the application the first time at a nominal frequency.  We 
show that the model achieves an error less than 2% versus actual 
power-performance results.  

Experimental data measured on different systems, including 
IBM Power6 and Intel Harpertown and Nehalem microprocessor 
based systems, are presented to validate the model, and assess the 
impact of the various scheduling policies. An example set of 
scheduling policies is presented based on the experiment results 
and an example administrator report is shown. 
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