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ABSTRACT
The electricity network is undergoing a significant change
towards a more adaptive, intelligent, self-managing, collab-
orative and information-driven grid. According to the smart
grid vision, any electronic device connected to it will be able
to communicate its consumed or produced energy almost in
real time. Based on the analysis of this newly acquired in-
formation, a new generation of services and decision support
systems can be realized, enabling more intelligent decisions,
and ultimately a more efficient energy system. Therefore,
high-performance acquisition of smart metering information
from large scale distributed infrastructures is of key impor-
tance for the upcoming Internet-based enterprise services
and mash-up applications. We have used open source soft-
ware to build a web service-based advanced metering infras-
tructure of simulated smart meters, concentrators, and a
smart metering platform, all interconnected via web services.
We measure in a methodological fashion the performance
of the various components of the architecture and evaluate
their limitations. Finally we identify key performance indi-
cators that need to be considered when deploying large-scale
smart metering systems, and discuss on challenges and di-
rections that arise.
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1. MOTIVATION
The smart grid [3, 10] is an emerging concept targeting to

provide the next-generation electricity network which will
boast capabilities such as self management, resilience, so-
phisticated services, and almost real-time monitoring and
control. It is expected to be the key part in a global ecosys-
tem of interacting entities, whose cooperation will give birth
to innovative cross-domain services [7]. Key driving forces
behind these efforts are the need for higher energy efficiency
and better management of available resources in the elec-
tricity grid. To achieve these objectives, fine-grained mon-
itoring of energy inside the grid (such as consumption and
production) is essential.

Recent market statements for the smart-grid era, even
considered with a grain of salt, provide some hints on ex-
pected growths and business significance: Marie Hattar, vice
president of marketing in Cisco’s network systems solutions
group, estimated in 2009 that the smart-grid network will
be “100 or 1000 times larger than the Internet”. Similarly
Vishal Sikka, CTO of SAP, stated in 2009 that “The next
billion SAP users will be smart meters”.
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Figure 1: AMI overview in the smart grid era.

An Advanced Metering Infrastructure (AMI) needs to be
in place in order to measure, collect, and analyse energy via
the usage of meters for electricity, gas, heat, water, etc. As
depicted in 1, metering data collected from various sources
is gathered at strategically positioned concentrators. The
concentrator is the interface between many low-speed, het-
erogeneous, usually asynchronous, channels and one or more
high-speed, usually synchronous, channels. It acts as an in-
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terface between the smart meters and the enterprise. It is
also responsible for aggregating the meter reading data and
submitting it to the metering server.

As AMI is expected to be highly heterogeneous and widely
distributed. Various communication technologies will be
used in order to acquire the metered data, either on-demand
or on predefined schedules. Today’s metering resolution,
in world-wide smart-grid efforts, is in a time interval of 15
minutes. However, it is expected that it will move towards
near-real-time metering, or in other words ”high-resolution
metering”. The last will push further the requirements to-
wards high-performance distributed platforms tailored to
the specifics of smart-grids e.g. metering.

The Internet of Things envisions billions of connected de-
vices sensing, possibly collaborating and providing the real
world information to the enterprise systems. A common
functionality expected, by this vast number of devices, is
the capability of any device to provide (in a standardized
[2] way) its energy production and consumption e.g. via
web services over Internet. This will result in an exponen-
tial growth of the number of metered points, leading to an
exponential growth in the stress on the respective layer in
AMI.

Although today, the killer application for smart metering
is billing, this is expected to change. Options for innova-
tive applications and advanced enterprise services will arise
together with the ”high-resolution metering”. Cooperation
[6] among the devices, in-network services, and enterprise
applications (based on timely assessed real-world data) may
have a positive impact to energy efficiency, better resource
management, etc. If so, this result might take us one step
closer to the smart-grid vision.

1.1 Context of investigation
Although smart metering is a key milestone towards real-

izing the smart-grid vision, not much evaluation of it is done
at a detailed level. This is especially true when referring to a
large number of metering points submitting data upstream.
Typical evaluations refer to the number of measurements
that can be achieved in 15-minute intervals. However, most
real-world trials focus only on a few hundred meters.

Our goal is to investigate a use case where high-resolution
metering is done over the Internet enabled smart grid [8]. To
achieve this, open source software is used for development
and investigating metering limitations. As such, our goals
and restrictions are:

• to design a simple and scalable approach for large-scale
and low-cost smart metering

• to use standardized Internet-based technologies i.e. web
services between the AMI layers

• to use existing (off-the-shelf) open source software, and
commonly available PCs as the hardware platform

• to simulate large number of metering points (smart
meters)

• to evaluate the performance limits of the key AMI com-
ponents, i.e. at concentrator and metering-server level

• to acquire hands-on experience and insight into large-
scale smart metering performance

2. ARCHITECTURE

2.1 Components
A typical set-up in AMI is a three-layered hierarchical

architecture, similar to what is depicted in figure 1. Bottom-
up we can clearly distinguish:

• Meter Layer: the last mile, where the (residential) me-
ters are passively tapping in and measuring the energy
consumption or production of the attached devices.

• Concentrator Layer: the meters connect to this layer
via various (often proprietary) protocols to report their
measurements. The reported data is aggregated and
submitted to the metering data system (MDS).

• Metering Data Management Layer: here usage data
and events with respect to the infrastructure are col-
lected for long-term data storage, analysis and man-
agement. This is typically used by enterprise services
in order to empower applications such as billing, fore-
casting, etc.

For our approach we adopted the same model, albeit some
technological and context constraints were considered. In
the context of this work, we assume a fully IP-based three-
layered service-oriented infrastructure. This implies that all
messaging among the layers is done over web services. Also,
in the smart grid context, the components depicted in the
layers (such as meters, concentrators, and MDS) are de-
signed to handle high volumes of data at high rates, hence,
we expect permanent connections with possibly high band-
width among them. As one may notice, there is a clear
analogy to the Internet which is composed of end-devices,
routers, and servers. Similar motivation such as heterogene-
ity management, scalability, and performance exists in the
smart-grid.

According to the Internet of Things vision [4], billions of
connected devices will exchange information which will to a
drastic increase of metering points as these devices will be
able to measure and report their current energy consump-
tion or production. As more real-world enterprise services
will depend on them, it is crucial to investigate important
performance indicators under the context depicted in the
section 1.1.

2.2 Implementation
The implementation of the architectural components at-

tempts to adhere to current industrial trend for interconnec-
tion of heterogeneous components, namely service-oriented
architecture (SOA) and more specifically the use of web
services. In this specific implementation, we have exper-
imented with (widely used) web services that rely on the
Simple Object Access Protocol (SOAP). Thus, all compo-
nents and their functionality were implemented in Java as
web services, enabling them to be remotely accessed by any
device capable to exchange a SOAP message.

The architecture realization is shown in figure 2. Two
web services were implemented: one for the MDS and one
for the concentrator, i.e. MeterReadingService and Con-

centratorService respectively. Both services were realized
using the Enterprise Java Bean (EJB) 3.0 technology. Con-
sequently, all necessary business logic is encapsulated and
executed by the application server (AS). Multiple requests
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can be processed in parallel, since many EJBs instances can
coexist in the AS.
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Figure 2: Topology and implementation of the ar-
chitecture.

By using EJB web service annotations, the beans can ac-
cessed remotely using standard HTTP requests. Thus, the
meters submit their readings to the EJB bean that repre-
sents the ConcentratorService web service running on a
concentrator device. These ConcentratorService EJBs are
designed to share a memory buffer of configurable size. Once
a reading is received, each bean will store received values in-
side this buffer. This service is designed to entirely fill in the
buffer before triggering the event for upstream transmission
of aggregated meter readings i.e. to the MDS. Once the
MeterReadingService receives a list of readings, it iterates
through it, and stores the readings to a local MDS database.

All database tasks are implemented using the Java Per-
sistence API (JPA). The JPA automates table creation and
data insertion processes, such as transferring the data be-
tween a database and an object (and vice-versa). This im-
plies usage of the Object-Relation Mapping and it is done
via EJB class called Entity Beans.

As previously mentioned, our aim was to acquire experi-
ences for the large-scale deployment of the proposed smart
metering architecture. However, due to lack of means for
real-world deployment at such a large scale, we have created
a mixture of real and simulated devices (as depicted in figure
2). Experiments are conducted by deploying the MDS and
one concentrator on separate physical machines, while scal-
ing up required simulated meters and multiple concentrators
from separated physical machines.

These simulated entities mimic the functionality of the
real architectural component by exchanging appropriately
formatted messages over the web services. Each simulated
entity is designed for high performance, thus it deals with
low level programming i.e. Socket class from the java.net

package. Each simulator creates a pool of parallel threads
designed to open the TCP connection, transmit appropri-
ately formatted SOAP message and to close the TCP con-
nection. In the case of the meter simulator, each meter
reading request is created and sent to the ConcentratorSer-
vice service. Conversely, in the concentrator simulator, bulk
reading requests are created and sent to the MeterRead-

ingService web service.
The simulators are designed and implemented to accu-

rately simulate a considerable number of nodes from one

workstation. This, in turn, enables adequate stressing of
the servers in order to determine their individual limits. In
other words, the developed application is able to perform
more parallel requests than a concentrator or MDS compo-
nent (running on a physical machine) can process.

As indicated, we have used commonly available hardware
and open source software. The configuration of the physi-
cal machines is depicted in figure 2 and consists mainly of
three workstations running Sun JDK 1.6 64bit, 64-bit Linux
Ubuntu 10.04 (with its out-of-the-box configuration). They
are equipped with Intel Core2Duo processors and 4-8 GB of
RAM each, while interconnected with a gigabit LAN. Pre-
sented web services are deployed on the JBoss Application
Server (version 5.1.0.GA) where the standard JPA imple-
mentation for this AS is called Hibernate. For data storage,
the MySQL Server (version 5.1.41) DBMS is used.

3. PERFORMANCE EXPERIMENTS
The performance experiments conducted were aimed at

high volumes of metered data from the meters up to the
MDS, so that enterprise applications can take advantage of
almost-real-time data. In order to achieve our goals, we need
detailed measurements of data exchanged between the archi-
tectural components as well as in their interworking. The
overall performance of the architecture is measured in terms
of its capacity to handle certain number of requests per
second at different layers. These measurements are taken
against the MDS and concentrator components in order to
determine their limits, and also their reliability under heavy
load.

In total four experiments have been conducted:

I. Assumption Validation

II. Concentrator Performance (multiple meters)

III. Multi-concentrator MDS Performance

IV. System-performance validation

Our methodology is to evaluate each component for its
performance and then be able to make an assessment for the
whole system. In the first experiment, major assumptions
are quantified and validated. In the second experiment, the
performance of a single concentrator handling a large vari-
able number of incoming meter readings is measured. In
the third experiment, the performance of the MDS is mea-
sured against multiple concentrators. Finally, in the fourth
experiment, the results and acquired experience of the pre-
vious three experiments are gathered, and used to derive
a theoretical high-throughput configuration, which is then
assessed.

3.1 Metrics, tools and data collection
In order to provide an insight to the context in which the

experiments were conducted, we discuss the metrics that
were considered, the simulator we developed, and the data-
collection approach that was followed.

3.1.1 Metric definition
In the hierarchical structure from figure 2, one can see

that concentrators and MDS depend on number of sub-
components (i.e. i meters or j concentrators). The key per-
formance indicator common to all components is the meter
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reading rate r of received meter readings from meters. How-
ever, due to the nature of the aggregation of meter readings
by the concentrator, the request rate q variable is introduced,
that depends on the aggregation of messages in bulks of size
b done at each sub-component j. Therefore, for each con-
centrator or MDS, the request rate q is defined as:

q =
∑ r

b
(1)

There are n single meter readings being submitted within
a time interval t, or request of bulk size b coming from a con-
centrator. Thus, the rate of meter readings can be defined
as:

r =
nb

t
(2)

Throughout this work we assume that each meter mi is
submitting one measurement at a time (and not aggregated
meter readings), thus bi = 1. This is what we expect in
real world applications, at least from the always-connected
meters. As a result, the request rate r for a concentrator
c is qc = rc. Similarly, if a single meter reading is also
propagated further not as part of a bulk (thus b = 1) from
the concentrator c to the MDS s, then qs = rs. Furthermore,
assuming minimal impact on the rates (e.g. no losses, no
significant processing overhead, etc.), it could be argued that
qs ≈ qc.

3.1.2 Meter simulation
As can be seen, in equations 1 and 2, there is a direct

relationship between the request rates at each of the com-
ponents and the number of meters, and, their submission
interval and the bulk size b configured at the concentrators
level. This leads to the first constraints to be considered,
that is, if the processing limit of a component is reached,
the system can be configured to respect that limit.

The developed simulator can simulate components (me-
ters or concentrators) that continuously submit meter read-
ings at configurable rates. figure 3 shows the period p and
number of i simulated meters. Each thread represents a me-
ter executing one fixed process, that is, open a connection,
submit the message and close the connection. Subsequently,
it sleeps for an interval p and then repeats its execution pro-
cess. In total, there are i number of threads equalling the
population of meters.

p

tm0+p ttmi

p/i

Connection 
closing

Measurement 
transmission

Connection 
Opening

tm0 tm1

Figure 3: Tuning the request rate with the use of
the simulator.

In order to avoid bursts, and have a more uniform dis-
tribution of the i meter readings per interval, we initiate
each thread in a semi-sequential manner, i.e. every p/i in-
terval. Once the thread is started, it follows its own life
cycle. The life cycle ensures that the following loop is ex-
ecuted: (i) a connection is opened, (ii) the data is submit-
ted, (iii) the connection is closed, and (iv) the thread sleeps

for a period p. As such, the total time t of execution is
t = tthread execution + p. We expect, however, that for the
real world tthread execution � p. Typically p in smart grid
trials today is 15min while at very fine grained cases, exper-
iments are run for slightly lower periods (in minutes); how-
ever this usually does not include transmission of data, but
only its aggregation and transmission every hour or maxi-
mum 15min. With our simulator, we are capable of adjust-
ing the rate to very high values, effectively flooding the sys-
tem with requests. Since the behaviour is common to both
meters and concentrators, and the payload is adjustable, we
can simulate both meter as well as concentrator upstreams
of variable bulk size. As such, the reflection of the real world
could be well represented.

As a practical example, if it is known that a concentra-
tor cannot cope effectively with r above its threshold, e.g.
qc = rc = 500 requests/second, this implies that i = 500
meters can be installed per concentrator for interval p > 1
second. Similarly, if each meter submits the reading once ev-
ery minute, the number of meters i cannot exceed 30000. As
expected, the number of concentrators j and their bulk sizes
bj can be determined from the maximum request rate of the
MDS. This is done by fixing one of two key parameters, the
number of concentrators or the bulk size.

3.1.3 Data collection methodology
In order to achieve the fine-grained measurements, we had

to embed hooks in the architecture externally to the im-
plemented components. The goal is to be able to monitor
the path any meter reading follows through the architecture
components and measure the execution time of each of the
components. As depicted in figure 4, two valves were im-
plemented; one for the MDS and one for the concentrator
layer. A valve is an object placed in the request chain of an
application server. As such, any request coming to the server
can be captured before it is processed, allowing a better un-
derstanding of server’s behaviour. Thus, the time between
the server receiving a request and the request reaching an
EJB can be determined. Valves are a feature of the Tomcat
web server, which is a component of the JBoss AS.

MDS 
EJB

MDS 
Valve

Concentrator 
EJB

Concentrator
Valve

Meter(s)

Request

Response

Figure 4: Server request/response process spawning
the 3 physical machines and 5 components.

The path followed by each meter reading is depicted in
the figure 4. Once submitted by the meter over the web ser-
vice, it is firstly handled by the concentrator’s valve. Subse-
quently it proceeds to the concentrator’s EJB which, along
with the other aggregated readings, is sent on to the MDS

136



as a bulk request. This request is first registered by the
MDS’s valve, and then arrives at the MDS’s EJB for pro-
cessing and storage. The responses of each request are also
recorded. As such, the time for each request enters a compo-
nent (valve or EJB) and the response leaves the component
is collected. This time is measured in milliseconds, since for
the implementation we use Java Threads with the default
level of granularity i.e. milliseconds.

3.2 Assumptions and experimental validation
The experiments we carried out rely on two assumptions,

both of which will be assessed experimentally in order to
verify them:

I. Meter readings can be processed at a higher rate, if
they are processed in bulk, i.e. multiple meter readings
at time;

II. Different combinations of number of concentrators and
periods, will result in the same request rate at the
MDS.

The fist assumption comes from the fact that there is a
time cost associated with the whole process. The cost for
each message is associated to transmission, processing the
XML and extracting the payload, storage etc. Most of these
variables depend on a non-deterministic condition such as
the network available bandwidth, the server load etc. To
make it more concrete, for each measurement, a connection
is established, the data is transmitted, and upon acknowl-
edgement, the connection is closed. The server processes
each request upon reception (by extracting the payload) and
then stores the reading data for further processing. If this is
done for one meter reading at time, cumulatively, the server
will be spending a significant amount of processing time per
request, leaving fewer resources for the payload processing
(that is done by the EJB). If this processing overhead be-
tween receiving the request and sending the data to the EJB
could be minimized, the throughput of the MDS (i.e. meter
readings ratio) would increase. Additionally, more resources
could be dedicated to processing and storing the actual me-
tering data (payload).

We assume that there is a point from which the ∆ between
the cost associated with a single meter reading submission
vs. a bulk of them makes a significant difference on the over-
all performance of the MDS. If this assumption is true, the
proposed approach would outperform any other approach
where the meters communicate directly with the MDS.

The second assumption is derived from the relationship
described in equation 1. The equation defines an upper
bound of theoretical expected performance, while exclud-
ing the influence of external factors. Such factors could be,
quirks of the implementation, performance (e.g. schedul-
ing/load) at operating system level, firewall packet inspec-
tion, application server thread priorities etc.

3.2.1 Experimental validation of bulk size consider-
ations

In order to validate these assumptions, an experiment was
conducted in which several requests were made from a sin-
gle concentrator to the MDS, over a range of bulk sizes. For
each bulk size, the time taken for the MDS to process the
request, the server overhead, and the time taken for the EJB
to process the metering data were measured. For the pur-
poses of this experiment, a request rate was chosen so that

the metering server would not be overburdened. As such,
behaviour of the server could be measured under normal
operating conditions.

We have made experiments where the selected range of the
bulk size b parameter is defined as {b | 2 ≤ b ≤ 100, b ∈ N2}.
For each b there are 1000 requests from the concentrator to
the MDS. The average of meter reading rate rs for each b is
then calculated according to equation 2.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
ro

ce
ss

in
g 

Ti
m

e
 (

m
s)

Bulk Size

Total EJB Overhead

Figure 5: Average total processing time, average
EJB processing time, together with the average AS
overhead per meter reading for a range of bulk sizes.

In figure 5, the AS overhead, EJB and total processing
time per meter reading are shown for each tested bulk size.
The total processing time depicts the sum of the the two
other values. As we can see there is a clear correlation be-
tween bulk size and performance. We also note that the
average time to process a single meter reading decreases
as the bulk size increases. Furthermore, the rate of im-
provement decreases as the server converges to its processing
limit. An interesting observation is that the EJB processing
time reaches its limit faster than the overhead. Thus, min-
imizing the AS overhead is a candidate for increasing the
overall performance. This overhead occurs between the re-
quest arrival at the server and the meter reading data arrival
at the EJB.

3.2.2 Experimental validation of request rate con-
siderations

To validate our second assumption, an experiment is con-
ducted where the number of concentrators j increases, but
the interval p is changed in order to keep a constant request
rate qs (in total) at the MDS. The number of concentrators
cj varies as {j | 1 ≤ j ≤ 100, j ∈ N}, the number of requests
per concentrator was set to 50, the bulk size was set to 120
(stability validated in the section 3.2.1). The period p is cal-
culated (in nanoseconds) by the form p = 1000/ 32

j
, where

i is the number of concentrators attached to the MDS in
order to keep the request rate qs constant for the arbitrarily
chosen value of 32 requests/second. With this request rate,
p would vary between roughly between 30 milliseconds and 3
seconds, yielding a wide sampling of periods. The arbitrary
values q and b are derived from the section 3.2.1, as they
result to processing requirement slightly bellow the limit of
our testbed server.

The results depicted in figure 6 show that there is a dif-
ference between the (theoretical) expected request rate and
the actual request rate we measure. This may be attributed
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either to the change in the number of concentrators, or the
change in p. Given that the simulator creates one thread per
(simulated) concentrator, it is unlikely that having a larger
number of threads will detrimentally affect performance, in
this context. However, small values of p could have nega-
tively effect in the request rate generated by a (simulated)
concentrator.

24

25

26

27

28

29

30

31

32

33

0 10 20 30 40 50 60 70 80 90 100

R
e

q
u

e
st

s/
Se

co
n

d

Number of Concentrators

Request Rate Expected Req Rate

Figure 6: Effect of concentrator population to the
requests rate at MDS.

Consequently, we conducted another experiment where
the number of concentrators is fixed, and only p varies. In
this way, the behaviour of a fixed number of concentrators
sending requests at different periods could be isolated. The
values for the number of concentrators and bulk size were
arbitrarily chosen to be j = 7 and b = 120 respectively and
the period was set {p | 50 ≤ p ≤ 2000, p ∈ N50}. Although
value of b is justified before, the value of j is derived from
the practical limit of the c component (described later in the
section 3.3) and requirement of 1 million metering units for
p = 5min. Experiment results are depicted in the Figure 7,
where one can clearly see that the performance impact for
low values of p.
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3.2.3 Summary
To conclude, the results show that the first assumption

was correct. There is a performance benefit for processing
the meter readings in bulk as it has been analysed in section
3.2.1. As for the second assumption, there was some discrep-
ancy between the theoretical rate and the measured rate for
low values of p as analysed in section 3.2.2. This comes from
the lower bound limitations that the communication chan-
nels place on request rate. That is, since each subsequent
request is made only after the previous request has finished,

the request rate is limited by average time taken to service
each request.

3.3 Concentrator performance
A key consideration when designing AMI infrastructure

is the identification of the component performance bottle-
necks. The rate rc of incoming meter readings that a con-
centrator can handle is important since it may provide a
rule of thumb for the number of required concentrators e.g.
per geographical region. Therefore we have conducted an
experiment for a variable reading rate rc = qc where the
range {rc | 454 ≤ rc ≤ 2000, rc ∈ N}. This range of values
is used to find the hard limit at the concentrator compo-
nent i.e. the highest value of rc that the concentrator can
cope with, while still maintaining the operational stability.
Even if rc is set to a rate beyond the concentrator’s capabil-
ities, it is expected that the actual measured rate will still
be constrained by the concentrator’s processing limits.

Another parameter examined in this experiment is the
bulk size of the concentrator, a parameter that regulates
the request rate from the concentrator to the MDS (as de-
picted in equation 1), and as such may have an impact on
the maximum reading rate r handled by the concentrator.
Our goal is to find out how high is the rate of requests a
concentrator can handle. This of course implies (as denoted
in equation 2) a large number of meters sporadically trans-
mitting or a lower population of them but with more often
transmissions. Since for each request we assume one connec-
tion (with its full lifecycle), the problem may arise when the
concentrator is not able to manage them in high rate, and
start rejecting further TCP handshakes. Additionally other
parameters may interfere with network conditions such as
flow control, congestion, window scaling etc. Having said
that, we have tried to experiment with rates that would not
create the aforementioned problems, but nevertheless be in
the high resolution area.

In order to evaluate results from the experiment, we con-
sidered the ratio of the measured difference between actual
ta and expected te (theoretically calculated) run time. Once
this ratio reaches the value of 1, the concentrators is consid-
ered stable, since the measured runtime approximates the
expected runtime.

lim
rc→0

ta/te = 1

This behaviour is presented with the heat-map graph of fig-
ure 8, where the colours vary from white, to green, to red
representing the scale from lowest to highest values of the
ratio. Thus, the white surface indicates the stability area
of the concentrator, while the green and red areas are inter-
preted as unstable. It is observed that for higher rc these
performance decreases for smaller bulk sizes, since the con-
centrator has to generate the SOAP envelope (with XML
data) more frequently. In any case we do not further con-
sider this area as the concentrator is clearly unstable for very
high rates.

Since the stability of the concentrator can be reached only
for lower values of rc (where one clearly sees irrelevance of
the b), the information of figure 8 can be also represented
as function of average ratio of actual vs. expected execution
time 〈ta/te〉 over b dimension as depicted in figure 9. This
clearly shows how the component becomes stable when the
average rate converges to the expected rate. For our exper-
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Figure 8: Indicator for the stability of the concen-
trator based on the ratio of measured vs. expected
execution time for different bulk sizes.

iment we conclude that the concentrator is stable for rates
rc ≤ 550.
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Figure 9: Visualisation of the stability convergence
of the concentrator based on the average ratio of
measured vs. expected execution time.

Another view of the experimental results we obtained, is
through the measurement of r as it is experienced by the
concentrator. In this way, one can clarify how fast the con-
centrator can process requests (with respect to b) for a set
of r values. This observation might be irrelevant for high
values r, as the system is not stable, however it becomes
relevant when the actual rate rca approaches the expected
rate rce. If the stability factor is not respected, the process-
ing time required is greater than the processing capacity of
the concentrator, which will result in the concentrator being
overloaded. As we can see in figure 10 is not quite clear at
which r the stability is achieved, but at least we can identify
the difference between high r and higher values of b. Here
one can see that the measured request rate can be relatively
high, at around rc = 600 meter readings per second, how-
ever this corresponds to a red region in figure 8, i.e. stability
can not reached.
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Figure 10: Measured request rate (meter read-
ings/second) for different bulk sizes.

To reiterate, the bulk size parameter variation becomes
irrelevant for lower values of r. In figure 11 the average of
rates over dimension of b is shown. From this perspective
it can be seen how and where the request rate rca is ap-
proximately equal to the rate rce. What is interesting is to
understand why the approximation is done with such a high
variability, however this is considered future work.
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Figure 11: Average measured rate approximating
the expected rate.

3.4 Mutli-concentrator MDS performance
Having already verified the performance effect of bulk pro-

cessing, our focus goes onto the performance of the MDS un-
der the load of a number of j concentrators. We monitored
the average request response time for a variety of request
rates and bulk sizes. The main objective here is to deter-
mine the best performing bulk sizes for particular request
rates experienced by the MDS. Once the boundary condi-
tions is ascertained, predictions can be made as to how to
best configure the infrastructure in order to handle certain
predetermined rate of incoming meter readings.

As mentioned we have build a simulator and used it to sim-
ulate multiple concentrators by generating the desired load
for the MDS. A fixed number of parallel threads (equal to
the number of concentrators) were making periodic requests
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in this scenario. Consequently, the total request rate expe-
rienced by the MDS depends on the meter reading rate on
each individual concentrator. Therefore, j concentrators can
deliver the same request rate q of j/2 concentrators where
each deliver 2q request rate. Several combinations of these
parameters can lead to the same overall measured request
rate at the MDS layer.

The expected request rate q can be calculated as shown
in equation 2, out of which also the theoretical rate of meter
readings arriving at the MDS can be extracted. By com-
paring the theoretical meter reading rate rse and the actual
(measured) rate rsa, for each parameter setting, the process-
ing limits of the MDS can be determined. The processing
capacity on s has to be tested for certain bulk sizes. As we
can see in figure 12 , the practical capacity on MDS grows
in-line with the parameter b. More specifically it grows fast
for small bulk sizes, and for higher ones (e.g. b = 100) it
starts to converge towards rs ≈ 3900.
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Figure 12: Stable processing capacity of s over the
dimension of b.

Once the impact of b on rs is assessed, we chose a few
scenarios to prove this finding. For this experiment, the
bulk sizes used are {b | 10 ≤ b ≤ 200, b ∈ N10}. Addi-
tionally, five MDS request rates are chosen i.e. {q | q =
100, 50, 33.33, 25, 20}, yielding 100 parameter combinations.
The results are depicted in figure 13.
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Figure 13: Change of MDS processing capacity for
different request rates and bulk sizes. The curves
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In figure 13, a qualitative view of the effects of the re-
quest rate and bulk size on the processing rate can be seen.
The expected request rate performance vs. the actual one
is depicted. We can clearly identify a ”turning point” for
each experiment where the request performance of the MDS
starts to greatly deviate from the theoretical performance
(as calculated in equation 1). All curves are pivoted around
the bulk size where the threshold between normal and devi-
ating server behaviour can be seen.

From the actual threshold bulk size value for each of the
request rates (as seen in figure 13) we identify that the
threshold bulk size increases as the request rate decreases.
This is a consequence of equation 1, as the lower that re-
quest rate is, the bigger the bulk size needs to be in order to
maintain the same total meter reading ratio rs at the MDS.

From figure 13 one can conclude that the ”turning point”
for the qs = 100 requests per second is at rs = 3000 meter
readings per second, which is significantly lower than the
qs = 20 requests per second rate which has a ”turning point”
of approx 4100 meter readings per second. The result of this
experiment is that the lower the request rate qs is, the high-
est the meter reading rate is, where one can verify the effect
of the bulk size parameter b. As such, the ”turning points”
described here are not entirely accurate, because the true
”turning point” will be somewhere in the range [b..b + 10].
However, these results are more than enough to prove the
importance of parameters that may variate in these scenar-
ios.

It should also be noted that the measured values are tied
to the hardware and software configuration used for the ex-
periment. Therefore, different configurations will yield dif-
ferent results. This is also a justification for the rather large
step size used for each of the parameters. For example, b
was increased in steps of 10 and the p in steps of 1000.

3.5 System performance validation
With all assumptions checked and quantified, and the per-

formance of the individual components assessed, we have
gathered the necessary experience to configure and test the
overall architecture performance. As depicted in section 3.3,
in our current testbed the concentrator can process some-
where between 500 ≤ rc < 550 meter readings per second,
and the MDS can process somewhere close to rs ≈ 4000
meter readings per sec. These observations are taken from
figures 11 and 13 respectively.

If we take the lower bound for the concentrator perfor-
mance i.e. 500 meter readings/second, a total of 8 con-
centrators would be needed to fulfil the 4000 meter read-
ings/second at the MDS layer. However, due to the interde-
pendency of period and bulk size, and the constraints found
in sections 3.4 and 3.2, values for these parameters that re-
sult in a reliable system performance cannot be found. If
the transmission period is low, the dynamics of the simula-
tor threads start to impact the performance; conversely if
the bulk size is set too high, the MDS cannot cope with it.

Nevertheless a smaller scale experiment is conducted in
which only the high performance of the MDS is targeted as
overall goal. In this experiment, the period p of all con-
centrators is uniformly set to 2000, a value that we have
witnessed the saturation from previous experiments result-
ing with tthread execution � p. This value produces reliable
predictions for the number of requests/second at the MDS
(figure 7). The bulk size was fixed to 120, a value in range
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of the tests conducted in section 3.4. Finally, the number
of concentrators was varied in the range {c | 20 ≤ c ≤
75, c ∈ N}. The bulk size was fixed to 120 since it was one
of the threshold bulk sizes found in section 3.4. For a rate
of 33.3 request/second, it was found that the MDS perfor-
mance should decline, as can be derived from figure 13.

According to our methodology which we followed so far,
at 20 concentrators and a period of 2000, the MDS should
receive around qs = 10 requests/second, or rs = 1200 meter
readings/second. For each additional concentrator, the re-
quest rate should increase by 0.5, thus the meter rate by 60.
It is expected that the measured meter reading rate should
match the prediction for rates bellow the 4000 maximum
rate of the MDS.
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Figure 14: Measured meter reading rate at MDS in
multi-concentrator testbed.

Running the experiment with the assumptions we men-
tioned, we acquired the results depicted in figure 14. As
it can be seen, the practical results match the expecta-
tion (hence validating the approach). Once the there are
enough concentrators to reach meter reading rates greater
than 4000, a discrepancy between the predicted and mea-
sured rates starts to appear. By comparing these results to
figure 13, we notice that rates close to 4000 were not experi-
enced at a 33.3 request rate. Having said that, it should also
be noted that the step between bulk sizes in that experiment
is 10. As such, it is possible that at, say, bulk size b = 119
the system can still perform reliably at meter reading rates
nearing 4000.

The aim of this experiment was to accumulate the expe-
riences from the previous three in one composite test. We
select the values that gave best system performance (for cur-
rent setting), predict the theoretical limits, and validate in
practice the actual limits. As we have demonstrated these
concur, which is a validation of our methodology. Addition-
ally we have clearly demonstrated the architecture’s ability
to scale and accommodate a higher rate of meter readings
by simply adjusting the number of concentrators and config-
uring them so with the system-wide performance in mind.

4. DISCUSSION
Our goal was to shed more light to the performance con-

siderations that arise when one attempts to realize the AMI
envisioned by the smart grid. Since little quantitative work
is in bibliography, we have investigated how easy it is to im-
plement it with open source tools and made several thoughts
about the possible problems that one has to deal with. The

implemented testbed was used as a proof of concept. Sev-
eral results have been already analysed during the experi-
ment description sections, and it is obvious that trying to
tune the whole system towards high performance (within
the constraints we have listed in section 1.1), more complex
inter-dependencies need to be considered.

4.1 Key findings
We have identified two interrelated key performance in-

dicators that we used to evaluate the performance of the
architecture i.e. request rate q, and meter reading process-
ing rate r. Measuring the capacity of a component to handle
different magnitudes of these rates is the first step in config-
uring the parameters of the architecture for high through-
put. These two rates are of course related by the bulk size b,
which, as we have witnessed (in sections 3.2.1 and 3.4), plays
a pivotal role in the maximum capacity that a component
can reach.

The experiments presented are designed and implemented,
with the objective of probing our considerations in prac-
tice. First we verified two major assumptions adopted in
this work. The first being that the concentrator plays a key
role towards increasing the overall performance of the archi-
tecture, was proven to hold true. The second assumption,
that different configurations of concentrator request rates
and bulk sizes, could yield the same request rate on the
MDS. In this case, the assumption was practically shown to
hold true for large values p. Although the p value in tests was
valid for laboratory environment, this does not necessarily
hold true for more complex network settings e.g. spawning
multiple infrastructures and/or communication channels.

In the experiment of section 3.3, the performance of a
single concentrator was measured. By varying the request
rates (at the concentrator) and the bulk sizes, we were able
to ascertain a region within which the system would behave
as expected. This region in our specific setup was found to
be for request rates of less than roughly 550. The reason for
this limitation can be attributed to the software or hardware
components used.

In the experiment of section 3.4, we measured the per-
formance of the MDS against several concentrators. Here,
we found that the maximum throughput of the MDS var-
ied according to the period. While increasing the bulk size
increased the throughput, this only happened up to a par-
ticular threshold bulk size. This behaviour can be explained
from the results of the first experiment (section 3.2). In-
creasing the bulk size increased the throughput of the server
by lowering the overhead processing on the application server.
However, since more payload (larger number of meter read-
ing due to bulk size) needs to be processed as well, the re-
quest response time also increases. Since the measurements
integrate the time for processing a request, and this time
increases as the bulk size increases, it is clear that the bulk
size cannot grow arbitrarily.

Due to all aforementioned constraints, in the experiment
of section 3.5, we only targeted the full capacity of the MDS.
Based on our findings, using the concentrator at its full ca-
pacity would always result in the bulk size being too large to
be handled within the specified period. As such we resulted
to demonstrate the scalability of the system, as more and
more concentrators were added to no detriment of perfor-
mance (until the MDS’s capacity was reached).

One key result that struck us was the amount of band-
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width waste. We already knew that a big percentage of the
message transmitted would be devoted to the actual wrap-
ping and envelope of the data in XML. As you can see in
figure 15 for a single HTTP request 60% of the message is
occupied by the SOAP envelope while only 9% is devoted
to the actual meter reading data. In case of bulks where we
have aggregated meter readings the percentage of informa-
tion increases but still e.g. for b = 100 approximately 68% is
occupied by SOAP while 30% of it is devoted to the actual
meter reading data.
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Figure 15: Message payload efficiency.

The experiments have demonstrated the importance of the
concentrator component. While the MDS and the concen-
trator cannot be compared exactly one to one, the MDS can
cope with nearly 8 times the number of meter readings. This
would suggest that another avenue for exploration would be
bulk metering data being sent from the meters to the con-
centrators. This could further improve the capacity of the
concentrator and therefore reduce the required number con-
centrators needed in a deployment. The only down side is
that, while one could attain a higher level of granularity
in the readings, the time taken for the user to access them
through any enterprise system would still be limited by the
period. For instance, if a meter submits a meter reading ev-
ery 5 minutes, a bulk message with 5 meter readings could
be sent at the same rate, thus attaining one minute granu-
larity in the readings.This could be a cost effective strategy
for increasing the reading granularity with little changes to
the system.

4.2 Limitations
An unexpected result of our test also demonstrated that

there is a minimum period, p, that can be set at a compo-
nent. This is a result of the fact that the requests are made
serially, resulting in a detrimental impact on the request rate
of a component, when the period is smaller than the time
required for a request to be made. Unsurprisingly, further
evidence of this effect can be seen in figure 13, where the
threshold bulk size increases as the request rate drops (i.e.
the period increases). A higher period will give the thread
more time to do its work; at the same time, the higher the
bulk size, the longer a request will take. Thus, it is clear
that the bulk size and the period are more correlated than
initially thought, and as such, great care needs to be taken
when configuring (or choosing) the system components. Al-
ternatively, however, if the requests for each component are
done in parallel, perhaps this effect can be minimized.

For low values of p we have run into simulator implemen-
tation drawbacks. First of all, the thread that simulates
the concentrator may not have enough time to do complete
its work. As clarified in 3.1.2 the total time t of execution
is t = tthread execution + p, where the expectation was that
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Figure 16: For very low values of p, thread runtime
is comparable or even exceeds the p.

tthread execution � p. However since the simulator creates
multiple threads, when p has very low values (in millisec-
ond domain), it might be that tthread execution and p are in
the same magnitude of values or even tthread execution > p
(as depicted in 16). We have to consider though that the
operations of the thread, that is, opening of the connec-
tion, submitting the data, and closing the connection, have
almost fixed limits (due to the physical communication in-
volved). In the millisecond domain this may lead to the fact
that the assumption of a uniformly fixed number of threads
operating within a fixed time frame may not hold true. Up
to now it was assumed that this interval was approximately
p, however for very low values of p it may be a multiple of
p. This creates a variable delay for each execution of the re-
spective thread which is propagated additively to its overall
lifetime. Additionally, since the meter simulator shares the
same code base and conceptual model, the extended lifetime
effect holds true for both simulators.

4.3 Market relevance
There is not much info available towards high-performance

or large scale high resolution smart metering. Itron Inc. [1]
for instance indicates the import, validation and storage of
26389 measurements per second (190 million reads in a two-
hour processing window) in its enterprise product. However,
this metric is only partially comparable to our results as it
seems that this was not live data, but a database import
in the specific product. The most competitive high per-
formance reading to our knowledge is the research result
achieved within the DEHEMS project [11] where three mil-
lion meters were simulated and rates of 40k meter readings
per second have been achieved by focusing on a high per-
formance DB. As you will see later in Table 4.3 we achieved
results that can scale up to these values.

We have created a testbed depicting the AMI functionality
relevant to the smart metering. We have used open source
components and commonly available cheap hardware. It is
therefore possible to have the basic functionality envisioned
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Interval Max Meters/Conc. Max Meters/MDS
1 min 30000 240k
5 min 150000 1.2M

15 min 450000 3.6M

Table 1: Maximum number of meters per concen-
trator and MDS assuming the highest meter reading
rates for each component (500 and 4000 respectively).

Interval # MDS # Conc. # Meters

1 min
1 [20 . . . 66] [72k . . . 237.6k]
2 [40 . . . 132] [144k . . . 475.2k]
3 [60 . . . 198] [216k . . . 712.8k]

5 min
1 [20 . . . 66] [360k . . . 1188M ]
2 [40 . . . 132] [720k . . . 2376M ]
3 [60 . . . 198] [1.08M . . . 3564M ]

15 min
1 [20 . . . 132] [1.08M . . . 3564M ]
2 [40 . . . 132] [2.16M . . . 7128M ]
3 [60 . . . 198] [3.24M . . . 10692M ]

Table 2: Maximum number of meters for a range
of concentrators accepting readings at a rate of 60
meter readings/second.

by the smart grid at low cost; however it is clear that this
is only a tiny fraction of the real needs. Although system
reliability was not a concern in our experiments, it is of ut-
most importance in a real world system where several levels
of redundancy would need to be incorporated. Additionally
load-balancing techniques might be employed to control the
load at concentrator and MDS level. We expect that an
MDS cluster will be strategically located depending on the
scale of the underlying infrastructure and the performance
requirements set by the real-world enterprise applications.

In the experiment demonstrated in section 3.5, each con-
centrator is sending meter readings at a rate of 60 meter
readings/second. According to current smart grid indus-
try practices, each meter under a concentrator is sending a
reading every 15 minutes; with this level of granularity, a
total of 54000 meters would be connected to the concentra-
tor. The results show that, for the tested configuration, the
MDS performance peaks at 66 concentrators. This results
to roughly 3.5 million meters that can be incorporated in
this configuration (as depicted in Table 4.3).

If we further reduce the granularity of the readings to 5
minute intervals, some 1.18 million meters can be handled
by the architecture. It should be pointed out that 60 meter
readings/second equates to a 12% capacity factor utilization
of the presented concentrator. While, in this last experi-
ment, it is only attempted to meet the 100% utilization of
the MDS, further experiments should be conducted to tune
the parameters to make higher use of the concentrator’s ca-
pacity as well. While the number of meters that can be
handled by the architecture is limited by the processing rate
of the MDS, utilizing a higher capacity of the concentrators,
will result in fewer concentrators being needed. This will ob-
viously help to keep costs down, as fewer concentrators will
be needed to be deployed, managed and maintained. The
correlation between the time resolution, max meters per con-
centrator and max number of meters per MDS is depicted in
4.3. Following this line of thought, Table 4.3 depicts various

configurations that can be used as a thumb rule when we set
up an AMI.

4.4 Future directions
In the realised experiments we measured the performance

of our approach in a high bandwidth, single hop and uncon-
strained network. This, however, is not a reasonable expec-
tation for a real world scenario, at least for the mid-term.
As such, the performance must be further scrutinized under
far harsher network conditions that are more reflective of
reality. Especially between the concentrator and the meter
where a variety of heterogeneous networks is expected (e.g.
residential ADSL connection, power line communications or
even through existing wireless mobile phone networks), one
should experiment and consider the constraints of those me-
dia on the overall performance. We also assume that since no
global view of when to submit the data to the concentrator
and MDS is available, this will lead to variable phenomena
like peak loads and rejection of additional connections at
those levels. Such diverse conditions are likely to affect the
performance of the system, and these effects will need to be
identified and measured.

From the technical viewpoint we considered a web service
enabled infrastructure and more specifically the traditional
implementation of web services where SOAP is used. How-
ever there are more lightweight approaches out there. We
consider experimenting with REST (REpresentational State
Transfer) architectures that promise a better performance.
Eliminating SOAP is expected to benefit the message size as
we have shown in figure 15, which will help also transmission
over slower links as well as unmarshalling of the payload.
Alternatively the use of binary XML (e.g. Efficient XML
Interchange) may assist in reducing the verbosity of XML
and the cost of parsing. Initial results for web service en-
abled devices such as the smart meters are under promising
[9].

It is clear that the results presented are bound to the ac-
tual implementation tools and their limitations. We have
not invested any effort to tune them for high performance.
For instance we have used as an Application Server the
widely popular and open source JBoss AS (version 5.1.0.GA).
Validating that the same class of results can be realised
also with other AS implementations such as Glassfish and
Apache Geronimo would be also necessary as they might
deviate from the JBoss out-of-the-box behaviour. It is also
worthy to note that the Java EE (Enterprise Edition) ver-
sion 5 was used in the development of the aforementioned
web services. The new version, Jave EE 6 might similarly
provide a performance boost.

In all of our experiments we have not addressed security
and privacy. Clearly integrating any solution there will a
significant impact on all layers. Experimenting with WS-
Security, secure channels (HTTPS) or encrypted meter read-
ings, will give an insight to the magnitude of impact [5]. Ad-
ditionally the use of latest hardware (not dedicated though)
such as Intel processors of the i5/i7 generation which have
native AES support may assist in minimizing the impact
of security. Without doubt further tuning of hardware and
software may further enhance the overall performance.

5. CONCLUSION
Within the scope of this work we have demonstrated an

approach that can be used in order to create a rule of thumb
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when one is designing an AMI targeting high resolution me-
ter readings. We have taken a straightforward 3-layered hi-
erarchical architecture and evaluated its components from
the performance point of view. In a methodological way
we have identified and discussed potential problem areas as
well as the line of thought that should be followed in order
to find possible inter-dependencies and roadblocks. By in-
vestigating each component’s limits we were able to narrow
down the operational ranges that could be used to achieve
high performance. Our initial assumptions were validated
and some unexpected results that came up give avenues for
further research in the area.

We have demonstrated that contrary to widespread opin-
ion about the high cost of any AMI solutions, it is possible
to realize a high performance AMI based on common hard-
ware and open source tools. Although no tweaking was done
on the hardware or general tools (i.e. operating system, ap-
plication server etc.), we have shown that high resolution
metering correlating to several millions of meters can be sup-
ported with a limited number of concentrators and MDS as
depicted in Table 4.3. We are confident that these limits can
be further pushed if one more coherently take advantage of
software and hardware tuning, which would be of interest to
commercial solution providers.

Although the actual experimental measurements may vary
and depend on the hardware and (optimized) software that
can be used, one can follow exactly the same methodology
i.e. the steps we took to evaluate our set-up and identify the
limits of their deployment. This is an additional contribu-
tion of this work. It is our hope that this methodology will
be of usefulness to the ongoing efforts towards high resolu-
tion energy monitoring and timely assessment of it.
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