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ABSTRACT 
It is challenging to determine the optimum number of servers 
required to provision for large online applications because of the 
conflicting mandates of (a) achieving peak performance needs and 
(b) minimizing unused datacenter power and capacity.  Since 
Online Services application loads are unpredictable, datacenter 
operators often conservatively provision for maximum power 
utilization by characterizing workloads for peak load 
performance. In contrast, we aim to optimize the service capacity 
per total cost of ownership (TCO) of an Online Service datacenter 
deployment by characterizing the energy-delay properties of large 
scale datacenter workloads. We show that the peak load 
performance is not the energy efficient point of operation for most 
applications. We choose two industry-strength workloads 
(Internet Search and D-Process) and analyze their energy-delay 
behavior under varying loads. We then calculate the optimal 
operating point for the specific large-scale application and 
provision datacenter energy and capacity based on the energy-
delay curves.  In contrast to workload-based peak power 
provisioning, we show a 7% benefit in Service Capacity-per-
TCO-dollar for the energy-delay characterization methodology in 
our cost analysis for Online Services Applications.   

Categories and Subject Descriptors 
C.5.5 [Computer Systems Organization]: Computer System 
Implementation – Servers.  

General Terms 
Measurement, Performance, Design. 

Keywords 
Datacenter Provisioning, Online Services, Energy-Delay 
Characterization, Cost Optimal Design. 

1. INTRODUCTION 
Online services have become an important class of large-scale 
applications that are being continuously driven by unpredictable 

user demand. Hence datacenter designers face several unique 
challenges for energy and capacity provisioning.  Given the 
significant cost incurred in building a large-scale datacenter, it is 
essential to employ methodologies that deliver performance in an 
energy-efficient and cost-optimal manner.  A conservative 
approach to server power provisioning is to measure peak power 
consumption while running the workload, and use that value to 
extrapolate the total number of servers that can be deployed 
within a given power envelope for an online service.  However, 
this method strands (i.e., leaves unused) datacenter power 
capacity, since utilization is highly variable during non-peak 
usage for Internet-based services.  
 
Typical industry estimates for capital expenditure for the 
construction of large-scale datacenters range from $10 to $20 per 
watt of IT load [2].  Every megawatt not utilized can result in an 
over spend of $10M-$20M.  As a simple example, if we allocated 
per-server power such that we over-provisioned 10% of the 
datacenter critical capacity, we would strand 1.5MW of available 
power capacity for a 15MW datacenter - which could have been 
used for powering an additional 5000 servers (at 300W/server) [3] 
for the Online Service, thus providing the service with scalability 
in the infrastructure facility that has already been constructed. 
Thus, making better use of the critical power capacity in an 
existing datacenter delays the need to build a new datacenter 
facility, thereby reducing capital expenditure of a large enterprise. 
 
In this paper, we use two benchmarks – a) a production quality 
internet search engine (Search) and b) a distributed processing 
workload (D-Process) to illustrate our approach for two different 
classes of large-scale applications. We profile performance and 
power characteristics for these applications. We then determine a 
server operating point for which the amount of energy consumed 
to deliver a given level of performance is optimal based on 
energy-delay curves. We use this operating point for provisioning. 
Fixing a power budget lower than the maximum usable power 
capacity includes the risk of overloading datacenter circuit 
breakers and might result in service unavailability. We mitigate 
this risk by using server power capping technologies that are 
available in enterprise servers to limit power consumed to the 
optimal operating point. We believe that this methodology would 
provide a better energy and cost efficiency for large datacenters. 
To that order, we make the following major contributions in our 
paper: 

 We profile two industry strength workloads in production 
and also characterize their power-performance profiles 
with representative benchmarks.  
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 We provide observations about Online Services from our 
datacenter workload characterization study and show that 
a conservative provisioning methodology that uses peak 
power characterization is not energy and cost efficient. 

 We provide an optimal provisioning policy based on 
energy-delay characterization for operational efficiency in 
large datacenters. 

 We present a TCO based cost analysis that shows a 7% 
benefit in service-capacity per TCO dollar. 
 

The rest of the paper is organized as follows: Section 2 describes 
Background and Related Work, while Section 3 describes the 
experiment infrastructure.  Section 4 presents our methodology 
and results. Section 5 discusses an energy-efficient and cost 
optimal deployment of this methodology.  Section 6 presents 
possible future work.  Section 7 concludes the paper. 

2. BACKGROUND  
 

2.1 Search Application  
Figure 1 outlines the structure of the Internet search engine 
currently in production.  Upon arrival, queries are distributed to 
many nodes.  Examining its subset of the document index, each 
node returns the top N most relevant pages and their dynamic 
page ranks.  The search engine uses sorted indices to access 
content served to the user.  Queries enter the system through a 
top-level Aggregator.  If the Aggregator cannot satisfy the query 
from its set of frequently accessed pages (i.e., the Cache), it 
distributes the query to the Index Serving Nodes (ISNs).  The 
ISNs serve the query in a highly distributed manner.  Each ISN is 
responsible for ranking pages, as well as generating descriptions 
of relevant pages for the user [4]. 

2.2 Search Performance Requirements 
Search application performance is quantified by a combination of 
Quality-of-Service (QoS), throughput, and latency.  The 
application defines QoS as the minimum percentage of queries 
handled successfully.  For example, a QoS metric of θ percent 
requires a minimum of θ successful queries for every 100.  The 
other 100-θ queries may time-out due to long latencies for 

expensive query features or may be dropped due to fully occupied 
queues.  Given a QoS target constraint, we might consider a 
platform's sustainable throughput, which quantifies the maximum 
number of queries per second (QPS) that can arrive at a node 
without causing the node to violate the QoS constraint.  If the 
QPS exceeds the sustainable throughput, QoS degrades. 

Query processing must also observe latency constraints.  The 
average response time of queries must fall within a certain 
number of milliseconds, with additional constraints for the 90th 
percentile of queries.  Latency directly impacts relevance (i.e., 
documents corresponding to a specific query) by affecting the 
number of iterative refinements made to a search result. The 
deployment is also governed by the number of document indices 
that it needs to service.   We consider QPS and the document 
index to be the factors that determine the Service Capacity of the 
datacenter. 

2.3 D-Process Application  
D-Process is a highly parallelized data storage and analysis 
engine similar to Dryad [18]. It is representative of large-scale 
data analysis applications including MapReduce [19] and 
Hadoop, parallel databases [20] and other distributed and 
streaming programming paradigms used to process massive 
amounts of data. D-Process essentially implements a distributed 
data storage and computation platform on a single tier of servers. 
The D-Process cluster used in production consists of several tens 
of thousands of servers and is under relatively high load, serving a 
job stream that almost never runs dry. Typical servers are dual 
CPU socket machines with 16 to 24 Gbytes of memory and up to 
four SATA disks. D-Process benchmark performance is measured 
by the number of standardized jobs that can be completed in an 
hour. 

2.4 Related Work 
 

2.4.1 Power Provisioning 
CPU utilization was correlated to system power by Fan et al. [2], 
and it was highlighted that power provisioning in datacenters 
should not be designed for nameplate power ratings, which is 
almost always higher than peak power consumed under load.  
However the authors exclude Web search from power capping 
and do not provide a method for selecting an optimal operating 
point lower than observed peak levels. Govindan et al. [13] 
present a statistical model to predict the peak usage of workloads 
for improved power provisioning, but don’t provide optimal 
methodology for non-peak usage.  Server storage was considered 
to consume a significant portion of power in datacenters and 
workload characterization was used to estimate storage power in 
datacenters by Sankar et al. [3].  In contrast, our paper is the first 
to propose the use of energy-delay characterization to determine 
optimal operating points as effective power provisioning points in 
a real datacenter scenario for internet driven workloads.  
Ensemble-level power budgeting policies [14] allow the 
management layer to optimize for greater power-efficiencies than 
server level policies.  Our methodology can be extended to 
compute optimal operating points for ensembles of heterogeneous 
servers and is an interesting area of future exploration.  Different 
workloads have their corresponding optimal operating points.  
The datacenter operator can plan for each according to the priority 
of the workload and set an optimal operating point accordingly.  

 

Figure 1: Search Engine Architecture 
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Therefore we believe that our methodology is also orthogonal to 
peak power balancing techniques like oversubscribing [2], safe 
overprovisioning [16] and power shifting [15]. 

2.4.2 Power Capping 
Server vendors and datacenter solutions providers have started to 
offer power capping solutions.  Intel’s Power Node Manager and 
Data Center Manager [10] were used by Baidu for a proof of 
concept study for optimizing leased datacenter capacity.  
However, the power cap value was fixed at performance 
saturation point based on heuristics.  HP’s Dynamic Power 
Capping [11] features dynamically adjustable cap levels, and has 
provisions for static power cap at different power values.  Server 
power capping control can also be implemented through different 
approaches including Online self-tuning methodology [7] and a 
feedback control algorithm that deals with nonlinearity of servers 
under different performance and power knobs [8].  Power capping 
can also be used as a technique for a coordinated approach to 
datacenter power management [9].  In our paper, we use Power 
Capping as a tool for provisioning in datacenters to prevent 
service unavailability due to overloading. 

2.4.3 Energy Delay Optimization 
The concept of energy-delay optimization was first used in circuit 
design [21, 22].  Zhang et al. [23] demonstrated the applicability 
of sensitivity-based optimization for determining the optimal 
settings of the design-time parameters of disk drives. A dynamic 
energy-delay optimization technique was developed for energy 
reduction in disk drives [24]. Smartphone design [25] also uses 
energy-delay optimization to extend battery life. In comparison to 
such previous work, our paper is the first to use energy-delay 
optimization for server capacity and power provisioning in 
datacenters. 

 

3. EXPERIMENT INFRASTRUCTURE 
3.1 System Setup 
The test infrastructure used for the evaluation in this paper was a 
dual-socket Intel Xeon® L5520 server platform with power 
capping features, 16GB memory and 4 disk drives.  Power 
measurements were done using a Yokogawa power meter [12].  
The operating system used was Windows Server 2008.  While the 
server used here for testing is not the same as what is deployed in 
production environments, we believe that the methodology and 
conclusions obtained with this test infrastructure are applicable to 
actual production scenarios. 

3.2 Workload Setup 
Internet Search: We use an internally developed Internet search 
engine benchmark with a mix of input queries traced from 
production runs.  Of the search engine components in Figure 1, 
we consider a single ISN computing dynamic page ranks.  The 
ISN takes queries arriving from the aggregator and returns sorted 
page ranks.   

The ISN computes page ranks for several thousands of queries of 
varying complexity after an initial warm-up phase that brings the 
ISN to a steady state.  We sweep the query arrival rate to identify 
the maximum query service rate that can be sustained by the 
system.  For each query, the ISN computes overall ranks for pages 
that match the query for a roughly 10 GB index, a subset of the 

global index that is distributed across several thousands of nodes.  
The index size is chosen so that it is memory resident to eliminate 
page faults and minimize disk activity. 

D-Process: The D-Process benchmark consists of multiple 
processes each of which load data from the disk into the memory 
initially and then run a wide range of processing jobs on the 
dataset. D-Process stresses the server CPU completely and the 
total time taken to complete the jobs is taken as a measure of 
delay metric for the benchmark. 

3.3 Metrics 
Power (measured in Watts) – In our experiments for Search, we 
normalize energy consumed to per second interval and hence we 
use Power reduction as a metric that determines energy 
efficiency. 

QPS (Queries per second) – The performance metric for Search 
is the number of queries executed by the server in a second. This 
metric determines the success rates and the SLA of the service. 

Service Capacity/TCO – Service capacity of the deployment 
denotes the measure of document index capacity for a given QPS 
requirement, represented as a product of the two 
(capacity*performance). Since large capacity or high performance 
can be obtained with a larger infrastructure, we normalize the 
Service Capacity of a deployment by the corresponding TCO. 
This metric provides a method to distinguish deployments; for 
instance, a deployment that can serve twice the number of 
documents against one that can serve only half that number with 
similar performance (QPS) values. TCO is calculated based on 
several parameters, including capital expenditure, power, 
amortization costs etc. The TCO model is derived from the 
calculations presented by James Hamilton [1]. 

 

4. METHODOLOGY AND RESULTS 
4.1 Energy-Delay Characterization 
Methodology 
Our methodology for provisioning servers in a datacenter is based 
on characterizing the energy-delay characteristics of the 
application running on the server. Multiple references in circuit 
design [21, 22], disk drive design [23, 24] and smartphone design 
[25] use energy-delay optimization techniques to establish 
optimal performance-per-watt.  For a given energy constraint and 
SLA, we optimize ‘energy*delay’ to find an optimal operating 
point. We fix server power and measure sustained queries 
delivered (performance), satisfying the SLA. We calculate the 
best performance per watt (closest point to the origin minimizing 
ED), thus providing an optimal methodology for servers that are 
not energy-proportional. 

Selecting a power provisioning value below a server’s maximum 
power consumption has the undesirable side effect of impacting 
application performance at heavy loads, while selecting a 
provisioning value equal to the maximum power results in 
excessive power stranding at non-peak operations. Hence we need 
to find a point on the energy-delay spectrum at which we get 
maximum performance-per-watt without impacting performance 
SLAs. We also require this operating point to be lower than 
maximum power so we can optimize for non-peak operation as 
well. From energy-delay optimization theory, we represent the 
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‘opportunity for energy reduction’ as “Φ”. Φ can be represented 
as the ratio of the percentage change in energy to a percentage 
change in delay at any particular instant. For example, Φ = 2 
means that a 2% change in energy consumption will produce a 
1% change in performance at the given instant. This value varies 
depending on where we are on the energy-delay curve. Φ can be 
mathematically represented as  

Φ = - (ΔE/E) / (ΔD/D) 

In order to minimize Φ, we need to minimize the numerator 
energy term, which is the desired result, or increase the 
denominator. Due to the inverse nature of relationship, higher 
energy results in shorter delays and vice versa. However the rate 
at which the relationship changes is not linear. There is a point on 
the curve at which the proportion of one dimension that is 
required to contribute to a unit change in the other changes 

disproportionately. In Figure 2 for instance, we want the delay to 
be as close to the origin as possible, but we do not want to spend 
disproportionate amount of energy to achieve this result (on the 
top left of the curve). Since we have discrete points in our 
measurements, we approximate the discrete point on the curve 
that is closest to the origin as the point at which this change 
occurs. For a curve where an equation can be fitted and a more 
continuous operation is possible, we have to minimize Φ for the 
curve equation to determine the optimal operating point. We term 
this point as optimal since for every point to the left we expend 
more delta energy for every delta decrease in delay.  For every 
point to the right, there is a higher increase in delay for delta 
decrease in energy. 

We use power and performance metrics mentioned in Section 3.3 
to represent energy and delay respectively. In the context of the 
Energy Delay curve for Internet Search, we relate the delay 
metric to search throughput.  We use sustained query service rate 
(QSR) as the measure of performance throughput (this is the 
query service rate that is observed for a considerable percentile of 

the requests at the system).  The inverse of the sustained query 
service rate, denotes the time taken to service a query and is used 
as a proxy for delay.  In the case for D-Process, the time taken to 
complete the D-Process jobs at sustained utilization is taken to be 
the measure for delay metric.    

4.2 Datacenter Utilization Characterization 
In this section we provide data from actual measurements of 
systems in live datacenters. We show that both these benchmarks 
are CPU intensive. Hence a control algorithm that modulates CPU 
utilization would essentially throttle the entire application. This is 
an important result that enables us to use power capping as 
discussed later in the paper to obtain performance-power 
characteristics for these applications. 

We obtained performance data from multiple production servers 
actively hosting Search and D-Process services subject to real 
user-driven loads. We collected performance counters for a period 
of seven days to account for any weekly patterns in usage. We 
observed that for both Search and D-Process, the CPU was the 
primary resource for different type of queries and loads. We 
present the summary results of this analysis in Table 1. 

From Table 1, we observe that both Search and D-Process 
workloads are really CPU intensive at peak loads. However for 
many online services, since processor utilization above 80 percent 
is often undesirable because it impacts quality of service (request 
latency), the overall service deployment is often provisioned to 
keep average CPU utilization at moderate levels, typically in the 
40 to 60 percent range. Both Search and D-Process applications 
load their dataset into memory and work off the pre-loaded set 
and hence they have high memory capacity utilization and 
corresponding CPU utilization. However as the table clearly 
shows, none of the two large scale workloads considered here are 
either disk or network intensive. By controlling processor 
utilization through processor frequency and voltage scaling, we 
scale the workload across multiple loads to obtain an energy-
delay curve for that specific application.  

Observation 1: Both Search and D-Process are CPU-intensive 
and hence CPU power control policies would throttle the entire 
application. 

4.3 Applicability at Scale 
We sample the CPU utilization for a rack of servers hosting the 
Search application for a period of 24 hours (one sample every 2 
minutes) to capture any daily patterns of usage. We present one 
such chart in Figure 3. As can be observed from Figure 3, the 
maximum CPU utilization for any given server in the rack and the 
average CPU utilization of all the servers in the rack follow each 
other very closely. This essentially signifies that the load 
balancing for an application like Search would lead to 
homogeneous spikes in the workload. Hence, a methodology that 
can be applied at the single server level would scale to entire 

 

Figure 2: Energy-Delay Optimization Curve 

Table  1: Workload Utilization Measurements from datacenter servers (Processor Avg Utilization is in 40%-60% bucket) 

Applications
Processor 
(Max)

Avg. Memory 
Capacity

Avg. Memory 
Bandwidth

Avg. Disk 
Capacity

Avg. Disk 
Bandwidth

Avg. Network 
Bandwidth

Search 97% 88% 1.8% 30% 1.1% 10%
D-Process 88% 39% 1.1% 52% 0.7% 9%
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deployment. However, there are significant opportunities like 
workload sharing for datacenter level power amortization that is 
beyond the scope of this analysis. 

Since the applications considered here are large scale workloads 
optimized for specific functionality they have approximately 
similar usage behavior differentiated only by the user load (Figure 
3). In addition, they also take up significant space in the 
datacenter and hence contribute to a major portion of datacenter 
capacity and planning. A rack level test or a cluster level test of 
this methodology would yield similar results because we measure 
sustained performance and also maintain the same system and 
workload configuration. All servers of this particular 
configuration running the Search workload would have the same 
optimal operating point. Hence, for the energy-delay 
methodology in this paper, we run the benchmarks at a single 
server level.  Note that cluster level tests become interesting in the 
presence of heterogeneous systems since each system might have 
a different behavior, and that is part of our ongoing research 

effort. 

Observation 2: In a load balanced homogeneous online service, 
Energy-Delay characterization measured at single server level 
can be applied to the entire workload.  

Given Observations 1 and 2, we use the following methodology to 
measure the energy-delay characteristics and the optimal 
operating point of the application: 

We power cap the server at a set power level through the 
appropriate CPU throttling functionality for a single server. We 
then run both the Search and D-Process workloads at their 
sustained maximum performance levels such that we obtain the 
performance expended at that amount of power. We plot the 
energy-delay curves from the above experiment after normalizing 
the axis for different scales in delay and energy. We calculate the 
closest point to the origin by using Normalized Euclidean 
Distance between the origin and the points on the curve [26]. This 
point corresponds to the optimal operating point of the server 
under test, for each application. We then use this optimal 
operating point as a reference for datacenter capacity and power 
provisioning. 

4.4 Characterization Results 
In this section, we provide the performance-power 
characterization that we conducted for both Search and D-
Process. 

4.4.1 Internet Search 
For the Search benchmark, we increase the input number of 
queries at different power caps and measure the queries that are 
serviced by the system. We also measure the power consumed by 
the server under test under the different input loads. 

From Figure 4, we see that as the input load increases we 
eventually saturate the system, and see no further improvement in 
the number of queries successfully processed. We conducted an 
offline analysis to identify the per-component utilization of 
servers in production and observed that the CPU utilization is 
proportional to query service rate. As shown in Table 1, this 
system is not bottlenecked on either memory or disk IO and CPU 
is the primary bottleneck.  

To understand the impact of power on performance, we power 
capped the server under test and ran the same benchmark at 
sustained performance at the different power limits. We choose 
power caps of 60%, 70%, 80%, 90% and 100%, which essentially 
denote the amount of power that is supplied to the server under 
test as a percentage of maximum power. Figure 5 shows the 

 

Figure 3: CPU utilization for rack of Search servers 

 

Figure 4: Sustained QPS with input load increase 

 

Figure 5: QPS for Search under various power caps 
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results of this experiment. From Figure 5, we see multiple 
performance curves as measured by the output Query Service 
Rate on the y-axis. The x-axis contains the input to the server 
under test, denoted by Query Arrival Rate. For each curve in the 
graph, we see a particular saturation point, beyond which the 
system is not able to service additional QPS.  We tag this value as 
the best QPS value that the system can service at the capped 
power level and determine this Query Service Rate to be the 
sustained performance at that power level. Through this method, 
we get (performance, power) datapoints that we use to calculate 
the Normalized Euclidean distance from the origin. The 
calculations are shown in Table 2. 

We plot the Energy-Delay curve from this table in Figure 6. As 
can be seen from Figure 6, we see that the 80% power cap point is 
the optimal Energy-Delay operating point for Search application. 
We use this datapoint for datacenter capacity and energy 
provisioning. 

4.4.2 D-Process 
We conducted a similar experiment for D-Process. We fixed the 
number of D-Process jobs that were scheduled at this server under 
test, and measured the delay for completion at different power 
limits. We then normalized the datapoints according to the 
corresponding scales and obtained the following table. We see 
from Table 3 that D-Process also has an optimal operating point at 
80% of maximum power. The D-Process and Search benchmarks 
are similar because they are strongly tied to the CPU utilization. 
Since both these applications use similar systems; we see almost 
similar energy-delay curves. 

 

One important difference that could be observed between Search 
and D-Process is the Normalized Euclidean distance in Table 2 
and Table 3. Search starts at a higher distance from optimal 
operating point at lower power limits. This follows from the fact 
that Search has lower tolerance on one end of the spectrum since 
it is bound by SLAs for each of its query types. D-Process is 
fairly tolerant and has no specific SLAs. The normalized 
Euclidean distances from the origin for D-Process are hence 
distributed evenly from the origin. 

4.5 Sensitivity Analysis 
We measure sensitivity of our methodology to the observed 
power capping error rates at a) different power capping levels and 
b) different success rate of the queries (SLA) for Search. Note 
that the normalized measured power in Figure 6 is not exactly 
equal to the set capped levels.  In Table 4, we observe that, as the 
power capping level is decreased, the power capping error % 
increases.  This is consistent with power monitoring calibration 
observations made in [5].  For the power capping mechanism that 
was available for this work, we observed that power capping 
control was not able to push power caps down to the fixed levels 

as the cap value was lowered. 

 

We also varied our SLA (θ successful queries for every 100) and 
evaluated the impact on our methodology for three different data 
points of 99.8%, 98% and 90% success rates. We present the 
analysis in Figure 7. The delay decreases (as seen from the tail of 
the curve) with increase in tolerance to query success rate. We 
also see that since more queries are able to be serviced at reduced 
SLA, the energy required to complete the same amount of work at 
higher SLA is not required. However, the shift in this trend is not 
significant to warrant a change in the static provisioning since all 
the optimal points are clustered close together as seen in Figure 7 
except for the tail of the curve (which is not optimal and hence 
does not affect the methodology). Hence the optimal operating 
point methodology is fairly robust for Search. Even with an 

Table 2: Determining Optimal Operating Point for Search 
(Normalized Euclidean Distance closest to the origin 

determines the optimal operating point) 

 

 

Figure 6: Energy-Delay curve for Search 

Table 3: Determining Optimal Operating Point for D-Process 
(Normalized Euclidean Distance closest to the origin 

determines the optimal operating point) 

Table 4: Power Capping Error Measurements 
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energy-proportional system [17], in Figure 8, we see that the 80% 
power cap point is the point of optimal performance per energy 
use, thus confirming our hypothesis that optimal operating point 
is indeed energy-efficient. 

 
5. ENERGY EFFICIENCY AND COST 
ANALYSIS 
We use a publicly available cost model [1] to estimate datacenter 
operational costs and illustrate the advantages of power capping.  
We quantify TCO benefit in terms of aggregate service capacity-
per-TCO dollar.  The model assumes $200M facility costs for 
15MW of critical power with data center power usage efficiency 
(PUE) of 1.3.  (Note that we show that our proposal is beneficial 
to more efficient datacenters as well).  We amortize power 
distribution and cooling infrastructure costs over fifteen years and 
the purchase cost of servers over three years.  The total cost of 
operating and managing the datacenter is presented on a monthly 
basis.  The model categorizes the TCO into the following: power 
(electricity bill for running all servers), servers (purchase cost), 
cooling and power distribution (data center infrastructure power 
cost) and others (miscellaneous costs). 

Power capping the server at the 80% gives us back 49W per 
server (max server power of 265W). For a 15MW datacenter, this 
allows for hosting 11,594 additional servers.  For sustained peak 
input query loads at the data center level, the 80% power cap 
restricts server performance to 83% of an uncapped server. 
However the aggregate performance capacity of the deployment 
is maintained consistently 

5.1 Energy Efficiency Analysis 
In this section we present the peak load power consumption 
between two solutions: Solution A (100% cap) has the 100% 
power budgeted servers operating at maximum performance and 
Solution B (80% cap) has 11,594 more servers but operating at 
80% power cap.  In Table 5, note that the TCO is higher because 
of the number of servers in the datacenter.  The calculations 
assume the maximum power consumed to be 265W at 100% cap 
and 216W at 80% power cap. The table shows that 56.6K servers 
at 100% power at peak load consume 240KW more than 68.2K 
servers at 80% power but both these deployments deliver the 
same QPS performance.  The table shows that Solution-B yields 
better performance per Watt at peak loads.  This is a direct result 
of using Energy-Delay curves for provisioning. 

 

5.2 Cost Optimality 
In order to best utilize the existing infrastructure, we need to 
provision the servers to serve the maximum number of documents 
at the specified performance level.  When we have 11,594 extra 
servers, we can serve ~20% more documents out of the same 
infrastructure when compared with Solution A.  This model 
assumes that there is a continuous growth in number of 
documents to be served, which is typical of Online Search 
application. 

Even though the datacenter TCO is higher for the 80% cap 
solution, the Service Capacity (QPS * Documents Served) is 20% 
more due the 20% increase in servers that could be fit within the 
same power and performance requirements. That leads to 7% 

 

Figure 7: Sensitivity of Energy-Delay curves to Query 
Success Rate for Search benchmark 

 

Figure 8: Comparison of Search Power and 
Performance with an Energy Proportional System 

Table 5: Provisioning for Energy-Efficiency (80% cap is 
energy efficient) 

 

Table 6:  Provisioning for Optimal Cost 
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increase in Service Capacity/TCO as seen in Table 6.  This 
solution is an important result from the perspective of datacenter 
provisioning, since we show that a larger number of servers and 
higher datacenter TCO does not necessarily mean that an online 
service is less optimal.  Indeed among the two solutions, we show 
that the 80% cap is both energy and cost optimal in this case. 

 

6. FUTURE WORK 
In this paper we discussed the provisioning challenge for a large 
scale application hosted on physical servers.  Future work is being 
done to understand provisioning implications for virtualization 
and heterogeneous application environments, where multiple 
applications may be hosted on the same server.  In addition, for 
this paper we assumed a single homogenous server deployment at 
datacenter scale, which simplified analysis of the effects of power 
provisioning.  When we consider multiple server types that are 
present for hosting a variety of applications, we need to 
incorporate those server characteristics to our methodology. 

 

7. CONCLUSION 
In this paper, we introduce the Service Capacity-per-TCO-dollar 
metric and show how we can achieve a 7% benefit for a 
datacenter deployment by selecting an optimal operating point for 
a server. This methodology allows additional servers to be 
deployed within the same datacenter power and performance 
envelope, thus increasing the overall service capacity.  This is a 
departure from previous approaches where TCO cost and peak 
performance capacities were the primary determinants for 
datacenter provisioning.  We believe that there is wide topology 
of design possibilities for provisioning large datacenters and this 
is one of the first data-driven alternate designs.  With enterprises 
trending toward use of cloud infrastructures, we believe that this 
method can significantly improve performance, power and cost 
standpoints for large datacenters. 
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