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ABSTRACT
In order to reduce the amount of power consumption in data
centers, it is becoming necessary to shut off or slow down
disks that are not actively serving user requests. In addi-
tion to exploiting disk drive idleness, system features are
in place that shape a disk’s workload by redirecting por-
tions of it elsewhere, with the goal to expand the periods
of idleness and the potential for power savings. In this pa-
per, we propose several workload shaping techniques that
determine which part of the working set to copy elsewhere
using temporal and spatial access frequencies in the work-
load. These workload shaping techniques, used within an
analytic estimation methodology, enable a fully automated
framework that determines on-line for the current workload
which, if any, shaping technique to activate such that the
power saving benefits are maximized without violating per-
formance targets. Extensive trace-driven evaluation shows
that the proposed workload shaping techniques complement
each-other with regard to their abilities to enhance idleness
in disk drives for a wide range of workload characteristics.
This results to added power savings in a data center even
when performance targets are stringent and workloads in-
tensive.

Categories and Subject Descriptors
C.4.1 [Performance of Systems]: Design studies; I.5.1.a
[Computing Methodologies]: Pattern Recognition—Mod-
els[Statistical]; I.6.4 [Computing Methodologies]: Sim-
ulation and Modeling—Model Validation and Analysis

General Terms
Performance, Algorithms, Design
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1. INTRODUCTION
As data centers grow bigger and central to the IT op-

erations of many organizations, automation and adaptivity
becomes imperative to their efficient operation [3]. Beyond
that, power consumption in a data center is added to the
set of metrics of quality such as performance, reliability, and
availability.

While data center power consumption amounts to about
20% of all IT power consumption, as much as 20-40% of data
center power consumption is attributed to disk drives [15].
As data grows, so does the number of deployed disk drives,
which can reach up to tens of thousands. Because not all the
data in a data center is accessed simultaneously, many disks
can be idle at any given time. Harvesting disk idle times to
reduce power consumption without violating performance
targets is the focus of this paper.

To aid with disk drive power consumption, manufacturers
are designing disks that can operate in an array of modes
with different power consumption characteristics [5, 13]. In
addition, system designers aim at serving the incoming work-
load with the minimum amount of resources, i.e., disk ar-
rays and servers, by bringing resources up on-demand. Most
policies that reduce the amount of active storage devices in
a system redirect the workload from one set of disk drives
to another with the goal of increasing the pool of idle disk
drives that can be shut off or slowed down [1, 8, 19, 16]. The
reasoning is that although disk drives are generally underuti-
lized [10], idle times are highly fragmented (i.e., idle periods
are interrupted by short busy periods) which greatly reduces
power saving capabilities. The expectation is that shaping
the workload via redirection of a portion of it enables addi-
tional opportunities for power savings in disk drives.

The efficiency of workload shaping techniques available in
the literature and of those proposed in this paper depends
on workload characteristics. Write offloading, where all the
incoming writes are redirected elsewhere in real time [8], can
be very effective only if writes dominate the workload, but is
ineffective in a read-dominated workload. Utilizing standard
caching policies such as LRU can shape disk workload based
on its spatial and temporal characteristics [19] but its effec-
tiveness depends on the working set size, since caches for
such purposes tend to be small. In a cluster setting, shifting
the entire working set from one disk to another can free up
targeted disks but its efficiency depends on the stationarity
of working sets [16].

The purpose of this paper is to propose workload shap-
ing techniques whose behavior is determined from the char-
acteristics of the workload observed in the system such as
frequency of individual or group of accesses. To this end,
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we characterize the observed idle times and busy periods at
individual disk drives to determine the portion of the work-
load that if redirected elsewhere in the system would yield
the most power savings without violating performance tar-
gets. In this work we strive to increase both the length and
the number of large idle intervals by consolidating multiple
idle intervals together.

To meet the above goal we extract the temporal and spa-
tial characteristics of the observed workload in the form of
histograms of idle intervals and of most frequent disk ac-
cesses. In addition, we monitor how consecutive idle times
and consecutive busy periods are related and collect proba-
bilities that can assist to identify sets of requests that frag-
ment large idle periods. All the above information is easy to
collect and store, thus contributing to a lightweight solution.

Running actively a workload shaping policy in a system
whose workload currently does not benefit from it (e.g.,
write-offloading in a read-mostly workload) is not desirable,
because workload shaping techniques generally impose ad-
ditional work in the system in the form of replicating or
moving data. As a result, it becomes critical to activate
a workload shaping policy only if a desirable trade-off be-
tween power gains and performance degradation caused by
the disk power saving modes is possible.

Here, we propose an estimation framework that identi-
fies accurately and efficiently which workload shaping policy
(from a pre-defined set) would perform best (e.g., saves the
most power without violating performance targets) for the
current workload. This estimation methodology is lightweight,
because it computes power savings of alternative workload
shaping methods based on an analytic expression, thus it
evaluates the trade-offs between different workload shaping
policies instantaneously and selects the one, if any, that best
serves the workload needs.

Extensive experimentation using four workload traces from
enterprise systems confirms that the proposed workload shap-
ing techniques succeed at exploiting workload spatial and
temporal locality, in order to increase periods of idleness
and power savings in disk drives. Temporal locality in work-
loads, even moderate, consistently leverages power savings
by achieving to expand idleness and reduce its fragmenta-
tion. Workloads that exhibit both temporal and spatial lo-
cality in their IO accesses are excellent candidates for power
savings.

Although the workload shaping techniques that we pro-
pose are adaptive by nature, their efficiency changes as work-
load characteristics change. To maximize power savings,
the system should alternate between the different workload
shaping policies such that the most effective one is active
at any given time. Our results show that our analytic es-
timation framework is the right tool to achieve such full
automation of power saving modes in disk drives.

This paper is organized as follows. Section 2 gives an
overview of the power saving modes that apply to disk drives
and describes an analytic framework used to determine the
schedule of power saving modes as well as to assess whether
a shaping technique is worth adapting. Then Section 3
presents the workload characterization methodology that
guides and motivates the workload shaping techniques in
this paper. In Section 4, we propose three workload shaping
methods. Results that show the effectiveness of the shap-
ing techniques are included in Section 5. A fully automated
framework for power saving in disk drives is laid out in Sec-

tion 6. In Section 7 we review related work. We conclude in
Section 8.

2. BACKGROUND
In this section we give an overview of power saving modes

on disk drives that convey the challenges of the problem and
motivate the need for workload shaping for power savings.
We also give a brief overview of an algorithmic framework
for power savings in disk drives that is introduced in [11].
This framework is used here to determine the scheduling
parameters for the power saving modes. Furthermore, this
power saving framework is used to estimate analytically the
effectiveness of the workload shaping techniques, i.e., the
amount of power saving for a given performance degrada-
tion, as discussed in more details in Section 6.

2.1 Power Saving Modes in Disk Drives
Disk drives represent the overwhelming majority of the

storage devices deployed in large data centers where power
conservation is a priority. Individual disk drives consume
moderate amount of power when compared with other com-
ponents in a computer system. However, disk drives tend
to be more idle than other system components. This is par-
ticularly true in large data centers that deploy thousands of
disk drives and host terabytes and petabytes of data, which
are not all accessed simultaneously.

Disk drives are complex hardware devices that consist of
both mechanical and electronic components. The mechan-
ical components, such as the platters that rotate at high
speeds, or the positioning arm that is kept at a specific dis-
tance away from the platters, continue to consume power
even when not accessing data. Similarly, the electronics in a
disk drive do consume power even during periods of idleness.
Overall disk drives consume less power when they are idle
than when they serve IOs.

Beyond the moderate power savings when an active disk
is idle (i.e., the “active idle” state), additional power can be
saved by slowing down components in a disk drive, such as
platter rotation, or by unloading and parking the heads (and
the positioning arm) on the side instead of flying them at
constant height over the platters. Finally, completely shut-
ting down the disk drive eliminates almost the entire power
consumption from the disk drive. Slowing or shutting down
the disk comes nonetheless with a performance cost to user
IOs, because bringing the disk back to its active state takes
time which ranges from hundreds of milliseconds to tens of
seconds. This required time period to reactivate a disk drive
can be viewed as an unavoidable performance penalty paid
by those IOs that by arrival find the disk drive that stores
their data in an inactive (i.e., power saving) mode.

Operation Description Power savings Penalty
Mode (sec)

Level 1 Serving IOs 0% 0.0
Level 2 Active (but) idle 40% 0.0
Level 3 Unloaded heads 48% 0.5
Level 4 Slowed platters 60% 1
Level 5 Stopped platters 70% 8
Level 6 Shut down 95% 25

Table 1: Power saving modes in a disk drive and the
corresponding re-activation penalty.
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There are several levels of power consumption depending
on the state of the disk’s mechanical and electronic compo-
nents. Each power consumption level or mode is character-
ized by the amount of power it consumes and the amount
of time it takes to get out of the power saving mode and
become ready to serve IOs. The exact amount of power
saved in a given power saving mode or the amount of time
it takes to become ready again, differ between disk drive
families and manufacturers. Table 1 presents a coarse de-
scription of the possible power saving modes focusing on the
components that are slowed down or shut off, and the penal-
ties associated with each power saving mode. The reported
penalty values are within representative ranges published by
two disk drive manufacturers [13, 5].

Note that during the process of bringing up a disk drive
out of a power saving mode, the consumed power surges
before settling to a normal consumption level. As with
the power savings in Table 1, this power surge during re-
activation depends on drive family and manufacturer.

2.2 Scheduling Power Saving Modes in Disk
Drives

The discussion of the previous section obviates the need
to account for the performance penalty before deciding on a
disk operation mode for power savings. In this section, we
give an overview of an algorithmic framework that deter-
mines when and for how long to schedule the power saving
modes in disk drives such that the trade-off between perfor-
mance degradation and power savings satisfies system qual-
ity targets. For more details on the framework we direct the
interested reader to [11].

One could argue that putting the disk into an idle mode
immediately after any idleness is detected could maximize
power savings, but given the stochastic nature of the length
of idle times and the penalty to bring the disk up to ac-
tive mode, it is important to use idle intervals that are suf-
ficiently large (i.e., longer than the reactivation time) for
power savings. In storage systems it is very common to not
put the system automatically in a power saving mode when
an idle interval is observed. Instead the system waits for a
time period in anticipation of future IO arrivals. If there
are no arrivals for the first I idle time units of an idle in-
terval, then the system is put into idle mode till the next
IO arrival. The algorithmic framework in [11] deviates from
this common practice by limiting the amount of time a disk
drive stays in a power saving mode to T , in an effort to
control the performance degradation caused by the power
saving modes.

The basic premise of the algorithmic framework in [11]
is to specify “when” (i.e., I) and for “how long”, (i.e., T )
an idle disk drive should go onto power saving mode, while
keeping performance degradation to low levels and maximiz-
ing power savings. The algorithmic framework calculates
the I and T values as a function of past workload (i.e., the
stochastic characteristics of past idle times) and user specifi-
cations (i.e., the average performance degradation of future
jobs that may be tolerated) in order to maximize power sav-
ings.

Central to the calculation of I and T is the cumulative
distribution histogram (CDH) of idle intervals that allows
for a compact representation of the empirical distribution of
the lengths of idle times. This CDH is created by dividing
the range of the idle interval lengths into equal-sized “bins”.

Then, the number of observed idle intervals that fall into
each bin is calculated and the frequency of an interval of a
specific size is obtained. The CDH value Cj that corresponds
to a bin j, indicates the probability that an idle interval has
length less than a value tj , i.e., Cj = Pr(idle interval ≤ tj).
In addition to the CDH of idle intervals, the framework
uses the user-provided average performance degradation D,
which is defined as the average relative delay of an IO op-
eration due to power savings. Usually, multiple (I, T ) pairs
exist for a specific D target but the framework chooses the
pair that maximizes the overall amount of time in power
savings S.

The algorithm is based on two facts: (1) only idle inter-
vals longer than I would be utilized for power saving, and
(2) only busy periods that succeed idle intervals of length
between I and I + T are to be delayed due to power saving
modes. Consequently, an important measure for the algo-
rithm is E that corresponds to the probability of an idle
interval shorter than I + T but longer than I, see Figure 1.
E is pivotal for calculating the best I and T values such
that delays do not exceed a target performance degradation
D and the effective time in power saving S is maximized.
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Figure 1: Selecting the scheduling (I, T ) pair for the
power saving modes in a disk drive whose idleness
is captured by the CDH.

Having the CDH of idle times as the main data structure,
gives the algorithm the ability to seamlessly and accurately
detect opportunities for power saving (i.e., long T ). To illus-
trate this, consider the (Ii, Ti) and (Ij , Tj) pairs in the CDH
presented in Figure 1. These two pairs correspond to the
same E value, but while Ii and Ij are very close, Tj is much
longer than Ti. This feature is a result of the sharp knee of
the CDH in the figure, which is indicative of the existence
of many long idle intervals of similar length. This property
of idle intervals is desirable when it comes to power savings
because it means that the behavior of idle intervals of that
length is more predictable. As a result, by setting I such
that the system goes into power savings only for the idle in-
tervals with the commonly observed length (as captured by
the knee) power savings will be higher for less performance
degradation. We revisit this observation and what it means
for the proposed shaping policies in Section 6.

One of the main features of this algorithmic framework
that we capitalize on in this paper is the ability to estimate
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1. initialize
a.D ← predefined performance degradation target
b.E ← portion of idle intervals that may delay IOs

without violating D
c. the penalty P for disk power up
d.the CDH of idle times (tj , Cj)
e.Smax = 0, Imax = 0, Tmax = 0

2. for all bins i, j in CDH do
find (Ii, Tj) such that CDH(Ii + Tj) − CDH(Ii) = E
estimate power savings S for (Ii, Tj)
if S ≥ Smax then Smax = S, Imax = Ii, Tmax = Tj

3.report final (Imax, Tmax)

Figure 2: Scheduling framework algorithm with tar-
get performance degradation D.

the effective time in power saving S for a given workload (as
captured by the CDH of idle times) and a scheduling pair
(I, T ). For this, we define the penalty P of a power saving
mode as a function of the time the disk needs to become ac-
tive and the power surge during this process. Consequently,
the effective time in a power saving mode is (T − P ) every
time the disk goes into one of them. The CDH is used to
estimate the expected overall effective time in power saving
S.

Figure 2 gives an overview of the algorithmic framework
that scans the CDH in search of the appropriate I and T
values.

3. WORKLOAD CHARACTERIZATION
We use a set of traces measured at the disk level of two en-

terprise storage systems, an application development server
(“Code”) and a file server (“File”) [10]. These traces record
for each request that reaches the disk drive the following
metrics: the arrival time, the departure time, the type of
the request (i.e., READ or WRITE), the request length in
bytes, and the location on the disk. The traces provide
the highest level of detail with regard to the length of idle
intervals for power savings, because busy periods and idle
intervals are captured exactly. As we show later in this sec-
tion, these traces constitute a rich set of workloads that are
representative of a wide spectrum of disk workload charac-
teristics.

Table 2 presents a high level characterization of the traces
with some metrics pertinent to power savings. The first
two columns of the table show the duration of each trace
(about 12 hours) and the drive utilization that ranges from
0.5% to 5.6%. The very low utilizations immediately sug-
gest that these traces offer great opportunities for power
savings, but close evaluation shows that these traces are
highly fragmented, therefore the time that can be used for
power savings is a lot less than suggested by the average
utilizations [11]. This can be also seen by the mean and
standard deviation of idle times. The reported values show
large variability in idle times and relatively small idle inter-
vals, motivating the need to devise effective methods that
aim at increasing the length of idle times and enable power
savings.

The table reports on the trace working set, which here is
defined as the total size of different blocks accessed by IO
requests in the trace. The table also includes the portion of
the working set relative to the total drive capacity. Essen-
tially, the working set shows the range of addresses used in

a trace. Except for Code 2, all traces have working sets that
span almost the entire disk capacity. With regard to work-
load shaping, this would mean that redirecting the majority
of accesses elsewhere would need to mirror almost the entire
disk. This is not effective in a storage system and it is one
of the main reasons why we propose here workload shap-
ing techniques that are based on frequencies of accesses, as
well as their spatial and temporal locality characteristics as
further explained in Section 4.

3.1 Spatial Locality
Spatial locality is an important characteristic of an IO

workload that if present should improve the efficiency of
workload shaping. However, most enterprise IO workloads
are known to have only moderate spatial locality. Here, in
order to strike a balance between book-keeping and workload
detail, we define as an “access block” 100 MB of successive
IO addresses. Because all traces are READ intensive, we
first examine the spatial locality of READs. In addition, we
also examine the spatial locality of busy periods, i.e., all IO
operations that occur between two idle periods.

For both READs and busy periods we construct the em-
pirical cumulative distribution histograms that capture their
respective frequencies. Each bin corresponds to a READ
block of 100 MB. The number of accesses to the particular
block is placed to the corresponding bin. In a similar way,
we construct the CDH of the busy period accesses. This
time instead of READ blocks we group a set of blocks to
each bin, that are accessed in one busy period.

These two new histograms provide important information
about the workload’s spatial locality. If a high frequency of
accesses concentrates on few READ blocks or busy periods,
then it is reasonable to assume that if these high-frequency
blocks are moved elsewhere, then idleness can increase. In
addition, provided that these histograms are changed on-
line, changes in the workload working set can be easily de-
tected.

Table 3 gives a snapshot of the information provided by
the CDH by presenting the portion of the working set that
serves the most frequent READ blocks of the workload. The
number of READ blocks that corresponds to a particular
percentage of the working set is also reported within the
parentheses. The table clearly shows that the frequency of
READ accesses that corresponds to a particular working set
percentage varies significantly for different workloads. Ob-
serve that READs for workloads“Code 1”, “File 1”, and“File
2” correspond to moderate portions of the working set. As
we show in the results section, removing READs from such
workloads cannot help in achieving high power savings. On
the other hand, “Code 2” appears to have good READ lo-
cality, since 70% READ load can be removed by redirecting
only 5% of the working set. Redirecting only this small part
of the working set may be very beneficial for power.

Table 4 presents the portion of workload captured by the
most frequent Busy Period accesses that is served by por-
tions of the working set equal to 1%, 5%, 10%, and 20%.
For “Code 2”, it is remarkable that 92% of the busy period
accesses corresponds to only 1% of the working set. This
suggests that redirecting more than 1% of the working set
cannot be beneficial. The workload that is second highest
in spatial locality of busy periods is “File 2” but not nearly
as high as “Code 2”. The other two workloads exhibit only
moderate spatial locality in their busy periods. In general,
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Trace Length of Util. Idle Length Disk Working Working

Trace (hrs) (%) Mean Std. Dev. Capacity (GB) Set (GB) Set (%)

Code 1 11.8 5.6 284.02 ms 2287.02 ms 146 135.3 92.7%
Code 2 11.8 0.5 1614.37 ms 3793.50 ms 146 36.2 24.7%
File 1 11.5 1.7 874.99 ms 1559.49 ms 73 51.1 70.0%
File 2 11.5 0.7 2686.85 ms 9066.78 ms 73 60.7 83.2%

Table 2: High level trace characteristics. The working set is measured in GB (column 7) as well as percentage
of total disk capacity (column 8).

%WS 1% 5% 10% 20%
Code 1 0.12(13) 0.38(65) 0.56(130) 0.75(260)
Code 2 0.57(4) 0.70(20) 0.77(40) 0.86(80)
File 1 0.12(5) 0.38(25) 0.57(50) 0.81(100)
File 2 0.18(6) 0.43(30) 0.56(60) 0.71(120)

Table 3: Portion of the most frequent READ ac-
cesses served by a specific portion of the working
set for all traces The number of READ blocks is
also given in parentheses.

the CDH of the busy periods can significantly help in decid-
ing whether there is high spatial locality in the workload.
If this property exists, then it may be possible to increase
idleness by moving only a small part of the workload.

3.2 Temporal Locality
We now turn to temporal locality in the workload by fo-

cusing on the sequence of idle intervals. The purpose here
is to explore temporal characteristics such that we are able
to first detect (and later predict) whether large idle periods
are followed by other large ones. This is essential, because
by removing all busy periods between these idle periods, we
can significantly enlarge idle intervals.

To characterize temporal locality we use the conditional
probability of a long idle interval of size greater or equal to
L to be followed by another long interval greater or equal
to L. This information is useful not just for successive idle
intervals but also for intervals that are separated by k succes-
sive busy periods, i.e., that are k lags apart. An important
issue here is to identify what consists a “large” idle inter-
val. In this paper, we consider as large, an interval that is
2 to 4 deviations from the mean1. Because our purpose is
to reduce the fragmentation of idle times by increasing idle
intervals, we use these probabilities to guide us whether the
busy periods within idle intervals are to be removed.

Figure 3 shows the conditional probability of a long idle
interval that is preceded by another long one. The value (in
ms) that specifies the long idle interval of size L for each
workload is included in the legend. The figure allows us to
visualize any structure and/or patterns in the times series
of idle intervals. “Code 2” is clearly a code that depicts
a distinctive characteristic: the conditional probability is

1What constitutes a large idle interval depends on the work-
load variability and skewness. We have experimented with
different values of L for the four workloads and have seen
that a good rule of thumb for the definition of a “large” in-
terval tends to be in the range of 2 to 4 deviations from the
mean. Our experiments show that the exact value of what
is a “large” interval does not seem to matter, as long as it is
within this range.

%WS 1% 5% 10% 20%
Code 1 0.15(14) 0.40(65) 0.52(135) 0.60(260)
Code 2 0.92(10) 0.96(35) 0.97(74) 0.98(177)
File 1 0.06(6) 0.24(35) 0.38(84) 0.62(331)
File 2 0.25(6) 0.58(49) 0.65(106) 0.69(167)

Table 4: Portion of the most frequent Busy Periods
served by a specific portion of the working set for all
traces. The number of corresponding busy periods
is given in parentheses.

% same WS Part 1-2 Part 2-3 Part 3-4
Code 1 0.63 0.51 0.55
Code 2 0.83 0.83 0.91
File 1 0.82 0.79 0.77
File 2 0.87 0.76 0.81

Table 5: Percentage of repeating working set (WS)
in 3 hour window.

equal to 0.9 for the sixth lag for a long interval of size 11,000
ms. This means that the sixth interval that follows a long
one, is highly likely to be long. However, all other lags
of “Code 2” are significantly smaller, this suggests low to
moderate temporal locality for this workload. “File 1” shows
high probability values for a few lags (i.e., for the first three
lags) that sum up a value higher than 0.5%, therefore it is
beneficial to attempt to remove a sequence of two to three
busy periods to reduce the fragmentation of idle intervals.

“Code 1” and “File 2” have smaller values of conditional
probabilities for successive lags but they remain consistent
for multiple lags suggesting a persisting temporal locality
that also can be beneficial with regard to workload shaping.

Finally, another way to describe temporal locality is by
evaluating the persistence of the entire working set as time
elapses. The adaptive workload shaping policy proposed in
this paper is built on the ground of the similarity of working
set in different time windows. Table 5 shows how much of the
working set remains the same in four time windows of three
hours each. All workloads have a highly repetitive work-
ing set, where more than 75% of it is repeated in the next
window. Since the most frequently accessed blocks repeat,
addressing the most frequently accessed blocks with work-
load shaping should be effective. Another important aspect
of this characteristic is that past observations serve as good
predictors of the future workload, which consequently would
result in accurate decisions from our estimation framework.
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Figure 3: Conditional probability values of a long idle interval being followed by long (Prob[L|Lkth lag]) for all
traces as a function of lag k. A long interval L is defined in the legend for each figure.

4. WORKLOAD SHAPING TECHNIQUES
This section focuses on how to use information on the

spatial and temporal localities to design effective workload
shaping strategies. A common property of the three tech-
niques that we propose is that we assume the use of a“buffer”
to redirect part of the workload. This buffer can be another
disk drive or other persistent storage device in the storage
system. The goal of the workload shaping techniques pro-
posed here is to redirect only a small portion of the disk
capacity elsewhere in the system. Specifically, we focus on
buffer sizes that range from 1 GB to 10 GB only, which
represent at most 15% of the disk capacities of the traces
in Section 3. This restriction is useful because we aim at
workload shaping techniques that are lightweight and do not
impose significant overhead in the system.

Our framework uses a compact way of storing the work-
load information that is used for assessing the proposed
workload shaping techniques. First we identify in a trace
the time-stamps that mark the start and the end of each
busy period. Then we apply this information to specify the
blocks that correspond to a busy period, in order to build
structures for logging access frequencies (i.e., READs) and
busy periods frequencies. We use these structures to deter-
mine the spatial locality of a workload, i.e., the portion of
the workload and its corresponding disk capacity. To assess
the temporal locality we use the time-stamps that mark the
start and end of a busy period as well, only this time we log
the idle interval between two subsequent busy periods and
build the conditional probabilities that a long idle interval
L is followed by another long one. Finally, we use the spa-
tial and temporal locality information to specify the blocks
that should be mirrored elsewhere in the system. We then
build the “potential” CDH of this “shaped” workload, as it
would become after redirecting these specific blocks and es-
timate its “potential” power savings. This process repeats
every several (4-8) hours so that the CDH of idle times and
the frequencies of READs and busy periods reflect changes
in the workload.

Based on the above characterization and data structures,
we propose the following workload shaping techniques:

READ Offloading: For this shaping technique we evalu-
ate the frequencies of READs and the most active
READs are removed until the pre-defined-size buffer
is filled. The effectiveness of this technique depends
on how READ-intensive is the workload and also on
how strong is the spatial locality of the workload. Nat-
urally, larger buffers would store more blocks and po-
tentially more IOs would be redirected there, but as
we mention above, we strive for small buffers.

Busy Period (BP) Offloading: Here, the most frequently ac-
cessed busy periods (as given by the histogram of busy
periods) are removed until the buffer is filled. Spatial
locality and buffer size are decisive for the effectiveness
of this shaping method. An important difference with
READ offloading is that by removing whole busy pe-
riods, idle intervals are concatenated with their neigh-
boring intervals.

Probabilistic Offloading: This shaping method removes a
group of busy periods among two long idle intervals,
aiming at increasing the likelihood that long intervals
are concatenated to even longer ones. Deciding what
constitutes a long idle interval depends on the observed
mean and standard deviation of idle times. The num-
ber of busy periods that are removed depends on the
conditional probabilities of the sequence of idle inter-
vals. This technique is effective if there is strong per-
sistent temporal dependence over several lags in the
time series of idle intervals.

The effectiveness of these shaping techniques naturally de-
pends on the spatial and temporal localities of the work-
load, as well as the available buffer size. Observe that while
READ offloading determines individual blocks to be copied,
Busy Period offloading and Probabilistic offloading make de-
cisions upon sets of blocks that are accessed together almost
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(c) CODE 1, buffer = 10 GB

Figure 4: Power savings given user-defined performance degradation equal to 10%-100% for “Code 1” and
power savings Level 3. Power savings without any shaping are indicated as “base power savings” (solid black
bar). Results are presented for buffer sizes 1-10 GB.

simultaneously (i.e., in the same busy period). The only
difference between Busy Period offloading and Probabilistic
offloading is that the former makes decisions on frequency
of busy periods and the latter makes decisions based on the
correlation of the length of idle intervals succeeding the busy
periods.

We would like to point out that further idleness fragmen-
tation is a potential side effect of most workload shaping
techniques at the disk drive level, including the three pro-
posed here. To illustrate this, consider READ offloading.
The expectation is that by removing most frequent READ
blocks, the majority of busy periods get shorter (or elimi-
nated) and idle intervals get longer. However, removing indi-
vidual READs could also partition busy periods into smaller
ones and create more small idle intervals. The effect of this
may lead to counter-intuitive results, e.g., more buffer space
may not always lead to larger power savings after workload
shaping, because it may increase the fragmentation of idle
times in the trace.

While READ and Busy Period offloading offer good power
saving when workloads exhibit spatial locality, Probabilis-
tic offloading generally offers good power savings if there is
temporal locality among idle interval lengths. The spatial
locality of busy periods affects this method indirectly. If the
busy periods that are removed based on temporal locality
criteria are encountered frequently, then a smaller buffer is
needed for the redirected workload. In the following section
we present detailed experimentation that further corrobo-
rates how the different workload characteristics should guide
shaping to maximize power saving.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate in detail the proposed work-

load shaping techniques via trace-driven simulations. For
each workload, each shaping method and buffer size combi-
nation, and each disk power saving mode, we use the algo-
rithmic framework presented in [11] and summarized in Sec-
tion 2.2 to calculate the best scheduling parameters I and
T of the power saving mode and the corresponding power
savings that would result from that scheduling pair. The I
and T values are computed for fixed values of user-provided
performance degradation D that we set to 10%, 30%, 50%,
and 100%.

Our trace-driven simulation, simulates the collection of
data for the first half of the trace and based on analysis of

the workload localities, it applies workload shaping for the
second half of the trace. Specifically, the simulation collects
the necessary data from the trace and populates the data
structures described in Section 4 for the first half of the
trace. Half of the trace, or six hours (see Table 2) is set as
the monitoring window. Upon completion of one monitor-
ing window, the scheduling pair (I, T ) is determined, and
the resulting “mirrored” blocks from applying a workload
shaping technique are marked as such. For the second half
of the trace, the simulation puts the disk into a power sav-
ing mode every time an idle interval is detected and I time
units elapse. The system remains in power savings for T
time units or less, if a new IO request arrives for a non-
mirrored block and finds the disk in a power saving mode.
Each simulation calculates the portion of time that the sys-
tem is put in a power savings mode.

For all experiments presented here we assume Level 3
power savings. Results with Level 4 are qualitatively similar
to those of Level 3 across all workloads and are not presented
here in the interest of space. As explained in Section 3, our
traces are measured in enterprise systems with limited idle-
ness and few opportunities for power savings. As such Level
5 and 6 of disk power saving modes with high penalties do
not yield any savings and are not evaluated here. We also
present results for buffer size equal to 1, 5, and 10 GB, that
represent at most 15% of available capacity. For all shaping
policies, if the buffer fills, then no data are further moved
there (i.e., suggested data mirroring from the workload shap-
ing stops). Results for the four workloads are summarized
as follows.

“Code 1”: In Figure 4 we show the power savings of
“Code 1”. This is a workload with low spatial and moderate
temporal locality. The figure shows the base workload power
savings (black bar), and the power savings achieved with
Busy Period offloading, READ offloading, and Probabilistic
offloading. The base power savings correspond to power
savings if the power savings framework presented in [11] is
applied on the original workload, i.e., there is no workload
shaping.

The results in Figure 4 confirm that across all buffer sizes,
the highest power savings are accomplished with Probabilis-
tic offloading. For a large buffer size equal to 10 GB, see
Figure 4(c), Busy Period offloading is comparable to Proba-
bilistic offloading. In this case, more busy periods are moved
to the buffer, therefore opening up more opportunities for
power savings. For small buffer sizes, READ offloading is
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(a) CODE 2, buffer = 1 GB
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(b) CODE 2, buffer = 5 GB

Figure 5: Power savings given user-defined performance degradation equal to 10%-100% for “Code 2” and
power savings Level 3. Power savings without any shaping are indicated as “base power savings” (solid black
bar). Results are presented for buffer sizes 1-10 GB. Probabilistic offloading requires a buffer size up to 1
GB for this workload, i.e., the results presented for larger buffer sizes do not fill the available buffer.

similar to Busy Period offloading. If only a small buffer is
available, then Probabilistic offloading is preferable, because
it exploits not only the spatial but also the temporal locality
in the workload.2

Note that “Code 1” represents a “typical” IO enterprise
workload with low spatial locality. And it comes as no sur-
prise that exploiting temporal locality, such as mirroring sets
of blocks rather than individual ones, as well as the temporal
locality in the length of idle intervals, is effective. Further-
more, selecting the busy periods to be removed based on
temporal affinity of idle intervals rather than pure frequen-
cies of the busy periods yields significant power saving.

For a workload of low spatial and moderate temporal lo-
cality like“Code 1”, the best shaping method is Probabilistic
offloading. If a large buffer is available, then Busy Period
offloading is also a good choice. However, as we argued pre-
viously, we strive for small buffers and exploiting temporal
locality as Probabilistic offloading does, succeeds at increas-
ing power savings for a challenging workload such as “Code
1” with high IO rates and short original idle intervals (see
Table 2).

This workload represents a clear case where a fast ana-
lytical method that estimates the power savings for a target
performance degradation can be beneficial before choosing
a shaping technique as well as the buffer size that should be
used to redirect parts of the workload. In all cases here, the
analytic methodology of Section 2.2 correctly predicted the
relative ranking of the various shaping policies.

“Code 2”: In contrast to the previous workload, “Code
2” has high spatial locality and this gives many options for
shaping. Table 4 shows that almost 92% of the busy period
accesses are removed by redirecting only 1% of the work-
ing set. For a small buffer size equal to 1GB, Busy Period
offloading gives excellent power savings.

Characterization of frequencies of accesses for “Code 2”
suggests that larger buffers of 5 and 10 GB offer marginally
better power savings, as they direct to the buffer up to an
additional 5% of the working set (see Table 4). Instead,
we see that larger buffers can hurt power savings. READ
offloading and Busy Period offloading result in a workload
with more fragmented idle times than the case of the 1 GB
buffer. The result is less power savings for workload shaping

2As seen in Figure 3 the conditional probabilities indicate
moderate temporal locality for “Code 1”.

policies with large buffers (i.e., 5 GB and 10 GB) than 1 GB,
as depicted in Figure 5.

Note the suboptimal performance of the Probabilistic of-
floading policy. This performance is a direct result of the
low persistent temporal locality captured in Figure 3 for
“Code 2”. Although after five short idle intervals there is
a long one, the fact that the two long idle intervals are six
lags apart means that a large set of busy periods need to be
removed before large idle intervals can be concatenated. Re-
moving the intermediate busy periods results in significant
fragmentation of the idleness in the system and consequently
low power savings.

However, results from “Code 1” and “Code 2” in Figures 4
and 5, respectively, point out that when the characteristics
change orthogonally (i.e., from low spatial locality and mod-
erate temporal locality to high spatial locality and low tem-
poral locality), so does the effectiveness of a specific work-
load shaping technique. Probabilistic offloading becomes
ineffective while Busy Period offloading becomes effective.
This observation emphasizes the need for a fully automated
framework that estimates which is the most effective, if any,
workload shaping technique and activates that one. We ad-
dress this issue in detail in Section 6.

“File 1”: This workload has low spatial but high tempo-
ral locality. Temporal analysis, see Figure 3, shows that if a
long idle interval is observed, then there is a high probability
that another long idle interval follows if we remove two suc-
cessive busy periods. Figure 6 shows that the Probabilistic
offloading is the most efficient shaping method for “File 1”.
This method provides very large improvement of the origi-
nal power savings that are reported in [11] (see solid black
bars). Probabilistic offloading increases power savings up to
30% for large degradation and it is preferable to READ or
Busy Period offloading across all buffer sizes.

Table 2 shows that the spatial locality of the busy periods
is low, i.e., 10% of the working set corresponds to only 38%
of the busy periods, thus a large buffer is needed to be ef-
fective under Busy Period offloading. The results of READ
offloading are similar to those of Busy Period offloading.

Although not identical, the characteristics of“Code 1”and
“File 1” fall in the same categories when evaluated for power
savings and the recommendation is similar, i.e., to use Prob-
abilistic offloading. This confirms that temporal locality
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(c) FILE 1, buffer = 10 GB
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(a) FILE 1, buffer = 1 GB

Figure 6: Power savings given user-defined performance degradation equal to 10%-100% for “File 1” and
power savings Level 3. Power savings without any shaping are indicated as “base power savings” (solid black
bar). Results are presented for buffer sizes 1-10 GB.

even if moderate, should be exploited if spatial locality is
low.

File 2: This workload has good spatial locality and mod-
erate temporal locality. The power savings for “File 2” are
shown in Figure 7. In this case Probabilistic offloading per-
forms comparable to Busy Period offloading. This indicates
that when both spatial and temporal locality are present,
then selecting a workload shaping technique that exploits
either characteristic will result in maximum power savings
in the system.

An interesting observation is that READ offloading has
negative effect on the power savings for “File 2”. Figure 7
shows that this type of offloading reduces power savings ca-
pabilities of the original workload in most cases. The spatial
locality of READs is lower than spatial locality of Busy Pe-
riods (see Tables 3 and 4). In addition, the results of READ
offloading for“File 2”emphasize that it is not enough to redi-
rect multiple independent blocks but rather sets of blocks
that are accessed consecutively in a busy period. When
removing READS in this case, we remove blocks without
ensuring that we steer away from further fragmentation of
idle times.

6. DISCUSSION
In the previous sections, we developed several workload

shaping techniques, that aim at redirecting portions of the
disk workload elsewhere in the system, with the goal of in-
creasing idleness and opportunities for power savings with-
out violating performance targets. However, the main con-
clusion from the workload characterization presented in Sec-
tion 3 and the evaluation in Section 5 is that the effectiveness
of a shaping technique strongly depends on the stochastic
characteristics of the workload.

Although all shaping techniques proposed here are adap-
tive in nature, i.e., their parameters, such as the pair (I, T )
for scheduling the power saving periods or the amount of
buffer available for redirecting the workload are adjusted to
the changing workload, our evaluation showed that not one
shaping technique would work best for all workloads. From
the perspective of increasing power savings in a disk drive,
our goal is to enable the system to make a decision not only
on the parameters of an active workload shaping technique
but also determine which workload shaping technique to ac-
tivate for the current workload. Because workload shaping

techniques do impose extra work in the system, only one
should be active at any given time.

As we strive to propose a fully automated framework for
power savings, we utilize the analytic estimation capability
of the algorithm described in Section 2.2 to determine at
any given time:

• the highest amount of potential power savings for the
current workload or any workload shaping technique;

• the parameters to schedule power saving modes.

The analytic framework of Section 2.2 provides to the system
an accurate estimation of benefits and penalties associated
with any combination of workload, power saving mode level,
and shaping technique.

Since enterprise systems are sensitive toward additional
delays in the system (as it is the case with the delays caused
by activating disk drives in power saving modes), we rec-
ognize that for certain workloads (e.g., the workload during
business hours) no power saving mode or workload shaping
should occur. However, we may enable the system to detect
power saving opportunities as the workload changes and act
upon these opportunities.

This analytic estimation and decision making framework
for power savings in disk drives is complementary to the
workload shaping techniques available in the literature. For
example the effectiveness of WRITE offloading [8] or work-
ing set offloading[16] for a given workload can be assessed
similarly to the effectiveness of the workload shaping tech-
niques proposed here, adding even more flexibility and adap-
tivity in the system.

Our framework allows us to figure out which are the disks
that cannot be shut down. Since these disks have to be ac-
tive, then perhaps we can send some of the redirected work-
load to them instead of a sending it to a “buffer” such as a
cache. The extra work due to redirection is very small given
that the goal of the shaping techniques here is to identify a
small portion of the workload only. Serving of the redirected
workload by these target disks, from the power consump-
tion perspective in the cluster remains the same because
this work would have to be served anyway somewhere in the
cluster.

6.1 Algorithmic Framework
In order to be able to estimate the power saving potential

for the current workload or the available workload shaping
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(c) FILE 2, buffer = 10 GB

Figure 7: Power savings given user-defined performance degradation equal to 10%-100% for “File 2” and
power savings Level 3. Power savings without any shaping are indicated as “base power savings” (solid black
bar) . Results are presented for buffer sizes 1-10 GB. Probabilistic offloading requires a buffer size up to 4
GB for this workload, i.e., the results presented for larger buffer sizes do not fill the available buffer.

techniques and make a decision on how the system should
operate, several metrics should be monitored in the system.
Specifically the system should monitor the CDH of idle times
and the frequencies of accessed blocks, individually and in
busy periods. From these metrics it is fairly simple to de-
rive the CDH of idle times if a specific workload shaping
technique (e.g., READ offloading) is activated.

To illustrate how the CDHs of the shaped workloads can
assist in identifying opportunities for power savings, we show
the CDH of the original workload for“Code 2” in Figure 8(a)
as well as the CDHs for the “shaped Code 2” for the three
shaping strategies, see Figure 8(b)-(c) for a 1 GB buffer.
Figure 8(b) shows that the CDHs of Busy Period offloading
and READ offloading are very similar – both CDHs have
more distinctive “knees” and higher CDH values for larger
intervals than the Original “Code 2” CDH, suggesting good
opportunities for power savings. Indeed, for degradation
greater than 30% the power savings of these two policies are
close. Probabilistic offloading for this workload results in
aggressive creation of very large idle intervals, observe the
x-range of the plot in Figure 8(c), but also many small ones.
Yet, for “Code 2”, Busy period offloading is more effective
as shown in Figure 5. When it comes to power savings,
the “knee” shapes in the CDH of idle times represents the
idleness that yields the most power savings, recall the in
Section 2.2.

For each CDH of idle times, i.e., the monitored and the
generated ones, the power savings are estimated using the
estimation procedure in Section 2.2 using as additional in-
put the user-provided acceptable performance and/or power
saving targets. However, since there are multiple workload
shaping techniques and multiple power saving levels in a disk
drive, the number of combinations for all potential power
saving settings can grow significantly. In this case, even
with the very compact and efficient procedure of Section 2,
there is a risk of overloading the system with estimations.

In order to target only a few potentially effective scenarios
we use CDHs that we have already built to guide our decision
making. While the benefits of power savings and workload
shaping depend on the individual system’s quality of service
goals, we believe that the majority of systems aim to redirect
only a small portion i.e., 5% of the available capacity to a
remote buffer. We believe that if more data needs to be
copied elsewhere, then the problem changes from shaping

the workload to creating multiple copies of the same data
and activating them on demand. The latter problem is more
complex and imposes more overhead in the system. Here we
aim at identifying power saving opportunities with limited
overhead.

With the above goals we define a workload to exhibit

• high spatial locality if most frequent accesses span for
less than 10-20% of the capacity and low otherwise;

• high temporal locality if the sum of probabilities of
several consecutive long idle intervals is more than 0.5
and low otherwise.

Using the above definitions to quantify spatial and tempo-
ral locality and based on our evaluations of the individual
workload shaping techniques in Section 5, we establish the
following relations between workload’s spatial and tempo-
ral locality and the workload shaping technique that holds
potential for power savings:

• if the workload has high temporal locality then Prob-
abilistic offloading with small buffers should be evalu-
ated further,

• if the workload has high spatial locality then READ of-
floading and Busy Period offloading with small buffers
should be evaluated further, and

• if the workload does not exhibit spatial or temporal
locality then Busy Period and Probabilistic offloading
with large buffers (i.e., 15% of the available capacity)
should be evaluated further.

Once we determine which set of workload shaping tech-
niques to evaluate further, then we use the algorithm in
Figure 2 to estimate the potential power savings for the set
of selected workload shaping techniques for different buffer
sizes and power saving modes. In this process, we deter-
mine the scheduling parameters as well. Once all estimations
are done, the framework selects the set of parameters that
achieve the highest power saving for the smallest buffer size
without violating system performance targets. The accuracy
of our estimations on power savings is demonstrated in [11],
therefore we are confident that the decisions on selecting a
shaping technique would be correct and yield the best pos-
sible power savings without violating performance targets.
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Figure 8: CDHs of idle times for “Code 2”. We report on the CDHs of the original workload (no shaping),
Busy Period and READ offloading, and Probabilistic offloading. We assume that the buffer is 1 GB.

The estimations are done once in several hours (or when the
workload structures including the CDH and the frequencies
of READs and busy periods change significantly). For a
description of each algorithmic step, see Figure 9.

1.If in characterization state do
a.update IOs and busy / idle periods traces
b.update the CDH of idle times
c. update the CDH of busy period accesses
d.update the CDH of READ accesses and
e. calculate the conditional probabilities of a long idle

interval followed by another long up to 20 lags
set long = mean + 3 · standard deviation

2.If system in decision making state do
a.If temporal locality is high (> 0.5 for multiple lags)

continue with Probabilistic offloading
else if spatial locality high (working set < 20% capacity)

continue with Busy Period offloading
else if no spatial or temporal locality

continue with Probabilistic or Busy Period offloading
b.Use selected workload shaping technique

i. generate the would-be CDHs of idle times from
traces of 1.a and buffer sizes 1, 5, 15% of capacity

ii.use Algorithm in Figure 2 to calculate power saving
with the would-be CDHs for all buffer sizes

c.Use the CDH generated in 1.b with Algorithm
in Figure 2 to calculate base power savings

d.Select shaping with the highest power savings

Figure 9: Algorithm of workload shaping frame-
work.

7. RELATED WORK
Workload characterization has established that idleness

and burstiness in disk drive workloads remain invariant across
different applications [10]. In contrast, the READ/WRITE
ratio, workload sequentiality, arrival rate, and request char-
acteristics are largely environment-specific [10]. Temporal
and spatial characteristics in disks have been examined in
the literature [18, 4]. In [18] the authors characterize a
wide range of storage workload traces from Windows servers
regarding the IO rate, average system and disk inter ar-
rival, and average IO request size. This characterization
aims at giving a complete picture of storage workload to
improve modeling, simulation, and storage firmware. In [4]
a study on storage workload characterisation in virtualized
environments is presented. The access locality, IO sizes, and
READ/WRITE ratio of storage workloads in virtualized en-
vironments are measured and characterized. The goal in [4]

is to reduce latency and improve performance using work-
load characterization.

Redirecting the entire workload (or parts of it) to other
disks or other parts of the system for archival and backup
storage systems, are explored in [1]. Offloading the WRITEs
of a workload for power savings to another persistent storage
space in a cluster is presented in [8] and its effectiveness is
shown to be increasing power savings by 45-60% for work-
loads that are WRITE intensive. The techniques we propose
here are more general than WRITE offloading because we of-
fload the most active parts of the workload (READs and/or
WRITEs) and those may change as the workload changes
across time.

In [19] a theoretical and on-line version of redirecting
workload to a cache is presented. The authors consider that
power savings are present all the time, which means that
user response times can degrade significantly as there is no
mechanism to restrain performance degradation.

SRCMap [16] develops an intelligent replication scheme
that aims at serving a workload with the optimal number
of active disks in the system. Their model is based on the
observation that the power drawn for a workload increases
linearly as the load intensity increases. SRCMap offloads
the entire working set to increase the idle period duration.
Here, our focus is at the disk drive level and on moving only
a part of the working set in order to enlarge idle intervals and
still achieve high power savings with limited book-keeping.
Another difference in SRCMap and our shaping framework is
that there is no mechanism to keep performance degradation
within certain levels, and that the elapsed time before power
savings are activated is always a constant value – instead we
estimate this value I and this changes depending on the
workload and the acceptable performance target. SRCMap
uses replication in order to achieve the minimum amount of
active physical volumes, as well as dynamic adaptation to
workload popularity.

In [2] context aware power savings mechanisms for interac-
tive applications that are based on monitoring user behavior
are proposed. The goal is to limit delays due to powering up
the hard disk. The authors approach this by using a simple
predictor as well as by capturing correlations between user
interactions.

In [17] PARAID exploits the unused space in a disk to
replicate in a skewed fashion and sets of disks are organ-
ised in a hierarchical way. Each set represents a gear similar
to automobiles that offers different parallelism and band-
width. PARAID conserves energy by exploiting this disk
parallelism to spin down disks. More disks are used for bet-
ter performance, less for power savings. In [9] a technique to
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increase workload burstiness to disks is applied for power ef-
ficiency, by aggressive pre-fetching. A trace based approach
that studies the queue depth and the inter-arrival process of
requests in order to save power in data centers is presented
in [12]. A system with two priority queues is devised in [7]
where burstiness and interleaving of workload is used in or-
der to increase power efficiency. Dynamic placement of free
blocks to improve disk performance and power savings with
a runtime component is presented in [6]. How to optimize
file system options for power savings is considered in [14].

In this paper we focus on workload characteristics using
monitoring to capture temporal and spatial locality. The
target of our workload shaping policies is to enlarge idle
times that can be used for power savings using the most ef-
fective workload shaping technique as suggested by workload
characterization. The main difference from the related work
above is that the techniques proposed are always adjusted
to the temporal and spatial characteristics via continuous
workload monitoring, while abiding by the user-set perfor-
mance targets. The methodology is lightweight because it
relies on simple calculations on collected histograms that
reflect how the workload changes across time.

8. CONCLUSIONS AND FUTURE WORK
We present methods for workload shaping that are based

on learning from past workload temporal and spatial char-
acteristics. Our evaluation shows that we manage to predict
a good shaping method that increases power savings across
a variety of workloads. Remarkably, even when a trace ex-
hibits only moderate temporal locality, probabilistic offload-
ing can significantly increase the potential for power savings
even by directing only a portion of the workload to a small
buffer. If spatial locality is also present, then power savings
have the potential to increase even further.

In the future, we intend to extend the workload shaping
mechanism proposed here in order to target specific power
savings (i.e., how and how much should we“shape”the work-
load in order to achieve certain power targets). An interest-
ing extension would be also on workload multiplexing, i.e.,
how to redirect workload on other disks such that the per-
formance of the disk where workload is redirected remains
intact and power savings are maximized.
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